1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28#include "qemu/osdep.h"
29#include "hw/net/mii.h"
30#include "hw/pci/pci_device.h"
31#include "hw/qdev-properties.h"
32#include "migration/vmstate.h"
33#include "net/eth.h"
34#include "net/net.h"
35#include "net/checksum.h"
36#include "sysemu/sysemu.h"
37#include "sysemu/dma.h"
38#include "qemu/iov.h"
39#include "qemu/module.h"
40#include "qemu/range.h"
41
42#include "e1000_common.h"
43#include "e1000x_common.h"
44#include "trace.h"
45#include "qom/object.h"
46
47
48
49#ifdef E1000_DEBUG
50enum {
51 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
52 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
53 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
54 DEBUG_RXFILTER, DEBUG_PHY, DEBUG_NOTYET,
55};
56#define DBGBIT(x) (1<<DEBUG_##x)
57static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
58
59#define DBGOUT(what, fmt, ...) do { \
60 if (debugflags & DBGBIT(what)) \
61 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
62 } while (0)
63#else
64#define DBGOUT(what, fmt, ...) do {} while (0)
65#endif
66
67#define IOPORT_SIZE 0x40
68#define PNPMMIO_SIZE 0x20000
69
70#define MAXIMUM_ETHERNET_HDR_LEN (ETH_HLEN + 4)
71
72
73
74
75
76
77
78
79
80struct E1000State_st {
81
82 PCIDevice parent_obj;
83
84
85 NICState *nic;
86 NICConf conf;
87 MemoryRegion mmio;
88 MemoryRegion io;
89
90 uint32_t mac_reg[0x8000];
91 uint16_t phy_reg[0x20];
92 uint16_t eeprom_data[64];
93
94 uint32_t rxbuf_size;
95 uint32_t rxbuf_min_shift;
96 struct e1000_tx {
97 unsigned char header[256];
98 unsigned char vlan_header[4];
99
100 unsigned char vlan[4];
101 unsigned char data[0x10000];
102 uint16_t size;
103 unsigned char vlan_needed;
104 unsigned char sum_needed;
105 bool cptse;
106 e1000x_txd_props props;
107 e1000x_txd_props tso_props;
108 uint16_t tso_frames;
109 bool busy;
110 } tx;
111
112 struct {
113 uint32_t val_in;
114 uint16_t bitnum_in;
115 uint16_t bitnum_out;
116 uint16_t reading;
117 uint32_t old_eecd;
118 } eecd_state;
119
120 QEMUTimer *autoneg_timer;
121
122 QEMUTimer *mit_timer;
123 bool mit_timer_on;
124 bool mit_irq_level;
125 uint32_t mit_ide;
126
127 QEMUTimer *flush_queue_timer;
128
129
130#define E1000_FLAG_AUTONEG_BIT 0
131#define E1000_FLAG_MIT_BIT 1
132#define E1000_FLAG_MAC_BIT 2
133#define E1000_FLAG_TSO_BIT 3
134#define E1000_FLAG_VET_BIT 4
135#define E1000_FLAG_AUTONEG (1 << E1000_FLAG_AUTONEG_BIT)
136#define E1000_FLAG_MIT (1 << E1000_FLAG_MIT_BIT)
137#define E1000_FLAG_MAC (1 << E1000_FLAG_MAC_BIT)
138#define E1000_FLAG_TSO (1 << E1000_FLAG_TSO_BIT)
139#define E1000_FLAG_VET (1 << E1000_FLAG_VET_BIT)
140
141 uint32_t compat_flags;
142 bool received_tx_tso;
143 bool use_tso_for_migration;
144 e1000x_txd_props mig_props;
145};
146typedef struct E1000State_st E1000State;
147
148#define chkflag(x) (s->compat_flags & E1000_FLAG_##x)
149
150struct E1000BaseClass {
151 PCIDeviceClass parent_class;
152 uint16_t phy_id2;
153};
154typedef struct E1000BaseClass E1000BaseClass;
155
156#define TYPE_E1000_BASE "e1000-base"
157
158DECLARE_OBJ_CHECKERS(E1000State, E1000BaseClass,
159 E1000, TYPE_E1000_BASE)
160
161
162static void
163e1000_link_up(E1000State *s)
164{
165 e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg);
166
167
168 qemu_flush_queued_packets(qemu_get_queue(s->nic));
169}
170
171static void
172e1000_autoneg_done(E1000State *s)
173{
174 e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg);
175
176
177 qemu_flush_queued_packets(qemu_get_queue(s->nic));
178}
179
180static bool
181have_autoneg(E1000State *s)
182{
183 return chkflag(AUTONEG) && (s->phy_reg[MII_BMCR] & MII_BMCR_AUTOEN);
184}
185
186static void
187set_phy_ctrl(E1000State *s, int index, uint16_t val)
188{
189
190 s->phy_reg[MII_BMCR] = val & ~(0x3f |
191 MII_BMCR_RESET |
192 MII_BMCR_ANRESTART);
193
194
195
196
197
198
199 if (have_autoneg(s) && (val & MII_BMCR_ANRESTART)) {
200 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
201 }
202}
203
204static void (*phyreg_writeops[])(E1000State *, int, uint16_t) = {
205 [MII_BMCR] = set_phy_ctrl,
206};
207
208enum { NPHYWRITEOPS = ARRAY_SIZE(phyreg_writeops) };
209
210enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
211static const char phy_regcap[0x20] = {
212 [MII_BMSR] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
213 [MII_PHYID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
214 [MII_BMCR] = PHY_RW, [MII_CTRL1000] = PHY_RW,
215 [MII_ANLPAR] = PHY_R, [MII_STAT1000] = PHY_R,
216 [MII_ANAR] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
217 [MII_PHYID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R,
218 [MII_ANER] = PHY_R,
219};
220
221
222static const uint16_t phy_reg_init[] = {
223 [MII_BMCR] = MII_BMCR_SPEED1000 |
224 MII_BMCR_FD |
225 MII_BMCR_AUTOEN,
226
227 [MII_BMSR] = MII_BMSR_EXTCAP |
228 MII_BMSR_LINK_ST |
229 MII_BMSR_AUTONEG |
230
231 MII_BMSR_MFPS |
232 MII_BMSR_EXTSTAT |
233 MII_BMSR_10T_HD |
234 MII_BMSR_10T_FD |
235 MII_BMSR_100TX_HD |
236 MII_BMSR_100TX_FD,
237
238 [MII_PHYID1] = 0x141,
239
240 [MII_ANAR] = MII_ANAR_CSMACD | MII_ANAR_10 |
241 MII_ANAR_10FD | MII_ANAR_TX |
242 MII_ANAR_TXFD | MII_ANAR_PAUSE |
243 MII_ANAR_PAUSE_ASYM,
244 [MII_ANLPAR] = MII_ANLPAR_10 | MII_ANLPAR_10FD |
245 MII_ANLPAR_TX | MII_ANLPAR_TXFD,
246 [MII_CTRL1000] = MII_CTRL1000_FULL | MII_CTRL1000_PORT |
247 MII_CTRL1000_MASTER,
248 [MII_STAT1000] = MII_STAT1000_HALF | MII_STAT1000_FULL |
249 MII_STAT1000_ROK | MII_STAT1000_LOK,
250 [M88E1000_PHY_SPEC_CTRL] = 0x360,
251 [M88E1000_PHY_SPEC_STATUS] = 0xac00,
252 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60,
253};
254
255static const uint32_t mac_reg_init[] = {
256 [PBA] = 0x00100030,
257 [LEDCTL] = 0x602,
258 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
259 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
260 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
261 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
262 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
263 E1000_STATUS_LU,
264 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
265 E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
266 E1000_MANC_RMCP_EN,
267};
268
269
270static inline void
271mit_update_delay(uint32_t *curr, uint32_t value)
272{
273 if (value && (*curr == 0 || value < *curr)) {
274 *curr = value;
275 }
276}
277
278static void
279set_interrupt_cause(E1000State *s, int index, uint32_t val)
280{
281 PCIDevice *d = PCI_DEVICE(s);
282 uint32_t pending_ints;
283 uint32_t mit_delay;
284
285 s->mac_reg[ICR] = val;
286
287
288
289
290
291
292
293
294
295 s->mac_reg[ICS] = val;
296
297 pending_ints = (s->mac_reg[IMS] & s->mac_reg[ICR]);
298 if (!s->mit_irq_level && pending_ints) {
299
300
301
302
303
304
305
306
307
308 if (s->mit_timer_on) {
309 return;
310 }
311 if (chkflag(MIT)) {
312
313
314
315
316
317 mit_delay = 0;
318 if (s->mit_ide &&
319 (pending_ints & (E1000_ICR_TXQE | E1000_ICR_TXDW))) {
320 mit_update_delay(&mit_delay, s->mac_reg[TADV] * 4);
321 }
322 if (s->mac_reg[RDTR] && (pending_ints & E1000_ICS_RXT0)) {
323 mit_update_delay(&mit_delay, s->mac_reg[RADV] * 4);
324 }
325 mit_update_delay(&mit_delay, s->mac_reg[ITR]);
326
327
328
329
330
331
332
333 mit_delay = (mit_delay < 500) ? 500 : mit_delay;
334
335 s->mit_timer_on = 1;
336 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
337 mit_delay * 256);
338 s->mit_ide = 0;
339 }
340 }
341
342 s->mit_irq_level = (pending_ints != 0);
343 pci_set_irq(d, s->mit_irq_level);
344}
345
346static void
347e1000_mit_timer(void *opaque)
348{
349 E1000State *s = opaque;
350
351 s->mit_timer_on = 0;
352
353 set_interrupt_cause(s, 0, s->mac_reg[ICR]);
354}
355
356static void
357set_ics(E1000State *s, int index, uint32_t val)
358{
359 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
360 s->mac_reg[IMS]);
361 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
362}
363
364static void
365e1000_autoneg_timer(void *opaque)
366{
367 E1000State *s = opaque;
368 if (!qemu_get_queue(s->nic)->link_down) {
369 e1000_autoneg_done(s);
370 set_ics(s, 0, E1000_ICS_LSC);
371 }
372}
373
374static bool e1000_vet_init_need(void *opaque)
375{
376 E1000State *s = opaque;
377
378 return chkflag(VET);
379}
380
381static void e1000_reset_hold(Object *obj)
382{
383 E1000State *d = E1000(obj);
384 E1000BaseClass *edc = E1000_GET_CLASS(d);
385 uint8_t *macaddr = d->conf.macaddr.a;
386
387 timer_del(d->autoneg_timer);
388 timer_del(d->mit_timer);
389 timer_del(d->flush_queue_timer);
390 d->mit_timer_on = 0;
391 d->mit_irq_level = 0;
392 d->mit_ide = 0;
393 memset(d->phy_reg, 0, sizeof d->phy_reg);
394 memcpy(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
395 d->phy_reg[MII_PHYID2] = edc->phy_id2;
396 memset(d->mac_reg, 0, sizeof d->mac_reg);
397 memcpy(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
398 d->rxbuf_min_shift = 1;
399 memset(&d->tx, 0, sizeof d->tx);
400
401 if (qemu_get_queue(d->nic)->link_down) {
402 e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg);
403 }
404
405 e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr);
406
407 if (e1000_vet_init_need(d)) {
408 d->mac_reg[VET] = ETH_P_VLAN;
409 }
410}
411
412static void
413set_ctrl(E1000State *s, int index, uint32_t val)
414{
415
416 s->mac_reg[CTRL] = val & ~E1000_CTRL_RST;
417}
418
419static void
420e1000_flush_queue_timer(void *opaque)
421{
422 E1000State *s = opaque;
423
424 qemu_flush_queued_packets(qemu_get_queue(s->nic));
425}
426
427static void
428set_rx_control(E1000State *s, int index, uint32_t val)
429{
430 s->mac_reg[RCTL] = val;
431 s->rxbuf_size = e1000x_rxbufsize(val);
432 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
433 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
434 s->mac_reg[RCTL]);
435 timer_mod(s->flush_queue_timer,
436 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 1000);
437}
438
439static void
440set_mdic(E1000State *s, int index, uint32_t val)
441{
442 uint32_t data = val & E1000_MDIC_DATA_MASK;
443 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
444
445 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1)
446 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
447 else if (val & E1000_MDIC_OP_READ) {
448 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
449 if (!(phy_regcap[addr] & PHY_R)) {
450 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
451 val |= E1000_MDIC_ERROR;
452 } else
453 val = (val ^ data) | s->phy_reg[addr];
454 } else if (val & E1000_MDIC_OP_WRITE) {
455 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
456 if (!(phy_regcap[addr] & PHY_W)) {
457 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
458 val |= E1000_MDIC_ERROR;
459 } else {
460 if (addr < NPHYWRITEOPS && phyreg_writeops[addr]) {
461 phyreg_writeops[addr](s, index, data);
462 } else {
463 s->phy_reg[addr] = data;
464 }
465 }
466 }
467 s->mac_reg[MDIC] = val | E1000_MDIC_READY;
468
469 if (val & E1000_MDIC_INT_EN) {
470 set_ics(s, 0, E1000_ICR_MDAC);
471 }
472}
473
474static uint32_t
475get_eecd(E1000State *s, int index)
476{
477 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
478
479 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
480 s->eecd_state.bitnum_out, s->eecd_state.reading);
481 if (!s->eecd_state.reading ||
482 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
483 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
484 ret |= E1000_EECD_DO;
485 return ret;
486}
487
488static void
489set_eecd(E1000State *s, int index, uint32_t val)
490{
491 uint32_t oldval = s->eecd_state.old_eecd;
492
493 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
494 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
495 if (!(E1000_EECD_CS & val)) {
496 return;
497 }
498 if (E1000_EECD_CS & (val ^ oldval)) {
499 s->eecd_state.val_in = 0;
500 s->eecd_state.bitnum_in = 0;
501 s->eecd_state.bitnum_out = 0;
502 s->eecd_state.reading = 0;
503 }
504 if (!(E1000_EECD_SK & (val ^ oldval))) {
505 return;
506 }
507 if (!(E1000_EECD_SK & val)) {
508 s->eecd_state.bitnum_out++;
509 return;
510 }
511 s->eecd_state.val_in <<= 1;
512 if (val & E1000_EECD_DI)
513 s->eecd_state.val_in |= 1;
514 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
515 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
516 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
517 EEPROM_READ_OPCODE_MICROWIRE);
518 }
519 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
520 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
521 s->eecd_state.reading);
522}
523
524static uint32_t
525flash_eerd_read(E1000State *s, int x)
526{
527 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
528
529 if ((s->mac_reg[EERD] & E1000_EEPROM_RW_REG_START) == 0)
530 return (s->mac_reg[EERD]);
531
532 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
533 return (E1000_EEPROM_RW_REG_DONE | r);
534
535 return ((s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
536 E1000_EEPROM_RW_REG_DONE | r);
537}
538
539static void
540putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
541{
542 uint32_t sum;
543
544 if (cse && cse < n)
545 n = cse + 1;
546 if (sloc < n-1) {
547 sum = net_checksum_add(n-css, data+css);
548 stw_be_p(data + sloc, net_checksum_finish_nozero(sum));
549 }
550}
551
552static inline void
553inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr)
554{
555 if (is_broadcast_ether_addr(arr)) {
556 e1000x_inc_reg_if_not_full(s->mac_reg, BPTC);
557 } else if (is_multicast_ether_addr(arr)) {
558 e1000x_inc_reg_if_not_full(s->mac_reg, MPTC);
559 }
560}
561
562static void
563e1000_send_packet(E1000State *s, const uint8_t *buf, int size)
564{
565 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
566 PTC1023, PTC1522 };
567
568 NetClientState *nc = qemu_get_queue(s->nic);
569 if (s->phy_reg[MII_BMCR] & MII_BMCR_LOOPBACK) {
570 qemu_receive_packet(nc, buf, size);
571 } else {
572 qemu_send_packet(nc, buf, size);
573 }
574 inc_tx_bcast_or_mcast_count(s, buf);
575 e1000x_increase_size_stats(s->mac_reg, PTCregs, size + 4);
576}
577
578static void
579xmit_seg(E1000State *s)
580{
581 uint16_t len;
582 unsigned int frames = s->tx.tso_frames, css, sofar;
583 struct e1000_tx *tp = &s->tx;
584 struct e1000x_txd_props *props = tp->cptse ? &tp->tso_props : &tp->props;
585
586 if (tp->cptse) {
587 css = props->ipcss;
588 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
589 frames, tp->size, css);
590 if (props->ip) {
591 stw_be_p(tp->data+css+2, tp->size - css);
592 stw_be_p(tp->data+css+4,
593 lduw_be_p(tp->data + css + 4) + frames);
594 } else {
595 stw_be_p(tp->data+css+4, tp->size - css);
596 }
597 css = props->tucss;
598 len = tp->size - css;
599 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", props->tcp, css, len);
600 if (props->tcp) {
601 sofar = frames * props->mss;
602 stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar);
603 if (props->paylen - sofar > props->mss) {
604 tp->data[css + 13] &= ~9;
605 } else if (frames) {
606 e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC);
607 }
608 } else {
609 stw_be_p(tp->data+css+4, len);
610 }
611 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
612 unsigned int phsum;
613
614 void *sp = tp->data + props->tucso;
615
616 phsum = lduw_be_p(sp) + len;
617 phsum = (phsum >> 16) + (phsum & 0xffff);
618 stw_be_p(sp, phsum);
619 }
620 tp->tso_frames++;
621 }
622
623 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
624 putsum(tp->data, tp->size, props->tucso, props->tucss, props->tucse);
625 }
626 if (tp->sum_needed & E1000_TXD_POPTS_IXSM) {
627 putsum(tp->data, tp->size, props->ipcso, props->ipcss, props->ipcse);
628 }
629 if (tp->vlan_needed) {
630 memmove(tp->vlan, tp->data, 4);
631 memmove(tp->data, tp->data + 4, 8);
632 memcpy(tp->data + 8, tp->vlan_header, 4);
633 e1000_send_packet(s, tp->vlan, tp->size + 4);
634 } else {
635 e1000_send_packet(s, tp->data, tp->size);
636 }
637
638 e1000x_inc_reg_if_not_full(s->mac_reg, TPT);
639 e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size + 4);
640 e1000x_inc_reg_if_not_full(s->mac_reg, GPTC);
641 e1000x_grow_8reg_if_not_full(s->mac_reg, GOTCL, s->tx.size + 4);
642}
643
644static void
645process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
646{
647 PCIDevice *d = PCI_DEVICE(s);
648 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
649 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
650 unsigned int split_size = txd_lower & 0xffff, bytes, sz;
651 unsigned int msh = 0xfffff;
652 uint64_t addr;
653 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
654 struct e1000_tx *tp = &s->tx;
655
656 s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE);
657 if (dtype == E1000_TXD_CMD_DEXT) {
658 if (le32_to_cpu(xp->cmd_and_length) & E1000_TXD_CMD_TSE) {
659 e1000x_read_tx_ctx_descr(xp, &tp->tso_props);
660 s->use_tso_for_migration = 1;
661 tp->tso_frames = 0;
662 } else {
663 e1000x_read_tx_ctx_descr(xp, &tp->props);
664 s->use_tso_for_migration = 0;
665 }
666 return;
667 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
668
669 if (tp->size == 0) {
670 tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
671 }
672 tp->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
673 } else {
674
675 tp->cptse = 0;
676 }
677
678 if (e1000x_vlan_enabled(s->mac_reg) &&
679 e1000x_is_vlan_txd(txd_lower) &&
680 (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
681 tp->vlan_needed = 1;
682 stw_be_p(tp->vlan_header,
683 le16_to_cpu(s->mac_reg[VET]));
684 stw_be_p(tp->vlan_header + 2,
685 le16_to_cpu(dp->upper.fields.special));
686 }
687
688 addr = le64_to_cpu(dp->buffer_addr);
689 if (tp->cptse) {
690 msh = tp->tso_props.hdr_len + tp->tso_props.mss;
691 do {
692 bytes = split_size;
693 if (tp->size >= msh) {
694 goto eop;
695 }
696 if (tp->size + bytes > msh)
697 bytes = msh - tp->size;
698
699 bytes = MIN(sizeof(tp->data) - tp->size, bytes);
700 pci_dma_read(d, addr, tp->data + tp->size, bytes);
701 sz = tp->size + bytes;
702 if (sz >= tp->tso_props.hdr_len
703 && tp->size < tp->tso_props.hdr_len) {
704 memmove(tp->header, tp->data, tp->tso_props.hdr_len);
705 }
706 tp->size = sz;
707 addr += bytes;
708 if (sz == msh) {
709 xmit_seg(s);
710 memmove(tp->data, tp->header, tp->tso_props.hdr_len);
711 tp->size = tp->tso_props.hdr_len;
712 }
713 split_size -= bytes;
714 } while (bytes && split_size);
715 } else {
716 split_size = MIN(sizeof(tp->data) - tp->size, split_size);
717 pci_dma_read(d, addr, tp->data + tp->size, split_size);
718 tp->size += split_size;
719 }
720
721eop:
722 if (!(txd_lower & E1000_TXD_CMD_EOP))
723 return;
724 if (!(tp->cptse && tp->size < tp->tso_props.hdr_len)) {
725 xmit_seg(s);
726 }
727 tp->tso_frames = 0;
728 tp->sum_needed = 0;
729 tp->vlan_needed = 0;
730 tp->size = 0;
731 tp->cptse = 0;
732}
733
734static uint32_t
735txdesc_writeback(E1000State *s, dma_addr_t base, struct e1000_tx_desc *dp)
736{
737 PCIDevice *d = PCI_DEVICE(s);
738 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
739
740 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
741 return 0;
742 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
743 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
744 dp->upper.data = cpu_to_le32(txd_upper);
745 pci_dma_write(d, base + ((char *)&dp->upper - (char *)dp),
746 &dp->upper, sizeof(dp->upper));
747 return E1000_ICR_TXDW;
748}
749
750static uint64_t tx_desc_base(E1000State *s)
751{
752 uint64_t bah = s->mac_reg[TDBAH];
753 uint64_t bal = s->mac_reg[TDBAL] & ~0xf;
754
755 return (bah << 32) + bal;
756}
757
758static void
759start_xmit(E1000State *s)
760{
761 PCIDevice *d = PCI_DEVICE(s);
762 dma_addr_t base;
763 struct e1000_tx_desc desc;
764 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
765
766 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
767 DBGOUT(TX, "tx disabled\n");
768 return;
769 }
770
771 if (s->tx.busy) {
772 return;
773 }
774 s->tx.busy = true;
775
776 while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
777 base = tx_desc_base(s) +
778 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
779 pci_dma_read(d, base, &desc, sizeof(desc));
780
781 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
782 (void *)(intptr_t)desc.buffer_addr, desc.lower.data,
783 desc.upper.data);
784
785 process_tx_desc(s, &desc);
786 cause |= txdesc_writeback(s, base, &desc);
787
788 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
789 s->mac_reg[TDH] = 0;
790
791
792
793
794
795 if (s->mac_reg[TDH] == tdh_start ||
796 tdh_start >= s->mac_reg[TDLEN] / sizeof(desc)) {
797 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
798 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
799 break;
800 }
801 }
802 s->tx.busy = false;
803 set_ics(s, 0, cause);
804}
805
806static int
807receive_filter(E1000State *s, const void *buf)
808{
809 return (!e1000x_is_vlan_packet(buf, s->mac_reg[VET]) ||
810 e1000x_rx_vlan_filter(s->mac_reg, PKT_GET_VLAN_HDR(buf))) &&
811 e1000x_rx_group_filter(s->mac_reg, buf);
812}
813
814static void
815e1000_set_link_status(NetClientState *nc)
816{
817 E1000State *s = qemu_get_nic_opaque(nc);
818 uint32_t old_status = s->mac_reg[STATUS];
819
820 if (nc->link_down) {
821 e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg);
822 } else {
823 if (have_autoneg(s) &&
824 !(s->phy_reg[MII_BMSR] & MII_BMSR_AN_COMP)) {
825 e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
826 } else {
827 e1000_link_up(s);
828 }
829 }
830
831 if (s->mac_reg[STATUS] != old_status)
832 set_ics(s, 0, E1000_ICR_LSC);
833}
834
835static bool e1000_has_rxbufs(E1000State *s, size_t total_size)
836{
837 int bufs;
838
839 if (total_size <= s->rxbuf_size) {
840 return s->mac_reg[RDH] != s->mac_reg[RDT];
841 }
842 if (s->mac_reg[RDH] < s->mac_reg[RDT]) {
843 bufs = s->mac_reg[RDT] - s->mac_reg[RDH];
844 } else if (s->mac_reg[RDH] > s->mac_reg[RDT]) {
845 bufs = s->mac_reg[RDLEN] / sizeof(struct e1000_rx_desc) +
846 s->mac_reg[RDT] - s->mac_reg[RDH];
847 } else {
848 return false;
849 }
850 return total_size <= bufs * s->rxbuf_size;
851}
852
853static bool
854e1000_can_receive(NetClientState *nc)
855{
856 E1000State *s = qemu_get_nic_opaque(nc);
857
858 return e1000x_rx_ready(&s->parent_obj, s->mac_reg) &&
859 e1000_has_rxbufs(s, 1) && !timer_pending(s->flush_queue_timer);
860}
861
862static uint64_t rx_desc_base(E1000State *s)
863{
864 uint64_t bah = s->mac_reg[RDBAH];
865 uint64_t bal = s->mac_reg[RDBAL] & ~0xf;
866
867 return (bah << 32) + bal;
868}
869
870static void
871e1000_receiver_overrun(E1000State *s, size_t size)
872{
873 trace_e1000_receiver_overrun(size, s->mac_reg[RDH], s->mac_reg[RDT]);
874 e1000x_inc_reg_if_not_full(s->mac_reg, RNBC);
875 e1000x_inc_reg_if_not_full(s->mac_reg, MPC);
876 set_ics(s, 0, E1000_ICS_RXO);
877}
878
879static ssize_t
880e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
881{
882 E1000State *s = qemu_get_nic_opaque(nc);
883 PCIDevice *d = PCI_DEVICE(s);
884 struct e1000_rx_desc desc;
885 dma_addr_t base;
886 unsigned int n, rdt;
887 uint32_t rdh_start;
888 uint16_t vlan_special = 0;
889 uint8_t vlan_status = 0;
890 uint8_t min_buf[ETH_ZLEN];
891 uint8_t *filter_buf = iov->iov_base;
892 size_t size = iov_size(iov, iovcnt);
893 size_t iov_ofs = 0;
894 size_t desc_offset;
895 size_t desc_size;
896 size_t total_size;
897 eth_pkt_types_e pkt_type;
898
899 if (!e1000x_hw_rx_enabled(s->mac_reg)) {
900 return -1;
901 }
902
903 if (timer_pending(s->flush_queue_timer)) {
904 return 0;
905 }
906
907 if (iov->iov_len < MAXIMUM_ETHERNET_HDR_LEN) {
908
909 iov_to_buf(iov, iovcnt, 0, min_buf, MAXIMUM_ETHERNET_HDR_LEN);
910 filter_buf = min_buf;
911 }
912
913
914 if (e1000x_is_oversized(s->mac_reg, size)) {
915 return size;
916 }
917
918 if (!receive_filter(s, filter_buf)) {
919 return size;
920 }
921
922 if (e1000x_vlan_enabled(s->mac_reg) &&
923 e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) {
924 vlan_special = cpu_to_le16(lduw_be_p(filter_buf + 14));
925 iov_ofs = 4;
926 if (filter_buf == iov->iov_base) {
927 memmove(filter_buf + 4, filter_buf, 12);
928 } else {
929 iov_from_buf(iov, iovcnt, 4, filter_buf, 12);
930 while (iov->iov_len <= iov_ofs) {
931 iov_ofs -= iov->iov_len;
932 iov++;
933 }
934 }
935 vlan_status = E1000_RXD_STAT_VP;
936 size -= 4;
937 }
938
939 pkt_type = get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf));
940 rdh_start = s->mac_reg[RDH];
941 desc_offset = 0;
942 total_size = size + e1000x_fcs_len(s->mac_reg);
943 if (!e1000_has_rxbufs(s, total_size)) {
944 e1000_receiver_overrun(s, total_size);
945 return -1;
946 }
947 do {
948 desc_size = total_size - desc_offset;
949 if (desc_size > s->rxbuf_size) {
950 desc_size = s->rxbuf_size;
951 }
952 base = rx_desc_base(s) + sizeof(desc) * s->mac_reg[RDH];
953 pci_dma_read(d, base, &desc, sizeof(desc));
954 desc.special = vlan_special;
955 desc.status &= ~E1000_RXD_STAT_DD;
956 if (desc.buffer_addr) {
957 if (desc_offset < size) {
958 size_t iov_copy;
959 hwaddr ba = le64_to_cpu(desc.buffer_addr);
960 size_t copy_size = size - desc_offset;
961 if (copy_size > s->rxbuf_size) {
962 copy_size = s->rxbuf_size;
963 }
964 do {
965 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
966 pci_dma_write(d, ba, iov->iov_base + iov_ofs, iov_copy);
967 copy_size -= iov_copy;
968 ba += iov_copy;
969 iov_ofs += iov_copy;
970 if (iov_ofs == iov->iov_len) {
971 iov++;
972 iov_ofs = 0;
973 }
974 } while (copy_size);
975 }
976 desc_offset += desc_size;
977 desc.length = cpu_to_le16(desc_size);
978 if (desc_offset >= total_size) {
979 desc.status |= E1000_RXD_STAT_EOP | E1000_RXD_STAT_IXSM;
980 } else {
981
982
983 desc.status &= ~E1000_RXD_STAT_EOP;
984 }
985 } else {
986 DBGOUT(RX, "Null RX descriptor!!\n");
987 }
988 pci_dma_write(d, base, &desc, sizeof(desc));
989 desc.status |= (vlan_status | E1000_RXD_STAT_DD);
990 pci_dma_write(d, base + offsetof(struct e1000_rx_desc, status),
991 &desc.status, sizeof(desc.status));
992
993 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
994 s->mac_reg[RDH] = 0;
995
996 if (s->mac_reg[RDH] == rdh_start ||
997 rdh_start >= s->mac_reg[RDLEN] / sizeof(desc)) {
998 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
999 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
1000 e1000_receiver_overrun(s, total_size);
1001 return -1;
1002 }
1003 } while (desc_offset < total_size);
1004
1005 e1000x_update_rx_total_stats(s->mac_reg, pkt_type, size, total_size);
1006
1007 n = E1000_ICS_RXT0;
1008 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
1009 rdt += s->mac_reg[RDLEN] / sizeof(desc);
1010 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) <= s->mac_reg[RDLEN] >>
1011 s->rxbuf_min_shift)
1012 n |= E1000_ICS_RXDMT0;
1013
1014 set_ics(s, 0, n);
1015
1016 return size;
1017}
1018
1019static ssize_t
1020e1000_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1021{
1022 const struct iovec iov = {
1023 .iov_base = (uint8_t *)buf,
1024 .iov_len = size
1025 };
1026
1027 return e1000_receive_iov(nc, &iov, 1);
1028}
1029
1030static uint32_t
1031mac_readreg(E1000State *s, int index)
1032{
1033 return s->mac_reg[index];
1034}
1035
1036static uint32_t
1037mac_icr_read(E1000State *s, int index)
1038{
1039 uint32_t ret = s->mac_reg[ICR];
1040
1041 DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
1042 set_interrupt_cause(s, 0, 0);
1043 return ret;
1044}
1045
1046static uint32_t
1047mac_read_clr4(E1000State *s, int index)
1048{
1049 uint32_t ret = s->mac_reg[index];
1050
1051 s->mac_reg[index] = 0;
1052 return ret;
1053}
1054
1055static uint32_t
1056mac_read_clr8(E1000State *s, int index)
1057{
1058 uint32_t ret = s->mac_reg[index];
1059
1060 s->mac_reg[index] = 0;
1061 s->mac_reg[index-1] = 0;
1062 return ret;
1063}
1064
1065static void
1066mac_writereg(E1000State *s, int index, uint32_t val)
1067{
1068 uint32_t macaddr[2];
1069
1070 s->mac_reg[index] = val;
1071
1072 if (index == RA + 1) {
1073 macaddr[0] = cpu_to_le32(s->mac_reg[RA]);
1074 macaddr[1] = cpu_to_le32(s->mac_reg[RA + 1]);
1075 qemu_format_nic_info_str(qemu_get_queue(s->nic), (uint8_t *)macaddr);
1076 }
1077}
1078
1079static void
1080set_rdt(E1000State *s, int index, uint32_t val)
1081{
1082 s->mac_reg[index] = val & 0xffff;
1083 if (e1000_has_rxbufs(s, 1)) {
1084 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1085 }
1086}
1087
1088#define LOW_BITS_SET_FUNC(num) \
1089 static void \
1090 set_##num##bit(E1000State *s, int index, uint32_t val) \
1091 { \
1092 s->mac_reg[index] = val & (BIT(num) - 1); \
1093 }
1094
1095LOW_BITS_SET_FUNC(4)
1096LOW_BITS_SET_FUNC(11)
1097LOW_BITS_SET_FUNC(13)
1098LOW_BITS_SET_FUNC(16)
1099
1100static void
1101set_dlen(E1000State *s, int index, uint32_t val)
1102{
1103 s->mac_reg[index] = val & 0xfff80;
1104}
1105
1106static void
1107set_tctl(E1000State *s, int index, uint32_t val)
1108{
1109 s->mac_reg[index] = val;
1110 s->mac_reg[TDT] &= 0xffff;
1111 start_xmit(s);
1112}
1113
1114static void
1115set_icr(E1000State *s, int index, uint32_t val)
1116{
1117 DBGOUT(INTERRUPT, "set_icr %x\n", val);
1118 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
1119}
1120
1121static void
1122set_imc(E1000State *s, int index, uint32_t val)
1123{
1124 s->mac_reg[IMS] &= ~val;
1125 set_ics(s, 0, 0);
1126}
1127
1128static void
1129set_ims(E1000State *s, int index, uint32_t val)
1130{
1131 s->mac_reg[IMS] |= val;
1132 set_ics(s, 0, 0);
1133}
1134
1135#define getreg(x) [x] = mac_readreg
1136typedef uint32_t (*readops)(E1000State *, int);
1137static const readops macreg_readops[] = {
1138 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
1139 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
1140 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
1141 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
1142 getreg(RDH), getreg(RDT), getreg(VET), getreg(ICS),
1143 getreg(TDBAL), getreg(TDBAH), getreg(RDBAH), getreg(RDBAL),
1144 getreg(TDLEN), getreg(RDLEN), getreg(RDTR), getreg(RADV),
1145 getreg(TADV), getreg(ITR), getreg(FCRUC), getreg(IPAV),
1146 getreg(WUC), getreg(WUS), getreg(SCC), getreg(ECOL),
1147 getreg(MCC), getreg(LATECOL), getreg(COLC), getreg(DC),
1148 getreg(TNCRS), getreg(SEQEC), getreg(CEXTERR), getreg(RLEC),
1149 getreg(XONRXC), getreg(XONTXC), getreg(XOFFRXC), getreg(XOFFTXC),
1150 getreg(RFC), getreg(RJC), getreg(RNBC), getreg(TSCTFC),
1151 getreg(MGTPRC), getreg(MGTPDC), getreg(MGTPTC), getreg(GORCL),
1152 getreg(GOTCL), getreg(RDFH), getreg(RDFT), getreg(RDFHS),
1153 getreg(RDFTS), getreg(RDFPC), getreg(TDFH), getreg(TDFT),
1154 getreg(TDFHS), getreg(TDFTS), getreg(TDFPC), getreg(AIT),
1155
1156 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8,
1157 [GOTCH] = mac_read_clr8, [GORCH] = mac_read_clr8,
1158 [PRC64] = mac_read_clr4, [PRC127] = mac_read_clr4,
1159 [PRC255] = mac_read_clr4, [PRC511] = mac_read_clr4,
1160 [PRC1023] = mac_read_clr4, [PRC1522] = mac_read_clr4,
1161 [PTC64] = mac_read_clr4, [PTC127] = mac_read_clr4,
1162 [PTC255] = mac_read_clr4, [PTC511] = mac_read_clr4,
1163 [PTC1023] = mac_read_clr4, [PTC1522] = mac_read_clr4,
1164 [GPRC] = mac_read_clr4, [GPTC] = mac_read_clr4,
1165 [TPT] = mac_read_clr4, [TPR] = mac_read_clr4,
1166 [RUC] = mac_read_clr4, [ROC] = mac_read_clr4,
1167 [BPRC] = mac_read_clr4, [MPRC] = mac_read_clr4,
1168 [TSCTC] = mac_read_clr4, [BPTC] = mac_read_clr4,
1169 [MPTC] = mac_read_clr4,
1170 [ICR] = mac_icr_read, [EECD] = get_eecd,
1171 [EERD] = flash_eerd_read,
1172
1173 [CRCERRS ... MPC] = &mac_readreg,
1174 [IP6AT ... IP6AT + 3] = &mac_readreg, [IP4AT ... IP4AT + 6] = &mac_readreg,
1175 [FFLT ... FFLT + 6] = &mac_readreg,
1176 [RA ... RA + 31] = &mac_readreg,
1177 [WUPM ... WUPM + 31] = &mac_readreg,
1178 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = &mac_readreg,
1179 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = &mac_readreg,
1180 [FFMT ... FFMT + 254] = &mac_readreg,
1181 [FFVT ... FFVT + 254] = &mac_readreg,
1182 [PBM ... PBM + 16383] = &mac_readreg,
1183};
1184enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
1185
1186#define putreg(x) [x] = mac_writereg
1187typedef void (*writeops)(E1000State *, int, uint32_t);
1188static const writeops macreg_writeops[] = {
1189 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
1190 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
1191 putreg(RDBAL), putreg(LEDCTL), putreg(VET), putreg(FCRUC),
1192 putreg(IPAV), putreg(WUC),
1193 putreg(WUS),
1194
1195 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
1196 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
1197 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
1198 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
1199 [EECD] = set_eecd, [RCTL] = set_rx_control, [CTRL] = set_ctrl,
1200 [RDTR] = set_16bit, [RADV] = set_16bit, [TADV] = set_16bit,
1201 [ITR] = set_16bit, [TDFH] = set_11bit, [TDFT] = set_11bit,
1202 [TDFHS] = set_13bit, [TDFTS] = set_13bit, [TDFPC] = set_13bit,
1203 [RDFH] = set_13bit, [RDFT] = set_13bit, [RDFHS] = set_13bit,
1204 [RDFTS] = set_13bit, [RDFPC] = set_13bit, [AIT] = set_16bit,
1205
1206 [IP6AT ... IP6AT + 3] = &mac_writereg, [IP4AT ... IP4AT + 6] = &mac_writereg,
1207 [FFLT ... FFLT + 6] = &set_11bit,
1208 [RA ... RA + 31] = &mac_writereg,
1209 [WUPM ... WUPM + 31] = &mac_writereg,
1210 [MTA ... MTA + E1000_MC_TBL_SIZE - 1] = &mac_writereg,
1211 [VFTA ... VFTA + E1000_VLAN_FILTER_TBL_SIZE - 1] = &mac_writereg,
1212 [FFMT ... FFMT + 254] = &set_4bit, [FFVT ... FFVT + 254] = &mac_writereg,
1213 [PBM ... PBM + 16383] = &mac_writereg,
1214};
1215
1216enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
1217
1218enum { MAC_ACCESS_PARTIAL = 1, MAC_ACCESS_FLAG_NEEDED = 2 };
1219
1220#define markflag(x) ((E1000_FLAG_##x << 2) | MAC_ACCESS_FLAG_NEEDED)
1221
1222
1223
1224
1225static const uint8_t mac_reg_access[0x8000] = {
1226 [RDTR] = markflag(MIT), [TADV] = markflag(MIT),
1227 [RADV] = markflag(MIT), [ITR] = markflag(MIT),
1228
1229 [IPAV] = markflag(MAC), [WUC] = markflag(MAC),
1230 [IP6AT] = markflag(MAC), [IP4AT] = markflag(MAC),
1231 [FFVT] = markflag(MAC), [WUPM] = markflag(MAC),
1232 [ECOL] = markflag(MAC), [MCC] = markflag(MAC),
1233 [DC] = markflag(MAC), [TNCRS] = markflag(MAC),
1234 [RLEC] = markflag(MAC), [XONRXC] = markflag(MAC),
1235 [XOFFTXC] = markflag(MAC), [RFC] = markflag(MAC),
1236 [TSCTFC] = markflag(MAC), [MGTPRC] = markflag(MAC),
1237 [WUS] = markflag(MAC), [AIT] = markflag(MAC),
1238 [FFLT] = markflag(MAC), [FFMT] = markflag(MAC),
1239 [SCC] = markflag(MAC), [FCRUC] = markflag(MAC),
1240 [LATECOL] = markflag(MAC), [COLC] = markflag(MAC),
1241 [SEQEC] = markflag(MAC), [CEXTERR] = markflag(MAC),
1242 [XONTXC] = markflag(MAC), [XOFFRXC] = markflag(MAC),
1243 [RJC] = markflag(MAC), [RNBC] = markflag(MAC),
1244 [MGTPDC] = markflag(MAC), [MGTPTC] = markflag(MAC),
1245 [RUC] = markflag(MAC), [ROC] = markflag(MAC),
1246 [GORCL] = markflag(MAC), [GORCH] = markflag(MAC),
1247 [GOTCL] = markflag(MAC), [GOTCH] = markflag(MAC),
1248 [BPRC] = markflag(MAC), [MPRC] = markflag(MAC),
1249 [TSCTC] = markflag(MAC), [PRC64] = markflag(MAC),
1250 [PRC127] = markflag(MAC), [PRC255] = markflag(MAC),
1251 [PRC511] = markflag(MAC), [PRC1023] = markflag(MAC),
1252 [PRC1522] = markflag(MAC), [PTC64] = markflag(MAC),
1253 [PTC127] = markflag(MAC), [PTC255] = markflag(MAC),
1254 [PTC511] = markflag(MAC), [PTC1023] = markflag(MAC),
1255 [PTC1522] = markflag(MAC), [MPTC] = markflag(MAC),
1256 [BPTC] = markflag(MAC),
1257
1258 [TDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1259 [TDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1260 [TDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1261 [TDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1262 [TDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1263 [RDFH] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1264 [RDFT] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1265 [RDFHS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1266 [RDFTS] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1267 [RDFPC] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1268 [PBM] = markflag(MAC) | MAC_ACCESS_PARTIAL,
1269};
1270
1271static void
1272e1000_mmio_write(void *opaque, hwaddr addr, uint64_t val,
1273 unsigned size)
1274{
1275 E1000State *s = opaque;
1276 unsigned int index = (addr & 0x1ffff) >> 2;
1277
1278 if (index < NWRITEOPS && macreg_writeops[index]) {
1279 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
1280 || (s->compat_flags & (mac_reg_access[index] >> 2))) {
1281 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
1282 DBGOUT(GENERAL, "Writing to register at offset: 0x%08x. "
1283 "It is not fully implemented.\n", index<<2);
1284 }
1285 macreg_writeops[index](s, index, val);
1286 } else {
1287 DBGOUT(MMIO, "MMIO write attempt to disabled reg. addr=0x%08x\n",
1288 index<<2);
1289 }
1290 } else if (index < NREADOPS && macreg_readops[index]) {
1291 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04"PRIx64"\n",
1292 index<<2, val);
1293 } else {
1294 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64"\n",
1295 index<<2, val);
1296 }
1297}
1298
1299static uint64_t
1300e1000_mmio_read(void *opaque, hwaddr addr, unsigned size)
1301{
1302 E1000State *s = opaque;
1303 unsigned int index = (addr & 0x1ffff) >> 2;
1304
1305 if (index < NREADOPS && macreg_readops[index]) {
1306 if (!(mac_reg_access[index] & MAC_ACCESS_FLAG_NEEDED)
1307 || (s->compat_flags & (mac_reg_access[index] >> 2))) {
1308 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
1309 DBGOUT(GENERAL, "Reading register at offset: 0x%08x. "
1310 "It is not fully implemented.\n", index<<2);
1311 }
1312 return macreg_readops[index](s, index);
1313 } else {
1314 DBGOUT(MMIO, "MMIO read attempt of disabled reg. addr=0x%08x\n",
1315 index<<2);
1316 }
1317 } else {
1318 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
1319 }
1320 return 0;
1321}
1322
1323static const MemoryRegionOps e1000_mmio_ops = {
1324 .read = e1000_mmio_read,
1325 .write = e1000_mmio_write,
1326 .endianness = DEVICE_LITTLE_ENDIAN,
1327 .impl = {
1328 .min_access_size = 4,
1329 .max_access_size = 4,
1330 },
1331};
1332
1333static uint64_t e1000_io_read(void *opaque, hwaddr addr,
1334 unsigned size)
1335{
1336 E1000State *s = opaque;
1337
1338 (void)s;
1339 return 0;
1340}
1341
1342static void e1000_io_write(void *opaque, hwaddr addr,
1343 uint64_t val, unsigned size)
1344{
1345 E1000State *s = opaque;
1346
1347 (void)s;
1348}
1349
1350static const MemoryRegionOps e1000_io_ops = {
1351 .read = e1000_io_read,
1352 .write = e1000_io_write,
1353 .endianness = DEVICE_LITTLE_ENDIAN,
1354};
1355
1356static bool is_version_1(void *opaque, int version_id)
1357{
1358 return version_id == 1;
1359}
1360
1361static int e1000_pre_save(void *opaque)
1362{
1363 E1000State *s = opaque;
1364 NetClientState *nc = qemu_get_queue(s->nic);
1365
1366
1367
1368
1369
1370
1371 if (nc->link_down && have_autoneg(s)) {
1372 s->phy_reg[MII_BMSR] |= MII_BMSR_AN_COMP;
1373 }
1374
1375
1376 if (chkflag(TSO) || !s->use_tso_for_migration) {
1377
1378
1379
1380
1381
1382 s->mig_props = s->tx.props;
1383 } else {
1384
1385
1386
1387 s->mig_props = s->tx.tso_props;
1388 }
1389 return 0;
1390}
1391
1392static int e1000_post_load(void *opaque, int version_id)
1393{
1394 E1000State *s = opaque;
1395 NetClientState *nc = qemu_get_queue(s->nic);
1396
1397 if (!chkflag(MIT)) {
1398 s->mac_reg[ITR] = s->mac_reg[RDTR] = s->mac_reg[RADV] =
1399 s->mac_reg[TADV] = 0;
1400 s->mit_irq_level = false;
1401 }
1402 s->mit_ide = 0;
1403 s->mit_timer_on = true;
1404 timer_mod(s->mit_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1);
1405
1406
1407
1408
1409 nc->link_down = (s->mac_reg[STATUS] & E1000_STATUS_LU) == 0;
1410
1411 if (have_autoneg(s) && !(s->phy_reg[MII_BMSR] & MII_BMSR_AN_COMP)) {
1412 nc->link_down = false;
1413 timer_mod(s->autoneg_timer,
1414 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
1415 }
1416
1417 s->tx.props = s->mig_props;
1418 if (!s->received_tx_tso) {
1419
1420
1421
1422
1423 s->tx.tso_props = s->mig_props;
1424 }
1425 return 0;
1426}
1427
1428static int e1000_tx_tso_post_load(void *opaque, int version_id)
1429{
1430 E1000State *s = opaque;
1431 s->received_tx_tso = true;
1432 return 0;
1433}
1434
1435static bool e1000_mit_state_needed(void *opaque)
1436{
1437 E1000State *s = opaque;
1438
1439 return chkflag(MIT);
1440}
1441
1442static bool e1000_full_mac_needed(void *opaque)
1443{
1444 E1000State *s = opaque;
1445
1446 return chkflag(MAC);
1447}
1448
1449static bool e1000_tso_state_needed(void *opaque)
1450{
1451 E1000State *s = opaque;
1452
1453 return chkflag(TSO);
1454}
1455
1456static const VMStateDescription vmstate_e1000_mit_state = {
1457 .name = "e1000/mit_state",
1458 .version_id = 1,
1459 .minimum_version_id = 1,
1460 .needed = e1000_mit_state_needed,
1461 .fields = (VMStateField[]) {
1462 VMSTATE_UINT32(mac_reg[RDTR], E1000State),
1463 VMSTATE_UINT32(mac_reg[RADV], E1000State),
1464 VMSTATE_UINT32(mac_reg[TADV], E1000State),
1465 VMSTATE_UINT32(mac_reg[ITR], E1000State),
1466 VMSTATE_BOOL(mit_irq_level, E1000State),
1467 VMSTATE_END_OF_LIST()
1468 }
1469};
1470
1471static const VMStateDescription vmstate_e1000_full_mac_state = {
1472 .name = "e1000/full_mac_state",
1473 .version_id = 1,
1474 .minimum_version_id = 1,
1475 .needed = e1000_full_mac_needed,
1476 .fields = (VMStateField[]) {
1477 VMSTATE_UINT32_ARRAY(mac_reg, E1000State, 0x8000),
1478 VMSTATE_END_OF_LIST()
1479 }
1480};
1481
1482static const VMStateDescription vmstate_e1000_tx_tso_state = {
1483 .name = "e1000/tx_tso_state",
1484 .version_id = 1,
1485 .minimum_version_id = 1,
1486 .needed = e1000_tso_state_needed,
1487 .post_load = e1000_tx_tso_post_load,
1488 .fields = (VMStateField[]) {
1489 VMSTATE_UINT8(tx.tso_props.ipcss, E1000State),
1490 VMSTATE_UINT8(tx.tso_props.ipcso, E1000State),
1491 VMSTATE_UINT16(tx.tso_props.ipcse, E1000State),
1492 VMSTATE_UINT8(tx.tso_props.tucss, E1000State),
1493 VMSTATE_UINT8(tx.tso_props.tucso, E1000State),
1494 VMSTATE_UINT16(tx.tso_props.tucse, E1000State),
1495 VMSTATE_UINT32(tx.tso_props.paylen, E1000State),
1496 VMSTATE_UINT8(tx.tso_props.hdr_len, E1000State),
1497 VMSTATE_UINT16(tx.tso_props.mss, E1000State),
1498 VMSTATE_INT8(tx.tso_props.ip, E1000State),
1499 VMSTATE_INT8(tx.tso_props.tcp, E1000State),
1500 VMSTATE_END_OF_LIST()
1501 }
1502};
1503
1504static const VMStateDescription vmstate_e1000 = {
1505 .name = "e1000",
1506 .version_id = 2,
1507 .minimum_version_id = 1,
1508 .pre_save = e1000_pre_save,
1509 .post_load = e1000_post_load,
1510 .fields = (VMStateField[]) {
1511 VMSTATE_PCI_DEVICE(parent_obj, E1000State),
1512 VMSTATE_UNUSED_TEST(is_version_1, 4),
1513 VMSTATE_UNUSED(4),
1514 VMSTATE_UINT32(rxbuf_size, E1000State),
1515 VMSTATE_UINT32(rxbuf_min_shift, E1000State),
1516 VMSTATE_UINT32(eecd_state.val_in, E1000State),
1517 VMSTATE_UINT16(eecd_state.bitnum_in, E1000State),
1518 VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
1519 VMSTATE_UINT16(eecd_state.reading, E1000State),
1520 VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
1521 VMSTATE_UINT8(mig_props.ipcss, E1000State),
1522 VMSTATE_UINT8(mig_props.ipcso, E1000State),
1523 VMSTATE_UINT16(mig_props.ipcse, E1000State),
1524 VMSTATE_UINT8(mig_props.tucss, E1000State),
1525 VMSTATE_UINT8(mig_props.tucso, E1000State),
1526 VMSTATE_UINT16(mig_props.tucse, E1000State),
1527 VMSTATE_UINT32(mig_props.paylen, E1000State),
1528 VMSTATE_UINT8(mig_props.hdr_len, E1000State),
1529 VMSTATE_UINT16(mig_props.mss, E1000State),
1530 VMSTATE_UINT16(tx.size, E1000State),
1531 VMSTATE_UINT16(tx.tso_frames, E1000State),
1532 VMSTATE_UINT8(tx.sum_needed, E1000State),
1533 VMSTATE_INT8(mig_props.ip, E1000State),
1534 VMSTATE_INT8(mig_props.tcp, E1000State),
1535 VMSTATE_BUFFER(tx.header, E1000State),
1536 VMSTATE_BUFFER(tx.data, E1000State),
1537 VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
1538 VMSTATE_UINT16_ARRAY(phy_reg, E1000State, 0x20),
1539 VMSTATE_UINT32(mac_reg[CTRL], E1000State),
1540 VMSTATE_UINT32(mac_reg[EECD], E1000State),
1541 VMSTATE_UINT32(mac_reg[EERD], E1000State),
1542 VMSTATE_UINT32(mac_reg[GPRC], E1000State),
1543 VMSTATE_UINT32(mac_reg[GPTC], E1000State),
1544 VMSTATE_UINT32(mac_reg[ICR], E1000State),
1545 VMSTATE_UINT32(mac_reg[ICS], E1000State),
1546 VMSTATE_UINT32(mac_reg[IMC], E1000State),
1547 VMSTATE_UINT32(mac_reg[IMS], E1000State),
1548 VMSTATE_UINT32(mac_reg[LEDCTL], E1000State),
1549 VMSTATE_UINT32(mac_reg[MANC], E1000State),
1550 VMSTATE_UINT32(mac_reg[MDIC], E1000State),
1551 VMSTATE_UINT32(mac_reg[MPC], E1000State),
1552 VMSTATE_UINT32(mac_reg[PBA], E1000State),
1553 VMSTATE_UINT32(mac_reg[RCTL], E1000State),
1554 VMSTATE_UINT32(mac_reg[RDBAH], E1000State),
1555 VMSTATE_UINT32(mac_reg[RDBAL], E1000State),
1556 VMSTATE_UINT32(mac_reg[RDH], E1000State),
1557 VMSTATE_UINT32(mac_reg[RDLEN], E1000State),
1558 VMSTATE_UINT32(mac_reg[RDT], E1000State),
1559 VMSTATE_UINT32(mac_reg[STATUS], E1000State),
1560 VMSTATE_UINT32(mac_reg[SWSM], E1000State),
1561 VMSTATE_UINT32(mac_reg[TCTL], E1000State),
1562 VMSTATE_UINT32(mac_reg[TDBAH], E1000State),
1563 VMSTATE_UINT32(mac_reg[TDBAL], E1000State),
1564 VMSTATE_UINT32(mac_reg[TDH], E1000State),
1565 VMSTATE_UINT32(mac_reg[TDLEN], E1000State),
1566 VMSTATE_UINT32(mac_reg[TDT], E1000State),
1567 VMSTATE_UINT32(mac_reg[TORH], E1000State),
1568 VMSTATE_UINT32(mac_reg[TORL], E1000State),
1569 VMSTATE_UINT32(mac_reg[TOTH], E1000State),
1570 VMSTATE_UINT32(mac_reg[TOTL], E1000State),
1571 VMSTATE_UINT32(mac_reg[TPR], E1000State),
1572 VMSTATE_UINT32(mac_reg[TPT], E1000State),
1573 VMSTATE_UINT32(mac_reg[TXDCTL], E1000State),
1574 VMSTATE_UINT32(mac_reg[WUFC], E1000State),
1575 VMSTATE_UINT32(mac_reg[VET], E1000State),
1576 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, RA, 32),
1577 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, MTA, E1000_MC_TBL_SIZE),
1578 VMSTATE_UINT32_SUB_ARRAY(mac_reg, E1000State, VFTA,
1579 E1000_VLAN_FILTER_TBL_SIZE),
1580 VMSTATE_END_OF_LIST()
1581 },
1582 .subsections = (const VMStateDescription*[]) {
1583 &vmstate_e1000_mit_state,
1584 &vmstate_e1000_full_mac_state,
1585 &vmstate_e1000_tx_tso_state,
1586 NULL
1587 }
1588};
1589
1590
1591
1592
1593
1594static const uint16_t e1000_eeprom_template[64] = {
1595 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
1596 0x3000, 0x1000, 0x6403, 0 , 0x8086, 0 , 0x8086, 0x3040,
1597 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
1598 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
1599 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
1600 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1601 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1602 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
1603};
1604
1605
1606
1607static void
1608e1000_mmio_setup(E1000State *d)
1609{
1610 int i;
1611 const uint32_t excluded_regs[] = {
1612 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
1613 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
1614 };
1615
1616 memory_region_init_io(&d->mmio, OBJECT(d), &e1000_mmio_ops, d,
1617 "e1000-mmio", PNPMMIO_SIZE);
1618 memory_region_add_coalescing(&d->mmio, 0, excluded_regs[0]);
1619 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
1620 memory_region_add_coalescing(&d->mmio, excluded_regs[i] + 4,
1621 excluded_regs[i+1] - excluded_regs[i] - 4);
1622 memory_region_init_io(&d->io, OBJECT(d), &e1000_io_ops, d, "e1000-io", IOPORT_SIZE);
1623}
1624
1625static void
1626pci_e1000_uninit(PCIDevice *dev)
1627{
1628 E1000State *d = E1000(dev);
1629
1630 timer_free(d->autoneg_timer);
1631 timer_free(d->mit_timer);
1632 timer_free(d->flush_queue_timer);
1633 qemu_del_nic(d->nic);
1634}
1635
1636static NetClientInfo net_e1000_info = {
1637 .type = NET_CLIENT_DRIVER_NIC,
1638 .size = sizeof(NICState),
1639 .can_receive = e1000_can_receive,
1640 .receive = e1000_receive,
1641 .receive_iov = e1000_receive_iov,
1642 .link_status_changed = e1000_set_link_status,
1643};
1644
1645static void e1000_write_config(PCIDevice *pci_dev, uint32_t address,
1646 uint32_t val, int len)
1647{
1648 E1000State *s = E1000(pci_dev);
1649
1650 pci_default_write_config(pci_dev, address, val, len);
1651
1652 if (range_covers_byte(address, len, PCI_COMMAND) &&
1653 (pci_dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) {
1654 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1655 }
1656}
1657
1658static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp)
1659{
1660 DeviceState *dev = DEVICE(pci_dev);
1661 E1000State *d = E1000(pci_dev);
1662 uint8_t *pci_conf;
1663 uint8_t *macaddr;
1664
1665 pci_dev->config_write = e1000_write_config;
1666
1667 pci_conf = pci_dev->config;
1668
1669
1670 pci_conf[PCI_CACHE_LINE_SIZE] = 0x10;
1671
1672 pci_conf[PCI_INTERRUPT_PIN] = 1;
1673
1674 e1000_mmio_setup(d);
1675
1676 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &d->mmio);
1677
1678 pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io);
1679
1680 qemu_macaddr_default_if_unset(&d->conf.macaddr);
1681 macaddr = d->conf.macaddr.a;
1682
1683 e1000x_core_prepare_eeprom(d->eeprom_data,
1684 e1000_eeprom_template,
1685 sizeof(e1000_eeprom_template),
1686 PCI_DEVICE_GET_CLASS(pci_dev)->device_id,
1687 macaddr);
1688
1689 d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
1690 object_get_typename(OBJECT(d)), dev->id, d);
1691
1692 qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr);
1693
1694 d->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, e1000_autoneg_timer, d);
1695 d->mit_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000_mit_timer, d);
1696 d->flush_queue_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
1697 e1000_flush_queue_timer, d);
1698}
1699
1700static Property e1000_properties[] = {
1701 DEFINE_NIC_PROPERTIES(E1000State, conf),
1702 DEFINE_PROP_BIT("autonegotiation", E1000State,
1703 compat_flags, E1000_FLAG_AUTONEG_BIT, true),
1704 DEFINE_PROP_BIT("mitigation", E1000State,
1705 compat_flags, E1000_FLAG_MIT_BIT, true),
1706 DEFINE_PROP_BIT("extra_mac_registers", E1000State,
1707 compat_flags, E1000_FLAG_MAC_BIT, true),
1708 DEFINE_PROP_BIT("migrate_tso_props", E1000State,
1709 compat_flags, E1000_FLAG_TSO_BIT, true),
1710 DEFINE_PROP_BIT("init-vet", E1000State,
1711 compat_flags, E1000_FLAG_VET_BIT, true),
1712 DEFINE_PROP_END_OF_LIST(),
1713};
1714
1715typedef struct E1000Info {
1716 const char *name;
1717 uint16_t device_id;
1718 uint8_t revision;
1719 uint16_t phy_id2;
1720} E1000Info;
1721
1722static void e1000_class_init(ObjectClass *klass, void *data)
1723{
1724 DeviceClass *dc = DEVICE_CLASS(klass);
1725 ResettableClass *rc = RESETTABLE_CLASS(klass);
1726 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1727 E1000BaseClass *e = E1000_CLASS(klass);
1728 const E1000Info *info = data;
1729
1730 k->realize = pci_e1000_realize;
1731 k->exit = pci_e1000_uninit;
1732 k->romfile = "efi-e1000.rom";
1733 k->vendor_id = PCI_VENDOR_ID_INTEL;
1734 k->device_id = info->device_id;
1735 k->revision = info->revision;
1736 e->phy_id2 = info->phy_id2;
1737 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
1738 rc->phases.hold = e1000_reset_hold;
1739 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1740 dc->desc = "Intel Gigabit Ethernet";
1741 dc->vmsd = &vmstate_e1000;
1742 device_class_set_props(dc, e1000_properties);
1743}
1744
1745static void e1000_instance_init(Object *obj)
1746{
1747 E1000State *n = E1000(obj);
1748 device_add_bootindex_property(obj, &n->conf.bootindex,
1749 "bootindex", "/ethernet-phy@0",
1750 DEVICE(n));
1751}
1752
1753static const TypeInfo e1000_base_info = {
1754 .name = TYPE_E1000_BASE,
1755 .parent = TYPE_PCI_DEVICE,
1756 .instance_size = sizeof(E1000State),
1757 .instance_init = e1000_instance_init,
1758 .class_size = sizeof(E1000BaseClass),
1759 .abstract = true,
1760 .interfaces = (InterfaceInfo[]) {
1761 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1762 { },
1763 },
1764};
1765
1766static const E1000Info e1000_devices[] = {
1767 {
1768 .name = "e1000",
1769 .device_id = E1000_DEV_ID_82540EM,
1770 .revision = 0x03,
1771 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT,
1772 },
1773 {
1774 .name = "e1000-82544gc",
1775 .device_id = E1000_DEV_ID_82544GC_COPPER,
1776 .revision = 0x03,
1777 .phy_id2 = E1000_PHY_ID2_82544x,
1778 },
1779 {
1780 .name = "e1000-82545em",
1781 .device_id = E1000_DEV_ID_82545EM_COPPER,
1782 .revision = 0x03,
1783 .phy_id2 = E1000_PHY_ID2_8254xx_DEFAULT,
1784 },
1785};
1786
1787static void e1000_register_types(void)
1788{
1789 int i;
1790
1791 type_register_static(&e1000_base_info);
1792 for (i = 0; i < ARRAY_SIZE(e1000_devices); i++) {
1793 const E1000Info *info = &e1000_devices[i];
1794 TypeInfo type_info = {};
1795
1796 type_info.name = info->name;
1797 type_info.parent = TYPE_E1000_BASE;
1798 type_info.class_data = (void *)info;
1799 type_info.class_init = e1000_class_init;
1800
1801 type_register(&type_info);
1802 }
1803}
1804
1805type_init(e1000_register_types)
1806