qemu/hw/nvme/ctrl.c
<<
>>
Prefs
   1/*
   2 * QEMU NVM Express Controller
   3 *
   4 * Copyright (c) 2012, Intel Corporation
   5 *
   6 * Written by Keith Busch <keith.busch@intel.com>
   7 *
   8 * This code is licensed under the GNU GPL v2 or later.
   9 */
  10
  11/**
  12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
  13 *
  14 *  https://nvmexpress.org/developers/nvme-specification/
  15 *
  16 *
  17 * Notes on coding style
  18 * ---------------------
  19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
  20 * NVMe subsystem use thes format from the NVMe specifications in the comments
  21 * (i.e. 'h' suffix instead of '0x' prefix).
  22 *
  23 * Usage
  24 * -----
  25 * See docs/system/nvme.rst for extensive documentation.
  26 *
  27 * Add options:
  28 *      -drive file=<file>,if=none,id=<drive_id>
  29 *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
  30 *      -device nvme,serial=<serial>,id=<bus_name>, \
  31 *              cmb_size_mb=<cmb_size_mb[optional]>, \
  32 *              [pmrdev=<mem_backend_file_id>,] \
  33 *              max_ioqpairs=<N[optional]>, \
  34 *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
  35 *              mdts=<N[optional]>,vsl=<N[optional]>, \
  36 *              zoned.zasl=<N[optional]>, \
  37 *              zoned.auto_transition=<on|off[optional]>, \
  38 *              sriov_max_vfs=<N[optional]> \
  39 *              sriov_vq_flexible=<N[optional]> \
  40 *              sriov_vi_flexible=<N[optional]> \
  41 *              sriov_max_vi_per_vf=<N[optional]> \
  42 *              sriov_max_vq_per_vf=<N[optional]> \
  43 *              subsys=<subsys_id>
  44 *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
  45 *              zoned=<true|false[optional]>, \
  46 *              subsys=<subsys_id>,shared=<true|false[optional]>, \
  47 *              detached=<true|false[optional]>, \
  48 *              zoned.zone_size=<N[optional]>, \
  49 *              zoned.zone_capacity=<N[optional]>, \
  50 *              zoned.descr_ext_size=<N[optional]>, \
  51 *              zoned.max_active=<N[optional]>, \
  52 *              zoned.max_open=<N[optional]>, \
  53 *              zoned.cross_read=<true|false[optional]>
  54 *
  55 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
  56 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
  57 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
  58 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
  59 *
  60 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
  61 * For example:
  62 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
  63 *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
  64 *
  65 * The PMR will use BAR 4/5 exclusively.
  66 *
  67 * To place controller(s) and namespace(s) to a subsystem, then provide
  68 * nvme-subsys device as above.
  69 *
  70 * nvme subsystem device parameters
  71 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  72 * - `nqn`
  73 *   This parameter provides the `<nqn_id>` part of the string
  74 *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
  75 *   of subsystem controllers. Note that `<nqn_id>` should be unique per
  76 *   subsystem, but this is not enforced by QEMU. If not specified, it will
  77 *   default to the value of the `id` parameter (`<subsys_id>`).
  78 *
  79 * nvme device parameters
  80 * ~~~~~~~~~~~~~~~~~~~~~~
  81 * - `subsys`
  82 *   Specifying this parameter attaches the controller to the subsystem and
  83 *   the SUBNQN field in the controller will report the NQN of the subsystem
  84 *   device. This also enables multi controller capability represented in
  85 *   Identify Controller data structure in CMIC (Controller Multi-path I/O and
  86 *   Namespace Sharing Capabilities).
  87 *
  88 * - `aerl`
  89 *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
  90 *   of concurrently outstanding Asynchronous Event Request commands support
  91 *   by the controller. This is a 0's based value.
  92 *
  93 * - `aer_max_queued`
  94 *   This is the maximum number of events that the device will enqueue for
  95 *   completion when there are no outstanding AERs. When the maximum number of
  96 *   enqueued events are reached, subsequent events will be dropped.
  97 *
  98 * - `mdts`
  99 *   Indicates the maximum data transfer size for a command that transfers data
 100 *   between host-accessible memory and the controller. The value is specified
 101 *   as a power of two (2^n) and is in units of the minimum memory page size
 102 *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
 103 *
 104 * - `vsl`
 105 *   Indicates the maximum data size limit for the Verify command. Like `mdts`,
 106 *   this value is specified as a power of two (2^n) and is in units of the
 107 *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
 108 *   KiB).
 109 *
 110 * - `zoned.zasl`
 111 *   Indicates the maximum data transfer size for the Zone Append command. Like
 112 *   `mdts`, the value is specified as a power of two (2^n) and is in units of
 113 *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
 114 *   defaulting to the value of `mdts`).
 115 *
 116 * - `zoned.auto_transition`
 117 *   Indicates if zones in zone state implicitly opened can be automatically
 118 *   transitioned to zone state closed for resource management purposes.
 119 *   Defaults to 'on'.
 120 *
 121 * - `sriov_max_vfs`
 122 *   Indicates the maximum number of PCIe virtual functions supported
 123 *   by the controller. The default value is 0. Specifying a non-zero value
 124 *   enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
 125 *   Virtual function controllers will not report SR-IOV capability.
 126 *
 127 *   NOTE: Single Root I/O Virtualization support is experimental.
 128 *   All the related parameters may be subject to change.
 129 *
 130 * - `sriov_vq_flexible`
 131 *   Indicates the total number of flexible queue resources assignable to all
 132 *   the secondary controllers. Implicitly sets the number of primary
 133 *   controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
 134 *
 135 * - `sriov_vi_flexible`
 136 *   Indicates the total number of flexible interrupt resources assignable to
 137 *   all the secondary controllers. Implicitly sets the number of primary
 138 *   controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
 139 *
 140 * - `sriov_max_vi_per_vf`
 141 *   Indicates the maximum number of virtual interrupt resources assignable
 142 *   to a secondary controller. The default 0 resolves to
 143 *   `(sriov_vi_flexible / sriov_max_vfs)`.
 144 *
 145 * - `sriov_max_vq_per_vf`
 146 *   Indicates the maximum number of virtual queue resources assignable to
 147 *   a secondary controller. The default 0 resolves to
 148 *   `(sriov_vq_flexible / sriov_max_vfs)`.
 149 *
 150 * nvme namespace device parameters
 151 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 152 * - `shared`
 153 *   When the parent nvme device (as defined explicitly by the 'bus' parameter
 154 *   or implicitly by the most recently defined NvmeBus) is linked to an
 155 *   nvme-subsys device, the namespace will be attached to all controllers in
 156 *   the subsystem. If set to 'off' (the default), the namespace will remain a
 157 *   private namespace and may only be attached to a single controller at a
 158 *   time.
 159 *
 160 * - `detached`
 161 *   This parameter is only valid together with the `subsys` parameter. If left
 162 *   at the default value (`false/off`), the namespace will be attached to all
 163 *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
 164 *   namespace will be available in the subsystem but not attached to any
 165 *   controllers.
 166 *
 167 * Setting `zoned` to true selects Zoned Command Set at the namespace.
 168 * In this case, the following namespace properties are available to configure
 169 * zoned operation:
 170 *     zoned.zone_size=<zone size in bytes, default: 128MiB>
 171 *         The number may be followed by K, M, G as in kilo-, mega- or giga-.
 172 *
 173 *     zoned.zone_capacity=<zone capacity in bytes, default: zone size>
 174 *         The value 0 (default) forces zone capacity to be the same as zone
 175 *         size. The value of this property may not exceed zone size.
 176 *
 177 *     zoned.descr_ext_size=<zone descriptor extension size, default 0>
 178 *         This value needs to be specified in 64B units. If it is zero,
 179 *         namespace(s) will not support zone descriptor extensions.
 180 *
 181 *     zoned.max_active=<Maximum Active Resources (zones), default: 0>
 182 *         The default value means there is no limit to the number of
 183 *         concurrently active zones.
 184 *
 185 *     zoned.max_open=<Maximum Open Resources (zones), default: 0>
 186 *         The default value means there is no limit to the number of
 187 *         concurrently open zones.
 188 *
 189 *     zoned.cross_read=<enable RAZB, default: false>
 190 *         Setting this property to true enables Read Across Zone Boundaries.
 191 */
 192
 193#include "qemu/osdep.h"
 194#include "qemu/cutils.h"
 195#include "qemu/error-report.h"
 196#include "qemu/log.h"
 197#include "qemu/units.h"
 198#include "qemu/range.h"
 199#include "qapi/error.h"
 200#include "qapi/visitor.h"
 201#include "sysemu/sysemu.h"
 202#include "sysemu/block-backend.h"
 203#include "sysemu/hostmem.h"
 204#include "hw/pci/msix.h"
 205#include "hw/pci/pcie_sriov.h"
 206#include "migration/vmstate.h"
 207
 208#include "nvme.h"
 209#include "dif.h"
 210#include "trace.h"
 211
 212#define NVME_MAX_IOQPAIRS 0xffff
 213#define NVME_DB_SIZE  4
 214#define NVME_SPEC_VER 0x00010400
 215#define NVME_CMB_BIR 2
 216#define NVME_PMR_BIR 4
 217#define NVME_TEMPERATURE 0x143
 218#define NVME_TEMPERATURE_WARNING 0x157
 219#define NVME_TEMPERATURE_CRITICAL 0x175
 220#define NVME_NUM_FW_SLOTS 1
 221#define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
 222#define NVME_MAX_VFS 127
 223#define NVME_VF_RES_GRANULARITY 1
 224#define NVME_VF_OFFSET 0x1
 225#define NVME_VF_STRIDE 1
 226
 227#define NVME_GUEST_ERR(trace, fmt, ...) \
 228    do { \
 229        (trace_##trace)(__VA_ARGS__); \
 230        qemu_log_mask(LOG_GUEST_ERROR, #trace \
 231            " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
 232    } while (0)
 233
 234static const bool nvme_feature_support[NVME_FID_MAX] = {
 235    [NVME_ARBITRATION]              = true,
 236    [NVME_POWER_MANAGEMENT]         = true,
 237    [NVME_TEMPERATURE_THRESHOLD]    = true,
 238    [NVME_ERROR_RECOVERY]           = true,
 239    [NVME_VOLATILE_WRITE_CACHE]     = true,
 240    [NVME_NUMBER_OF_QUEUES]         = true,
 241    [NVME_INTERRUPT_COALESCING]     = true,
 242    [NVME_INTERRUPT_VECTOR_CONF]    = true,
 243    [NVME_WRITE_ATOMICITY]          = true,
 244    [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
 245    [NVME_TIMESTAMP]                = true,
 246    [NVME_HOST_BEHAVIOR_SUPPORT]    = true,
 247    [NVME_COMMAND_SET_PROFILE]      = true,
 248    [NVME_FDP_MODE]                 = true,
 249    [NVME_FDP_EVENTS]               = true,
 250};
 251
 252static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
 253    [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
 254    [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
 255    [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
 256    [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
 257    [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
 258    [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
 259    [NVME_HOST_BEHAVIOR_SUPPORT]    = NVME_FEAT_CAP_CHANGE,
 260    [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE,
 261    [NVME_FDP_MODE]                 = NVME_FEAT_CAP_CHANGE,
 262    [NVME_FDP_EVENTS]               = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
 263};
 264
 265static const uint32_t nvme_cse_acs[256] = {
 266    [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP,
 267    [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP,
 268    [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP,
 269    [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP,
 270    [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP,
 271    [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP,
 272    [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP,
 273    [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP,
 274    [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP,
 275    [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP,
 276    [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
 277    [NVME_ADM_CMD_VIRT_MNGMT]       = NVME_CMD_EFF_CSUPP,
 278    [NVME_ADM_CMD_DBBUF_CONFIG]     = NVME_CMD_EFF_CSUPP,
 279    [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 280    [NVME_ADM_CMD_DIRECTIVE_RECV]   = NVME_CMD_EFF_CSUPP,
 281    [NVME_ADM_CMD_DIRECTIVE_SEND]   = NVME_CMD_EFF_CSUPP,
 282};
 283
 284static const uint32_t nvme_cse_iocs_none[256];
 285
 286static const uint32_t nvme_cse_iocs_nvm[256] = {
 287    [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 288    [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 289    [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 290    [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
 291    [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 292    [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
 293    [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 294    [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
 295    [NVME_CMD_IO_MGMT_RECV]         = NVME_CMD_EFF_CSUPP,
 296    [NVME_CMD_IO_MGMT_SEND]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 297};
 298
 299static const uint32_t nvme_cse_iocs_zoned[256] = {
 300    [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 301    [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 302    [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 303    [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
 304    [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 305    [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
 306    [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 307    [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
 308    [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 309    [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 310    [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP,
 311};
 312
 313static void nvme_process_sq(void *opaque);
 314static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
 315static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n);
 316
 317static uint16_t nvme_sqid(NvmeRequest *req)
 318{
 319    return le16_to_cpu(req->sq->sqid);
 320}
 321
 322static inline uint16_t nvme_make_pid(NvmeNamespace *ns, uint16_t rg,
 323                                     uint16_t ph)
 324{
 325    uint16_t rgif = ns->endgrp->fdp.rgif;
 326
 327    if (!rgif) {
 328        return ph;
 329    }
 330
 331    return (rg << (16 - rgif)) | ph;
 332}
 333
 334static inline bool nvme_ph_valid(NvmeNamespace *ns, uint16_t ph)
 335{
 336    return ph < ns->fdp.nphs;
 337}
 338
 339static inline bool nvme_rg_valid(NvmeEnduranceGroup *endgrp, uint16_t rg)
 340{
 341    return rg < endgrp->fdp.nrg;
 342}
 343
 344static inline uint16_t nvme_pid2ph(NvmeNamespace *ns, uint16_t pid)
 345{
 346    uint16_t rgif = ns->endgrp->fdp.rgif;
 347
 348    if (!rgif) {
 349        return pid;
 350    }
 351
 352    return pid & ((1 << (15 - rgif)) - 1);
 353}
 354
 355static inline uint16_t nvme_pid2rg(NvmeNamespace *ns, uint16_t pid)
 356{
 357    uint16_t rgif = ns->endgrp->fdp.rgif;
 358
 359    if (!rgif) {
 360        return 0;
 361    }
 362
 363    return pid >> (16 - rgif);
 364}
 365
 366static inline bool nvme_parse_pid(NvmeNamespace *ns, uint16_t pid,
 367                                  uint16_t *ph, uint16_t *rg)
 368{
 369    *rg = nvme_pid2rg(ns, pid);
 370    *ph = nvme_pid2ph(ns, pid);
 371
 372    return nvme_ph_valid(ns, *ph) && nvme_rg_valid(ns->endgrp, *rg);
 373}
 374
 375static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
 376                                   NvmeZoneState state)
 377{
 378    if (QTAILQ_IN_USE(zone, entry)) {
 379        switch (nvme_get_zone_state(zone)) {
 380        case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 381            QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
 382            break;
 383        case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 384            QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
 385            break;
 386        case NVME_ZONE_STATE_CLOSED:
 387            QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
 388            break;
 389        case NVME_ZONE_STATE_FULL:
 390            QTAILQ_REMOVE(&ns->full_zones, zone, entry);
 391        default:
 392            ;
 393        }
 394    }
 395
 396    nvme_set_zone_state(zone, state);
 397
 398    switch (state) {
 399    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 400        QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
 401        break;
 402    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 403        QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
 404        break;
 405    case NVME_ZONE_STATE_CLOSED:
 406        QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
 407        break;
 408    case NVME_ZONE_STATE_FULL:
 409        QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
 410    case NVME_ZONE_STATE_READ_ONLY:
 411        break;
 412    default:
 413        zone->d.za = 0;
 414    }
 415}
 416
 417static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
 418                                         uint32_t opn, uint32_t zrwa)
 419{
 420    if (ns->params.max_active_zones != 0 &&
 421        ns->nr_active_zones + act > ns->params.max_active_zones) {
 422        trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
 423        return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
 424    }
 425
 426    if (ns->params.max_open_zones != 0 &&
 427        ns->nr_open_zones + opn > ns->params.max_open_zones) {
 428        trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
 429        return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
 430    }
 431
 432    if (zrwa > ns->zns.numzrwa) {
 433        return NVME_NOZRWA | NVME_DNR;
 434    }
 435
 436    return NVME_SUCCESS;
 437}
 438
 439/*
 440 * Check if we can open a zone without exceeding open/active limits.
 441 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
 442 */
 443static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
 444{
 445    return nvme_zns_check_resources(ns, act, opn, 0);
 446}
 447
 448static NvmeFdpEvent *nvme_fdp_alloc_event(NvmeCtrl *n, NvmeFdpEventBuffer *ebuf)
 449{
 450    NvmeFdpEvent *ret = NULL;
 451    bool is_full = ebuf->next == ebuf->start && ebuf->nelems;
 452
 453    ret = &ebuf->events[ebuf->next++];
 454    if (unlikely(ebuf->next == NVME_FDP_MAX_EVENTS)) {
 455        ebuf->next = 0;
 456    }
 457    if (is_full) {
 458        ebuf->start = ebuf->next;
 459    } else {
 460        ebuf->nelems++;
 461    }
 462
 463    memset(ret, 0, sizeof(NvmeFdpEvent));
 464    ret->timestamp = nvme_get_timestamp(n);
 465
 466    return ret;
 467}
 468
 469static inline int log_event(NvmeRuHandle *ruh, uint8_t event_type)
 470{
 471    return (ruh->event_filter >> nvme_fdp_evf_shifts[event_type]) & 0x1;
 472}
 473
 474static bool nvme_update_ruh(NvmeCtrl *n, NvmeNamespace *ns, uint16_t pid)
 475{
 476    NvmeEnduranceGroup *endgrp = ns->endgrp;
 477    NvmeRuHandle *ruh;
 478    NvmeReclaimUnit *ru;
 479    NvmeFdpEvent *e = NULL;
 480    uint16_t ph, rg, ruhid;
 481
 482    if (!nvme_parse_pid(ns, pid, &ph, &rg)) {
 483        return false;
 484    }
 485
 486    ruhid = ns->fdp.phs[ph];
 487
 488    ruh = &endgrp->fdp.ruhs[ruhid];
 489    ru = &ruh->rus[rg];
 490
 491    if (ru->ruamw) {
 492        if (log_event(ruh, FDP_EVT_RU_NOT_FULLY_WRITTEN)) {
 493            e = nvme_fdp_alloc_event(n, &endgrp->fdp.host_events);
 494            e->type = FDP_EVT_RU_NOT_FULLY_WRITTEN;
 495            e->flags = FDPEF_PIV | FDPEF_NSIDV | FDPEF_LV;
 496            e->pid = cpu_to_le16(pid);
 497            e->nsid = cpu_to_le32(ns->params.nsid);
 498            e->rgid = cpu_to_le16(rg);
 499            e->ruhid = cpu_to_le16(ruhid);
 500        }
 501
 502        /* log (eventual) GC overhead of prematurely swapping the RU */
 503        nvme_fdp_stat_inc(&endgrp->fdp.mbmw, nvme_l2b(ns, ru->ruamw));
 504    }
 505
 506    ru->ruamw = ruh->ruamw;
 507
 508    return true;
 509}
 510
 511static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
 512{
 513    hwaddr hi, lo;
 514
 515    if (!n->cmb.cmse) {
 516        return false;
 517    }
 518
 519    lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
 520    hi = lo + int128_get64(n->cmb.mem.size);
 521
 522    return addr >= lo && addr < hi;
 523}
 524
 525static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
 526{
 527    hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
 528    return &n->cmb.buf[addr - base];
 529}
 530
 531static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
 532{
 533    hwaddr hi;
 534
 535    if (!n->pmr.cmse) {
 536        return false;
 537    }
 538
 539    hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
 540
 541    return addr >= n->pmr.cba && addr < hi;
 542}
 543
 544static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
 545{
 546    return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
 547}
 548
 549static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
 550{
 551    hwaddr hi, lo;
 552
 553    /*
 554     * The purpose of this check is to guard against invalid "local" access to
 555     * the iomem (i.e. controller registers). Thus, we check against the range
 556     * covered by the 'bar0' MemoryRegion since that is currently composed of
 557     * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
 558     * that if the device model is ever changed to allow the CMB to be located
 559     * in BAR0 as well, then this must be changed.
 560     */
 561    lo = n->bar0.addr;
 562    hi = lo + int128_get64(n->bar0.size);
 563
 564    return addr >= lo && addr < hi;
 565}
 566
 567static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
 568{
 569    hwaddr hi = addr + size - 1;
 570    if (hi < addr) {
 571        return 1;
 572    }
 573
 574    if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
 575        memcpy(buf, nvme_addr_to_cmb(n, addr), size);
 576        return 0;
 577    }
 578
 579    if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
 580        memcpy(buf, nvme_addr_to_pmr(n, addr), size);
 581        return 0;
 582    }
 583
 584    return pci_dma_read(PCI_DEVICE(n), addr, buf, size);
 585}
 586
 587static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
 588{
 589    hwaddr hi = addr + size - 1;
 590    if (hi < addr) {
 591        return 1;
 592    }
 593
 594    if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
 595        memcpy(nvme_addr_to_cmb(n, addr), buf, size);
 596        return 0;
 597    }
 598
 599    if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
 600        memcpy(nvme_addr_to_pmr(n, addr), buf, size);
 601        return 0;
 602    }
 603
 604    return pci_dma_write(PCI_DEVICE(n), addr, buf, size);
 605}
 606
 607static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
 608{
 609    return nsid &&
 610        (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
 611}
 612
 613static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
 614{
 615    return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
 616}
 617
 618static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
 619{
 620    return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
 621}
 622
 623static void nvme_inc_cq_tail(NvmeCQueue *cq)
 624{
 625    cq->tail++;
 626    if (cq->tail >= cq->size) {
 627        cq->tail = 0;
 628        cq->phase = !cq->phase;
 629    }
 630}
 631
 632static void nvme_inc_sq_head(NvmeSQueue *sq)
 633{
 634    sq->head = (sq->head + 1) % sq->size;
 635}
 636
 637static uint8_t nvme_cq_full(NvmeCQueue *cq)
 638{
 639    return (cq->tail + 1) % cq->size == cq->head;
 640}
 641
 642static uint8_t nvme_sq_empty(NvmeSQueue *sq)
 643{
 644    return sq->head == sq->tail;
 645}
 646
 647static void nvme_irq_check(NvmeCtrl *n)
 648{
 649    PCIDevice *pci = PCI_DEVICE(n);
 650    uint32_t intms = ldl_le_p(&n->bar.intms);
 651
 652    if (msix_enabled(pci)) {
 653        return;
 654    }
 655    if (~intms & n->irq_status) {
 656        pci_irq_assert(pci);
 657    } else {
 658        pci_irq_deassert(pci);
 659    }
 660}
 661
 662static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
 663{
 664    PCIDevice *pci = PCI_DEVICE(n);
 665
 666    if (cq->irq_enabled) {
 667        if (msix_enabled(pci)) {
 668            trace_pci_nvme_irq_msix(cq->vector);
 669            msix_notify(pci, cq->vector);
 670        } else {
 671            trace_pci_nvme_irq_pin();
 672            assert(cq->vector < 32);
 673            n->irq_status |= 1 << cq->vector;
 674            nvme_irq_check(n);
 675        }
 676    } else {
 677        trace_pci_nvme_irq_masked();
 678    }
 679}
 680
 681static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
 682{
 683    if (cq->irq_enabled) {
 684        if (msix_enabled(PCI_DEVICE(n))) {
 685            return;
 686        } else {
 687            assert(cq->vector < 32);
 688            if (!n->cq_pending) {
 689                n->irq_status &= ~(1 << cq->vector);
 690            }
 691            nvme_irq_check(n);
 692        }
 693    }
 694}
 695
 696static void nvme_req_clear(NvmeRequest *req)
 697{
 698    req->ns = NULL;
 699    req->opaque = NULL;
 700    req->aiocb = NULL;
 701    memset(&req->cqe, 0x0, sizeof(req->cqe));
 702    req->status = NVME_SUCCESS;
 703}
 704
 705static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
 706{
 707    if (dma) {
 708        pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0);
 709        sg->flags = NVME_SG_DMA;
 710    } else {
 711        qemu_iovec_init(&sg->iov, 0);
 712    }
 713
 714    sg->flags |= NVME_SG_ALLOC;
 715}
 716
 717static inline void nvme_sg_unmap(NvmeSg *sg)
 718{
 719    if (!(sg->flags & NVME_SG_ALLOC)) {
 720        return;
 721    }
 722
 723    if (sg->flags & NVME_SG_DMA) {
 724        qemu_sglist_destroy(&sg->qsg);
 725    } else {
 726        qemu_iovec_destroy(&sg->iov);
 727    }
 728
 729    memset(sg, 0x0, sizeof(*sg));
 730}
 731
 732/*
 733 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
 734 * holds both data and metadata. This function splits the data and metadata
 735 * into two separate QSG/IOVs.
 736 */
 737static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
 738                          NvmeSg *mdata)
 739{
 740    NvmeSg *dst = data;
 741    uint32_t trans_len, count = ns->lbasz;
 742    uint64_t offset = 0;
 743    bool dma = sg->flags & NVME_SG_DMA;
 744    size_t sge_len;
 745    size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
 746    int sg_idx = 0;
 747
 748    assert(sg->flags & NVME_SG_ALLOC);
 749
 750    while (sg_len) {
 751        sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
 752
 753        trans_len = MIN(sg_len, count);
 754        trans_len = MIN(trans_len, sge_len - offset);
 755
 756        if (dst) {
 757            if (dma) {
 758                qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
 759                                trans_len);
 760            } else {
 761                qemu_iovec_add(&dst->iov,
 762                               sg->iov.iov[sg_idx].iov_base + offset,
 763                               trans_len);
 764            }
 765        }
 766
 767        sg_len -= trans_len;
 768        count -= trans_len;
 769        offset += trans_len;
 770
 771        if (count == 0) {
 772            dst = (dst == data) ? mdata : data;
 773            count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
 774        }
 775
 776        if (sge_len == offset) {
 777            offset = 0;
 778            sg_idx++;
 779        }
 780    }
 781}
 782
 783static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
 784                                  size_t len)
 785{
 786    if (!len) {
 787        return NVME_SUCCESS;
 788    }
 789
 790    trace_pci_nvme_map_addr_cmb(addr, len);
 791
 792    if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
 793        return NVME_DATA_TRAS_ERROR;
 794    }
 795
 796    qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
 797
 798    return NVME_SUCCESS;
 799}
 800
 801static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
 802                                  size_t len)
 803{
 804    if (!len) {
 805        return NVME_SUCCESS;
 806    }
 807
 808    if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
 809        return NVME_DATA_TRAS_ERROR;
 810    }
 811
 812    qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
 813
 814    return NVME_SUCCESS;
 815}
 816
 817static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
 818{
 819    bool cmb = false, pmr = false;
 820
 821    if (!len) {
 822        return NVME_SUCCESS;
 823    }
 824
 825    trace_pci_nvme_map_addr(addr, len);
 826
 827    if (nvme_addr_is_iomem(n, addr)) {
 828        return NVME_DATA_TRAS_ERROR;
 829    }
 830
 831    if (nvme_addr_is_cmb(n, addr)) {
 832        cmb = true;
 833    } else if (nvme_addr_is_pmr(n, addr)) {
 834        pmr = true;
 835    }
 836
 837    if (cmb || pmr) {
 838        if (sg->flags & NVME_SG_DMA) {
 839            return NVME_INVALID_USE_OF_CMB | NVME_DNR;
 840        }
 841
 842        if (sg->iov.niov + 1 > IOV_MAX) {
 843            goto max_mappings_exceeded;
 844        }
 845
 846        if (cmb) {
 847            return nvme_map_addr_cmb(n, &sg->iov, addr, len);
 848        } else {
 849            return nvme_map_addr_pmr(n, &sg->iov, addr, len);
 850        }
 851    }
 852
 853    if (!(sg->flags & NVME_SG_DMA)) {
 854        return NVME_INVALID_USE_OF_CMB | NVME_DNR;
 855    }
 856
 857    if (sg->qsg.nsg + 1 > IOV_MAX) {
 858        goto max_mappings_exceeded;
 859    }
 860
 861    qemu_sglist_add(&sg->qsg, addr, len);
 862
 863    return NVME_SUCCESS;
 864
 865max_mappings_exceeded:
 866    NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
 867                   "number of mappings exceed 1024");
 868    return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
 869}
 870
 871static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
 872{
 873    return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
 874}
 875
 876static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
 877                             uint64_t prp2, uint32_t len)
 878{
 879    hwaddr trans_len = n->page_size - (prp1 % n->page_size);
 880    trans_len = MIN(len, trans_len);
 881    int num_prps = (len >> n->page_bits) + 1;
 882    uint16_t status;
 883    int ret;
 884
 885    trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
 886
 887    nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
 888
 889    status = nvme_map_addr(n, sg, prp1, trans_len);
 890    if (status) {
 891        goto unmap;
 892    }
 893
 894    len -= trans_len;
 895    if (len) {
 896        if (len > n->page_size) {
 897            uint64_t prp_list[n->max_prp_ents];
 898            uint32_t nents, prp_trans;
 899            int i = 0;
 900
 901            /*
 902             * The first PRP list entry, pointed to by PRP2 may contain offset.
 903             * Hence, we need to calculate the number of entries in based on
 904             * that offset.
 905             */
 906            nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
 907            prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 908            ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
 909            if (ret) {
 910                trace_pci_nvme_err_addr_read(prp2);
 911                status = NVME_DATA_TRAS_ERROR;
 912                goto unmap;
 913            }
 914            while (len != 0) {
 915                uint64_t prp_ent = le64_to_cpu(prp_list[i]);
 916
 917                if (i == nents - 1 && len > n->page_size) {
 918                    if (unlikely(prp_ent & (n->page_size - 1))) {
 919                        trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
 920                        status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 921                        goto unmap;
 922                    }
 923
 924                    i = 0;
 925                    nents = (len + n->page_size - 1) >> n->page_bits;
 926                    nents = MIN(nents, n->max_prp_ents);
 927                    prp_trans = nents * sizeof(uint64_t);
 928                    ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
 929                                         prp_trans);
 930                    if (ret) {
 931                        trace_pci_nvme_err_addr_read(prp_ent);
 932                        status = NVME_DATA_TRAS_ERROR;
 933                        goto unmap;
 934                    }
 935                    prp_ent = le64_to_cpu(prp_list[i]);
 936                }
 937
 938                if (unlikely(prp_ent & (n->page_size - 1))) {
 939                    trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
 940                    status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 941                    goto unmap;
 942                }
 943
 944                trans_len = MIN(len, n->page_size);
 945                status = nvme_map_addr(n, sg, prp_ent, trans_len);
 946                if (status) {
 947                    goto unmap;
 948                }
 949
 950                len -= trans_len;
 951                i++;
 952            }
 953        } else {
 954            if (unlikely(prp2 & (n->page_size - 1))) {
 955                trace_pci_nvme_err_invalid_prp2_align(prp2);
 956                status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 957                goto unmap;
 958            }
 959            status = nvme_map_addr(n, sg, prp2, len);
 960            if (status) {
 961                goto unmap;
 962            }
 963        }
 964    }
 965
 966    return NVME_SUCCESS;
 967
 968unmap:
 969    nvme_sg_unmap(sg);
 970    return status;
 971}
 972
 973/*
 974 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
 975 * number of bytes mapped in len.
 976 */
 977static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
 978                                  NvmeSglDescriptor *segment, uint64_t nsgld,
 979                                  size_t *len, NvmeCmd *cmd)
 980{
 981    dma_addr_t addr, trans_len;
 982    uint32_t dlen;
 983    uint16_t status;
 984
 985    for (int i = 0; i < nsgld; i++) {
 986        uint8_t type = NVME_SGL_TYPE(segment[i].type);
 987
 988        switch (type) {
 989        case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
 990            break;
 991        case NVME_SGL_DESCR_TYPE_SEGMENT:
 992        case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
 993            return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
 994        default:
 995            return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
 996        }
 997
 998        dlen = le32_to_cpu(segment[i].len);
 999
1000        if (!dlen) {
1001            continue;
1002        }
1003
1004        if (*len == 0) {
1005            /*
1006             * All data has been mapped, but the SGL contains additional
1007             * segments and/or descriptors. The controller might accept
1008             * ignoring the rest of the SGL.
1009             */
1010            uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
1011            if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
1012                break;
1013            }
1014
1015            trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
1016            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1017        }
1018
1019        trans_len = MIN(*len, dlen);
1020
1021        addr = le64_to_cpu(segment[i].addr);
1022
1023        if (UINT64_MAX - addr < dlen) {
1024            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1025        }
1026
1027        status = nvme_map_addr(n, sg, addr, trans_len);
1028        if (status) {
1029            return status;
1030        }
1031
1032        *len -= trans_len;
1033    }
1034
1035    return NVME_SUCCESS;
1036}
1037
1038static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
1039                             size_t len, NvmeCmd *cmd)
1040{
1041    /*
1042     * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
1043     * dynamically allocating a potentially huge SGL. The spec allows the SGL
1044     * to be larger (as in number of bytes required to describe the SGL
1045     * descriptors and segment chain) than the command transfer size, so it is
1046     * not bounded by MDTS.
1047     */
1048    const int SEG_CHUNK_SIZE = 256;
1049
1050    NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
1051    uint64_t nsgld;
1052    uint32_t seg_len;
1053    uint16_t status;
1054    hwaddr addr;
1055    int ret;
1056
1057    sgld = &sgl;
1058    addr = le64_to_cpu(sgl.addr);
1059
1060    trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
1061
1062    nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
1063
1064    /*
1065     * If the entire transfer can be described with a single data block it can
1066     * be mapped directly.
1067     */
1068    if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
1069        status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
1070        if (status) {
1071            goto unmap;
1072        }
1073
1074        goto out;
1075    }
1076
1077    for (;;) {
1078        switch (NVME_SGL_TYPE(sgld->type)) {
1079        case NVME_SGL_DESCR_TYPE_SEGMENT:
1080        case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
1081            break;
1082        default:
1083            return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1084        }
1085
1086        seg_len = le32_to_cpu(sgld->len);
1087
1088        /* check the length of the (Last) Segment descriptor */
1089        if (!seg_len || seg_len & 0xf) {
1090            return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1091        }
1092
1093        if (UINT64_MAX - addr < seg_len) {
1094            return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1095        }
1096
1097        nsgld = seg_len / sizeof(NvmeSglDescriptor);
1098
1099        while (nsgld > SEG_CHUNK_SIZE) {
1100            if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
1101                trace_pci_nvme_err_addr_read(addr);
1102                status = NVME_DATA_TRAS_ERROR;
1103                goto unmap;
1104            }
1105
1106            status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
1107                                       &len, cmd);
1108            if (status) {
1109                goto unmap;
1110            }
1111
1112            nsgld -= SEG_CHUNK_SIZE;
1113            addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
1114        }
1115
1116        ret = nvme_addr_read(n, addr, segment, nsgld *
1117                             sizeof(NvmeSglDescriptor));
1118        if (ret) {
1119            trace_pci_nvme_err_addr_read(addr);
1120            status = NVME_DATA_TRAS_ERROR;
1121            goto unmap;
1122        }
1123
1124        last_sgld = &segment[nsgld - 1];
1125
1126        /*
1127         * If the segment ends with a Data Block, then we are done.
1128         */
1129        if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
1130            status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
1131            if (status) {
1132                goto unmap;
1133            }
1134
1135            goto out;
1136        }
1137
1138        /*
1139         * If the last descriptor was not a Data Block, then the current
1140         * segment must not be a Last Segment.
1141         */
1142        if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1143            status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1144            goto unmap;
1145        }
1146
1147        sgld = last_sgld;
1148        addr = le64_to_cpu(sgld->addr);
1149
1150        /*
1151         * Do not map the last descriptor; it will be a Segment or Last Segment
1152         * descriptor and is handled by the next iteration.
1153         */
1154        status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1155        if (status) {
1156            goto unmap;
1157        }
1158    }
1159
1160out:
1161    /* if there is any residual left in len, the SGL was too short */
1162    if (len) {
1163        status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1164        goto unmap;
1165    }
1166
1167    return NVME_SUCCESS;
1168
1169unmap:
1170    nvme_sg_unmap(sg);
1171    return status;
1172}
1173
1174uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1175                       NvmeCmd *cmd)
1176{
1177    uint64_t prp1, prp2;
1178
1179    switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1180    case NVME_PSDT_PRP:
1181        prp1 = le64_to_cpu(cmd->dptr.prp1);
1182        prp2 = le64_to_cpu(cmd->dptr.prp2);
1183
1184        return nvme_map_prp(n, sg, prp1, prp2, len);
1185    case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1186    case NVME_PSDT_SGL_MPTR_SGL:
1187        return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1188    default:
1189        return NVME_INVALID_FIELD;
1190    }
1191}
1192
1193static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1194                              NvmeCmd *cmd)
1195{
1196    int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1197    hwaddr mptr = le64_to_cpu(cmd->mptr);
1198    uint16_t status;
1199
1200    if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1201        NvmeSglDescriptor sgl;
1202
1203        if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1204            return NVME_DATA_TRAS_ERROR;
1205        }
1206
1207        status = nvme_map_sgl(n, sg, sgl, len, cmd);
1208        if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1209            status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1210        }
1211
1212        return status;
1213    }
1214
1215    nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1216    status = nvme_map_addr(n, sg, mptr, len);
1217    if (status) {
1218        nvme_sg_unmap(sg);
1219    }
1220
1221    return status;
1222}
1223
1224static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1225{
1226    NvmeNamespace *ns = req->ns;
1227    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1228    bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1229    bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1230    size_t len = nvme_l2b(ns, nlb);
1231    uint16_t status;
1232
1233    if (nvme_ns_ext(ns) &&
1234        !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1235        NvmeSg sg;
1236
1237        len += nvme_m2b(ns, nlb);
1238
1239        status = nvme_map_dptr(n, &sg, len, &req->cmd);
1240        if (status) {
1241            return status;
1242        }
1243
1244        nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1245        nvme_sg_split(&sg, ns, &req->sg, NULL);
1246        nvme_sg_unmap(&sg);
1247
1248        return NVME_SUCCESS;
1249    }
1250
1251    return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1252}
1253
1254static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1255{
1256    NvmeNamespace *ns = req->ns;
1257    size_t len = nvme_m2b(ns, nlb);
1258    uint16_t status;
1259
1260    if (nvme_ns_ext(ns)) {
1261        NvmeSg sg;
1262
1263        len += nvme_l2b(ns, nlb);
1264
1265        status = nvme_map_dptr(n, &sg, len, &req->cmd);
1266        if (status) {
1267            return status;
1268        }
1269
1270        nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1271        nvme_sg_split(&sg, ns, NULL, &req->sg);
1272        nvme_sg_unmap(&sg);
1273
1274        return NVME_SUCCESS;
1275    }
1276
1277    return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1278}
1279
1280static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1281                                    uint32_t len, uint32_t bytes,
1282                                    int32_t skip_bytes, int64_t offset,
1283                                    NvmeTxDirection dir)
1284{
1285    hwaddr addr;
1286    uint32_t trans_len, count = bytes;
1287    bool dma = sg->flags & NVME_SG_DMA;
1288    int64_t sge_len;
1289    int sg_idx = 0;
1290    int ret;
1291
1292    assert(sg->flags & NVME_SG_ALLOC);
1293
1294    while (len) {
1295        sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1296
1297        if (sge_len - offset < 0) {
1298            offset -= sge_len;
1299            sg_idx++;
1300            continue;
1301        }
1302
1303        if (sge_len == offset) {
1304            offset = 0;
1305            sg_idx++;
1306            continue;
1307        }
1308
1309        trans_len = MIN(len, count);
1310        trans_len = MIN(trans_len, sge_len - offset);
1311
1312        if (dma) {
1313            addr = sg->qsg.sg[sg_idx].base + offset;
1314        } else {
1315            addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1316        }
1317
1318        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1319            ret = nvme_addr_read(n, addr, ptr, trans_len);
1320        } else {
1321            ret = nvme_addr_write(n, addr, ptr, trans_len);
1322        }
1323
1324        if (ret) {
1325            return NVME_DATA_TRAS_ERROR;
1326        }
1327
1328        ptr += trans_len;
1329        len -= trans_len;
1330        count -= trans_len;
1331        offset += trans_len;
1332
1333        if (count == 0) {
1334            count = bytes;
1335            offset += skip_bytes;
1336        }
1337    }
1338
1339    return NVME_SUCCESS;
1340}
1341
1342static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1343                        NvmeTxDirection dir)
1344{
1345    assert(sg->flags & NVME_SG_ALLOC);
1346
1347    if (sg->flags & NVME_SG_DMA) {
1348        const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1349        dma_addr_t residual;
1350
1351        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1352            dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1353        } else {
1354            dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1355        }
1356
1357        if (unlikely(residual)) {
1358            trace_pci_nvme_err_invalid_dma();
1359            return NVME_INVALID_FIELD | NVME_DNR;
1360        }
1361    } else {
1362        size_t bytes;
1363
1364        if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1365            bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1366        } else {
1367            bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1368        }
1369
1370        if (unlikely(bytes != len)) {
1371            trace_pci_nvme_err_invalid_dma();
1372            return NVME_INVALID_FIELD | NVME_DNR;
1373        }
1374    }
1375
1376    return NVME_SUCCESS;
1377}
1378
1379static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1380                                NvmeRequest *req)
1381{
1382    uint16_t status;
1383
1384    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1385    if (status) {
1386        return status;
1387    }
1388
1389    return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1390}
1391
1392static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1393                                NvmeRequest *req)
1394{
1395    uint16_t status;
1396
1397    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1398    if (status) {
1399        return status;
1400    }
1401
1402    return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1403}
1404
1405uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1406                          NvmeTxDirection dir, NvmeRequest *req)
1407{
1408    NvmeNamespace *ns = req->ns;
1409    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1410    bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1411    bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1412
1413    if (nvme_ns_ext(ns) &&
1414        !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1415        return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1416                                   ns->lbaf.ms, 0, dir);
1417    }
1418
1419    return nvme_tx(n, &req->sg, ptr, len, dir);
1420}
1421
1422uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1423                           NvmeTxDirection dir, NvmeRequest *req)
1424{
1425    NvmeNamespace *ns = req->ns;
1426    uint16_t status;
1427
1428    if (nvme_ns_ext(ns)) {
1429        return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1430                                   ns->lbasz, ns->lbasz, dir);
1431    }
1432
1433    nvme_sg_unmap(&req->sg);
1434
1435    status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1436    if (status) {
1437        return status;
1438    }
1439
1440    return nvme_tx(n, &req->sg, ptr, len, dir);
1441}
1442
1443static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1444                                 uint32_t align, BlockCompletionFunc *cb,
1445                                 NvmeRequest *req)
1446{
1447    assert(req->sg.flags & NVME_SG_ALLOC);
1448
1449    if (req->sg.flags & NVME_SG_DMA) {
1450        req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, align, cb, req);
1451    } else {
1452        req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1453    }
1454}
1455
1456static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1457                                  uint32_t align, BlockCompletionFunc *cb,
1458                                  NvmeRequest *req)
1459{
1460    assert(req->sg.flags & NVME_SG_ALLOC);
1461
1462    if (req->sg.flags & NVME_SG_DMA) {
1463        req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, align, cb, req);
1464    } else {
1465        req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1466    }
1467}
1468
1469static void nvme_update_cq_eventidx(const NvmeCQueue *cq)
1470{
1471    trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head);
1472
1473    stl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->ei_addr, cq->head,
1474                   MEMTXATTRS_UNSPECIFIED);
1475}
1476
1477static void nvme_update_cq_head(NvmeCQueue *cq)
1478{
1479    ldl_le_pci_dma(PCI_DEVICE(cq->ctrl), cq->db_addr, &cq->head,
1480                   MEMTXATTRS_UNSPECIFIED);
1481
1482    trace_pci_nvme_update_cq_head(cq->cqid, cq->head);
1483}
1484
1485static void nvme_post_cqes(void *opaque)
1486{
1487    NvmeCQueue *cq = opaque;
1488    NvmeCtrl *n = cq->ctrl;
1489    NvmeRequest *req, *next;
1490    bool pending = cq->head != cq->tail;
1491    int ret;
1492
1493    QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1494        NvmeSQueue *sq;
1495        hwaddr addr;
1496
1497        if (n->dbbuf_enabled) {
1498            nvme_update_cq_eventidx(cq);
1499            nvme_update_cq_head(cq);
1500        }
1501
1502        if (nvme_cq_full(cq)) {
1503            break;
1504        }
1505
1506        sq = req->sq;
1507        req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1508        req->cqe.sq_id = cpu_to_le16(sq->sqid);
1509        req->cqe.sq_head = cpu_to_le16(sq->head);
1510        addr = cq->dma_addr + (cq->tail << NVME_CQES);
1511        ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe,
1512                            sizeof(req->cqe));
1513        if (ret) {
1514            trace_pci_nvme_err_addr_write(addr);
1515            trace_pci_nvme_err_cfs();
1516            stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1517            break;
1518        }
1519        QTAILQ_REMOVE(&cq->req_list, req, entry);
1520        nvme_inc_cq_tail(cq);
1521        nvme_sg_unmap(&req->sg);
1522        QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1523    }
1524    if (cq->tail != cq->head) {
1525        if (cq->irq_enabled && !pending) {
1526            n->cq_pending++;
1527        }
1528
1529        nvme_irq_assert(n, cq);
1530    }
1531}
1532
1533static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1534{
1535    assert(cq->cqid == req->sq->cqid);
1536    trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1537                                          le32_to_cpu(req->cqe.result),
1538                                          le32_to_cpu(req->cqe.dw1),
1539                                          req->status);
1540
1541    if (req->status) {
1542        trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1543                                      req->status, req->cmd.opcode);
1544    }
1545
1546    QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1547    QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1548
1549    qemu_bh_schedule(cq->bh);
1550}
1551
1552static void nvme_process_aers(void *opaque)
1553{
1554    NvmeCtrl *n = opaque;
1555    NvmeAsyncEvent *event, *next;
1556
1557    trace_pci_nvme_process_aers(n->aer_queued);
1558
1559    QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1560        NvmeRequest *req;
1561        NvmeAerResult *result;
1562
1563        /* can't post cqe if there is nothing to complete */
1564        if (!n->outstanding_aers) {
1565            trace_pci_nvme_no_outstanding_aers();
1566            break;
1567        }
1568
1569        /* ignore if masked (cqe posted, but event not cleared) */
1570        if (n->aer_mask & (1 << event->result.event_type)) {
1571            trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1572            continue;
1573        }
1574
1575        QTAILQ_REMOVE(&n->aer_queue, event, entry);
1576        n->aer_queued--;
1577
1578        n->aer_mask |= 1 << event->result.event_type;
1579        n->outstanding_aers--;
1580
1581        req = n->aer_reqs[n->outstanding_aers];
1582
1583        result = (NvmeAerResult *) &req->cqe.result;
1584        result->event_type = event->result.event_type;
1585        result->event_info = event->result.event_info;
1586        result->log_page = event->result.log_page;
1587        g_free(event);
1588
1589        trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1590                                    result->log_page);
1591
1592        nvme_enqueue_req_completion(&n->admin_cq, req);
1593    }
1594}
1595
1596static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1597                               uint8_t event_info, uint8_t log_page)
1598{
1599    NvmeAsyncEvent *event;
1600
1601    trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1602
1603    if (n->aer_queued == n->params.aer_max_queued) {
1604        trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1605        return;
1606    }
1607
1608    event = g_new(NvmeAsyncEvent, 1);
1609    event->result = (NvmeAerResult) {
1610        .event_type = event_type,
1611        .event_info = event_info,
1612        .log_page   = log_page,
1613    };
1614
1615    QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1616    n->aer_queued++;
1617
1618    nvme_process_aers(n);
1619}
1620
1621static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1622{
1623    uint8_t aer_info;
1624
1625    /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1626    if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1627        return;
1628    }
1629
1630    switch (event) {
1631    case NVME_SMART_SPARE:
1632        aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1633        break;
1634    case NVME_SMART_TEMPERATURE:
1635        aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1636        break;
1637    case NVME_SMART_RELIABILITY:
1638    case NVME_SMART_MEDIA_READ_ONLY:
1639    case NVME_SMART_FAILED_VOLATILE_MEDIA:
1640    case NVME_SMART_PMR_UNRELIABLE:
1641        aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1642        break;
1643    default:
1644        return;
1645    }
1646
1647    nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1648}
1649
1650static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1651{
1652    n->aer_mask &= ~(1 << event_type);
1653    if (!QTAILQ_EMPTY(&n->aer_queue)) {
1654        nvme_process_aers(n);
1655    }
1656}
1657
1658static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1659{
1660    uint8_t mdts = n->params.mdts;
1661
1662    if (mdts && len > n->page_size << mdts) {
1663        trace_pci_nvme_err_mdts(len);
1664        return NVME_INVALID_FIELD | NVME_DNR;
1665    }
1666
1667    return NVME_SUCCESS;
1668}
1669
1670static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1671                                         uint32_t nlb)
1672{
1673    uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1674
1675    if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1676        trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1677        return NVME_LBA_RANGE | NVME_DNR;
1678    }
1679
1680    return NVME_SUCCESS;
1681}
1682
1683static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1684                                 uint32_t nlb, int flags)
1685{
1686    BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1687
1688    int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1689    int64_t offset = nvme_l2b(ns, slba);
1690    int ret;
1691
1692    /*
1693     * `pnum` holds the number of bytes after offset that shares the same
1694     * allocation status as the byte at offset. If `pnum` is different from
1695     * `bytes`, we should check the allocation status of the next range and
1696     * continue this until all bytes have been checked.
1697     */
1698    do {
1699        bytes -= pnum;
1700
1701        ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1702        if (ret < 0) {
1703            return ret;
1704        }
1705
1706
1707        trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1708                                    !!(ret & BDRV_BLOCK_ZERO));
1709
1710        if (!(ret & flags)) {
1711            return 1;
1712        }
1713
1714        offset += pnum;
1715    } while (pnum != bytes);
1716
1717    return 0;
1718}
1719
1720static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1721                                 uint32_t nlb)
1722{
1723    int ret;
1724    Error *err = NULL;
1725
1726    ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1727    if (ret) {
1728        if (ret < 0) {
1729            error_setg_errno(&err, -ret, "unable to get block status");
1730            error_report_err(err);
1731
1732            return NVME_INTERNAL_DEV_ERROR;
1733        }
1734
1735        return NVME_DULB;
1736    }
1737
1738    return NVME_SUCCESS;
1739}
1740
1741static void nvme_aio_err(NvmeRequest *req, int ret)
1742{
1743    uint16_t status = NVME_SUCCESS;
1744    Error *local_err = NULL;
1745
1746    switch (req->cmd.opcode) {
1747    case NVME_CMD_READ:
1748        status = NVME_UNRECOVERED_READ;
1749        break;
1750    case NVME_CMD_FLUSH:
1751    case NVME_CMD_WRITE:
1752    case NVME_CMD_WRITE_ZEROES:
1753    case NVME_CMD_ZONE_APPEND:
1754    case NVME_CMD_COPY:
1755        status = NVME_WRITE_FAULT;
1756        break;
1757    default:
1758        status = NVME_INTERNAL_DEV_ERROR;
1759        break;
1760    }
1761
1762    trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1763
1764    error_setg_errno(&local_err, -ret, "aio failed");
1765    error_report_err(local_err);
1766
1767    /*
1768     * Set the command status code to the first encountered error but allow a
1769     * subsequent Internal Device Error to trump it.
1770     */
1771    if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1772        return;
1773    }
1774
1775    req->status = status;
1776}
1777
1778static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1779{
1780    return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1781                                    slba / ns->zone_size;
1782}
1783
1784static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1785{
1786    uint32_t zone_idx = nvme_zone_idx(ns, slba);
1787
1788    if (zone_idx >= ns->num_zones) {
1789        return NULL;
1790    }
1791
1792    return &ns->zone_array[zone_idx];
1793}
1794
1795static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1796{
1797    uint64_t zslba = zone->d.zslba;
1798
1799    switch (nvme_get_zone_state(zone)) {
1800    case NVME_ZONE_STATE_EMPTY:
1801    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1802    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1803    case NVME_ZONE_STATE_CLOSED:
1804        return NVME_SUCCESS;
1805    case NVME_ZONE_STATE_FULL:
1806        trace_pci_nvme_err_zone_is_full(zslba);
1807        return NVME_ZONE_FULL;
1808    case NVME_ZONE_STATE_OFFLINE:
1809        trace_pci_nvme_err_zone_is_offline(zslba);
1810        return NVME_ZONE_OFFLINE;
1811    case NVME_ZONE_STATE_READ_ONLY:
1812        trace_pci_nvme_err_zone_is_read_only(zslba);
1813        return NVME_ZONE_READ_ONLY;
1814    default:
1815        assert(false);
1816    }
1817
1818    return NVME_INTERNAL_DEV_ERROR;
1819}
1820
1821static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1822                                      uint64_t slba, uint32_t nlb)
1823{
1824    uint64_t zcap = nvme_zone_wr_boundary(zone);
1825    uint16_t status;
1826
1827    status = nvme_check_zone_state_for_write(zone);
1828    if (status) {
1829        return status;
1830    }
1831
1832    if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1833        uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1834
1835        if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1836            trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1837            return NVME_ZONE_INVALID_WRITE;
1838        }
1839    } else {
1840        if (unlikely(slba != zone->w_ptr)) {
1841            trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1842                                               zone->w_ptr);
1843            return NVME_ZONE_INVALID_WRITE;
1844        }
1845    }
1846
1847    if (unlikely((slba + nlb) > zcap)) {
1848        trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1849        return NVME_ZONE_BOUNDARY_ERROR;
1850    }
1851
1852    return NVME_SUCCESS;
1853}
1854
1855static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1856{
1857    switch (nvme_get_zone_state(zone)) {
1858    case NVME_ZONE_STATE_EMPTY:
1859    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1860    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1861    case NVME_ZONE_STATE_FULL:
1862    case NVME_ZONE_STATE_CLOSED:
1863    case NVME_ZONE_STATE_READ_ONLY:
1864        return NVME_SUCCESS;
1865    case NVME_ZONE_STATE_OFFLINE:
1866        trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1867        return NVME_ZONE_OFFLINE;
1868    default:
1869        assert(false);
1870    }
1871
1872    return NVME_INTERNAL_DEV_ERROR;
1873}
1874
1875static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1876                                     uint32_t nlb)
1877{
1878    NvmeZone *zone;
1879    uint64_t bndry, end;
1880    uint16_t status;
1881
1882    zone = nvme_get_zone_by_slba(ns, slba);
1883    assert(zone);
1884
1885    bndry = nvme_zone_rd_boundary(ns, zone);
1886    end = slba + nlb;
1887
1888    status = nvme_check_zone_state_for_read(zone);
1889    if (status) {
1890        ;
1891    } else if (unlikely(end > bndry)) {
1892        if (!ns->params.cross_zone_read) {
1893            status = NVME_ZONE_BOUNDARY_ERROR;
1894        } else {
1895            /*
1896             * Read across zone boundary - check that all subsequent
1897             * zones that are being read have an appropriate state.
1898             */
1899            do {
1900                zone++;
1901                status = nvme_check_zone_state_for_read(zone);
1902                if (status) {
1903                    break;
1904                }
1905            } while (end > nvme_zone_rd_boundary(ns, zone));
1906        }
1907    }
1908
1909    return status;
1910}
1911
1912static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1913{
1914    switch (nvme_get_zone_state(zone)) {
1915    case NVME_ZONE_STATE_FULL:
1916        return NVME_SUCCESS;
1917
1918    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1919    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1920        nvme_aor_dec_open(ns);
1921        /* fallthrough */
1922    case NVME_ZONE_STATE_CLOSED:
1923        nvme_aor_dec_active(ns);
1924
1925        if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1926            zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1927            if (ns->params.numzrwa) {
1928                ns->zns.numzrwa++;
1929            }
1930        }
1931
1932        /* fallthrough */
1933    case NVME_ZONE_STATE_EMPTY:
1934        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1935        return NVME_SUCCESS;
1936
1937    default:
1938        return NVME_ZONE_INVAL_TRANSITION;
1939    }
1940}
1941
1942static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1943{
1944    switch (nvme_get_zone_state(zone)) {
1945    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1946    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1947        nvme_aor_dec_open(ns);
1948        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1949        /* fall through */
1950    case NVME_ZONE_STATE_CLOSED:
1951        return NVME_SUCCESS;
1952
1953    default:
1954        return NVME_ZONE_INVAL_TRANSITION;
1955    }
1956}
1957
1958static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1959{
1960    switch (nvme_get_zone_state(zone)) {
1961    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1962    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1963        nvme_aor_dec_open(ns);
1964        /* fallthrough */
1965    case NVME_ZONE_STATE_CLOSED:
1966        nvme_aor_dec_active(ns);
1967
1968        if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1969            if (ns->params.numzrwa) {
1970                ns->zns.numzrwa++;
1971            }
1972        }
1973
1974        /* fallthrough */
1975    case NVME_ZONE_STATE_FULL:
1976        zone->w_ptr = zone->d.zslba;
1977        zone->d.wp = zone->w_ptr;
1978        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1979        /* fallthrough */
1980    case NVME_ZONE_STATE_EMPTY:
1981        return NVME_SUCCESS;
1982
1983    default:
1984        return NVME_ZONE_INVAL_TRANSITION;
1985    }
1986}
1987
1988static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1989{
1990    NvmeZone *zone;
1991
1992    if (ns->params.max_open_zones &&
1993        ns->nr_open_zones == ns->params.max_open_zones) {
1994        zone = QTAILQ_FIRST(&ns->imp_open_zones);
1995        if (zone) {
1996            /*
1997             * Automatically close this implicitly open zone.
1998             */
1999            QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
2000            nvme_zrm_close(ns, zone);
2001        }
2002    }
2003}
2004
2005enum {
2006    NVME_ZRM_AUTO = 1 << 0,
2007    NVME_ZRM_ZRWA = 1 << 1,
2008};
2009
2010static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
2011                                    NvmeZone *zone, int flags)
2012{
2013    int act = 0;
2014    uint16_t status;
2015
2016    switch (nvme_get_zone_state(zone)) {
2017    case NVME_ZONE_STATE_EMPTY:
2018        act = 1;
2019
2020        /* fallthrough */
2021
2022    case NVME_ZONE_STATE_CLOSED:
2023        if (n->params.auto_transition_zones) {
2024            nvme_zrm_auto_transition_zone(ns);
2025        }
2026        status = nvme_zns_check_resources(ns, act, 1,
2027                                          (flags & NVME_ZRM_ZRWA) ? 1 : 0);
2028        if (status) {
2029            return status;
2030        }
2031
2032        if (act) {
2033            nvme_aor_inc_active(ns);
2034        }
2035
2036        nvme_aor_inc_open(ns);
2037
2038        if (flags & NVME_ZRM_AUTO) {
2039            nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
2040            return NVME_SUCCESS;
2041        }
2042
2043        /* fallthrough */
2044
2045    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
2046        if (flags & NVME_ZRM_AUTO) {
2047            return NVME_SUCCESS;
2048        }
2049
2050        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
2051
2052        /* fallthrough */
2053
2054    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
2055        if (flags & NVME_ZRM_ZRWA) {
2056            ns->zns.numzrwa--;
2057
2058            zone->d.za |= NVME_ZA_ZRWA_VALID;
2059        }
2060
2061        return NVME_SUCCESS;
2062
2063    default:
2064        return NVME_ZONE_INVAL_TRANSITION;
2065    }
2066}
2067
2068static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
2069                                     NvmeZone *zone)
2070{
2071    return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
2072}
2073
2074static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
2075                                 uint32_t nlb)
2076{
2077    zone->d.wp += nlb;
2078
2079    if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
2080        nvme_zrm_finish(ns, zone);
2081    }
2082}
2083
2084static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
2085                                           uint32_t nlbc)
2086{
2087    uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
2088
2089    nlbc = nzrwafgs * ns->zns.zrwafg;
2090
2091    trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
2092
2093    zone->w_ptr += nlbc;
2094
2095    nvme_advance_zone_wp(ns, zone, nlbc);
2096}
2097
2098static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
2099{
2100    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2101    NvmeZone *zone;
2102    uint64_t slba;
2103    uint32_t nlb;
2104
2105    slba = le64_to_cpu(rw->slba);
2106    nlb = le16_to_cpu(rw->nlb) + 1;
2107    zone = nvme_get_zone_by_slba(ns, slba);
2108    assert(zone);
2109
2110    if (zone->d.za & NVME_ZA_ZRWA_VALID) {
2111        uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
2112        uint64_t elba = slba + nlb - 1;
2113
2114        if (elba > ezrwa) {
2115            nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
2116        }
2117
2118        return;
2119    }
2120
2121    nvme_advance_zone_wp(ns, zone, nlb);
2122}
2123
2124static inline bool nvme_is_write(NvmeRequest *req)
2125{
2126    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2127
2128    return rw->opcode == NVME_CMD_WRITE ||
2129           rw->opcode == NVME_CMD_ZONE_APPEND ||
2130           rw->opcode == NVME_CMD_WRITE_ZEROES;
2131}
2132
2133static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
2134{
2135    return qemu_get_aio_context();
2136}
2137
2138static void nvme_misc_cb(void *opaque, int ret)
2139{
2140    NvmeRequest *req = opaque;
2141
2142    trace_pci_nvme_misc_cb(nvme_cid(req));
2143
2144    if (ret) {
2145        nvme_aio_err(req, ret);
2146    }
2147
2148    nvme_enqueue_req_completion(nvme_cq(req), req);
2149}
2150
2151void nvme_rw_complete_cb(void *opaque, int ret)
2152{
2153    NvmeRequest *req = opaque;
2154    NvmeNamespace *ns = req->ns;
2155    BlockBackend *blk = ns->blkconf.blk;
2156    BlockAcctCookie *acct = &req->acct;
2157    BlockAcctStats *stats = blk_get_stats(blk);
2158
2159    trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2160
2161    if (ret) {
2162        block_acct_failed(stats, acct);
2163        nvme_aio_err(req, ret);
2164    } else {
2165        block_acct_done(stats, acct);
2166    }
2167
2168    if (ns->params.zoned && nvme_is_write(req)) {
2169        nvme_finalize_zoned_write(ns, req);
2170    }
2171
2172    nvme_enqueue_req_completion(nvme_cq(req), req);
2173}
2174
2175static void nvme_rw_cb(void *opaque, int ret)
2176{
2177    NvmeRequest *req = opaque;
2178    NvmeNamespace *ns = req->ns;
2179
2180    BlockBackend *blk = ns->blkconf.blk;
2181
2182    trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2183
2184    if (ret) {
2185        goto out;
2186    }
2187
2188    if (ns->lbaf.ms) {
2189        NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2190        uint64_t slba = le64_to_cpu(rw->slba);
2191        uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2192        uint64_t offset = nvme_moff(ns, slba);
2193
2194        if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2195            size_t mlen = nvme_m2b(ns, nlb);
2196
2197            req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2198                                               BDRV_REQ_MAY_UNMAP,
2199                                               nvme_rw_complete_cb, req);
2200            return;
2201        }
2202
2203        if (nvme_ns_ext(ns) || req->cmd.mptr) {
2204            uint16_t status;
2205
2206            nvme_sg_unmap(&req->sg);
2207            status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2208            if (status) {
2209                ret = -EFAULT;
2210                goto out;
2211            }
2212
2213            if (req->cmd.opcode == NVME_CMD_READ) {
2214                return nvme_blk_read(blk, offset, 1, nvme_rw_complete_cb, req);
2215            }
2216
2217            return nvme_blk_write(blk, offset, 1, nvme_rw_complete_cb, req);
2218        }
2219    }
2220
2221out:
2222    nvme_rw_complete_cb(req, ret);
2223}
2224
2225static void nvme_verify_cb(void *opaque, int ret)
2226{
2227    NvmeBounceContext *ctx = opaque;
2228    NvmeRequest *req = ctx->req;
2229    NvmeNamespace *ns = req->ns;
2230    BlockBackend *blk = ns->blkconf.blk;
2231    BlockAcctCookie *acct = &req->acct;
2232    BlockAcctStats *stats = blk_get_stats(blk);
2233    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2234    uint64_t slba = le64_to_cpu(rw->slba);
2235    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2236    uint16_t apptag = le16_to_cpu(rw->apptag);
2237    uint16_t appmask = le16_to_cpu(rw->appmask);
2238    uint64_t reftag = le32_to_cpu(rw->reftag);
2239    uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2240    uint16_t status;
2241
2242    reftag |= cdw3 << 32;
2243
2244    trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2245
2246    if (ret) {
2247        block_acct_failed(stats, acct);
2248        nvme_aio_err(req, ret);
2249        goto out;
2250    }
2251
2252    block_acct_done(stats, acct);
2253
2254    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2255        status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2256                                       ctx->mdata.iov.size, slba);
2257        if (status) {
2258            req->status = status;
2259            goto out;
2260        }
2261
2262        req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2263                                     ctx->mdata.bounce, ctx->mdata.iov.size,
2264                                     prinfo, slba, apptag, appmask, &reftag);
2265    }
2266
2267out:
2268    qemu_iovec_destroy(&ctx->data.iov);
2269    g_free(ctx->data.bounce);
2270
2271    qemu_iovec_destroy(&ctx->mdata.iov);
2272    g_free(ctx->mdata.bounce);
2273
2274    g_free(ctx);
2275
2276    nvme_enqueue_req_completion(nvme_cq(req), req);
2277}
2278
2279
2280static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2281{
2282    NvmeBounceContext *ctx = opaque;
2283    NvmeRequest *req = ctx->req;
2284    NvmeNamespace *ns = req->ns;
2285    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2286    uint64_t slba = le64_to_cpu(rw->slba);
2287    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2288    size_t mlen = nvme_m2b(ns, nlb);
2289    uint64_t offset = nvme_moff(ns, slba);
2290    BlockBackend *blk = ns->blkconf.blk;
2291
2292    trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2293
2294    if (ret) {
2295        goto out;
2296    }
2297
2298    ctx->mdata.bounce = g_malloc(mlen);
2299
2300    qemu_iovec_reset(&ctx->mdata.iov);
2301    qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2302
2303    req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2304                                nvme_verify_cb, ctx);
2305    return;
2306
2307out:
2308    nvme_verify_cb(ctx, ret);
2309}
2310
2311struct nvme_compare_ctx {
2312    struct {
2313        QEMUIOVector iov;
2314        uint8_t *bounce;
2315    } data;
2316
2317    struct {
2318        QEMUIOVector iov;
2319        uint8_t *bounce;
2320    } mdata;
2321};
2322
2323static void nvme_compare_mdata_cb(void *opaque, int ret)
2324{
2325    NvmeRequest *req = opaque;
2326    NvmeNamespace *ns = req->ns;
2327    NvmeCtrl *n = nvme_ctrl(req);
2328    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2329    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2330    uint16_t apptag = le16_to_cpu(rw->apptag);
2331    uint16_t appmask = le16_to_cpu(rw->appmask);
2332    uint64_t reftag = le32_to_cpu(rw->reftag);
2333    uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2334    struct nvme_compare_ctx *ctx = req->opaque;
2335    g_autofree uint8_t *buf = NULL;
2336    BlockBackend *blk = ns->blkconf.blk;
2337    BlockAcctCookie *acct = &req->acct;
2338    BlockAcctStats *stats = blk_get_stats(blk);
2339    uint16_t status = NVME_SUCCESS;
2340
2341    reftag |= cdw3 << 32;
2342
2343    trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2344
2345    if (ret) {
2346        block_acct_failed(stats, acct);
2347        nvme_aio_err(req, ret);
2348        goto out;
2349    }
2350
2351    buf = g_malloc(ctx->mdata.iov.size);
2352
2353    status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2354                               NVME_TX_DIRECTION_TO_DEVICE, req);
2355    if (status) {
2356        req->status = status;
2357        goto out;
2358    }
2359
2360    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2361        uint64_t slba = le64_to_cpu(rw->slba);
2362        uint8_t *bufp;
2363        uint8_t *mbufp = ctx->mdata.bounce;
2364        uint8_t *end = mbufp + ctx->mdata.iov.size;
2365        int16_t pil = 0;
2366
2367        status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2368                                ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2369                                slba, apptag, appmask, &reftag);
2370        if (status) {
2371            req->status = status;
2372            goto out;
2373        }
2374
2375        /*
2376         * When formatted with protection information, do not compare the DIF
2377         * tuple.
2378         */
2379        if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2380            pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2381        }
2382
2383        for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2384            if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2385                req->status = NVME_CMP_FAILURE | NVME_DNR;
2386                goto out;
2387            }
2388        }
2389
2390        goto out;
2391    }
2392
2393    if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2394        req->status = NVME_CMP_FAILURE | NVME_DNR;
2395        goto out;
2396    }
2397
2398    block_acct_done(stats, acct);
2399
2400out:
2401    qemu_iovec_destroy(&ctx->data.iov);
2402    g_free(ctx->data.bounce);
2403
2404    qemu_iovec_destroy(&ctx->mdata.iov);
2405    g_free(ctx->mdata.bounce);
2406
2407    g_free(ctx);
2408
2409    nvme_enqueue_req_completion(nvme_cq(req), req);
2410}
2411
2412static void nvme_compare_data_cb(void *opaque, int ret)
2413{
2414    NvmeRequest *req = opaque;
2415    NvmeCtrl *n = nvme_ctrl(req);
2416    NvmeNamespace *ns = req->ns;
2417    BlockBackend *blk = ns->blkconf.blk;
2418    BlockAcctCookie *acct = &req->acct;
2419    BlockAcctStats *stats = blk_get_stats(blk);
2420
2421    struct nvme_compare_ctx *ctx = req->opaque;
2422    g_autofree uint8_t *buf = NULL;
2423    uint16_t status;
2424
2425    trace_pci_nvme_compare_data_cb(nvme_cid(req));
2426
2427    if (ret) {
2428        block_acct_failed(stats, acct);
2429        nvme_aio_err(req, ret);
2430        goto out;
2431    }
2432
2433    buf = g_malloc(ctx->data.iov.size);
2434
2435    status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2436                              NVME_TX_DIRECTION_TO_DEVICE, req);
2437    if (status) {
2438        req->status = status;
2439        goto out;
2440    }
2441
2442    if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2443        req->status = NVME_CMP_FAILURE | NVME_DNR;
2444        goto out;
2445    }
2446
2447    if (ns->lbaf.ms) {
2448        NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2449        uint64_t slba = le64_to_cpu(rw->slba);
2450        uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2451        size_t mlen = nvme_m2b(ns, nlb);
2452        uint64_t offset = nvme_moff(ns, slba);
2453
2454        ctx->mdata.bounce = g_malloc(mlen);
2455
2456        qemu_iovec_init(&ctx->mdata.iov, 1);
2457        qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2458
2459        req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2460                                    nvme_compare_mdata_cb, req);
2461        return;
2462    }
2463
2464    block_acct_done(stats, acct);
2465
2466out:
2467    qemu_iovec_destroy(&ctx->data.iov);
2468    g_free(ctx->data.bounce);
2469    g_free(ctx);
2470
2471    nvme_enqueue_req_completion(nvme_cq(req), req);
2472}
2473
2474typedef struct NvmeDSMAIOCB {
2475    BlockAIOCB common;
2476    BlockAIOCB *aiocb;
2477    NvmeRequest *req;
2478    int ret;
2479
2480    NvmeDsmRange *range;
2481    unsigned int nr;
2482    unsigned int idx;
2483} NvmeDSMAIOCB;
2484
2485static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2486{
2487    NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2488
2489    /* break nvme_dsm_cb loop */
2490    iocb->idx = iocb->nr;
2491    iocb->ret = -ECANCELED;
2492
2493    if (iocb->aiocb) {
2494        blk_aio_cancel_async(iocb->aiocb);
2495        iocb->aiocb = NULL;
2496    } else {
2497        /*
2498         * We only reach this if nvme_dsm_cancel() has already been called or
2499         * the command ran to completion.
2500         */
2501        assert(iocb->idx == iocb->nr);
2502    }
2503}
2504
2505static const AIOCBInfo nvme_dsm_aiocb_info = {
2506    .aiocb_size   = sizeof(NvmeDSMAIOCB),
2507    .cancel_async = nvme_dsm_cancel,
2508};
2509
2510static void nvme_dsm_cb(void *opaque, int ret);
2511
2512static void nvme_dsm_md_cb(void *opaque, int ret)
2513{
2514    NvmeDSMAIOCB *iocb = opaque;
2515    NvmeRequest *req = iocb->req;
2516    NvmeNamespace *ns = req->ns;
2517    NvmeDsmRange *range;
2518    uint64_t slba;
2519    uint32_t nlb;
2520
2521    if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2522        goto done;
2523    }
2524
2525    range = &iocb->range[iocb->idx - 1];
2526    slba = le64_to_cpu(range->slba);
2527    nlb = le32_to_cpu(range->nlb);
2528
2529    /*
2530     * Check that all block were discarded (zeroed); otherwise we do not zero
2531     * the metadata.
2532     */
2533
2534    ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2535    if (ret) {
2536        if (ret < 0) {
2537            goto done;
2538        }
2539
2540        nvme_dsm_cb(iocb, 0);
2541        return;
2542    }
2543
2544    iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2545                                        nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2546                                        nvme_dsm_cb, iocb);
2547    return;
2548
2549done:
2550    nvme_dsm_cb(iocb, ret);
2551}
2552
2553static void nvme_dsm_cb(void *opaque, int ret)
2554{
2555    NvmeDSMAIOCB *iocb = opaque;
2556    NvmeRequest *req = iocb->req;
2557    NvmeCtrl *n = nvme_ctrl(req);
2558    NvmeNamespace *ns = req->ns;
2559    NvmeDsmRange *range;
2560    uint64_t slba;
2561    uint32_t nlb;
2562
2563    if (iocb->ret < 0) {
2564        goto done;
2565    } else if (ret < 0) {
2566        iocb->ret = ret;
2567        goto done;
2568    }
2569
2570next:
2571    if (iocb->idx == iocb->nr) {
2572        goto done;
2573    }
2574
2575    range = &iocb->range[iocb->idx++];
2576    slba = le64_to_cpu(range->slba);
2577    nlb = le32_to_cpu(range->nlb);
2578
2579    trace_pci_nvme_dsm_deallocate(slba, nlb);
2580
2581    if (nlb > n->dmrsl) {
2582        trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2583        goto next;
2584    }
2585
2586    if (nvme_check_bounds(ns, slba, nlb)) {
2587        trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2588                                             ns->id_ns.nsze);
2589        goto next;
2590    }
2591
2592    iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2593                                   nvme_l2b(ns, nlb),
2594                                   nvme_dsm_md_cb, iocb);
2595    return;
2596
2597done:
2598    iocb->aiocb = NULL;
2599    iocb->common.cb(iocb->common.opaque, iocb->ret);
2600    qemu_aio_unref(iocb);
2601}
2602
2603static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2604{
2605    NvmeNamespace *ns = req->ns;
2606    NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2607    uint32_t attr = le32_to_cpu(dsm->attributes);
2608    uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2609    uint16_t status = NVME_SUCCESS;
2610
2611    trace_pci_nvme_dsm(nr, attr);
2612
2613    if (attr & NVME_DSMGMT_AD) {
2614        NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2615                                         nvme_misc_cb, req);
2616
2617        iocb->req = req;
2618        iocb->ret = 0;
2619        iocb->range = g_new(NvmeDsmRange, nr);
2620        iocb->nr = nr;
2621        iocb->idx = 0;
2622
2623        status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2624                          req);
2625        if (status) {
2626            g_free(iocb->range);
2627            qemu_aio_unref(iocb);
2628
2629            return status;
2630        }
2631
2632        req->aiocb = &iocb->common;
2633        nvme_dsm_cb(iocb, 0);
2634
2635        return NVME_NO_COMPLETE;
2636    }
2637
2638    return status;
2639}
2640
2641static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2642{
2643    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2644    NvmeNamespace *ns = req->ns;
2645    BlockBackend *blk = ns->blkconf.blk;
2646    uint64_t slba = le64_to_cpu(rw->slba);
2647    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2648    size_t len = nvme_l2b(ns, nlb);
2649    int64_t offset = nvme_l2b(ns, slba);
2650    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2651    uint32_t reftag = le32_to_cpu(rw->reftag);
2652    NvmeBounceContext *ctx = NULL;
2653    uint16_t status;
2654
2655    trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2656
2657    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2658        status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2659        if (status) {
2660            return status;
2661        }
2662
2663        if (prinfo & NVME_PRINFO_PRACT) {
2664            return NVME_INVALID_PROT_INFO | NVME_DNR;
2665        }
2666    }
2667
2668    if (len > n->page_size << n->params.vsl) {
2669        return NVME_INVALID_FIELD | NVME_DNR;
2670    }
2671
2672    status = nvme_check_bounds(ns, slba, nlb);
2673    if (status) {
2674        return status;
2675    }
2676
2677    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2678        status = nvme_check_dulbe(ns, slba, nlb);
2679        if (status) {
2680            return status;
2681        }
2682    }
2683
2684    ctx = g_new0(NvmeBounceContext, 1);
2685    ctx->req = req;
2686
2687    ctx->data.bounce = g_malloc(len);
2688
2689    qemu_iovec_init(&ctx->data.iov, 1);
2690    qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2691
2692    block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2693                     BLOCK_ACCT_READ);
2694
2695    req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2696                                nvme_verify_mdata_in_cb, ctx);
2697    return NVME_NO_COMPLETE;
2698}
2699
2700typedef struct NvmeCopyAIOCB {
2701    BlockAIOCB common;
2702    BlockAIOCB *aiocb;
2703    NvmeRequest *req;
2704    int ret;
2705
2706    void *ranges;
2707    unsigned int format;
2708    int nr;
2709    int idx;
2710
2711    uint8_t *bounce;
2712    QEMUIOVector iov;
2713    struct {
2714        BlockAcctCookie read;
2715        BlockAcctCookie write;
2716    } acct;
2717
2718    uint64_t reftag;
2719    uint64_t slba;
2720
2721    NvmeZone *zone;
2722} NvmeCopyAIOCB;
2723
2724static void nvme_copy_cancel(BlockAIOCB *aiocb)
2725{
2726    NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2727
2728    iocb->ret = -ECANCELED;
2729
2730    if (iocb->aiocb) {
2731        blk_aio_cancel_async(iocb->aiocb);
2732        iocb->aiocb = NULL;
2733    }
2734}
2735
2736static const AIOCBInfo nvme_copy_aiocb_info = {
2737    .aiocb_size   = sizeof(NvmeCopyAIOCB),
2738    .cancel_async = nvme_copy_cancel,
2739};
2740
2741static void nvme_copy_done(NvmeCopyAIOCB *iocb)
2742{
2743    NvmeRequest *req = iocb->req;
2744    NvmeNamespace *ns = req->ns;
2745    BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2746
2747    if (iocb->idx != iocb->nr) {
2748        req->cqe.result = cpu_to_le32(iocb->idx);
2749    }
2750
2751    qemu_iovec_destroy(&iocb->iov);
2752    g_free(iocb->bounce);
2753
2754    if (iocb->ret < 0) {
2755        block_acct_failed(stats, &iocb->acct.read);
2756        block_acct_failed(stats, &iocb->acct.write);
2757    } else {
2758        block_acct_done(stats, &iocb->acct.read);
2759        block_acct_done(stats, &iocb->acct.write);
2760    }
2761
2762    iocb->common.cb(iocb->common.opaque, iocb->ret);
2763    qemu_aio_unref(iocb);
2764}
2765
2766static void nvme_do_copy(NvmeCopyAIOCB *iocb);
2767
2768static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2769                                                 uint64_t *slba, uint32_t *nlb,
2770                                                 uint16_t *apptag,
2771                                                 uint16_t *appmask,
2772                                                 uint64_t *reftag)
2773{
2774    NvmeCopySourceRangeFormat0 *_ranges = ranges;
2775
2776    if (slba) {
2777        *slba = le64_to_cpu(_ranges[idx].slba);
2778    }
2779
2780    if (nlb) {
2781        *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2782    }
2783
2784    if (apptag) {
2785        *apptag = le16_to_cpu(_ranges[idx].apptag);
2786    }
2787
2788    if (appmask) {
2789        *appmask = le16_to_cpu(_ranges[idx].appmask);
2790    }
2791
2792    if (reftag) {
2793        *reftag = le32_to_cpu(_ranges[idx].reftag);
2794    }
2795}
2796
2797static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2798                                                 uint64_t *slba, uint32_t *nlb,
2799                                                 uint16_t *apptag,
2800                                                 uint16_t *appmask,
2801                                                 uint64_t *reftag)
2802{
2803    NvmeCopySourceRangeFormat1 *_ranges = ranges;
2804
2805    if (slba) {
2806        *slba = le64_to_cpu(_ranges[idx].slba);
2807    }
2808
2809    if (nlb) {
2810        *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2811    }
2812
2813    if (apptag) {
2814        *apptag = le16_to_cpu(_ranges[idx].apptag);
2815    }
2816
2817    if (appmask) {
2818        *appmask = le16_to_cpu(_ranges[idx].appmask);
2819    }
2820
2821    if (reftag) {
2822        *reftag = 0;
2823
2824        *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2825        *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2826        *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2827        *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2828        *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2829        *reftag |= (uint64_t)_ranges[idx].sr[9];
2830    }
2831}
2832
2833static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2834                                         uint64_t *slba, uint32_t *nlb,
2835                                         uint16_t *apptag, uint16_t *appmask,
2836                                         uint64_t *reftag)
2837{
2838    switch (format) {
2839    case NVME_COPY_FORMAT_0:
2840        nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2841                                             appmask, reftag);
2842        break;
2843
2844    case NVME_COPY_FORMAT_1:
2845        nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2846                                             appmask, reftag);
2847        break;
2848
2849    default:
2850        abort();
2851    }
2852}
2853
2854static inline uint16_t nvme_check_copy_mcl(NvmeNamespace *ns,
2855                                           NvmeCopyAIOCB *iocb, uint16_t nr)
2856{
2857    uint32_t copy_len = 0;
2858
2859    for (int idx = 0; idx < nr; idx++) {
2860        uint32_t nlb;
2861        nvme_copy_source_range_parse(iocb->ranges, idx, iocb->format, NULL,
2862                                     &nlb, NULL, NULL, NULL);
2863        copy_len += nlb + 1;
2864    }
2865
2866    if (copy_len > ns->id_ns.mcl) {
2867        return NVME_CMD_SIZE_LIMIT | NVME_DNR;
2868    }
2869
2870    return NVME_SUCCESS;
2871}
2872
2873static void nvme_copy_out_completed_cb(void *opaque, int ret)
2874{
2875    NvmeCopyAIOCB *iocb = opaque;
2876    NvmeRequest *req = iocb->req;
2877    NvmeNamespace *ns = req->ns;
2878    uint32_t nlb;
2879
2880    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2881                                 &nlb, NULL, NULL, NULL);
2882
2883    if (ret < 0) {
2884        iocb->ret = ret;
2885        goto out;
2886    } else if (iocb->ret < 0) {
2887        goto out;
2888    }
2889
2890    if (ns->params.zoned) {
2891        nvme_advance_zone_wp(ns, iocb->zone, nlb);
2892    }
2893
2894    iocb->idx++;
2895    iocb->slba += nlb;
2896out:
2897    nvme_do_copy(iocb);
2898}
2899
2900static void nvme_copy_out_cb(void *opaque, int ret)
2901{
2902    NvmeCopyAIOCB *iocb = opaque;
2903    NvmeRequest *req = iocb->req;
2904    NvmeNamespace *ns = req->ns;
2905    uint32_t nlb;
2906    size_t mlen;
2907    uint8_t *mbounce;
2908
2909    if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2910        goto out;
2911    }
2912
2913    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2914                                 &nlb, NULL, NULL, NULL);
2915
2916    mlen = nvme_m2b(ns, nlb);
2917    mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2918
2919    qemu_iovec_reset(&iocb->iov);
2920    qemu_iovec_add(&iocb->iov, mbounce, mlen);
2921
2922    iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2923                                  &iocb->iov, 0, nvme_copy_out_completed_cb,
2924                                  iocb);
2925
2926    return;
2927
2928out:
2929    nvme_copy_out_completed_cb(iocb, ret);
2930}
2931
2932static void nvme_copy_in_completed_cb(void *opaque, int ret)
2933{
2934    NvmeCopyAIOCB *iocb = opaque;
2935    NvmeRequest *req = iocb->req;
2936    NvmeNamespace *ns = req->ns;
2937    uint32_t nlb;
2938    uint64_t slba;
2939    uint16_t apptag, appmask;
2940    uint64_t reftag;
2941    size_t len;
2942    uint16_t status;
2943
2944    if (ret < 0) {
2945        iocb->ret = ret;
2946        goto out;
2947    } else if (iocb->ret < 0) {
2948        goto out;
2949    }
2950
2951    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2952                                 &nlb, &apptag, &appmask, &reftag);
2953    len = nvme_l2b(ns, nlb);
2954
2955    trace_pci_nvme_copy_out(iocb->slba, nlb);
2956
2957    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2958        NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2959
2960        uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2961        uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2962
2963        size_t mlen = nvme_m2b(ns, nlb);
2964        uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2965
2966        status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2967        if (status) {
2968            goto invalid;
2969        }
2970        status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2971                                slba, apptag, appmask, &reftag);
2972        if (status) {
2973            goto invalid;
2974        }
2975
2976        apptag = le16_to_cpu(copy->apptag);
2977        appmask = le16_to_cpu(copy->appmask);
2978
2979        if (prinfow & NVME_PRINFO_PRACT) {
2980            status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2981            if (status) {
2982                goto invalid;
2983            }
2984
2985            nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2986                                        apptag, &iocb->reftag);
2987        } else {
2988            status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2989                                    prinfow, iocb->slba, apptag, appmask,
2990                                    &iocb->reftag);
2991            if (status) {
2992                goto invalid;
2993            }
2994        }
2995    }
2996
2997    status = nvme_check_bounds(ns, iocb->slba, nlb);
2998    if (status) {
2999        goto invalid;
3000    }
3001
3002    if (ns->params.zoned) {
3003        status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
3004        if (status) {
3005            goto invalid;
3006        }
3007
3008        if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
3009            iocb->zone->w_ptr += nlb;
3010        }
3011    }
3012
3013    qemu_iovec_reset(&iocb->iov);
3014    qemu_iovec_add(&iocb->iov, iocb->bounce, len);
3015
3016    iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
3017                                  &iocb->iov, 0, nvme_copy_out_cb, iocb);
3018
3019    return;
3020
3021invalid:
3022    req->status = status;
3023    iocb->ret = -1;
3024out:
3025    nvme_do_copy(iocb);
3026}
3027
3028static void nvme_copy_in_cb(void *opaque, int ret)
3029{
3030    NvmeCopyAIOCB *iocb = opaque;
3031    NvmeRequest *req = iocb->req;
3032    NvmeNamespace *ns = req->ns;
3033    uint64_t slba;
3034    uint32_t nlb;
3035
3036    if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3037        goto out;
3038    }
3039
3040    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
3041                                 &nlb, NULL, NULL, NULL);
3042
3043    qemu_iovec_reset(&iocb->iov);
3044    qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
3045                   nvme_m2b(ns, nlb));
3046
3047    iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
3048                                 &iocb->iov, 0, nvme_copy_in_completed_cb,
3049                                 iocb);
3050    return;
3051
3052out:
3053    nvme_copy_in_completed_cb(iocb, ret);
3054}
3055
3056static void nvme_do_copy(NvmeCopyAIOCB *iocb)
3057{
3058    NvmeRequest *req = iocb->req;
3059    NvmeNamespace *ns = req->ns;
3060    uint64_t slba;
3061    uint32_t nlb;
3062    size_t len;
3063    uint16_t status;
3064
3065    if (iocb->ret < 0) {
3066        goto done;
3067    }
3068
3069    if (iocb->idx == iocb->nr) {
3070        goto done;
3071    }
3072
3073    nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
3074                                 &nlb, NULL, NULL, NULL);
3075    len = nvme_l2b(ns, nlb);
3076
3077    trace_pci_nvme_copy_source_range(slba, nlb);
3078
3079    if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
3080        status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3081        goto invalid;
3082    }
3083
3084    status = nvme_check_bounds(ns, slba, nlb);
3085    if (status) {
3086        goto invalid;
3087    }
3088
3089    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3090        status = nvme_check_dulbe(ns, slba, nlb);
3091        if (status) {
3092            goto invalid;
3093        }
3094    }
3095
3096    if (ns->params.zoned) {
3097        status = nvme_check_zone_read(ns, slba, nlb);
3098        if (status) {
3099            goto invalid;
3100        }
3101    }
3102
3103    qemu_iovec_reset(&iocb->iov);
3104    qemu_iovec_add(&iocb->iov, iocb->bounce, len);
3105
3106    iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
3107                                 &iocb->iov, 0, nvme_copy_in_cb, iocb);
3108    return;
3109
3110invalid:
3111    req->status = status;
3112    iocb->ret = -1;
3113done:
3114    nvme_copy_done(iocb);
3115}
3116
3117static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
3118{
3119    NvmeNamespace *ns = req->ns;
3120    NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
3121    NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
3122                                      nvme_misc_cb, req);
3123    uint16_t nr = copy->nr + 1;
3124    uint8_t format = copy->control[0] & 0xf;
3125    uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
3126    uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
3127    size_t len = sizeof(NvmeCopySourceRangeFormat0);
3128
3129    uint16_t status;
3130
3131    trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
3132
3133    iocb->ranges = NULL;
3134    iocb->zone = NULL;
3135
3136    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
3137        ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
3138        status = NVME_INVALID_FIELD | NVME_DNR;
3139        goto invalid;
3140    }
3141
3142    if (!(n->id_ctrl.ocfs & (1 << format))) {
3143        trace_pci_nvme_err_copy_invalid_format(format);
3144        status = NVME_INVALID_FIELD | NVME_DNR;
3145        goto invalid;
3146    }
3147
3148    if (nr > ns->id_ns.msrc + 1) {
3149        status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3150        goto invalid;
3151    }
3152
3153    if ((ns->pif == 0x0 && format != 0x0) ||
3154        (ns->pif != 0x0 && format != 0x1)) {
3155        status = NVME_INVALID_FORMAT | NVME_DNR;
3156        goto invalid;
3157    }
3158
3159    if (ns->pif) {
3160        len = sizeof(NvmeCopySourceRangeFormat1);
3161    }
3162
3163    iocb->format = format;
3164    iocb->ranges = g_malloc_n(nr, len);
3165    status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3166    if (status) {
3167        goto invalid;
3168    }
3169
3170    iocb->slba = le64_to_cpu(copy->sdlba);
3171
3172    if (ns->params.zoned) {
3173        iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3174        if (!iocb->zone) {
3175            status = NVME_LBA_RANGE | NVME_DNR;
3176            goto invalid;
3177        }
3178
3179        status = nvme_zrm_auto(n, ns, iocb->zone);
3180        if (status) {
3181            goto invalid;
3182        }
3183    }
3184
3185    status = nvme_check_copy_mcl(ns, iocb, nr);
3186    if (status) {
3187        goto invalid;
3188    }
3189
3190    iocb->req = req;
3191    iocb->ret = 0;
3192    iocb->nr = nr;
3193    iocb->idx = 0;
3194    iocb->reftag = le32_to_cpu(copy->reftag);
3195    iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3196    iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3197                              ns->lbasz + ns->lbaf.ms);
3198
3199    qemu_iovec_init(&iocb->iov, 1);
3200
3201    block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3202                     BLOCK_ACCT_READ);
3203    block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3204                     BLOCK_ACCT_WRITE);
3205
3206    req->aiocb = &iocb->common;
3207    nvme_do_copy(iocb);
3208
3209    return NVME_NO_COMPLETE;
3210
3211invalid:
3212    g_free(iocb->ranges);
3213    qemu_aio_unref(iocb);
3214    return status;
3215}
3216
3217static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3218{
3219    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3220    NvmeNamespace *ns = req->ns;
3221    BlockBackend *blk = ns->blkconf.blk;
3222    uint64_t slba = le64_to_cpu(rw->slba);
3223    uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3224    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3225    size_t data_len = nvme_l2b(ns, nlb);
3226    size_t len = data_len;
3227    int64_t offset = nvme_l2b(ns, slba);
3228    struct nvme_compare_ctx *ctx = NULL;
3229    uint16_t status;
3230
3231    trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3232
3233    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3234        return NVME_INVALID_PROT_INFO | NVME_DNR;
3235    }
3236
3237    if (nvme_ns_ext(ns)) {
3238        len += nvme_m2b(ns, nlb);
3239    }
3240
3241    status = nvme_check_mdts(n, len);
3242    if (status) {
3243        return status;
3244    }
3245
3246    status = nvme_check_bounds(ns, slba, nlb);
3247    if (status) {
3248        return status;
3249    }
3250
3251    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3252        status = nvme_check_dulbe(ns, slba, nlb);
3253        if (status) {
3254            return status;
3255        }
3256    }
3257
3258    status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3259    if (status) {
3260        return status;
3261    }
3262
3263    ctx = g_new(struct nvme_compare_ctx, 1);
3264    ctx->data.bounce = g_malloc(data_len);
3265
3266    req->opaque = ctx;
3267
3268    qemu_iovec_init(&ctx->data.iov, 1);
3269    qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3270
3271    block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3272                     BLOCK_ACCT_READ);
3273    req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3274                                nvme_compare_data_cb, req);
3275
3276    return NVME_NO_COMPLETE;
3277}
3278
3279typedef struct NvmeFlushAIOCB {
3280    BlockAIOCB common;
3281    BlockAIOCB *aiocb;
3282    NvmeRequest *req;
3283    int ret;
3284
3285    NvmeNamespace *ns;
3286    uint32_t nsid;
3287    bool broadcast;
3288} NvmeFlushAIOCB;
3289
3290static void nvme_flush_cancel(BlockAIOCB *acb)
3291{
3292    NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3293
3294    iocb->ret = -ECANCELED;
3295
3296    if (iocb->aiocb) {
3297        blk_aio_cancel_async(iocb->aiocb);
3298        iocb->aiocb = NULL;
3299    }
3300}
3301
3302static const AIOCBInfo nvme_flush_aiocb_info = {
3303    .aiocb_size = sizeof(NvmeFlushAIOCB),
3304    .cancel_async = nvme_flush_cancel,
3305    .get_aio_context = nvme_get_aio_context,
3306};
3307
3308static void nvme_do_flush(NvmeFlushAIOCB *iocb);
3309
3310static void nvme_flush_ns_cb(void *opaque, int ret)
3311{
3312    NvmeFlushAIOCB *iocb = opaque;
3313    NvmeNamespace *ns = iocb->ns;
3314
3315    if (ret < 0) {
3316        iocb->ret = ret;
3317        goto out;
3318    } else if (iocb->ret < 0) {
3319        goto out;
3320    }
3321
3322    if (ns) {
3323        trace_pci_nvme_flush_ns(iocb->nsid);
3324
3325        iocb->ns = NULL;
3326        iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3327        return;
3328    }
3329
3330out:
3331    nvme_do_flush(iocb);
3332}
3333
3334static void nvme_do_flush(NvmeFlushAIOCB *iocb)
3335{
3336    NvmeRequest *req = iocb->req;
3337    NvmeCtrl *n = nvme_ctrl(req);
3338    int i;
3339
3340    if (iocb->ret < 0) {
3341        goto done;
3342    }
3343
3344    if (iocb->broadcast) {
3345        for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3346            iocb->ns = nvme_ns(n, i);
3347            if (iocb->ns) {
3348                iocb->nsid = i;
3349                break;
3350            }
3351        }
3352    }
3353
3354    if (!iocb->ns) {
3355        goto done;
3356    }
3357
3358    nvme_flush_ns_cb(iocb, 0);
3359    return;
3360
3361done:
3362    iocb->common.cb(iocb->common.opaque, iocb->ret);
3363    qemu_aio_unref(iocb);
3364}
3365
3366static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3367{
3368    NvmeFlushAIOCB *iocb;
3369    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3370    uint16_t status;
3371
3372    iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3373
3374    iocb->req = req;
3375    iocb->ret = 0;
3376    iocb->ns = NULL;
3377    iocb->nsid = 0;
3378    iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3379
3380    if (!iocb->broadcast) {
3381        if (!nvme_nsid_valid(n, nsid)) {
3382            status = NVME_INVALID_NSID | NVME_DNR;
3383            goto out;
3384        }
3385
3386        iocb->ns = nvme_ns(n, nsid);
3387        if (!iocb->ns) {
3388            status = NVME_INVALID_FIELD | NVME_DNR;
3389            goto out;
3390        }
3391
3392        iocb->nsid = nsid;
3393    }
3394
3395    req->aiocb = &iocb->common;
3396    nvme_do_flush(iocb);
3397
3398    return NVME_NO_COMPLETE;
3399
3400out:
3401    qemu_aio_unref(iocb);
3402
3403    return status;
3404}
3405
3406static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3407{
3408    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3409    NvmeNamespace *ns = req->ns;
3410    uint64_t slba = le64_to_cpu(rw->slba);
3411    uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3412    uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3413    uint64_t data_size = nvme_l2b(ns, nlb);
3414    uint64_t mapped_size = data_size;
3415    uint64_t data_offset;
3416    BlockBackend *blk = ns->blkconf.blk;
3417    uint16_t status;
3418
3419    if (nvme_ns_ext(ns)) {
3420        mapped_size += nvme_m2b(ns, nlb);
3421
3422        if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3423            bool pract = prinfo & NVME_PRINFO_PRACT;
3424
3425            if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3426                mapped_size = data_size;
3427            }
3428        }
3429    }
3430
3431    trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3432
3433    status = nvme_check_mdts(n, mapped_size);
3434    if (status) {
3435        goto invalid;
3436    }
3437
3438    status = nvme_check_bounds(ns, slba, nlb);
3439    if (status) {
3440        goto invalid;
3441    }
3442
3443    if (ns->params.zoned) {
3444        status = nvme_check_zone_read(ns, slba, nlb);
3445        if (status) {
3446            trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3447            goto invalid;
3448        }
3449    }
3450
3451    if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3452        status = nvme_check_dulbe(ns, slba, nlb);
3453        if (status) {
3454            goto invalid;
3455        }
3456    }
3457
3458    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3459        return nvme_dif_rw(n, req);
3460    }
3461
3462    status = nvme_map_data(n, nlb, req);
3463    if (status) {
3464        goto invalid;
3465    }
3466
3467    data_offset = nvme_l2b(ns, slba);
3468
3469    block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3470                     BLOCK_ACCT_READ);
3471    nvme_blk_read(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req);
3472    return NVME_NO_COMPLETE;
3473
3474invalid:
3475    block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3476    return status | NVME_DNR;
3477}
3478
3479static void nvme_do_write_fdp(NvmeCtrl *n, NvmeRequest *req, uint64_t slba,
3480                              uint32_t nlb)
3481{
3482    NvmeNamespace *ns = req->ns;
3483    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3484    uint64_t data_size = nvme_l2b(ns, nlb);
3485    uint32_t dw12 = le32_to_cpu(req->cmd.cdw12);
3486    uint8_t dtype = (dw12 >> 20) & 0xf;
3487    uint16_t pid = le16_to_cpu(rw->dspec);
3488    uint16_t ph, rg, ruhid;
3489    NvmeReclaimUnit *ru;
3490
3491    if (dtype != NVME_DIRECTIVE_DATA_PLACEMENT ||
3492        !nvme_parse_pid(ns, pid, &ph, &rg)) {
3493        ph = 0;
3494        rg = 0;
3495    }
3496
3497    ruhid = ns->fdp.phs[ph];
3498    ru = &ns->endgrp->fdp.ruhs[ruhid].rus[rg];
3499
3500    nvme_fdp_stat_inc(&ns->endgrp->fdp.hbmw, data_size);
3501    nvme_fdp_stat_inc(&ns->endgrp->fdp.mbmw, data_size);
3502
3503    while (nlb) {
3504        if (nlb < ru->ruamw) {
3505            ru->ruamw -= nlb;
3506            break;
3507        }
3508
3509        nlb -= ru->ruamw;
3510        nvme_update_ruh(n, ns, pid);
3511    }
3512}
3513
3514static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3515                              bool wrz)
3516{
3517    NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3518    NvmeNamespace *ns = req->ns;
3519    uint64_t slba = le64_to_cpu(rw->slba);
3520    uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3521    uint16_t ctrl = le16_to_cpu(rw->control);
3522    uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3523    uint64_t data_size = nvme_l2b(ns, nlb);
3524    uint64_t mapped_size = data_size;
3525    uint64_t data_offset;
3526    NvmeZone *zone;
3527    NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3528    BlockBackend *blk = ns->blkconf.blk;
3529    uint16_t status;
3530
3531    if (nvme_ns_ext(ns)) {
3532        mapped_size += nvme_m2b(ns, nlb);
3533
3534        if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3535            bool pract = prinfo & NVME_PRINFO_PRACT;
3536
3537            if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3538                mapped_size -= nvme_m2b(ns, nlb);
3539            }
3540        }
3541    }
3542
3543    trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3544                         nvme_nsid(ns), nlb, mapped_size, slba);
3545
3546    if (!wrz) {
3547        status = nvme_check_mdts(n, mapped_size);
3548        if (status) {
3549            goto invalid;
3550        }
3551    }
3552
3553    status = nvme_check_bounds(ns, slba, nlb);
3554    if (status) {
3555        goto invalid;
3556    }
3557
3558    if (ns->params.zoned) {
3559        zone = nvme_get_zone_by_slba(ns, slba);
3560        assert(zone);
3561
3562        if (append) {
3563            bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3564
3565            if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3566                return NVME_INVALID_ZONE_OP | NVME_DNR;
3567            }
3568
3569            if (unlikely(slba != zone->d.zslba)) {
3570                trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3571                status = NVME_INVALID_FIELD;
3572                goto invalid;
3573            }
3574
3575            if (n->params.zasl &&
3576                data_size > (uint64_t)n->page_size << n->params.zasl) {
3577                trace_pci_nvme_err_zasl(data_size);
3578                return NVME_INVALID_FIELD | NVME_DNR;
3579            }
3580
3581            slba = zone->w_ptr;
3582            rw->slba = cpu_to_le64(slba);
3583            res->slba = cpu_to_le64(slba);
3584
3585            switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3586            case NVME_ID_NS_DPS_TYPE_1:
3587                if (!piremap) {
3588                    return NVME_INVALID_PROT_INFO | NVME_DNR;
3589                }
3590
3591                /* fallthrough */
3592
3593            case NVME_ID_NS_DPS_TYPE_2:
3594                if (piremap) {
3595                    uint32_t reftag = le32_to_cpu(rw->reftag);
3596                    rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3597                }
3598
3599                break;
3600
3601            case NVME_ID_NS_DPS_TYPE_3:
3602                if (piremap) {
3603                    return NVME_INVALID_PROT_INFO | NVME_DNR;
3604                }
3605
3606                break;
3607            }
3608        }
3609
3610        status = nvme_check_zone_write(ns, zone, slba, nlb);
3611        if (status) {
3612            goto invalid;
3613        }
3614
3615        status = nvme_zrm_auto(n, ns, zone);
3616        if (status) {
3617            goto invalid;
3618        }
3619
3620        if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3621            zone->w_ptr += nlb;
3622        }
3623    } else if (ns->endgrp && ns->endgrp->fdp.enabled) {
3624        nvme_do_write_fdp(n, req, slba, nlb);
3625    }
3626
3627    data_offset = nvme_l2b(ns, slba);
3628
3629    if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3630        return nvme_dif_rw(n, req);
3631    }
3632
3633    if (!wrz) {
3634        status = nvme_map_data(n, nlb, req);
3635        if (status) {
3636            goto invalid;
3637        }
3638
3639        block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3640                         BLOCK_ACCT_WRITE);
3641        nvme_blk_write(blk, data_offset, BDRV_SECTOR_SIZE, nvme_rw_cb, req);
3642    } else {
3643        req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3644                                           BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3645                                           req);
3646    }
3647
3648    return NVME_NO_COMPLETE;
3649
3650invalid:
3651    block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3652    return status | NVME_DNR;
3653}
3654
3655static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3656{
3657    return nvme_do_write(n, req, false, false);
3658}
3659
3660static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3661{
3662    return nvme_do_write(n, req, false, true);
3663}
3664
3665static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3666{
3667    return nvme_do_write(n, req, true, false);
3668}
3669
3670static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3671                                            uint64_t *slba, uint32_t *zone_idx)
3672{
3673    uint32_t dw10 = le32_to_cpu(c->cdw10);
3674    uint32_t dw11 = le32_to_cpu(c->cdw11);
3675
3676    if (!ns->params.zoned) {
3677        trace_pci_nvme_err_invalid_opc(c->opcode);
3678        return NVME_INVALID_OPCODE | NVME_DNR;
3679    }
3680
3681    *slba = ((uint64_t)dw11) << 32 | dw10;
3682    if (unlikely(*slba >= ns->id_ns.nsze)) {
3683        trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3684        *slba = 0;
3685        return NVME_LBA_RANGE | NVME_DNR;
3686    }
3687
3688    *zone_idx = nvme_zone_idx(ns, *slba);
3689    assert(*zone_idx < ns->num_zones);
3690
3691    return NVME_SUCCESS;
3692}
3693
3694typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3695                                 NvmeRequest *);
3696
3697enum NvmeZoneProcessingMask {
3698    NVME_PROC_CURRENT_ZONE    = 0,
3699    NVME_PROC_OPENED_ZONES    = 1 << 0,
3700    NVME_PROC_CLOSED_ZONES    = 1 << 1,
3701    NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3702    NVME_PROC_FULL_ZONES      = 1 << 3,
3703};
3704
3705static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3706                               NvmeZoneState state, NvmeRequest *req)
3707{
3708    NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3709    int flags = 0;
3710
3711    if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3712        uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3713
3714        if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3715            return NVME_INVALID_ZONE_OP | NVME_DNR;
3716        }
3717
3718        if (zone->w_ptr % ns->zns.zrwafg) {
3719            return NVME_NOZRWA | NVME_DNR;
3720        }
3721
3722        flags = NVME_ZRM_ZRWA;
3723    }
3724
3725    return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3726}
3727
3728static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3729                                NvmeZoneState state, NvmeRequest *req)
3730{
3731    return nvme_zrm_close(ns, zone);
3732}
3733
3734static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3735                                 NvmeZoneState state, NvmeRequest *req)
3736{
3737    return nvme_zrm_finish(ns, zone);
3738}
3739
3740static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3741                                  NvmeZoneState state, NvmeRequest *req)
3742{
3743    switch (state) {
3744    case NVME_ZONE_STATE_READ_ONLY:
3745        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3746        /* fall through */
3747    case NVME_ZONE_STATE_OFFLINE:
3748        return NVME_SUCCESS;
3749    default:
3750        return NVME_ZONE_INVAL_TRANSITION;
3751    }
3752}
3753
3754static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3755{
3756    uint16_t status;
3757    uint8_t state = nvme_get_zone_state(zone);
3758
3759    if (state == NVME_ZONE_STATE_EMPTY) {
3760        status = nvme_aor_check(ns, 1, 0);
3761        if (status) {
3762            return status;
3763        }
3764        nvme_aor_inc_active(ns);
3765        zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3766        nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3767        return NVME_SUCCESS;
3768    }
3769
3770    return NVME_ZONE_INVAL_TRANSITION;
3771}
3772
3773static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3774                                    enum NvmeZoneProcessingMask proc_mask,
3775                                    op_handler_t op_hndlr, NvmeRequest *req)
3776{
3777    uint16_t status = NVME_SUCCESS;
3778    NvmeZoneState zs = nvme_get_zone_state(zone);
3779    bool proc_zone;
3780
3781    switch (zs) {
3782    case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3783    case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3784        proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3785        break;
3786    case NVME_ZONE_STATE_CLOSED:
3787        proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3788        break;
3789    case NVME_ZONE_STATE_READ_ONLY:
3790        proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3791        break;
3792    case NVME_ZONE_STATE_FULL:
3793        proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3794        break;
3795    default:
3796        proc_zone = false;
3797    }
3798
3799    if (proc_zone) {
3800        status = op_hndlr(ns, zone, zs, req);
3801    }
3802
3803    return status;
3804}
3805
3806static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3807                                enum NvmeZoneProcessingMask proc_mask,
3808                                op_handler_t op_hndlr, NvmeRequest *req)
3809{
3810    NvmeZone *next;
3811    uint16_t status = NVME_SUCCESS;
3812    int i;
3813
3814    if (!proc_mask) {
3815        status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3816    } else {
3817        if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3818            QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3819                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3820                                             req);
3821                if (status && status != NVME_NO_COMPLETE) {
3822                    goto out;
3823                }
3824            }
3825        }
3826        if (proc_mask & NVME_PROC_OPENED_ZONES) {
3827            QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3828                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3829                                             req);
3830                if (status && status != NVME_NO_COMPLETE) {
3831                    goto out;
3832                }
3833            }
3834
3835            QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3836                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3837                                             req);
3838                if (status && status != NVME_NO_COMPLETE) {
3839                    goto out;
3840                }
3841            }
3842        }
3843        if (proc_mask & NVME_PROC_FULL_ZONES) {
3844            QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3845                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3846                                             req);
3847                if (status && status != NVME_NO_COMPLETE) {
3848                    goto out;
3849                }
3850            }
3851        }
3852
3853        if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3854            for (i = 0; i < ns->num_zones; i++, zone++) {
3855                status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3856                                             req);
3857                if (status && status != NVME_NO_COMPLETE) {
3858                    goto out;
3859                }
3860            }
3861        }
3862    }
3863
3864out:
3865    return status;
3866}
3867
3868typedef struct NvmeZoneResetAIOCB {
3869    BlockAIOCB common;
3870    BlockAIOCB *aiocb;
3871    NvmeRequest *req;
3872    int ret;
3873
3874    bool all;
3875    int idx;
3876    NvmeZone *zone;
3877} NvmeZoneResetAIOCB;
3878
3879static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3880{
3881    NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3882    NvmeRequest *req = iocb->req;
3883    NvmeNamespace *ns = req->ns;
3884
3885    iocb->idx = ns->num_zones;
3886
3887    iocb->ret = -ECANCELED;
3888
3889    if (iocb->aiocb) {
3890        blk_aio_cancel_async(iocb->aiocb);
3891        iocb->aiocb = NULL;
3892    }
3893}
3894
3895static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3896    .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3897    .cancel_async = nvme_zone_reset_cancel,
3898};
3899
3900static void nvme_zone_reset_cb(void *opaque, int ret);
3901
3902static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3903{
3904    NvmeZoneResetAIOCB *iocb = opaque;
3905    NvmeRequest *req = iocb->req;
3906    NvmeNamespace *ns = req->ns;
3907    int64_t moff;
3908    int count;
3909
3910    if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3911        goto out;
3912    }
3913
3914    moff = nvme_moff(ns, iocb->zone->d.zslba);
3915    count = nvme_m2b(ns, ns->zone_size);
3916
3917    iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3918                                        BDRV_REQ_MAY_UNMAP,
3919                                        nvme_zone_reset_cb, iocb);
3920    return;
3921
3922out:
3923    nvme_zone_reset_cb(iocb, ret);
3924}
3925
3926static void nvme_zone_reset_cb(void *opaque, int ret)
3927{
3928    NvmeZoneResetAIOCB *iocb = opaque;
3929    NvmeRequest *req = iocb->req;
3930    NvmeNamespace *ns = req->ns;
3931
3932    if (iocb->ret < 0) {
3933        goto done;
3934    } else if (ret < 0) {
3935        iocb->ret = ret;
3936        goto done;
3937    }
3938
3939    if (iocb->zone) {
3940        nvme_zrm_reset(ns, iocb->zone);
3941
3942        if (!iocb->all) {
3943            goto done;
3944        }
3945    }
3946
3947    while (iocb->idx < ns->num_zones) {
3948        NvmeZone *zone = &ns->zone_array[iocb->idx++];
3949
3950        switch (nvme_get_zone_state(zone)) {
3951        case NVME_ZONE_STATE_EMPTY:
3952            if (!iocb->all) {
3953                goto done;
3954            }
3955
3956            continue;
3957
3958        case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3959        case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3960        case NVME_ZONE_STATE_CLOSED:
3961        case NVME_ZONE_STATE_FULL:
3962            iocb->zone = zone;
3963            break;
3964
3965        default:
3966            continue;
3967        }
3968
3969        trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3970
3971        iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3972                                            nvme_l2b(ns, zone->d.zslba),
3973                                            nvme_l2b(ns, ns->zone_size),
3974                                            BDRV_REQ_MAY_UNMAP,
3975                                            nvme_zone_reset_epilogue_cb,
3976                                            iocb);
3977        return;
3978    }
3979
3980done:
3981    iocb->aiocb = NULL;
3982
3983    iocb->common.cb(iocb->common.opaque, iocb->ret);
3984    qemu_aio_unref(iocb);
3985}
3986
3987static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3988                                               uint64_t elba, NvmeRequest *req)
3989{
3990    NvmeNamespace *ns = req->ns;
3991    uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3992    uint64_t wp = zone->d.wp;
3993    uint32_t nlb = elba - wp + 1;
3994    uint16_t status;
3995
3996
3997    if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3998        return NVME_INVALID_ZONE_OP | NVME_DNR;
3999    }
4000
4001    if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
4002        return NVME_INVALID_FIELD | NVME_DNR;
4003    }
4004
4005    if (elba < wp || elba > wp + ns->zns.zrwas) {
4006        return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
4007    }
4008
4009    if (nlb % ns->zns.zrwafg) {
4010        return NVME_INVALID_FIELD | NVME_DNR;
4011    }
4012
4013    status = nvme_zrm_auto(n, ns, zone);
4014    if (status) {
4015        return status;
4016    }
4017
4018    zone->w_ptr += nlb;
4019
4020    nvme_advance_zone_wp(ns, zone, nlb);
4021
4022    return NVME_SUCCESS;
4023}
4024
4025static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
4026{
4027    NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
4028    NvmeNamespace *ns = req->ns;
4029    NvmeZone *zone;
4030    NvmeZoneResetAIOCB *iocb;
4031    uint8_t *zd_ext;
4032    uint64_t slba = 0;
4033    uint32_t zone_idx = 0;
4034    uint16_t status;
4035    uint8_t action = cmd->zsa;
4036    bool all;
4037    enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
4038
4039    all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
4040
4041    req->status = NVME_SUCCESS;
4042
4043    if (!all) {
4044        status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
4045        if (status) {
4046            return status;
4047        }
4048    }
4049
4050    zone = &ns->zone_array[zone_idx];
4051    if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
4052        trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
4053        return NVME_INVALID_FIELD | NVME_DNR;
4054    }
4055
4056    switch (action) {
4057
4058    case NVME_ZONE_ACTION_OPEN:
4059        if (all) {
4060            proc_mask = NVME_PROC_CLOSED_ZONES;
4061        }
4062        trace_pci_nvme_open_zone(slba, zone_idx, all);
4063        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
4064        break;
4065
4066    case NVME_ZONE_ACTION_CLOSE:
4067        if (all) {
4068            proc_mask = NVME_PROC_OPENED_ZONES;
4069        }
4070        trace_pci_nvme_close_zone(slba, zone_idx, all);
4071        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
4072        break;
4073
4074    case NVME_ZONE_ACTION_FINISH:
4075        if (all) {
4076            proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
4077        }
4078        trace_pci_nvme_finish_zone(slba, zone_idx, all);
4079        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
4080        break;
4081
4082    case NVME_ZONE_ACTION_RESET:
4083        trace_pci_nvme_reset_zone(slba, zone_idx, all);
4084
4085        iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
4086                           nvme_misc_cb, req);
4087
4088        iocb->req = req;
4089        iocb->ret = 0;
4090        iocb->all = all;
4091        iocb->idx = zone_idx;
4092        iocb->zone = NULL;
4093
4094        req->aiocb = &iocb->common;
4095        nvme_zone_reset_cb(iocb, 0);
4096
4097        return NVME_NO_COMPLETE;
4098
4099    case NVME_ZONE_ACTION_OFFLINE:
4100        if (all) {
4101            proc_mask = NVME_PROC_READ_ONLY_ZONES;
4102        }
4103        trace_pci_nvme_offline_zone(slba, zone_idx, all);
4104        status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
4105        break;
4106
4107    case NVME_ZONE_ACTION_SET_ZD_EXT:
4108        trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
4109        if (all || !ns->params.zd_extension_size) {
4110            return NVME_INVALID_FIELD | NVME_DNR;
4111        }
4112        zd_ext = nvme_get_zd_extension(ns, zone_idx);
4113        status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
4114        if (status) {
4115            trace_pci_nvme_err_zd_extension_map_error(zone_idx);
4116            return status;
4117        }
4118
4119        status = nvme_set_zd_ext(ns, zone);
4120        if (status == NVME_SUCCESS) {
4121            trace_pci_nvme_zd_extension_set(zone_idx);
4122            return status;
4123        }
4124        break;
4125
4126    case NVME_ZONE_ACTION_ZRWA_FLUSH:
4127        if (all) {
4128            return NVME_INVALID_FIELD | NVME_DNR;
4129        }
4130
4131        return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
4132
4133    default:
4134        trace_pci_nvme_err_invalid_mgmt_action(action);
4135        status = NVME_INVALID_FIELD;
4136    }
4137
4138    if (status == NVME_ZONE_INVAL_TRANSITION) {
4139        trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
4140                                                         zone->d.za);
4141    }
4142    if (status) {
4143        status |= NVME_DNR;
4144    }
4145
4146    return status;
4147}
4148
4149static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
4150{
4151    NvmeZoneState zs = nvme_get_zone_state(zl);
4152
4153    switch (zafs) {
4154    case NVME_ZONE_REPORT_ALL:
4155        return true;
4156    case NVME_ZONE_REPORT_EMPTY:
4157        return zs == NVME_ZONE_STATE_EMPTY;
4158    case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
4159        return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
4160    case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
4161        return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
4162    case NVME_ZONE_REPORT_CLOSED:
4163        return zs == NVME_ZONE_STATE_CLOSED;
4164    case NVME_ZONE_REPORT_FULL:
4165        return zs == NVME_ZONE_STATE_FULL;
4166    case NVME_ZONE_REPORT_READ_ONLY:
4167        return zs == NVME_ZONE_STATE_READ_ONLY;
4168    case NVME_ZONE_REPORT_OFFLINE:
4169        return zs == NVME_ZONE_STATE_OFFLINE;
4170    default:
4171        return false;
4172    }
4173}
4174
4175static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4176{
4177    NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
4178    NvmeNamespace *ns = req->ns;
4179    /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4180    uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
4181    uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4182    uint32_t zone_idx, zra, zrasf, partial;
4183    uint64_t max_zones, nr_zones = 0;
4184    uint16_t status;
4185    uint64_t slba;
4186    NvmeZoneDescr *z;
4187    NvmeZone *zone;
4188    NvmeZoneReportHeader *header;
4189    void *buf, *buf_p;
4190    size_t zone_entry_sz;
4191    int i;
4192
4193    req->status = NVME_SUCCESS;
4194
4195    status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4196    if (status) {
4197        return status;
4198    }
4199
4200    zra = dw13 & 0xff;
4201    if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4202        return NVME_INVALID_FIELD | NVME_DNR;
4203    }
4204    if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4205        return NVME_INVALID_FIELD | NVME_DNR;
4206    }
4207
4208    zrasf = (dw13 >> 8) & 0xff;
4209    if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4210        return NVME_INVALID_FIELD | NVME_DNR;
4211    }
4212
4213    if (data_size < sizeof(NvmeZoneReportHeader)) {
4214        return NVME_INVALID_FIELD | NVME_DNR;
4215    }
4216
4217    status = nvme_check_mdts(n, data_size);
4218    if (status) {
4219        return status;
4220    }
4221
4222    partial = (dw13 >> 16) & 0x01;
4223
4224    zone_entry_sz = sizeof(NvmeZoneDescr);
4225    if (zra == NVME_ZONE_REPORT_EXTENDED) {
4226        zone_entry_sz += ns->params.zd_extension_size;
4227    }
4228
4229    max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4230    buf = g_malloc0(data_size);
4231
4232    zone = &ns->zone_array[zone_idx];
4233    for (i = zone_idx; i < ns->num_zones; i++) {
4234        if (partial && nr_zones >= max_zones) {
4235            break;
4236        }
4237        if (nvme_zone_matches_filter(zrasf, zone++)) {
4238            nr_zones++;
4239        }
4240    }
4241    header = buf;
4242    header->nr_zones = cpu_to_le64(nr_zones);
4243
4244    buf_p = buf + sizeof(NvmeZoneReportHeader);
4245    for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4246        zone = &ns->zone_array[zone_idx];
4247        if (nvme_zone_matches_filter(zrasf, zone)) {
4248            z = buf_p;
4249            buf_p += sizeof(NvmeZoneDescr);
4250
4251            z->zt = zone->d.zt;
4252            z->zs = zone->d.zs;
4253            z->zcap = cpu_to_le64(zone->d.zcap);
4254            z->zslba = cpu_to_le64(zone->d.zslba);
4255            z->za = zone->d.za;
4256
4257            if (nvme_wp_is_valid(zone)) {
4258                z->wp = cpu_to_le64(zone->d.wp);
4259            } else {
4260                z->wp = cpu_to_le64(~0ULL);
4261            }
4262
4263            if (zra == NVME_ZONE_REPORT_EXTENDED) {
4264                if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4265                    memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4266                           ns->params.zd_extension_size);
4267                }
4268                buf_p += ns->params.zd_extension_size;
4269            }
4270
4271            max_zones--;
4272        }
4273    }
4274
4275    status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4276
4277    g_free(buf);
4278
4279    return status;
4280}
4281
4282static uint16_t nvme_io_mgmt_recv_ruhs(NvmeCtrl *n, NvmeRequest *req,
4283                                       size_t len)
4284{
4285    NvmeNamespace *ns = req->ns;
4286    NvmeEnduranceGroup *endgrp;
4287    NvmeRuhStatus *hdr;
4288    NvmeRuhStatusDescr *ruhsd;
4289    unsigned int nruhsd;
4290    uint16_t rg, ph, *ruhid;
4291    size_t trans_len;
4292    g_autofree uint8_t *buf = NULL;
4293
4294    if (!n->subsys) {
4295        return NVME_INVALID_FIELD | NVME_DNR;
4296    }
4297
4298    if (ns->params.nsid == 0 || ns->params.nsid == 0xffffffff) {
4299        return NVME_INVALID_NSID | NVME_DNR;
4300    }
4301
4302    if (!n->subsys->endgrp.fdp.enabled) {
4303        return NVME_FDP_DISABLED | NVME_DNR;
4304    }
4305
4306    endgrp = ns->endgrp;
4307
4308    nruhsd = ns->fdp.nphs * endgrp->fdp.nrg;
4309    trans_len = sizeof(NvmeRuhStatus) + nruhsd * sizeof(NvmeRuhStatusDescr);
4310    buf = g_malloc(trans_len);
4311
4312    trans_len = MIN(trans_len, len);
4313
4314    hdr = (NvmeRuhStatus *)buf;
4315    ruhsd = (NvmeRuhStatusDescr *)(buf + sizeof(NvmeRuhStatus));
4316
4317    hdr->nruhsd = cpu_to_le16(nruhsd);
4318
4319    ruhid = ns->fdp.phs;
4320
4321    for (ph = 0; ph < ns->fdp.nphs; ph++, ruhid++) {
4322        NvmeRuHandle *ruh = &endgrp->fdp.ruhs[*ruhid];
4323
4324        for (rg = 0; rg < endgrp->fdp.nrg; rg++, ruhsd++) {
4325            uint16_t pid = nvme_make_pid(ns, rg, ph);
4326
4327            ruhsd->pid = cpu_to_le16(pid);
4328            ruhsd->ruhid = *ruhid;
4329            ruhsd->earutr = 0;
4330            ruhsd->ruamw = cpu_to_le64(ruh->rus[rg].ruamw);
4331        }
4332    }
4333
4334    return nvme_c2h(n, buf, trans_len, req);
4335}
4336
4337static uint16_t nvme_io_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4338{
4339    NvmeCmd *cmd = &req->cmd;
4340    uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4341    uint32_t numd = le32_to_cpu(cmd->cdw11);
4342    uint8_t mo = (cdw10 & 0xff);
4343    size_t len = (numd + 1) << 2;
4344
4345    switch (mo) {
4346    case NVME_IOMR_MO_NOP:
4347        return 0;
4348    case NVME_IOMR_MO_RUH_STATUS:
4349        return nvme_io_mgmt_recv_ruhs(n, req, len);
4350    default:
4351        return NVME_INVALID_FIELD | NVME_DNR;
4352    };
4353}
4354
4355static uint16_t nvme_io_mgmt_send_ruh_update(NvmeCtrl *n, NvmeRequest *req)
4356{
4357    NvmeCmd *cmd = &req->cmd;
4358    NvmeNamespace *ns = req->ns;
4359    uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4360    uint16_t ret = NVME_SUCCESS;
4361    uint32_t npid = (cdw10 >> 1) + 1;
4362    unsigned int i = 0;
4363    g_autofree uint16_t *pids = NULL;
4364    uint32_t maxnpid;
4365
4366    if (!ns->endgrp || !ns->endgrp->fdp.enabled) {
4367        return NVME_FDP_DISABLED | NVME_DNR;
4368    }
4369
4370    maxnpid = n->subsys->endgrp.fdp.nrg * n->subsys->endgrp.fdp.nruh;
4371
4372    if (unlikely(npid >= MIN(NVME_FDP_MAXPIDS, maxnpid))) {
4373        return NVME_INVALID_FIELD | NVME_DNR;
4374    }
4375
4376    pids = g_new(uint16_t, npid);
4377
4378    ret = nvme_h2c(n, pids, npid * sizeof(uint16_t), req);
4379    if (ret) {
4380        return ret;
4381    }
4382
4383    for (; i < npid; i++) {
4384        if (!nvme_update_ruh(n, ns, pids[i])) {
4385            return NVME_INVALID_FIELD | NVME_DNR;
4386        }
4387    }
4388
4389    return ret;
4390}
4391
4392static uint16_t nvme_io_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
4393{
4394    NvmeCmd *cmd = &req->cmd;
4395    uint32_t cdw10 = le32_to_cpu(cmd->cdw10);
4396    uint8_t mo = (cdw10 & 0xff);
4397
4398    switch (mo) {
4399    case NVME_IOMS_MO_NOP:
4400        return 0;
4401    case NVME_IOMS_MO_RUH_UPDATE:
4402        return nvme_io_mgmt_send_ruh_update(n, req);
4403    default:
4404        return NVME_INVALID_FIELD | NVME_DNR;
4405    };
4406}
4407
4408static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4409{
4410    NvmeNamespace *ns;
4411    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4412
4413    trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4414                          req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4415
4416    if (!nvme_nsid_valid(n, nsid)) {
4417        return NVME_INVALID_NSID | NVME_DNR;
4418    }
4419
4420    /*
4421     * In the base NVM command set, Flush may apply to all namespaces
4422     * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4423     * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4424     *
4425     * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4426     * opcode with a specific command since we cannot determine a unique I/O
4427     * command set. Opcode 0h could have any other meaning than something
4428     * equivalent to flushing and say it DOES have completely different
4429     * semantics in some other command set - does an NSID of FFFFFFFFh then
4430     * mean "for all namespaces, apply whatever command set specific command
4431     * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4432     * whatever command that uses the 0h opcode if, and only if, it allows NSID
4433     * to be FFFFFFFFh"?
4434     *
4435     * Anyway (and luckily), for now, we do not care about this since the
4436     * device only supports namespace types that includes the NVM Flush command
4437     * (NVM and Zoned), so always do an NVM Flush.
4438     */
4439    if (req->cmd.opcode == NVME_CMD_FLUSH) {
4440        return nvme_flush(n, req);
4441    }
4442
4443    ns = nvme_ns(n, nsid);
4444    if (unlikely(!ns)) {
4445        return NVME_INVALID_FIELD | NVME_DNR;
4446    }
4447
4448    if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4449        trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4450        return NVME_INVALID_OPCODE | NVME_DNR;
4451    }
4452
4453    if (ns->status) {
4454        return ns->status;
4455    }
4456
4457    if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4458        return NVME_INVALID_FIELD;
4459    }
4460
4461    req->ns = ns;
4462
4463    switch (req->cmd.opcode) {
4464    case NVME_CMD_WRITE_ZEROES:
4465        return nvme_write_zeroes(n, req);
4466    case NVME_CMD_ZONE_APPEND:
4467        return nvme_zone_append(n, req);
4468    case NVME_CMD_WRITE:
4469        return nvme_write(n, req);
4470    case NVME_CMD_READ:
4471        return nvme_read(n, req);
4472    case NVME_CMD_COMPARE:
4473        return nvme_compare(n, req);
4474    case NVME_CMD_DSM:
4475        return nvme_dsm(n, req);
4476    case NVME_CMD_VERIFY:
4477        return nvme_verify(n, req);
4478    case NVME_CMD_COPY:
4479        return nvme_copy(n, req);
4480    case NVME_CMD_ZONE_MGMT_SEND:
4481        return nvme_zone_mgmt_send(n, req);
4482    case NVME_CMD_ZONE_MGMT_RECV:
4483        return nvme_zone_mgmt_recv(n, req);
4484    case NVME_CMD_IO_MGMT_RECV:
4485        return nvme_io_mgmt_recv(n, req);
4486    case NVME_CMD_IO_MGMT_SEND:
4487        return nvme_io_mgmt_send(n, req);
4488    default:
4489        assert(false);
4490    }
4491
4492    return NVME_INVALID_OPCODE | NVME_DNR;
4493}
4494
4495static void nvme_cq_notifier(EventNotifier *e)
4496{
4497    NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4498    NvmeCtrl *n = cq->ctrl;
4499
4500    if (!event_notifier_test_and_clear(e)) {
4501        return;
4502    }
4503
4504    nvme_update_cq_head(cq);
4505
4506    if (cq->tail == cq->head) {
4507        if (cq->irq_enabled) {
4508            n->cq_pending--;
4509        }
4510
4511        nvme_irq_deassert(n, cq);
4512    }
4513
4514    qemu_bh_schedule(cq->bh);
4515}
4516
4517static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4518{
4519    NvmeCtrl *n = cq->ctrl;
4520    uint16_t offset = (cq->cqid << 3) + (1 << 2);
4521    int ret;
4522
4523    ret = event_notifier_init(&cq->notifier, 0);
4524    if (ret < 0) {
4525        return ret;
4526    }
4527
4528    event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4529    memory_region_add_eventfd(&n->iomem,
4530                              0x1000 + offset, 4, false, 0, &cq->notifier);
4531
4532    return 0;
4533}
4534
4535static void nvme_sq_notifier(EventNotifier *e)
4536{
4537    NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4538
4539    if (!event_notifier_test_and_clear(e)) {
4540        return;
4541    }
4542
4543    nvme_process_sq(sq);
4544}
4545
4546static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4547{
4548    NvmeCtrl *n = sq->ctrl;
4549    uint16_t offset = sq->sqid << 3;
4550    int ret;
4551
4552    ret = event_notifier_init(&sq->notifier, 0);
4553    if (ret < 0) {
4554        return ret;
4555    }
4556
4557    event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4558    memory_region_add_eventfd(&n->iomem,
4559                              0x1000 + offset, 4, false, 0, &sq->notifier);
4560
4561    return 0;
4562}
4563
4564static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4565{
4566    uint16_t offset = sq->sqid << 3;
4567
4568    n->sq[sq->sqid] = NULL;
4569    qemu_bh_delete(sq->bh);
4570    if (sq->ioeventfd_enabled) {
4571        memory_region_del_eventfd(&n->iomem,
4572                                  0x1000 + offset, 4, false, 0, &sq->notifier);
4573        event_notifier_set_handler(&sq->notifier, NULL);
4574        event_notifier_cleanup(&sq->notifier);
4575    }
4576    g_free(sq->io_req);
4577    if (sq->sqid) {
4578        g_free(sq);
4579    }
4580}
4581
4582static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4583{
4584    NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4585    NvmeRequest *r, *next;
4586    NvmeSQueue *sq;
4587    NvmeCQueue *cq;
4588    uint16_t qid = le16_to_cpu(c->qid);
4589
4590    if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4591        trace_pci_nvme_err_invalid_del_sq(qid);
4592        return NVME_INVALID_QID | NVME_DNR;
4593    }
4594
4595    trace_pci_nvme_del_sq(qid);
4596
4597    sq = n->sq[qid];
4598    while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4599        r = QTAILQ_FIRST(&sq->out_req_list);
4600        assert(r->aiocb);
4601        blk_aio_cancel(r->aiocb);
4602    }
4603
4604    assert(QTAILQ_EMPTY(&sq->out_req_list));
4605
4606    if (!nvme_check_cqid(n, sq->cqid)) {
4607        cq = n->cq[sq->cqid];
4608        QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4609
4610        nvme_post_cqes(cq);
4611        QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4612            if (r->sq == sq) {
4613                QTAILQ_REMOVE(&cq->req_list, r, entry);
4614                QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4615            }
4616        }
4617    }
4618
4619    nvme_free_sq(sq, n);
4620    return NVME_SUCCESS;
4621}
4622
4623static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4624                         uint16_t sqid, uint16_t cqid, uint16_t size)
4625{
4626    int i;
4627    NvmeCQueue *cq;
4628
4629    sq->ctrl = n;
4630    sq->dma_addr = dma_addr;
4631    sq->sqid = sqid;
4632    sq->size = size;
4633    sq->cqid = cqid;
4634    sq->head = sq->tail = 0;
4635    sq->io_req = g_new0(NvmeRequest, sq->size);
4636
4637    QTAILQ_INIT(&sq->req_list);
4638    QTAILQ_INIT(&sq->out_req_list);
4639    for (i = 0; i < sq->size; i++) {
4640        sq->io_req[i].sq = sq;
4641        QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4642    }
4643
4644    sq->bh = qemu_bh_new_guarded(nvme_process_sq, sq,
4645                                 &DEVICE(sq->ctrl)->mem_reentrancy_guard);
4646
4647    if (n->dbbuf_enabled) {
4648        sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4649        sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4650
4651        if (n->params.ioeventfd && sq->sqid != 0) {
4652            if (!nvme_init_sq_ioeventfd(sq)) {
4653                sq->ioeventfd_enabled = true;
4654            }
4655        }
4656    }
4657
4658    assert(n->cq[cqid]);
4659    cq = n->cq[cqid];
4660    QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4661    n->sq[sqid] = sq;
4662}
4663
4664static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4665{
4666    NvmeSQueue *sq;
4667    NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4668
4669    uint16_t cqid = le16_to_cpu(c->cqid);
4670    uint16_t sqid = le16_to_cpu(c->sqid);
4671    uint16_t qsize = le16_to_cpu(c->qsize);
4672    uint16_t qflags = le16_to_cpu(c->sq_flags);
4673    uint64_t prp1 = le64_to_cpu(c->prp1);
4674
4675    trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4676
4677    if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4678        trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4679        return NVME_INVALID_CQID | NVME_DNR;
4680    }
4681    if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4682        trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4683        return NVME_INVALID_QID | NVME_DNR;
4684    }
4685    if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4686        trace_pci_nvme_err_invalid_create_sq_size(qsize);
4687        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4688    }
4689    if (unlikely(prp1 & (n->page_size - 1))) {
4690        trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4691        return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4692    }
4693    if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4694        trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4695        return NVME_INVALID_FIELD | NVME_DNR;
4696    }
4697    sq = g_malloc0(sizeof(*sq));
4698    nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4699    return NVME_SUCCESS;
4700}
4701
4702struct nvme_stats {
4703    uint64_t units_read;
4704    uint64_t units_written;
4705    uint64_t read_commands;
4706    uint64_t write_commands;
4707};
4708
4709static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4710{
4711    BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4712
4713    stats->units_read += s->nr_bytes[BLOCK_ACCT_READ];
4714    stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE];
4715    stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4716    stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4717}
4718
4719static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4720                                uint64_t off, NvmeRequest *req)
4721{
4722    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4723    struct nvme_stats stats = { 0 };
4724    NvmeSmartLog smart = { 0 };
4725    uint32_t trans_len;
4726    NvmeNamespace *ns;
4727    time_t current_ms;
4728    uint64_t u_read, u_written;
4729
4730    if (off >= sizeof(smart)) {
4731        return NVME_INVALID_FIELD | NVME_DNR;
4732    }
4733
4734    if (nsid != 0xffffffff) {
4735        ns = nvme_ns(n, nsid);
4736        if (!ns) {
4737            return NVME_INVALID_NSID | NVME_DNR;
4738        }
4739        nvme_set_blk_stats(ns, &stats);
4740    } else {
4741        int i;
4742
4743        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4744            ns = nvme_ns(n, i);
4745            if (!ns) {
4746                continue;
4747            }
4748            nvme_set_blk_stats(ns, &stats);
4749        }
4750    }
4751
4752    trans_len = MIN(sizeof(smart) - off, buf_len);
4753    smart.critical_warning = n->smart_critical_warning;
4754
4755    u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000);
4756    u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000);
4757
4758    smart.data_units_read[0] = cpu_to_le64(u_read);
4759    smart.data_units_written[0] = cpu_to_le64(u_written);
4760    smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4761    smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4762
4763    smart.temperature = cpu_to_le16(n->temperature);
4764
4765    if ((n->temperature >= n->features.temp_thresh_hi) ||
4766        (n->temperature <= n->features.temp_thresh_low)) {
4767        smart.critical_warning |= NVME_SMART_TEMPERATURE;
4768    }
4769
4770    current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4771    smart.power_on_hours[0] =
4772        cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4773
4774    if (!rae) {
4775        nvme_clear_events(n, NVME_AER_TYPE_SMART);
4776    }
4777
4778    return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4779}
4780
4781static uint16_t nvme_endgrp_info(NvmeCtrl *n,  uint8_t rae, uint32_t buf_len,
4782                                 uint64_t off, NvmeRequest *req)
4783{
4784    uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
4785    uint16_t endgrpid = (dw11 >> 16) & 0xffff;
4786    struct nvme_stats stats = {};
4787    NvmeEndGrpLog info = {};
4788    int i;
4789
4790    if (!n->subsys || endgrpid != 0x1) {
4791        return NVME_INVALID_FIELD | NVME_DNR;
4792    }
4793
4794    if (off >= sizeof(info)) {
4795        return NVME_INVALID_FIELD | NVME_DNR;
4796    }
4797
4798    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4799        NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i);
4800        if (!ns) {
4801            continue;
4802        }
4803
4804        nvme_set_blk_stats(ns, &stats);
4805    }
4806
4807    info.data_units_read[0] =
4808        cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000));
4809    info.data_units_written[0] =
4810        cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
4811    info.media_units_written[0] =
4812        cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
4813
4814    info.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4815    info.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4816
4817    buf_len = MIN(sizeof(info) - off, buf_len);
4818
4819    return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req);
4820}
4821
4822
4823static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4824                                 NvmeRequest *req)
4825{
4826    uint32_t trans_len;
4827    NvmeFwSlotInfoLog fw_log = {
4828        .afi = 0x1,
4829    };
4830
4831    if (off >= sizeof(fw_log)) {
4832        return NVME_INVALID_FIELD | NVME_DNR;
4833    }
4834
4835    strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4836    trans_len = MIN(sizeof(fw_log) - off, buf_len);
4837
4838    return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4839}
4840
4841static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4842                                uint64_t off, NvmeRequest *req)
4843{
4844    uint32_t trans_len;
4845    NvmeErrorLog errlog;
4846
4847    if (off >= sizeof(errlog)) {
4848        return NVME_INVALID_FIELD | NVME_DNR;
4849    }
4850
4851    if (!rae) {
4852        nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4853    }
4854
4855    memset(&errlog, 0x0, sizeof(errlog));
4856    trans_len = MIN(sizeof(errlog) - off, buf_len);
4857
4858    return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4859}
4860
4861static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4862                                    uint64_t off, NvmeRequest *req)
4863{
4864    uint32_t nslist[1024];
4865    uint32_t trans_len;
4866    int i = 0;
4867    uint32_t nsid;
4868
4869    if (off >= sizeof(nslist)) {
4870        trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4871        return NVME_INVALID_FIELD | NVME_DNR;
4872    }
4873
4874    memset(nslist, 0x0, sizeof(nslist));
4875    trans_len = MIN(sizeof(nslist) - off, buf_len);
4876
4877    while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4878            NVME_CHANGED_NSID_SIZE) {
4879        /*
4880         * If more than 1024 namespaces, the first entry in the log page should
4881         * be set to FFFFFFFFh and the others to 0 as spec.
4882         */
4883        if (i == ARRAY_SIZE(nslist)) {
4884            memset(nslist, 0x0, sizeof(nslist));
4885            nslist[0] = 0xffffffff;
4886            break;
4887        }
4888
4889        nslist[i++] = nsid;
4890        clear_bit(nsid, n->changed_nsids);
4891    }
4892
4893    /*
4894     * Remove all the remaining list entries in case returns directly due to
4895     * more than 1024 namespaces.
4896     */
4897    if (nslist[0] == 0xffffffff) {
4898        bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4899    }
4900
4901    if (!rae) {
4902        nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4903    }
4904
4905    return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4906}
4907
4908static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4909                                 uint64_t off, NvmeRequest *req)
4910{
4911    NvmeEffectsLog log = {};
4912    const uint32_t *src_iocs = NULL;
4913    uint32_t trans_len;
4914
4915    if (off >= sizeof(log)) {
4916        trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4917        return NVME_INVALID_FIELD | NVME_DNR;
4918    }
4919
4920    switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4921    case NVME_CC_CSS_NVM:
4922        src_iocs = nvme_cse_iocs_nvm;
4923        /* fall through */
4924    case NVME_CC_CSS_ADMIN_ONLY:
4925        break;
4926    case NVME_CC_CSS_CSI:
4927        switch (csi) {
4928        case NVME_CSI_NVM:
4929            src_iocs = nvme_cse_iocs_nvm;
4930            break;
4931        case NVME_CSI_ZONED:
4932            src_iocs = nvme_cse_iocs_zoned;
4933            break;
4934        }
4935    }
4936
4937    memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4938
4939    if (src_iocs) {
4940        memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4941    }
4942
4943    trans_len = MIN(sizeof(log) - off, buf_len);
4944
4945    return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4946}
4947
4948static size_t sizeof_fdp_conf_descr(size_t nruh, size_t vss)
4949{
4950    size_t entry_siz = sizeof(NvmeFdpDescrHdr) + nruh * sizeof(NvmeRuhDescr)
4951                       + vss;
4952    return ROUND_UP(entry_siz, 8);
4953}
4954
4955static uint16_t nvme_fdp_confs(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
4956                               uint64_t off, NvmeRequest *req)
4957{
4958    uint32_t log_size, trans_len;
4959    g_autofree uint8_t *buf = NULL;
4960    NvmeFdpDescrHdr *hdr;
4961    NvmeRuhDescr *ruhd;
4962    NvmeEnduranceGroup *endgrp;
4963    NvmeFdpConfsHdr *log;
4964    size_t nruh, fdp_descr_size;
4965    int i;
4966
4967    if (endgrpid != 1 || !n->subsys) {
4968        return NVME_INVALID_FIELD | NVME_DNR;
4969    }
4970
4971    endgrp = &n->subsys->endgrp;
4972
4973    if (endgrp->fdp.enabled) {
4974        nruh = endgrp->fdp.nruh;
4975    } else {
4976        nruh = 1;
4977    }
4978
4979    fdp_descr_size = sizeof_fdp_conf_descr(nruh, FDPVSS);
4980    log_size = sizeof(NvmeFdpConfsHdr) + fdp_descr_size;
4981
4982    if (off >= log_size) {
4983        return NVME_INVALID_FIELD | NVME_DNR;
4984    }
4985
4986    trans_len = MIN(log_size - off, buf_len);
4987
4988    buf = g_malloc0(log_size);
4989    log = (NvmeFdpConfsHdr *)buf;
4990    hdr = (NvmeFdpDescrHdr *)(log + 1);
4991    ruhd = (NvmeRuhDescr *)(buf + sizeof(*log) + sizeof(*hdr));
4992
4993    log->num_confs = cpu_to_le16(0);
4994    log->size = cpu_to_le32(log_size);
4995
4996    hdr->descr_size = cpu_to_le16(fdp_descr_size);
4997    if (endgrp->fdp.enabled) {
4998        hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, VALID, 1);
4999        hdr->fdpa = FIELD_DP8(hdr->fdpa, FDPA, RGIF, endgrp->fdp.rgif);
5000        hdr->nrg = cpu_to_le16(endgrp->fdp.nrg);
5001        hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
5002        hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
5003        hdr->nnss = cpu_to_le32(NVME_MAX_NAMESPACES);
5004        hdr->runs = cpu_to_le64(endgrp->fdp.runs);
5005
5006        for (i = 0; i < nruh; i++) {
5007            ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
5008            ruhd++;
5009        }
5010    } else {
5011        /* 1 bit for RUH in PIF -> 2 RUHs max. */
5012        hdr->nrg = cpu_to_le16(1);
5013        hdr->nruh = cpu_to_le16(1);
5014        hdr->maxpids = cpu_to_le16(NVME_FDP_MAXPIDS - 1);
5015        hdr->nnss = cpu_to_le32(1);
5016        hdr->runs = cpu_to_le64(96 * MiB);
5017
5018        ruhd->ruht = NVME_RUHT_INITIALLY_ISOLATED;
5019    }
5020
5021    return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
5022}
5023
5024static uint16_t nvme_fdp_ruh_usage(NvmeCtrl *n, uint32_t endgrpid,
5025                                   uint32_t dw10, uint32_t dw12,
5026                                   uint32_t buf_len, uint64_t off,
5027                                   NvmeRequest *req)
5028{
5029    NvmeRuHandle *ruh;
5030    NvmeRuhuLog *hdr;
5031    NvmeRuhuDescr *ruhud;
5032    NvmeEnduranceGroup *endgrp;
5033    g_autofree uint8_t *buf = NULL;
5034    uint32_t log_size, trans_len;
5035    uint16_t i;
5036
5037    if (endgrpid != 1 || !n->subsys) {
5038        return NVME_INVALID_FIELD | NVME_DNR;
5039    }
5040
5041    endgrp = &n->subsys->endgrp;
5042
5043    if (!endgrp->fdp.enabled) {
5044        return NVME_FDP_DISABLED | NVME_DNR;
5045    }
5046
5047    log_size = sizeof(NvmeRuhuLog) + endgrp->fdp.nruh * sizeof(NvmeRuhuDescr);
5048
5049    if (off >= log_size) {
5050        return NVME_INVALID_FIELD | NVME_DNR;
5051    }
5052
5053    trans_len = MIN(log_size - off, buf_len);
5054
5055    buf = g_malloc0(log_size);
5056    hdr = (NvmeRuhuLog *)buf;
5057    ruhud = (NvmeRuhuDescr *)(hdr + 1);
5058
5059    ruh = endgrp->fdp.ruhs;
5060    hdr->nruh = cpu_to_le16(endgrp->fdp.nruh);
5061
5062    for (i = 0; i < endgrp->fdp.nruh; i++, ruhud++, ruh++) {
5063        ruhud->ruha = ruh->ruha;
5064    }
5065
5066    return nvme_c2h(n, (uint8_t *)buf + off, trans_len, req);
5067}
5068
5069static uint16_t nvme_fdp_stats(NvmeCtrl *n, uint32_t endgrpid, uint32_t buf_len,
5070                               uint64_t off, NvmeRequest *req)
5071{
5072    NvmeEnduranceGroup *endgrp;
5073    NvmeFdpStatsLog log = {};
5074    uint32_t trans_len;
5075
5076    if (off >= sizeof(NvmeFdpStatsLog)) {
5077        return NVME_INVALID_FIELD | NVME_DNR;
5078    }
5079
5080    if (endgrpid != 1 || !n->subsys) {
5081        return NVME_INVALID_FIELD | NVME_DNR;
5082    }
5083
5084    if (!n->subsys->endgrp.fdp.enabled) {
5085        return NVME_FDP_DISABLED | NVME_DNR;
5086    }
5087
5088    endgrp = &n->subsys->endgrp;
5089
5090    trans_len = MIN(sizeof(log) - off, buf_len);
5091
5092    /* spec value is 128 bit, we only use 64 bit */
5093    log.hbmw[0] = cpu_to_le64(endgrp->fdp.hbmw);
5094    log.mbmw[0] = cpu_to_le64(endgrp->fdp.mbmw);
5095    log.mbe[0] = cpu_to_le64(endgrp->fdp.mbe);
5096
5097    return nvme_c2h(n, (uint8_t *)&log + off, trans_len, req);
5098}
5099
5100static uint16_t nvme_fdp_events(NvmeCtrl *n, uint32_t endgrpid,
5101                                uint32_t buf_len, uint64_t off,
5102                                NvmeRequest *req)
5103{
5104    NvmeEnduranceGroup *endgrp;
5105    NvmeCmd *cmd = &req->cmd;
5106    bool host_events = (cmd->cdw10 >> 8) & 0x1;
5107    uint32_t log_size, trans_len;
5108    NvmeFdpEventBuffer *ebuf;
5109    g_autofree NvmeFdpEventsLog *elog = NULL;
5110    NvmeFdpEvent *event;
5111
5112    if (endgrpid != 1 || !n->subsys) {
5113        return NVME_INVALID_FIELD | NVME_DNR;
5114    }
5115
5116    endgrp = &n->subsys->endgrp;
5117
5118    if (!endgrp->fdp.enabled) {
5119        return NVME_FDP_DISABLED | NVME_DNR;
5120    }
5121
5122    if (host_events) {
5123        ebuf = &endgrp->fdp.host_events;
5124    } else {
5125        ebuf = &endgrp->fdp.ctrl_events;
5126    }
5127
5128    log_size = sizeof(NvmeFdpEventsLog) + ebuf->nelems * sizeof(NvmeFdpEvent);
5129
5130    if (off >= log_size) {
5131        return NVME_INVALID_FIELD | NVME_DNR;
5132    }
5133
5134    trans_len = MIN(log_size - off, buf_len);
5135    elog = g_malloc0(log_size);
5136    elog->num_events = cpu_to_le32(ebuf->nelems);
5137    event = (NvmeFdpEvent *)(elog + 1);
5138
5139    if (ebuf->nelems && ebuf->start == ebuf->next) {
5140        unsigned int nelems = (NVME_FDP_MAX_EVENTS - ebuf->start);
5141        /* wrap over, copy [start;NVME_FDP_MAX_EVENTS[ and [0; next[ */
5142        memcpy(event, &ebuf->events[ebuf->start],
5143               sizeof(NvmeFdpEvent) * nelems);
5144        memcpy(event + nelems, ebuf->events,
5145               sizeof(NvmeFdpEvent) * ebuf->next);
5146    } else if (ebuf->start < ebuf->next) {
5147        memcpy(event, &ebuf->events[ebuf->start],
5148               sizeof(NvmeFdpEvent) * (ebuf->next - ebuf->start));
5149    }
5150
5151    return nvme_c2h(n, (uint8_t *)elog + off, trans_len, req);
5152}
5153
5154static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
5155{
5156    NvmeCmd *cmd = &req->cmd;
5157
5158    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5159    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5160    uint32_t dw12 = le32_to_cpu(cmd->cdw12);
5161    uint32_t dw13 = le32_to_cpu(cmd->cdw13);
5162    uint8_t  lid = dw10 & 0xff;
5163    uint8_t  lsp = (dw10 >> 8) & 0xf;
5164    uint8_t  rae = (dw10 >> 15) & 0x1;
5165    uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24;
5166    uint32_t numdl, numdu, lspi;
5167    uint64_t off, lpol, lpou;
5168    size_t   len;
5169    uint16_t status;
5170
5171    numdl = (dw10 >> 16);
5172    numdu = (dw11 & 0xffff);
5173    lspi = (dw11 >> 16);
5174    lpol = dw12;
5175    lpou = dw13;
5176
5177    len = (((numdu << 16) | numdl) + 1) << 2;
5178    off = (lpou << 32ULL) | lpol;
5179
5180    if (off & 0x3) {
5181        return NVME_INVALID_FIELD | NVME_DNR;
5182    }
5183
5184    trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
5185
5186    status = nvme_check_mdts(n, len);
5187    if (status) {
5188        return status;
5189    }
5190
5191    switch (lid) {
5192    case NVME_LOG_ERROR_INFO:
5193        return nvme_error_info(n, rae, len, off, req);
5194    case NVME_LOG_SMART_INFO:
5195        return nvme_smart_info(n, rae, len, off, req);
5196    case NVME_LOG_FW_SLOT_INFO:
5197        return nvme_fw_log_info(n, len, off, req);
5198    case NVME_LOG_CHANGED_NSLIST:
5199        return nvme_changed_nslist(n, rae, len, off, req);
5200    case NVME_LOG_CMD_EFFECTS:
5201        return nvme_cmd_effects(n, csi, len, off, req);
5202    case NVME_LOG_ENDGRP:
5203        return nvme_endgrp_info(n, rae, len, off, req);
5204    case NVME_LOG_FDP_CONFS:
5205        return nvme_fdp_confs(n, lspi, len, off, req);
5206    case NVME_LOG_FDP_RUH_USAGE:
5207        return nvme_fdp_ruh_usage(n, lspi, dw10, dw12, len, off, req);
5208    case NVME_LOG_FDP_STATS:
5209        return nvme_fdp_stats(n, lspi, len, off, req);
5210    case NVME_LOG_FDP_EVENTS:
5211        return nvme_fdp_events(n, lspi, len, off, req);
5212    default:
5213        trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
5214        return NVME_INVALID_FIELD | NVME_DNR;
5215    }
5216}
5217
5218static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
5219{
5220    PCIDevice *pci = PCI_DEVICE(n);
5221    uint16_t offset = (cq->cqid << 3) + (1 << 2);
5222
5223    n->cq[cq->cqid] = NULL;
5224    qemu_bh_delete(cq->bh);
5225    if (cq->ioeventfd_enabled) {
5226        memory_region_del_eventfd(&n->iomem,
5227                                  0x1000 + offset, 4, false, 0, &cq->notifier);
5228        event_notifier_set_handler(&cq->notifier, NULL);
5229        event_notifier_cleanup(&cq->notifier);
5230    }
5231    if (msix_enabled(pci)) {
5232        msix_vector_unuse(pci, cq->vector);
5233    }
5234    if (cq->cqid) {
5235        g_free(cq);
5236    }
5237}
5238
5239static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
5240{
5241    NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
5242    NvmeCQueue *cq;
5243    uint16_t qid = le16_to_cpu(c->qid);
5244
5245    if (unlikely(!qid || nvme_check_cqid(n, qid))) {
5246        trace_pci_nvme_err_invalid_del_cq_cqid(qid);
5247        return NVME_INVALID_CQID | NVME_DNR;
5248    }
5249
5250    cq = n->cq[qid];
5251    if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
5252        trace_pci_nvme_err_invalid_del_cq_notempty(qid);
5253        return NVME_INVALID_QUEUE_DEL;
5254    }
5255
5256    if (cq->irq_enabled && cq->tail != cq->head) {
5257        n->cq_pending--;
5258    }
5259
5260    nvme_irq_deassert(n, cq);
5261    trace_pci_nvme_del_cq(qid);
5262    nvme_free_cq(cq, n);
5263    return NVME_SUCCESS;
5264}
5265
5266static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
5267                         uint16_t cqid, uint16_t vector, uint16_t size,
5268                         uint16_t irq_enabled)
5269{
5270    PCIDevice *pci = PCI_DEVICE(n);
5271
5272    if (msix_enabled(pci)) {
5273        msix_vector_use(pci, vector);
5274    }
5275    cq->ctrl = n;
5276    cq->cqid = cqid;
5277    cq->size = size;
5278    cq->dma_addr = dma_addr;
5279    cq->phase = 1;
5280    cq->irq_enabled = irq_enabled;
5281    cq->vector = vector;
5282    cq->head = cq->tail = 0;
5283    QTAILQ_INIT(&cq->req_list);
5284    QTAILQ_INIT(&cq->sq_list);
5285    if (n->dbbuf_enabled) {
5286        cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
5287        cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
5288
5289        if (n->params.ioeventfd && cqid != 0) {
5290            if (!nvme_init_cq_ioeventfd(cq)) {
5291                cq->ioeventfd_enabled = true;
5292            }
5293        }
5294    }
5295    n->cq[cqid] = cq;
5296    cq->bh = qemu_bh_new_guarded(nvme_post_cqes, cq,
5297                                 &DEVICE(cq->ctrl)->mem_reentrancy_guard);
5298}
5299
5300static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
5301{
5302    NvmeCQueue *cq;
5303    NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
5304    uint16_t cqid = le16_to_cpu(c->cqid);
5305    uint16_t vector = le16_to_cpu(c->irq_vector);
5306    uint16_t qsize = le16_to_cpu(c->qsize);
5307    uint16_t qflags = le16_to_cpu(c->cq_flags);
5308    uint64_t prp1 = le64_to_cpu(c->prp1);
5309    uint32_t cc = ldq_le_p(&n->bar.cc);
5310    uint8_t iocqes = NVME_CC_IOCQES(cc);
5311    uint8_t iosqes = NVME_CC_IOSQES(cc);
5312
5313    trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
5314                             NVME_CQ_FLAGS_IEN(qflags) != 0);
5315
5316    if (iosqes != NVME_SQES || iocqes != NVME_CQES) {
5317        trace_pci_nvme_err_invalid_create_cq_entry_size(iosqes, iocqes);
5318        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
5319    }
5320
5321    if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
5322        trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
5323        return NVME_INVALID_QID | NVME_DNR;
5324    }
5325    if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
5326        trace_pci_nvme_err_invalid_create_cq_size(qsize);
5327        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
5328    }
5329    if (unlikely(prp1 & (n->page_size - 1))) {
5330        trace_pci_nvme_err_invalid_create_cq_addr(prp1);
5331        return NVME_INVALID_PRP_OFFSET | NVME_DNR;
5332    }
5333    if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) {
5334        trace_pci_nvme_err_invalid_create_cq_vector(vector);
5335        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
5336    }
5337    if (unlikely(vector >= n->conf_msix_qsize)) {
5338        trace_pci_nvme_err_invalid_create_cq_vector(vector);
5339        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
5340    }
5341    if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
5342        trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
5343        return NVME_INVALID_FIELD | NVME_DNR;
5344    }
5345
5346    cq = g_malloc0(sizeof(*cq));
5347    nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
5348                 NVME_CQ_FLAGS_IEN(qflags));
5349
5350    /*
5351     * It is only required to set qs_created when creating a completion queue;
5352     * creating a submission queue without a matching completion queue will
5353     * fail.
5354     */
5355    n->qs_created = true;
5356    return NVME_SUCCESS;
5357}
5358
5359static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
5360{
5361    uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
5362
5363    return nvme_c2h(n, id, sizeof(id), req);
5364}
5365
5366static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
5367{
5368    trace_pci_nvme_identify_ctrl();
5369
5370    return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
5371}
5372
5373static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
5374{
5375    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5376    uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
5377    NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
5378
5379    trace_pci_nvme_identify_ctrl_csi(c->csi);
5380
5381    switch (c->csi) {
5382    case NVME_CSI_NVM:
5383        id_nvm->vsl = n->params.vsl;
5384        id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
5385        break;
5386
5387    case NVME_CSI_ZONED:
5388        ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
5389        break;
5390
5391    default:
5392        return NVME_INVALID_FIELD | NVME_DNR;
5393    }
5394
5395    return nvme_c2h(n, id, sizeof(id), req);
5396}
5397
5398static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
5399{
5400    NvmeNamespace *ns;
5401    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5402    uint32_t nsid = le32_to_cpu(c->nsid);
5403
5404    trace_pci_nvme_identify_ns(nsid);
5405
5406    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5407        return NVME_INVALID_NSID | NVME_DNR;
5408    }
5409
5410    ns = nvme_ns(n, nsid);
5411    if (unlikely(!ns)) {
5412        if (!active) {
5413            ns = nvme_subsys_ns(n->subsys, nsid);
5414            if (!ns) {
5415                return nvme_rpt_empty_id_struct(n, req);
5416            }
5417        } else {
5418            return nvme_rpt_empty_id_struct(n, req);
5419        }
5420    }
5421
5422    if (active || ns->csi == NVME_CSI_NVM) {
5423        return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
5424    }
5425
5426    return NVME_INVALID_CMD_SET | NVME_DNR;
5427}
5428
5429static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
5430                                        bool attached)
5431{
5432    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5433    uint32_t nsid = le32_to_cpu(c->nsid);
5434    uint16_t min_id = le16_to_cpu(c->ctrlid);
5435    uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5436    uint16_t *ids = &list[1];
5437    NvmeNamespace *ns;
5438    NvmeCtrl *ctrl;
5439    int cntlid, nr_ids = 0;
5440
5441    trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
5442
5443    if (!n->subsys) {
5444        return NVME_INVALID_FIELD | NVME_DNR;
5445    }
5446
5447    if (attached) {
5448        if (nsid == NVME_NSID_BROADCAST) {
5449            return NVME_INVALID_FIELD | NVME_DNR;
5450        }
5451
5452        ns = nvme_subsys_ns(n->subsys, nsid);
5453        if (!ns) {
5454            return NVME_INVALID_FIELD | NVME_DNR;
5455        }
5456    }
5457
5458    for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
5459        ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
5460        if (!ctrl) {
5461            continue;
5462        }
5463
5464        if (attached && !nvme_ns(ctrl, nsid)) {
5465            continue;
5466        }
5467
5468        ids[nr_ids++] = cntlid;
5469    }
5470
5471    list[0] = nr_ids;
5472
5473    return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
5474}
5475
5476static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
5477{
5478    trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
5479
5480    return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
5481                    sizeof(NvmePriCtrlCap), req);
5482}
5483
5484static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
5485{
5486    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5487    uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
5488    uint16_t min_id = le16_to_cpu(c->ctrlid);
5489    uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
5490    NvmeSecCtrlList list = {0};
5491    uint8_t i;
5492
5493    for (i = 0; i < num_sec_ctrl; i++) {
5494        if (n->sec_ctrl_list.sec[i].scid >= min_id) {
5495            list.numcntl = num_sec_ctrl - i;
5496            memcpy(&list.sec, n->sec_ctrl_list.sec + i,
5497                   list.numcntl * sizeof(NvmeSecCtrlEntry));
5498            break;
5499        }
5500    }
5501
5502    trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
5503
5504    return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
5505}
5506
5507static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
5508                                     bool active)
5509{
5510    NvmeNamespace *ns;
5511    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5512    uint32_t nsid = le32_to_cpu(c->nsid);
5513
5514    trace_pci_nvme_identify_ns_csi(nsid, c->csi);
5515
5516    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5517        return NVME_INVALID_NSID | NVME_DNR;
5518    }
5519
5520    ns = nvme_ns(n, nsid);
5521    if (unlikely(!ns)) {
5522        if (!active) {
5523            ns = nvme_subsys_ns(n->subsys, nsid);
5524            if (!ns) {
5525                return nvme_rpt_empty_id_struct(n, req);
5526            }
5527        } else {
5528            return nvme_rpt_empty_id_struct(n, req);
5529        }
5530    }
5531
5532    if (c->csi == NVME_CSI_NVM) {
5533        return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
5534                        req);
5535    } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
5536        return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
5537                        req);
5538    }
5539
5540    return NVME_INVALID_FIELD | NVME_DNR;
5541}
5542
5543static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
5544                                     bool active)
5545{
5546    NvmeNamespace *ns;
5547    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5548    uint32_t min_nsid = le32_to_cpu(c->nsid);
5549    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5550    static const int data_len = sizeof(list);
5551    uint32_t *list_ptr = (uint32_t *)list;
5552    int i, j = 0;
5553
5554    trace_pci_nvme_identify_nslist(min_nsid);
5555
5556    /*
5557     * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
5558     * since the Active Namespace ID List should return namespaces with ids
5559     * *higher* than the NSID specified in the command. This is also specified
5560     * in the spec (NVM Express v1.3d, Section 5.15.4).
5561     */
5562    if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5563        return NVME_INVALID_NSID | NVME_DNR;
5564    }
5565
5566    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5567        ns = nvme_ns(n, i);
5568        if (!ns) {
5569            if (!active) {
5570                ns = nvme_subsys_ns(n->subsys, i);
5571                if (!ns) {
5572                    continue;
5573                }
5574            } else {
5575                continue;
5576            }
5577        }
5578        if (ns->params.nsid <= min_nsid) {
5579            continue;
5580        }
5581        list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5582        if (j == data_len / sizeof(uint32_t)) {
5583            break;
5584        }
5585    }
5586
5587    return nvme_c2h(n, list, data_len, req);
5588}
5589
5590static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
5591                                         bool active)
5592{
5593    NvmeNamespace *ns;
5594    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5595    uint32_t min_nsid = le32_to_cpu(c->nsid);
5596    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5597    static const int data_len = sizeof(list);
5598    uint32_t *list_ptr = (uint32_t *)list;
5599    int i, j = 0;
5600
5601    trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
5602
5603    /*
5604     * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
5605     */
5606    if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5607        return NVME_INVALID_NSID | NVME_DNR;
5608    }
5609
5610    if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
5611        return NVME_INVALID_FIELD | NVME_DNR;
5612    }
5613
5614    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5615        ns = nvme_ns(n, i);
5616        if (!ns) {
5617            if (!active) {
5618                ns = nvme_subsys_ns(n->subsys, i);
5619                if (!ns) {
5620                    continue;
5621                }
5622            } else {
5623                continue;
5624            }
5625        }
5626        if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5627            continue;
5628        }
5629        list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5630        if (j == data_len / sizeof(uint32_t)) {
5631            break;
5632        }
5633    }
5634
5635    return nvme_c2h(n, list, data_len, req);
5636}
5637
5638static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5639{
5640    NvmeNamespace *ns;
5641    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5642    uint32_t nsid = le32_to_cpu(c->nsid);
5643    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5644    uint8_t *pos = list;
5645    struct {
5646        NvmeIdNsDescr hdr;
5647        uint8_t v[NVME_NIDL_UUID];
5648    } QEMU_PACKED uuid = {};
5649    struct {
5650        NvmeIdNsDescr hdr;
5651        uint64_t v;
5652    } QEMU_PACKED eui64 = {};
5653    struct {
5654        NvmeIdNsDescr hdr;
5655        uint8_t v;
5656    } QEMU_PACKED csi = {};
5657
5658    trace_pci_nvme_identify_ns_descr_list(nsid);
5659
5660    if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5661        return NVME_INVALID_NSID | NVME_DNR;
5662    }
5663
5664    ns = nvme_ns(n, nsid);
5665    if (unlikely(!ns)) {
5666        return NVME_INVALID_FIELD | NVME_DNR;
5667    }
5668
5669    if (!qemu_uuid_is_null(&ns->params.uuid)) {
5670        uuid.hdr.nidt = NVME_NIDT_UUID;
5671        uuid.hdr.nidl = NVME_NIDL_UUID;
5672        memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5673        memcpy(pos, &uuid, sizeof(uuid));
5674        pos += sizeof(uuid);
5675    }
5676
5677    if (ns->params.eui64) {
5678        eui64.hdr.nidt = NVME_NIDT_EUI64;
5679        eui64.hdr.nidl = NVME_NIDL_EUI64;
5680        eui64.v = cpu_to_be64(ns->params.eui64);
5681        memcpy(pos, &eui64, sizeof(eui64));
5682        pos += sizeof(eui64);
5683    }
5684
5685    csi.hdr.nidt = NVME_NIDT_CSI;
5686    csi.hdr.nidl = NVME_NIDL_CSI;
5687    csi.v = ns->csi;
5688    memcpy(pos, &csi, sizeof(csi));
5689    pos += sizeof(csi);
5690
5691    return nvme_c2h(n, list, sizeof(list), req);
5692}
5693
5694static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5695{
5696    uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5697    static const int data_len = sizeof(list);
5698
5699    trace_pci_nvme_identify_cmd_set();
5700
5701    NVME_SET_CSI(*list, NVME_CSI_NVM);
5702    NVME_SET_CSI(*list, NVME_CSI_ZONED);
5703
5704    return nvme_c2h(n, list, data_len, req);
5705}
5706
5707static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5708{
5709    NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5710
5711    trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5712                            c->csi);
5713
5714    switch (c->cns) {
5715    case NVME_ID_CNS_NS:
5716        return nvme_identify_ns(n, req, true);
5717    case NVME_ID_CNS_NS_PRESENT:
5718        return nvme_identify_ns(n, req, false);
5719    case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5720        return nvme_identify_ctrl_list(n, req, true);
5721    case NVME_ID_CNS_CTRL_LIST:
5722        return nvme_identify_ctrl_list(n, req, false);
5723    case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5724        return nvme_identify_pri_ctrl_cap(n, req);
5725    case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5726        return nvme_identify_sec_ctrl_list(n, req);
5727    case NVME_ID_CNS_CS_NS:
5728        return nvme_identify_ns_csi(n, req, true);
5729    case NVME_ID_CNS_CS_NS_PRESENT:
5730        return nvme_identify_ns_csi(n, req, false);
5731    case NVME_ID_CNS_CTRL:
5732        return nvme_identify_ctrl(n, req);
5733    case NVME_ID_CNS_CS_CTRL:
5734        return nvme_identify_ctrl_csi(n, req);
5735    case NVME_ID_CNS_NS_ACTIVE_LIST:
5736        return nvme_identify_nslist(n, req, true);
5737    case NVME_ID_CNS_NS_PRESENT_LIST:
5738        return nvme_identify_nslist(n, req, false);
5739    case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5740        return nvme_identify_nslist_csi(n, req, true);
5741    case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5742        return nvme_identify_nslist_csi(n, req, false);
5743    case NVME_ID_CNS_NS_DESCR_LIST:
5744        return nvme_identify_ns_descr_list(n, req);
5745    case NVME_ID_CNS_IO_COMMAND_SET:
5746        return nvme_identify_cmd_set(n, req);
5747    default:
5748        trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5749        return NVME_INVALID_FIELD | NVME_DNR;
5750    }
5751}
5752
5753static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5754{
5755    uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5756
5757    req->cqe.result = 1;
5758    if (nvme_check_sqid(n, sqid)) {
5759        return NVME_INVALID_FIELD | NVME_DNR;
5760    }
5761
5762    return NVME_SUCCESS;
5763}
5764
5765static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5766{
5767    trace_pci_nvme_setfeat_timestamp(ts);
5768
5769    n->host_timestamp = le64_to_cpu(ts);
5770    n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5771}
5772
5773static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5774{
5775    uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5776    uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5777
5778    union nvme_timestamp {
5779        struct {
5780            uint64_t timestamp:48;
5781            uint64_t sync:1;
5782            uint64_t origin:3;
5783            uint64_t rsvd1:12;
5784        };
5785        uint64_t all;
5786    };
5787
5788    union nvme_timestamp ts;
5789    ts.all = 0;
5790    ts.timestamp = n->host_timestamp + elapsed_time;
5791
5792    /* If the host timestamp is non-zero, set the timestamp origin */
5793    ts.origin = n->host_timestamp ? 0x01 : 0x00;
5794
5795    trace_pci_nvme_getfeat_timestamp(ts.all);
5796
5797    return cpu_to_le64(ts.all);
5798}
5799
5800static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5801{
5802    uint64_t timestamp = nvme_get_timestamp(n);
5803
5804    return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5805}
5806
5807static int nvme_get_feature_fdp(NvmeCtrl *n, uint32_t endgrpid,
5808                                uint32_t *result)
5809{
5810    *result = 0;
5811
5812    if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
5813        return NVME_INVALID_FIELD | NVME_DNR;
5814    }
5815
5816    *result = FIELD_DP16(0, FEAT_FDP, FDPE, 1);
5817    *result = FIELD_DP16(*result, FEAT_FDP, CONF_NDX, 0);
5818
5819    return NVME_SUCCESS;
5820}
5821
5822static uint16_t nvme_get_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
5823                                            NvmeRequest *req, uint32_t *result)
5824{
5825    NvmeCmd *cmd = &req->cmd;
5826    uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
5827    uint16_t ph = cdw11 & 0xffff;
5828    uint8_t noet = (cdw11 >> 16) & 0xff;
5829    uint16_t ruhid, ret;
5830    uint32_t nentries = 0;
5831    uint8_t s_events_ndx = 0;
5832    size_t s_events_siz = sizeof(NvmeFdpEventDescr) * noet;
5833    g_autofree NvmeFdpEventDescr *s_events = g_malloc0(s_events_siz);
5834    NvmeRuHandle *ruh;
5835    NvmeFdpEventDescr *s_event;
5836
5837    if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
5838        return NVME_FDP_DISABLED | NVME_DNR;
5839    }
5840
5841    if (!nvme_ph_valid(ns, ph)) {
5842        return NVME_INVALID_FIELD | NVME_DNR;
5843    }
5844
5845    ruhid = ns->fdp.phs[ph];
5846    ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
5847
5848    assert(ruh);
5849
5850    if (unlikely(noet == 0)) {
5851        return NVME_INVALID_FIELD | NVME_DNR;
5852    }
5853
5854    for (uint8_t event_type = 0; event_type < FDP_EVT_MAX; event_type++) {
5855        uint8_t shift = nvme_fdp_evf_shifts[event_type];
5856        if (!shift && event_type) {
5857            /*
5858             * only first entry (event_type == 0) has a shift value of 0
5859             * other entries are simply unpopulated.
5860             */
5861            continue;
5862        }
5863
5864        nentries++;
5865
5866        s_event = &s_events[s_events_ndx];
5867        s_event->evt = event_type;
5868        s_event->evta = (ruh->event_filter >> shift) & 0x1;
5869
5870        /* break if all `noet` entries are filled */
5871        if ((++s_events_ndx) == noet) {
5872            break;
5873        }
5874    }
5875
5876    ret = nvme_c2h(n, s_events, s_events_siz, req);
5877    if (ret) {
5878        return ret;
5879    }
5880
5881    *result = nentries;
5882    return NVME_SUCCESS;
5883}
5884
5885static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5886{
5887    NvmeCmd *cmd = &req->cmd;
5888    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5889    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5890    uint32_t nsid = le32_to_cpu(cmd->nsid);
5891    uint32_t result;
5892    uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5893    NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5894    uint16_t iv;
5895    NvmeNamespace *ns;
5896    int i;
5897    uint16_t endgrpid = 0, ret = NVME_SUCCESS;
5898
5899    static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5900        [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5901    };
5902
5903    trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5904
5905    if (!nvme_feature_support[fid]) {
5906        return NVME_INVALID_FIELD | NVME_DNR;
5907    }
5908
5909    if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5910        if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5911            /*
5912             * The Reservation Notification Mask and Reservation Persistence
5913             * features require a status code of Invalid Field in Command when
5914             * NSID is FFFFFFFFh. Since the device does not support those
5915             * features we can always return Invalid Namespace or Format as we
5916             * should do for all other features.
5917             */
5918            return NVME_INVALID_NSID | NVME_DNR;
5919        }
5920
5921        if (!nvme_ns(n, nsid)) {
5922            return NVME_INVALID_FIELD | NVME_DNR;
5923        }
5924    }
5925
5926    switch (sel) {
5927    case NVME_GETFEAT_SELECT_CURRENT:
5928        break;
5929    case NVME_GETFEAT_SELECT_SAVED:
5930        /* no features are saveable by the controller; fallthrough */
5931    case NVME_GETFEAT_SELECT_DEFAULT:
5932        goto defaults;
5933    case NVME_GETFEAT_SELECT_CAP:
5934        result = nvme_feature_cap[fid];
5935        goto out;
5936    }
5937
5938    switch (fid) {
5939    case NVME_TEMPERATURE_THRESHOLD:
5940        result = 0;
5941
5942        /*
5943         * The controller only implements the Composite Temperature sensor, so
5944         * return 0 for all other sensors.
5945         */
5946        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5947            goto out;
5948        }
5949
5950        switch (NVME_TEMP_THSEL(dw11)) {
5951        case NVME_TEMP_THSEL_OVER:
5952            result = n->features.temp_thresh_hi;
5953            goto out;
5954        case NVME_TEMP_THSEL_UNDER:
5955            result = n->features.temp_thresh_low;
5956            goto out;
5957        }
5958
5959        return NVME_INVALID_FIELD | NVME_DNR;
5960    case NVME_ERROR_RECOVERY:
5961        if (!nvme_nsid_valid(n, nsid)) {
5962            return NVME_INVALID_NSID | NVME_DNR;
5963        }
5964
5965        ns = nvme_ns(n, nsid);
5966        if (unlikely(!ns)) {
5967            return NVME_INVALID_FIELD | NVME_DNR;
5968        }
5969
5970        result = ns->features.err_rec;
5971        goto out;
5972    case NVME_VOLATILE_WRITE_CACHE:
5973        result = 0;
5974        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5975            ns = nvme_ns(n, i);
5976            if (!ns) {
5977                continue;
5978            }
5979
5980            result = blk_enable_write_cache(ns->blkconf.blk);
5981            if (result) {
5982                break;
5983            }
5984        }
5985        trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5986        goto out;
5987    case NVME_ASYNCHRONOUS_EVENT_CONF:
5988        result = n->features.async_config;
5989        goto out;
5990    case NVME_TIMESTAMP:
5991        return nvme_get_feature_timestamp(n, req);
5992    case NVME_HOST_BEHAVIOR_SUPPORT:
5993        return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5994                        sizeof(n->features.hbs), req);
5995    case NVME_FDP_MODE:
5996        endgrpid = dw11 & 0xff;
5997
5998        if (endgrpid != 0x1) {
5999            return NVME_INVALID_FIELD | NVME_DNR;
6000        }
6001
6002        ret = nvme_get_feature_fdp(n, endgrpid, &result);
6003        if (ret) {
6004            return ret;
6005        }
6006        goto out;
6007    case NVME_FDP_EVENTS:
6008        if (!nvme_nsid_valid(n, nsid)) {
6009            return NVME_INVALID_NSID | NVME_DNR;
6010        }
6011
6012        ns = nvme_ns(n, nsid);
6013        if (unlikely(!ns)) {
6014            return NVME_INVALID_FIELD | NVME_DNR;
6015        }
6016
6017        ret = nvme_get_feature_fdp_events(n, ns, req, &result);
6018        if (ret) {
6019            return ret;
6020        }
6021        goto out;
6022    default:
6023        break;
6024    }
6025
6026defaults:
6027    switch (fid) {
6028    case NVME_TEMPERATURE_THRESHOLD:
6029        result = 0;
6030
6031        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
6032            break;
6033        }
6034
6035        if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
6036            result = NVME_TEMPERATURE_WARNING;
6037        }
6038
6039        break;
6040    case NVME_NUMBER_OF_QUEUES:
6041        result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
6042        trace_pci_nvme_getfeat_numq(result);
6043        break;
6044    case NVME_INTERRUPT_VECTOR_CONF:
6045        iv = dw11 & 0xffff;
6046        if (iv >= n->conf_ioqpairs + 1) {
6047            return NVME_INVALID_FIELD | NVME_DNR;
6048        }
6049
6050        result = iv;
6051        if (iv == n->admin_cq.vector) {
6052            result |= NVME_INTVC_NOCOALESCING;
6053        }
6054        break;
6055    case NVME_FDP_MODE:
6056        endgrpid = dw11 & 0xff;
6057
6058        if (endgrpid != 0x1) {
6059            return NVME_INVALID_FIELD | NVME_DNR;
6060        }
6061
6062        ret = nvme_get_feature_fdp(n, endgrpid, &result);
6063        if (ret) {
6064            return ret;
6065        }
6066        goto out;
6067
6068        break;
6069    default:
6070        result = nvme_feature_default[fid];
6071        break;
6072    }
6073
6074out:
6075    req->cqe.result = cpu_to_le32(result);
6076    return ret;
6077}
6078
6079static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
6080{
6081    uint16_t ret;
6082    uint64_t timestamp;
6083
6084    ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
6085    if (ret) {
6086        return ret;
6087    }
6088
6089    nvme_set_timestamp(n, timestamp);
6090
6091    return NVME_SUCCESS;
6092}
6093
6094static uint16_t nvme_set_feature_fdp_events(NvmeCtrl *n, NvmeNamespace *ns,
6095                                            NvmeRequest *req)
6096{
6097    NvmeCmd *cmd = &req->cmd;
6098    uint32_t cdw11 = le32_to_cpu(cmd->cdw11);
6099    uint16_t ph = cdw11 & 0xffff;
6100    uint8_t noet = (cdw11 >> 16) & 0xff;
6101    uint16_t ret, ruhid;
6102    uint8_t enable = le32_to_cpu(cmd->cdw12) & 0x1;
6103    uint8_t event_mask = 0;
6104    unsigned int i;
6105    g_autofree uint8_t *events = g_malloc0(noet);
6106    NvmeRuHandle *ruh = NULL;
6107
6108    assert(ns);
6109
6110    if (!n->subsys || !n->subsys->endgrp.fdp.enabled) {
6111        return NVME_FDP_DISABLED | NVME_DNR;
6112    }
6113
6114    if (!nvme_ph_valid(ns, ph)) {
6115        return NVME_INVALID_FIELD | NVME_DNR;
6116    }
6117
6118    ruhid = ns->fdp.phs[ph];
6119    ruh = &n->subsys->endgrp.fdp.ruhs[ruhid];
6120
6121    ret = nvme_h2c(n, events, noet, req);
6122    if (ret) {
6123        return ret;
6124    }
6125
6126    for (i = 0; i < noet; i++) {
6127        event_mask |= (1 << nvme_fdp_evf_shifts[events[i]]);
6128    }
6129
6130    if (enable) {
6131        ruh->event_filter |= event_mask;
6132    } else {
6133        ruh->event_filter = ruh->event_filter & ~event_mask;
6134    }
6135
6136    return NVME_SUCCESS;
6137}
6138
6139static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
6140{
6141    NvmeNamespace *ns = NULL;
6142
6143    NvmeCmd *cmd = &req->cmd;
6144    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
6145    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
6146    uint32_t nsid = le32_to_cpu(cmd->nsid);
6147    uint8_t fid = NVME_GETSETFEAT_FID(dw10);
6148    uint8_t save = NVME_SETFEAT_SAVE(dw10);
6149    uint16_t status;
6150    int i;
6151
6152    trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
6153
6154    if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
6155        return NVME_FID_NOT_SAVEABLE | NVME_DNR;
6156    }
6157
6158    if (!nvme_feature_support[fid]) {
6159        return NVME_INVALID_FIELD | NVME_DNR;
6160    }
6161
6162    if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
6163        if (nsid != NVME_NSID_BROADCAST) {
6164            if (!nvme_nsid_valid(n, nsid)) {
6165                return NVME_INVALID_NSID | NVME_DNR;
6166            }
6167
6168            ns = nvme_ns(n, nsid);
6169            if (unlikely(!ns)) {
6170                return NVME_INVALID_FIELD | NVME_DNR;
6171            }
6172        }
6173    } else if (nsid && nsid != NVME_NSID_BROADCAST) {
6174        if (!nvme_nsid_valid(n, nsid)) {
6175            return NVME_INVALID_NSID | NVME_DNR;
6176        }
6177
6178        return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
6179    }
6180
6181    if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
6182        return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
6183    }
6184
6185    switch (fid) {
6186    case NVME_TEMPERATURE_THRESHOLD:
6187        if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
6188            break;
6189        }
6190
6191        switch (NVME_TEMP_THSEL(dw11)) {
6192        case NVME_TEMP_THSEL_OVER:
6193            n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
6194            break;
6195        case NVME_TEMP_THSEL_UNDER:
6196            n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
6197            break;
6198        default:
6199            return NVME_INVALID_FIELD | NVME_DNR;
6200        }
6201
6202        if ((n->temperature >= n->features.temp_thresh_hi) ||
6203            (n->temperature <= n->features.temp_thresh_low)) {
6204            nvme_smart_event(n, NVME_SMART_TEMPERATURE);
6205        }
6206
6207        break;
6208    case NVME_ERROR_RECOVERY:
6209        if (nsid == NVME_NSID_BROADCAST) {
6210            for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6211                ns = nvme_ns(n, i);
6212
6213                if (!ns) {
6214                    continue;
6215                }
6216
6217                if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
6218                    ns->features.err_rec = dw11;
6219                }
6220            }
6221
6222            break;
6223        }
6224
6225        assert(ns);
6226        if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  {
6227            ns->features.err_rec = dw11;
6228        }
6229        break;
6230    case NVME_VOLATILE_WRITE_CACHE:
6231        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6232            ns = nvme_ns(n, i);
6233            if (!ns) {
6234                continue;
6235            }
6236
6237            if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
6238                blk_flush(ns->blkconf.blk);
6239            }
6240
6241            blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
6242        }
6243
6244        break;
6245
6246    case NVME_NUMBER_OF_QUEUES:
6247        if (n->qs_created) {
6248            return NVME_CMD_SEQ_ERROR | NVME_DNR;
6249        }
6250
6251        /*
6252         * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
6253         * and NSQR.
6254         */
6255        if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
6256            return NVME_INVALID_FIELD | NVME_DNR;
6257        }
6258
6259        trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
6260                                    ((dw11 >> 16) & 0xffff) + 1,
6261                                    n->conf_ioqpairs,
6262                                    n->conf_ioqpairs);
6263        req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
6264                                      ((n->conf_ioqpairs - 1) << 16));
6265        break;
6266    case NVME_ASYNCHRONOUS_EVENT_CONF:
6267        n->features.async_config = dw11;
6268        break;
6269    case NVME_TIMESTAMP:
6270        return nvme_set_feature_timestamp(n, req);
6271    case NVME_HOST_BEHAVIOR_SUPPORT:
6272        status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
6273                          sizeof(n->features.hbs), req);
6274        if (status) {
6275            return status;
6276        }
6277
6278        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6279            ns = nvme_ns(n, i);
6280
6281            if (!ns) {
6282                continue;
6283            }
6284
6285            ns->id_ns.nlbaf = ns->nlbaf - 1;
6286            if (!n->features.hbs.lbafee) {
6287                ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
6288            }
6289        }
6290
6291        return status;
6292    case NVME_COMMAND_SET_PROFILE:
6293        if (dw11 & 0x1ff) {
6294            trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
6295            return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
6296        }
6297        break;
6298    case NVME_FDP_MODE:
6299        /* spec: abort with cmd seq err if there's one or more NS' in endgrp */
6300        return NVME_CMD_SEQ_ERROR | NVME_DNR;
6301    case NVME_FDP_EVENTS:
6302        return nvme_set_feature_fdp_events(n, ns, req);
6303    default:
6304        return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
6305    }
6306    return NVME_SUCCESS;
6307}
6308
6309static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
6310{
6311    trace_pci_nvme_aer(nvme_cid(req));
6312
6313    if (n->outstanding_aers > n->params.aerl) {
6314        trace_pci_nvme_aer_aerl_exceeded();
6315        return NVME_AER_LIMIT_EXCEEDED;
6316    }
6317
6318    n->aer_reqs[n->outstanding_aers] = req;
6319    n->outstanding_aers++;
6320
6321    if (!QTAILQ_EMPTY(&n->aer_queue)) {
6322        nvme_process_aers(n);
6323    }
6324
6325    return NVME_NO_COMPLETE;
6326}
6327
6328static void nvme_update_dmrsl(NvmeCtrl *n)
6329{
6330    int nsid;
6331
6332    for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
6333        NvmeNamespace *ns = nvme_ns(n, nsid);
6334        if (!ns) {
6335            continue;
6336        }
6337
6338        n->dmrsl = MIN_NON_ZERO(n->dmrsl,
6339                                BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
6340    }
6341}
6342
6343static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
6344{
6345    uint32_t cc = ldl_le_p(&n->bar.cc);
6346
6347    ns->iocs = nvme_cse_iocs_none;
6348    switch (ns->csi) {
6349    case NVME_CSI_NVM:
6350        if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
6351            ns->iocs = nvme_cse_iocs_nvm;
6352        }
6353        break;
6354    case NVME_CSI_ZONED:
6355        if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
6356            ns->iocs = nvme_cse_iocs_zoned;
6357        } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
6358            ns->iocs = nvme_cse_iocs_nvm;
6359        }
6360        break;
6361    }
6362}
6363
6364static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
6365{
6366    NvmeNamespace *ns;
6367    NvmeCtrl *ctrl;
6368    uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
6369    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6370    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6371    uint8_t sel = dw10 & 0xf;
6372    uint16_t *nr_ids = &list[0];
6373    uint16_t *ids = &list[1];
6374    uint16_t ret;
6375    int i;
6376
6377    trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
6378
6379    if (!nvme_nsid_valid(n, nsid)) {
6380        return NVME_INVALID_NSID | NVME_DNR;
6381    }
6382
6383    ns = nvme_subsys_ns(n->subsys, nsid);
6384    if (!ns) {
6385        return NVME_INVALID_FIELD | NVME_DNR;
6386    }
6387
6388    ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
6389    if (ret) {
6390        return ret;
6391    }
6392
6393    if (!*nr_ids) {
6394        return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
6395    }
6396
6397    *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
6398    for (i = 0; i < *nr_ids; i++) {
6399        ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
6400        if (!ctrl) {
6401            return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
6402        }
6403
6404        switch (sel) {
6405        case NVME_NS_ATTACHMENT_ATTACH:
6406            if (nvme_ns(ctrl, nsid)) {
6407                return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
6408            }
6409
6410            if (ns->attached && !ns->params.shared) {
6411                return NVME_NS_PRIVATE | NVME_DNR;
6412            }
6413
6414            nvme_attach_ns(ctrl, ns);
6415            nvme_select_iocs_ns(ctrl, ns);
6416
6417            break;
6418
6419        case NVME_NS_ATTACHMENT_DETACH:
6420            if (!nvme_ns(ctrl, nsid)) {
6421                return NVME_NS_NOT_ATTACHED | NVME_DNR;
6422            }
6423
6424            ctrl->namespaces[nsid] = NULL;
6425            ns->attached--;
6426
6427            nvme_update_dmrsl(ctrl);
6428
6429            break;
6430
6431        default:
6432            return NVME_INVALID_FIELD | NVME_DNR;
6433        }
6434
6435        /*
6436         * Add namespace id to the changed namespace id list for event clearing
6437         * via Get Log Page command.
6438         */
6439        if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
6440            nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
6441                               NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
6442                               NVME_LOG_CHANGED_NSLIST);
6443        }
6444    }
6445
6446    return NVME_SUCCESS;
6447}
6448
6449typedef struct NvmeFormatAIOCB {
6450    BlockAIOCB common;
6451    BlockAIOCB *aiocb;
6452    NvmeRequest *req;
6453    int ret;
6454
6455    NvmeNamespace *ns;
6456    uint32_t nsid;
6457    bool broadcast;
6458    int64_t offset;
6459
6460    uint8_t lbaf;
6461    uint8_t mset;
6462    uint8_t pi;
6463    uint8_t pil;
6464} NvmeFormatAIOCB;
6465
6466static void nvme_format_cancel(BlockAIOCB *aiocb)
6467{
6468    NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
6469
6470    iocb->ret = -ECANCELED;
6471
6472    if (iocb->aiocb) {
6473        blk_aio_cancel_async(iocb->aiocb);
6474        iocb->aiocb = NULL;
6475    }
6476}
6477
6478static const AIOCBInfo nvme_format_aiocb_info = {
6479    .aiocb_size = sizeof(NvmeFormatAIOCB),
6480    .cancel_async = nvme_format_cancel,
6481    .get_aio_context = nvme_get_aio_context,
6482};
6483
6484static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
6485                            uint8_t pi, uint8_t pil)
6486{
6487    uint8_t lbafl = lbaf & 0xf;
6488    uint8_t lbafu = lbaf >> 4;
6489
6490    trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
6491
6492    ns->id_ns.dps = (pil << 3) | pi;
6493    ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
6494
6495    nvme_ns_init_format(ns);
6496}
6497
6498static void nvme_do_format(NvmeFormatAIOCB *iocb);
6499
6500static void nvme_format_ns_cb(void *opaque, int ret)
6501{
6502    NvmeFormatAIOCB *iocb = opaque;
6503    NvmeNamespace *ns = iocb->ns;
6504    int bytes;
6505
6506    if (iocb->ret < 0) {
6507        goto done;
6508    } else if (ret < 0) {
6509        iocb->ret = ret;
6510        goto done;
6511    }
6512
6513    assert(ns);
6514
6515    if (iocb->offset < ns->size) {
6516        bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
6517
6518        iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
6519                                            bytes, BDRV_REQ_MAY_UNMAP,
6520                                            nvme_format_ns_cb, iocb);
6521
6522        iocb->offset += bytes;
6523        return;
6524    }
6525
6526    nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
6527    ns->status = 0x0;
6528    iocb->ns = NULL;
6529    iocb->offset = 0;
6530
6531done:
6532    nvme_do_format(iocb);
6533}
6534
6535static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
6536{
6537    if (ns->params.zoned) {
6538        return NVME_INVALID_FORMAT | NVME_DNR;
6539    }
6540
6541    if (lbaf > ns->id_ns.nlbaf) {
6542        return NVME_INVALID_FORMAT | NVME_DNR;
6543    }
6544
6545    if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
6546        return NVME_INVALID_FORMAT | NVME_DNR;
6547    }
6548
6549    if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
6550        return NVME_INVALID_FIELD | NVME_DNR;
6551    }
6552
6553    return NVME_SUCCESS;
6554}
6555
6556static void nvme_do_format(NvmeFormatAIOCB *iocb)
6557{
6558    NvmeRequest *req = iocb->req;
6559    NvmeCtrl *n = nvme_ctrl(req);
6560    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6561    uint8_t lbaf = dw10 & 0xf;
6562    uint8_t pi = (dw10 >> 5) & 0x7;
6563    uint16_t status;
6564    int i;
6565
6566    if (iocb->ret < 0) {
6567        goto done;
6568    }
6569
6570    if (iocb->broadcast) {
6571        for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
6572            iocb->ns = nvme_ns(n, i);
6573            if (iocb->ns) {
6574                iocb->nsid = i;
6575                break;
6576            }
6577        }
6578    }
6579
6580    if (!iocb->ns) {
6581        goto done;
6582    }
6583
6584    status = nvme_format_check(iocb->ns, lbaf, pi);
6585    if (status) {
6586        req->status = status;
6587        goto done;
6588    }
6589
6590    iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
6591    nvme_format_ns_cb(iocb, 0);
6592    return;
6593
6594done:
6595    iocb->common.cb(iocb->common.opaque, iocb->ret);
6596    qemu_aio_unref(iocb);
6597}
6598
6599static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
6600{
6601    NvmeFormatAIOCB *iocb;
6602    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6603    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6604    uint8_t lbaf = dw10 & 0xf;
6605    uint8_t mset = (dw10 >> 4) & 0x1;
6606    uint8_t pi = (dw10 >> 5) & 0x7;
6607    uint8_t pil = (dw10 >> 8) & 0x1;
6608    uint8_t lbafu = (dw10 >> 12) & 0x3;
6609    uint16_t status;
6610
6611    iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
6612
6613    iocb->req = req;
6614    iocb->ret = 0;
6615    iocb->ns = NULL;
6616    iocb->nsid = 0;
6617    iocb->lbaf = lbaf;
6618    iocb->mset = mset;
6619    iocb->pi = pi;
6620    iocb->pil = pil;
6621    iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
6622    iocb->offset = 0;
6623
6624    if (n->features.hbs.lbafee) {
6625        iocb->lbaf |= lbafu << 4;
6626    }
6627
6628    if (!iocb->broadcast) {
6629        if (!nvme_nsid_valid(n, nsid)) {
6630            status = NVME_INVALID_NSID | NVME_DNR;
6631            goto out;
6632        }
6633
6634        iocb->ns = nvme_ns(n, nsid);
6635        if (!iocb->ns) {
6636            status = NVME_INVALID_FIELD | NVME_DNR;
6637            goto out;
6638        }
6639    }
6640
6641    req->aiocb = &iocb->common;
6642    nvme_do_format(iocb);
6643
6644    return NVME_NO_COMPLETE;
6645
6646out:
6647    qemu_aio_unref(iocb);
6648
6649    return status;
6650}
6651
6652static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
6653                                  int *num_prim, int *num_sec)
6654{
6655    *num_total = le32_to_cpu(rt ?
6656                             n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
6657    *num_prim = le16_to_cpu(rt ?
6658                            n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
6659    *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
6660}
6661
6662static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
6663                                             uint16_t cntlid, uint8_t rt,
6664                                             int nr)
6665{
6666    int num_total, num_prim, num_sec;
6667
6668    if (cntlid != n->cntlid) {
6669        return NVME_INVALID_CTRL_ID | NVME_DNR;
6670    }
6671
6672    nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6673
6674    if (nr > num_total) {
6675        return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6676    }
6677
6678    if (nr > num_total - num_sec) {
6679        return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6680    }
6681
6682    if (rt) {
6683        n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
6684    } else {
6685        n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
6686    }
6687
6688    req->cqe.result = cpu_to_le32(nr);
6689    return req->status;
6690}
6691
6692static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
6693                                 uint8_t rt, int nr)
6694{
6695    int prev_nr, prev_total;
6696
6697    if (rt) {
6698        prev_nr = le16_to_cpu(sctrl->nvi);
6699        prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
6700        sctrl->nvi = cpu_to_le16(nr);
6701        n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
6702    } else {
6703        prev_nr = le16_to_cpu(sctrl->nvq);
6704        prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
6705        sctrl->nvq = cpu_to_le16(nr);
6706        n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
6707    }
6708}
6709
6710static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
6711                                            uint16_t cntlid, uint8_t rt, int nr)
6712{
6713    int num_total, num_prim, num_sec, num_free, diff, limit;
6714    NvmeSecCtrlEntry *sctrl;
6715
6716    sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6717    if (!sctrl) {
6718        return NVME_INVALID_CTRL_ID | NVME_DNR;
6719    }
6720
6721    if (sctrl->scs) {
6722        return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6723    }
6724
6725    limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
6726    if (nr > limit) {
6727        return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6728    }
6729
6730    nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6731    num_free = num_total - num_prim - num_sec;
6732    diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
6733
6734    if (diff > num_free) {
6735        return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6736    }
6737
6738    nvme_update_virt_res(n, sctrl, rt, nr);
6739    req->cqe.result = cpu_to_le32(nr);
6740
6741    return req->status;
6742}
6743
6744static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
6745{
6746    PCIDevice *pci = PCI_DEVICE(n);
6747    NvmeCtrl *sn = NULL;
6748    NvmeSecCtrlEntry *sctrl;
6749    int vf_index;
6750
6751    sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6752    if (!sctrl) {
6753        return NVME_INVALID_CTRL_ID | NVME_DNR;
6754    }
6755
6756    if (!pci_is_vf(pci)) {
6757        vf_index = le16_to_cpu(sctrl->vfn) - 1;
6758        sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index));
6759    }
6760
6761    if (online) {
6762        if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
6763            return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6764        }
6765
6766        if (!sctrl->scs) {
6767            sctrl->scs = 0x1;
6768            nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6769        }
6770    } else {
6771        nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
6772        nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
6773
6774        if (sctrl->scs) {
6775            sctrl->scs = 0x0;
6776            if (sn) {
6777                nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6778            }
6779        }
6780    }
6781
6782    return NVME_SUCCESS;
6783}
6784
6785static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
6786{
6787    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6788    uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6789    uint8_t act = dw10 & 0xf;
6790    uint8_t rt = (dw10 >> 8) & 0x7;
6791    uint16_t cntlid = (dw10 >> 16) & 0xffff;
6792    int nr = dw11 & 0xffff;
6793
6794    trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
6795
6796    if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
6797        return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6798    }
6799
6800    switch (act) {
6801    case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6802        return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6803    case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6804        return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6805    case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6806        return nvme_virt_set_state(n, cntlid, true);
6807    case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6808        return nvme_virt_set_state(n, cntlid, false);
6809    default:
6810        return NVME_INVALID_FIELD | NVME_DNR;
6811    }
6812}
6813
6814static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6815{
6816    PCIDevice *pci = PCI_DEVICE(n);
6817    uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6818    uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6819    int i;
6820
6821    /* Address should be page aligned */
6822    if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6823        return NVME_INVALID_FIELD | NVME_DNR;
6824    }
6825
6826    /* Save shadow buffer base addr for use during queue creation */
6827    n->dbbuf_dbs = dbs_addr;
6828    n->dbbuf_eis = eis_addr;
6829    n->dbbuf_enabled = true;
6830
6831    for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6832        NvmeSQueue *sq = n->sq[i];
6833        NvmeCQueue *cq = n->cq[i];
6834
6835        if (sq) {
6836            /*
6837             * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6838             * nvme_process_db() uses this hard-coded way to calculate
6839             * doorbell offsets. Be consistent with that here.
6840             */
6841            sq->db_addr = dbs_addr + (i << 3);
6842            sq->ei_addr = eis_addr + (i << 3);
6843            stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED);
6844
6845            if (n->params.ioeventfd && sq->sqid != 0) {
6846                if (!nvme_init_sq_ioeventfd(sq)) {
6847                    sq->ioeventfd_enabled = true;
6848                }
6849            }
6850        }
6851
6852        if (cq) {
6853            /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6854            cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6855            cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6856            stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED);
6857
6858            if (n->params.ioeventfd && cq->cqid != 0) {
6859                if (!nvme_init_cq_ioeventfd(cq)) {
6860                    cq->ioeventfd_enabled = true;
6861                }
6862            }
6863        }
6864    }
6865
6866    trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6867
6868    return NVME_SUCCESS;
6869}
6870
6871static uint16_t nvme_directive_send(NvmeCtrl *n, NvmeRequest *req)
6872{
6873    return NVME_INVALID_FIELD | NVME_DNR;
6874}
6875
6876static uint16_t nvme_directive_receive(NvmeCtrl *n, NvmeRequest *req)
6877{
6878    NvmeNamespace *ns;
6879    uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6880    uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6881    uint32_t nsid = le32_to_cpu(req->cmd.nsid);
6882    uint8_t doper, dtype;
6883    uint32_t numd, trans_len;
6884    NvmeDirectiveIdentify id = {
6885        .supported = 1 << NVME_DIRECTIVE_IDENTIFY,
6886        .enabled = 1 << NVME_DIRECTIVE_IDENTIFY,
6887    };
6888
6889    numd = dw10 + 1;
6890    doper = dw11 & 0xff;
6891    dtype = (dw11 >> 8) & 0xff;
6892
6893    trans_len = MIN(sizeof(NvmeDirectiveIdentify), numd << 2);
6894
6895    if (nsid == NVME_NSID_BROADCAST || dtype != NVME_DIRECTIVE_IDENTIFY ||
6896        doper != NVME_DIRECTIVE_RETURN_PARAMS) {
6897        return NVME_INVALID_FIELD | NVME_DNR;
6898    }
6899
6900    ns = nvme_ns(n, nsid);
6901    if (!ns) {
6902        return NVME_INVALID_FIELD | NVME_DNR;
6903    }
6904
6905    switch (dtype) {
6906    case NVME_DIRECTIVE_IDENTIFY:
6907        switch (doper) {
6908        case NVME_DIRECTIVE_RETURN_PARAMS:
6909            if (ns->endgrp && ns->endgrp->fdp.enabled) {
6910                id.supported |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6911                id.enabled |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6912                id.persistent |= 1 << NVME_DIRECTIVE_DATA_PLACEMENT;
6913            }
6914
6915            return nvme_c2h(n, (uint8_t *)&id, trans_len, req);
6916
6917        default:
6918            return NVME_INVALID_FIELD | NVME_DNR;
6919        }
6920
6921    default:
6922        return NVME_INVALID_FIELD;
6923    }
6924}
6925
6926static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6927{
6928    trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6929                             nvme_adm_opc_str(req->cmd.opcode));
6930
6931    if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6932        trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6933        return NVME_INVALID_OPCODE | NVME_DNR;
6934    }
6935
6936    /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6937    if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6938        return NVME_INVALID_FIELD | NVME_DNR;
6939    }
6940
6941    if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6942        return NVME_INVALID_FIELD;
6943    }
6944
6945    switch (req->cmd.opcode) {
6946    case NVME_ADM_CMD_DELETE_SQ:
6947        return nvme_del_sq(n, req);
6948    case NVME_ADM_CMD_CREATE_SQ:
6949        return nvme_create_sq(n, req);
6950    case NVME_ADM_CMD_GET_LOG_PAGE:
6951        return nvme_get_log(n, req);
6952    case NVME_ADM_CMD_DELETE_CQ:
6953        return nvme_del_cq(n, req);
6954    case NVME_ADM_CMD_CREATE_CQ:
6955        return nvme_create_cq(n, req);
6956    case NVME_ADM_CMD_IDENTIFY:
6957        return nvme_identify(n, req);
6958    case NVME_ADM_CMD_ABORT:
6959        return nvme_abort(n, req);
6960    case NVME_ADM_CMD_SET_FEATURES:
6961        return nvme_set_feature(n, req);
6962    case NVME_ADM_CMD_GET_FEATURES:
6963        return nvme_get_feature(n, req);
6964    case NVME_ADM_CMD_ASYNC_EV_REQ:
6965        return nvme_aer(n, req);
6966    case NVME_ADM_CMD_NS_ATTACHMENT:
6967        return nvme_ns_attachment(n, req);
6968    case NVME_ADM_CMD_VIRT_MNGMT:
6969        return nvme_virt_mngmt(n, req);
6970    case NVME_ADM_CMD_DBBUF_CONFIG:
6971        return nvme_dbbuf_config(n, req);
6972    case NVME_ADM_CMD_FORMAT_NVM:
6973        return nvme_format(n, req);
6974    case NVME_ADM_CMD_DIRECTIVE_SEND:
6975        return nvme_directive_send(n, req);
6976    case NVME_ADM_CMD_DIRECTIVE_RECV:
6977        return nvme_directive_receive(n, req);
6978    default:
6979        assert(false);
6980    }
6981
6982    return NVME_INVALID_OPCODE | NVME_DNR;
6983}
6984
6985static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6986{
6987    trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail);
6988
6989    stl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->ei_addr, sq->tail,
6990                   MEMTXATTRS_UNSPECIFIED);
6991}
6992
6993static void nvme_update_sq_tail(NvmeSQueue *sq)
6994{
6995    ldl_le_pci_dma(PCI_DEVICE(sq->ctrl), sq->db_addr, &sq->tail,
6996                   MEMTXATTRS_UNSPECIFIED);
6997
6998    trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail);
6999}
7000
7001static void nvme_process_sq(void *opaque)
7002{
7003    NvmeSQueue *sq = opaque;
7004    NvmeCtrl *n = sq->ctrl;
7005    NvmeCQueue *cq = n->cq[sq->cqid];
7006
7007    uint16_t status;
7008    hwaddr addr;
7009    NvmeCmd cmd;
7010    NvmeRequest *req;
7011
7012    if (n->dbbuf_enabled) {
7013        nvme_update_sq_tail(sq);
7014    }
7015
7016    while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
7017        addr = sq->dma_addr + (sq->head << NVME_SQES);
7018        if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
7019            trace_pci_nvme_err_addr_read(addr);
7020            trace_pci_nvme_err_cfs();
7021            stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
7022            break;
7023        }
7024        nvme_inc_sq_head(sq);
7025
7026        req = QTAILQ_FIRST(&sq->req_list);
7027        QTAILQ_REMOVE(&sq->req_list, req, entry);
7028        QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
7029        nvme_req_clear(req);
7030        req->cqe.cid = cmd.cid;
7031        memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
7032
7033        status = sq->sqid ? nvme_io_cmd(n, req) :
7034            nvme_admin_cmd(n, req);
7035        if (status != NVME_NO_COMPLETE) {
7036            req->status = status;
7037            nvme_enqueue_req_completion(cq, req);
7038        }
7039
7040        if (n->dbbuf_enabled) {
7041            nvme_update_sq_eventidx(sq);
7042            nvme_update_sq_tail(sq);
7043        }
7044    }
7045}
7046
7047static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
7048{
7049    uint8_t *config;
7050
7051    if (!msix_present(pci_dev)) {
7052        return;
7053    }
7054
7055    assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
7056
7057    config = pci_dev->config + pci_dev->msix_cap;
7058    pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
7059                         table_size - 1);
7060}
7061
7062static void nvme_activate_virt_res(NvmeCtrl *n)
7063{
7064    PCIDevice *pci_dev = PCI_DEVICE(n);
7065    NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7066    NvmeSecCtrlEntry *sctrl;
7067
7068    /* -1 to account for the admin queue */
7069    if (pci_is_vf(pci_dev)) {
7070        sctrl = nvme_sctrl(n);
7071        cap->vqprt = sctrl->nvq;
7072        cap->viprt = sctrl->nvi;
7073        n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7074        n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7075    } else {
7076        cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
7077        cap->virfap = n->next_pri_ctrl_cap.virfap;
7078        n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
7079                           le16_to_cpu(cap->vqrfap) - 1;
7080        n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
7081                             le16_to_cpu(cap->virfap);
7082    }
7083}
7084
7085static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
7086{
7087    PCIDevice *pci_dev = PCI_DEVICE(n);
7088    NvmeSecCtrlEntry *sctrl;
7089    NvmeNamespace *ns;
7090    int i;
7091
7092    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7093        ns = nvme_ns(n, i);
7094        if (!ns) {
7095            continue;
7096        }
7097
7098        nvme_ns_drain(ns);
7099    }
7100
7101    for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7102        if (n->sq[i] != NULL) {
7103            nvme_free_sq(n->sq[i], n);
7104        }
7105    }
7106    for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
7107        if (n->cq[i] != NULL) {
7108            nvme_free_cq(n->cq[i], n);
7109        }
7110    }
7111
7112    while (!QTAILQ_EMPTY(&n->aer_queue)) {
7113        NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
7114        QTAILQ_REMOVE(&n->aer_queue, event, entry);
7115        g_free(event);
7116    }
7117
7118    if (n->params.sriov_max_vfs) {
7119        if (!pci_is_vf(pci_dev)) {
7120            for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
7121                sctrl = &n->sec_ctrl_list.sec[i];
7122                nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7123            }
7124
7125            if (rst != NVME_RESET_CONTROLLER) {
7126                pcie_sriov_pf_disable_vfs(pci_dev);
7127            }
7128        }
7129
7130        if (rst != NVME_RESET_CONTROLLER) {
7131            nvme_activate_virt_res(n);
7132        }
7133    }
7134
7135    n->aer_queued = 0;
7136    n->aer_mask = 0;
7137    n->outstanding_aers = 0;
7138    n->qs_created = false;
7139
7140    nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7141
7142    if (pci_is_vf(pci_dev)) {
7143        sctrl = nvme_sctrl(n);
7144
7145        stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
7146    } else {
7147        stl_le_p(&n->bar.csts, 0);
7148    }
7149
7150    stl_le_p(&n->bar.intms, 0);
7151    stl_le_p(&n->bar.intmc, 0);
7152    stl_le_p(&n->bar.cc, 0);
7153
7154    n->dbbuf_dbs = 0;
7155    n->dbbuf_eis = 0;
7156    n->dbbuf_enabled = false;
7157}
7158
7159static void nvme_ctrl_shutdown(NvmeCtrl *n)
7160{
7161    NvmeNamespace *ns;
7162    int i;
7163
7164    if (n->pmr.dev) {
7165        memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
7166    }
7167
7168    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7169        ns = nvme_ns(n, i);
7170        if (!ns) {
7171            continue;
7172        }
7173
7174        nvme_ns_shutdown(ns);
7175    }
7176}
7177
7178static void nvme_select_iocs(NvmeCtrl *n)
7179{
7180    NvmeNamespace *ns;
7181    int i;
7182
7183    for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7184        ns = nvme_ns(n, i);
7185        if (!ns) {
7186            continue;
7187        }
7188
7189        nvme_select_iocs_ns(n, ns);
7190    }
7191}
7192
7193static int nvme_start_ctrl(NvmeCtrl *n)
7194{
7195    uint64_t cap = ldq_le_p(&n->bar.cap);
7196    uint32_t cc = ldl_le_p(&n->bar.cc);
7197    uint32_t aqa = ldl_le_p(&n->bar.aqa);
7198    uint64_t asq = ldq_le_p(&n->bar.asq);
7199    uint64_t acq = ldq_le_p(&n->bar.acq);
7200    uint32_t page_bits = NVME_CC_MPS(cc) + 12;
7201    uint32_t page_size = 1 << page_bits;
7202    NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7203
7204    if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) {
7205        trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
7206                                                le16_to_cpu(sctrl->nvq));
7207        return -1;
7208    }
7209    if (unlikely(n->cq[0])) {
7210        trace_pci_nvme_err_startfail_cq();
7211        return -1;
7212    }
7213    if (unlikely(n->sq[0])) {
7214        trace_pci_nvme_err_startfail_sq();
7215        return -1;
7216    }
7217    if (unlikely(asq & (page_size - 1))) {
7218        trace_pci_nvme_err_startfail_asq_misaligned(asq);
7219        return -1;
7220    }
7221    if (unlikely(acq & (page_size - 1))) {
7222        trace_pci_nvme_err_startfail_acq_misaligned(acq);
7223        return -1;
7224    }
7225    if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
7226        trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
7227        return -1;
7228    }
7229    if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
7230        trace_pci_nvme_err_startfail_page_too_small(
7231                    NVME_CC_MPS(cc),
7232                    NVME_CAP_MPSMIN(cap));
7233        return -1;
7234    }
7235    if (unlikely(NVME_CC_MPS(cc) >
7236                 NVME_CAP_MPSMAX(cap))) {
7237        trace_pci_nvme_err_startfail_page_too_large(
7238                    NVME_CC_MPS(cc),
7239                    NVME_CAP_MPSMAX(cap));
7240        return -1;
7241    }
7242    if (unlikely(!NVME_AQA_ASQS(aqa))) {
7243        trace_pci_nvme_err_startfail_asqent_sz_zero();
7244        return -1;
7245    }
7246    if (unlikely(!NVME_AQA_ACQS(aqa))) {
7247        trace_pci_nvme_err_startfail_acqent_sz_zero();
7248        return -1;
7249    }
7250
7251    n->page_bits = page_bits;
7252    n->page_size = page_size;
7253    n->max_prp_ents = n->page_size / sizeof(uint64_t);
7254    nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
7255    nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
7256
7257    nvme_set_timestamp(n, 0ULL);
7258
7259    nvme_select_iocs(n);
7260
7261    return 0;
7262}
7263
7264static void nvme_cmb_enable_regs(NvmeCtrl *n)
7265{
7266    uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
7267    uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
7268
7269    NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
7270    NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
7271    NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
7272    stl_le_p(&n->bar.cmbloc, cmbloc);
7273
7274    NVME_CMBSZ_SET_SQS(cmbsz, 1);
7275    NVME_CMBSZ_SET_CQS(cmbsz, 0);
7276    NVME_CMBSZ_SET_LISTS(cmbsz, 1);
7277    NVME_CMBSZ_SET_RDS(cmbsz, 1);
7278    NVME_CMBSZ_SET_WDS(cmbsz, 1);
7279    NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
7280    NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
7281    stl_le_p(&n->bar.cmbsz, cmbsz);
7282}
7283
7284static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
7285                           unsigned size)
7286{
7287    PCIDevice *pci = PCI_DEVICE(n);
7288    uint64_t cap = ldq_le_p(&n->bar.cap);
7289    uint32_t cc = ldl_le_p(&n->bar.cc);
7290    uint32_t intms = ldl_le_p(&n->bar.intms);
7291    uint32_t csts = ldl_le_p(&n->bar.csts);
7292    uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
7293
7294    if (unlikely(offset & (sizeof(uint32_t) - 1))) {
7295        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
7296                       "MMIO write not 32-bit aligned,"
7297                       " offset=0x%"PRIx64"", offset);
7298        /* should be ignored, fall through for now */
7299    }
7300
7301    if (unlikely(size < sizeof(uint32_t))) {
7302        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
7303                       "MMIO write smaller than 32-bits,"
7304                       " offset=0x%"PRIx64", size=%u",
7305                       offset, size);
7306        /* should be ignored, fall through for now */
7307    }
7308
7309    switch (offset) {
7310    case NVME_REG_INTMS:
7311        if (unlikely(msix_enabled(pci))) {
7312            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
7313                           "undefined access to interrupt mask set"
7314                           " when MSI-X is enabled");
7315            /* should be ignored, fall through for now */
7316        }
7317        intms |= data;
7318        stl_le_p(&n->bar.intms, intms);
7319        n->bar.intmc = n->bar.intms;
7320        trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
7321        nvme_irq_check(n);
7322        break;
7323    case NVME_REG_INTMC:
7324        if (unlikely(msix_enabled(pci))) {
7325            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
7326                           "undefined access to interrupt mask clr"
7327                           " when MSI-X is enabled");
7328            /* should be ignored, fall through for now */
7329        }
7330        intms &= ~data;
7331        stl_le_p(&n->bar.intms, intms);
7332        n->bar.intmc = n->bar.intms;
7333        trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
7334        nvme_irq_check(n);
7335        break;
7336    case NVME_REG_CC:
7337        stl_le_p(&n->bar.cc, data);
7338
7339        trace_pci_nvme_mmio_cfg(data & 0xffffffff);
7340
7341        if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
7342            trace_pci_nvme_mmio_shutdown_set();
7343            nvme_ctrl_shutdown(n);
7344            csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
7345            csts |= NVME_CSTS_SHST_COMPLETE;
7346        } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
7347            trace_pci_nvme_mmio_shutdown_cleared();
7348            csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
7349        }
7350
7351        if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
7352            if (unlikely(nvme_start_ctrl(n))) {
7353                trace_pci_nvme_err_startfail();
7354                csts = NVME_CSTS_FAILED;
7355            } else {
7356                trace_pci_nvme_mmio_start_success();
7357                csts = NVME_CSTS_READY;
7358            }
7359        } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
7360            trace_pci_nvme_mmio_stopped();
7361            nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
7362
7363            break;
7364        }
7365
7366        stl_le_p(&n->bar.csts, csts);
7367
7368        break;
7369    case NVME_REG_CSTS:
7370        if (data & (1 << 4)) {
7371            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
7372                           "attempted to W1C CSTS.NSSRO"
7373                           " but CAP.NSSRS is zero (not supported)");
7374        } else if (data != 0) {
7375            NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
7376                           "attempted to set a read only bit"
7377                           " of controller status");
7378        }
7379        break;
7380    case NVME_REG_NSSR:
7381        if (data == 0x4e564d65) {
7382            trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
7383        } else {
7384            /* The spec says that writes of other values have no effect */
7385            return;
7386        }
7387        break;
7388    case NVME_REG_AQA:
7389        stl_le_p(&n->bar.aqa, data);
7390        trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
7391        break;
7392    case NVME_REG_ASQ:
7393        stn_le_p(&n->bar.asq, size, data);
7394        trace_pci_nvme_mmio_asqaddr(data);
7395        break;
7396    case NVME_REG_ASQ + 4:
7397        stl_le_p((uint8_t *)&n->bar.asq + 4, data);
7398        trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
7399        break;
7400    case NVME_REG_ACQ:
7401        trace_pci_nvme_mmio_acqaddr(data);
7402        stn_le_p(&n->bar.acq, size, data);
7403        break;
7404    case NVME_REG_ACQ + 4:
7405        stl_le_p((uint8_t *)&n->bar.acq + 4, data);
7406        trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
7407        break;
7408    case NVME_REG_CMBLOC:
7409        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
7410                       "invalid write to reserved CMBLOC"
7411                       " when CMBSZ is zero, ignored");
7412        return;
7413    case NVME_REG_CMBSZ:
7414        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
7415                       "invalid write to read only CMBSZ, ignored");
7416        return;
7417    case NVME_REG_CMBMSC:
7418        if (!NVME_CAP_CMBS(cap)) {
7419            return;
7420        }
7421
7422        stn_le_p(&n->bar.cmbmsc, size, data);
7423        n->cmb.cmse = false;
7424
7425        if (NVME_CMBMSC_CRE(data)) {
7426            nvme_cmb_enable_regs(n);
7427
7428            if (NVME_CMBMSC_CMSE(data)) {
7429                uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
7430                hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
7431                if (cba + int128_get64(n->cmb.mem.size) < cba) {
7432                    uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
7433                    NVME_CMBSTS_SET_CBAI(cmbsts, 1);
7434                    stl_le_p(&n->bar.cmbsts, cmbsts);
7435                    return;
7436                }
7437
7438                n->cmb.cba = cba;
7439                n->cmb.cmse = true;
7440            }
7441        } else {
7442            n->bar.cmbsz = 0;
7443            n->bar.cmbloc = 0;
7444        }
7445
7446        return;
7447    case NVME_REG_CMBMSC + 4:
7448        stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
7449        return;
7450
7451    case NVME_REG_PMRCAP:
7452        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
7453                       "invalid write to PMRCAP register, ignored");
7454        return;
7455    case NVME_REG_PMRCTL:
7456        if (!NVME_CAP_PMRS(cap)) {
7457            return;
7458        }
7459
7460        stl_le_p(&n->bar.pmrctl, data);
7461        if (NVME_PMRCTL_EN(data)) {
7462            memory_region_set_enabled(&n->pmr.dev->mr, true);
7463            pmrsts = 0;
7464        } else {
7465            memory_region_set_enabled(&n->pmr.dev->mr, false);
7466            NVME_PMRSTS_SET_NRDY(pmrsts, 1);
7467            n->pmr.cmse = false;
7468        }
7469        stl_le_p(&n->bar.pmrsts, pmrsts);
7470        return;
7471    case NVME_REG_PMRSTS:
7472        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
7473                       "invalid write to PMRSTS register, ignored");
7474        return;
7475    case NVME_REG_PMREBS:
7476        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
7477                       "invalid write to PMREBS register, ignored");
7478        return;
7479    case NVME_REG_PMRSWTP:
7480        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
7481                       "invalid write to PMRSWTP register, ignored");
7482        return;
7483    case NVME_REG_PMRMSCL:
7484        if (!NVME_CAP_PMRS(cap)) {
7485            return;
7486        }
7487
7488        stl_le_p(&n->bar.pmrmscl, data);
7489        n->pmr.cmse = false;
7490
7491        if (NVME_PMRMSCL_CMSE(data)) {
7492            uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
7493            hwaddr cba = pmrmscu << 32 |
7494                (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
7495            if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
7496                NVME_PMRSTS_SET_CBAI(pmrsts, 1);
7497                stl_le_p(&n->bar.pmrsts, pmrsts);
7498                return;
7499            }
7500
7501            n->pmr.cmse = true;
7502            n->pmr.cba = cba;
7503        }
7504
7505        return;
7506    case NVME_REG_PMRMSCU:
7507        if (!NVME_CAP_PMRS(cap)) {
7508            return;
7509        }
7510
7511        stl_le_p(&n->bar.pmrmscu, data);
7512        return;
7513    default:
7514        NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
7515                       "invalid MMIO write,"
7516                       " offset=0x%"PRIx64", data=%"PRIx64"",
7517                       offset, data);
7518        break;
7519    }
7520}
7521
7522static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
7523{
7524    NvmeCtrl *n = (NvmeCtrl *)opaque;
7525    uint8_t *ptr = (uint8_t *)&n->bar;
7526
7527    trace_pci_nvme_mmio_read(addr, size);
7528
7529    if (unlikely(addr & (sizeof(uint32_t) - 1))) {
7530        NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
7531                       "MMIO read not 32-bit aligned,"
7532                       " offset=0x%"PRIx64"", addr);
7533        /* should RAZ, fall through for now */
7534    } else if (unlikely(size < sizeof(uint32_t))) {
7535        NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
7536                       "MMIO read smaller than 32-bits,"
7537                       " offset=0x%"PRIx64"", addr);
7538        /* should RAZ, fall through for now */
7539    }
7540
7541    if (addr > sizeof(n->bar) - size) {
7542        NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
7543                       "MMIO read beyond last register,"
7544                       " offset=0x%"PRIx64", returning 0", addr);
7545
7546        return 0;
7547    }
7548
7549    if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
7550        addr != NVME_REG_CSTS) {
7551        trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7552        return 0;
7553    }
7554
7555    /*
7556     * When PMRWBM bit 1 is set then read from
7557     * from PMRSTS should ensure prior writes
7558     * made it to persistent media
7559     */
7560    if (addr == NVME_REG_PMRSTS &&
7561        (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
7562        memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
7563    }
7564
7565    return ldn_le_p(ptr + addr, size);
7566}
7567
7568static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
7569{
7570    PCIDevice *pci = PCI_DEVICE(n);
7571    uint32_t qid;
7572
7573    if (unlikely(addr & ((1 << 2) - 1))) {
7574        NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
7575                       "doorbell write not 32-bit aligned,"
7576                       " offset=0x%"PRIx64", ignoring", addr);
7577        return;
7578    }
7579
7580    if (((addr - 0x1000) >> 2) & 1) {
7581        /* Completion queue doorbell write */
7582
7583        uint16_t new_head = val & 0xffff;
7584        int start_sqs;
7585        NvmeCQueue *cq;
7586
7587        qid = (addr - (0x1000 + (1 << 2))) >> 3;
7588        if (unlikely(nvme_check_cqid(n, qid))) {
7589            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
7590                           "completion queue doorbell write"
7591                           " for nonexistent queue,"
7592                           " sqid=%"PRIu32", ignoring", qid);
7593
7594            /*
7595             * NVM Express v1.3d, Section 4.1 state: "If host software writes
7596             * an invalid value to the Submission Queue Tail Doorbell or
7597             * Completion Queue Head Doorbell regiter and an Asynchronous Event
7598             * Request command is outstanding, then an asynchronous event is
7599             * posted to the Admin Completion Queue with a status code of
7600             * Invalid Doorbell Write Value."
7601             *
7602             * Also note that the spec includes the "Invalid Doorbell Register"
7603             * status code, but nowhere does it specify when to use it.
7604             * However, it seems reasonable to use it here in a similar
7605             * fashion.
7606             */
7607            if (n->outstanding_aers) {
7608                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7609                                   NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
7610                                   NVME_LOG_ERROR_INFO);
7611            }
7612
7613            return;
7614        }
7615
7616        cq = n->cq[qid];
7617        if (unlikely(new_head >= cq->size)) {
7618            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
7619                           "completion queue doorbell write value"
7620                           " beyond queue size, sqid=%"PRIu32","
7621                           " new_head=%"PRIu16", ignoring",
7622                           qid, new_head);
7623
7624            if (n->outstanding_aers) {
7625                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7626                                   NVME_AER_INFO_ERR_INVALID_DB_VALUE,
7627                                   NVME_LOG_ERROR_INFO);
7628            }
7629
7630            return;
7631        }
7632
7633        trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
7634
7635        start_sqs = nvme_cq_full(cq) ? 1 : 0;
7636        cq->head = new_head;
7637        if (!qid && n->dbbuf_enabled) {
7638            stl_le_pci_dma(pci, cq->db_addr, cq->head, MEMTXATTRS_UNSPECIFIED);
7639        }
7640        if (start_sqs) {
7641            NvmeSQueue *sq;
7642            QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
7643                qemu_bh_schedule(sq->bh);
7644            }
7645            qemu_bh_schedule(cq->bh);
7646        }
7647
7648        if (cq->tail == cq->head) {
7649            if (cq->irq_enabled) {
7650                n->cq_pending--;
7651            }
7652
7653            nvme_irq_deassert(n, cq);
7654        }
7655    } else {
7656        /* Submission queue doorbell write */
7657
7658        uint16_t new_tail = val & 0xffff;
7659        NvmeSQueue *sq;
7660
7661        qid = (addr - 0x1000) >> 3;
7662        if (unlikely(nvme_check_sqid(n, qid))) {
7663            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
7664                           "submission queue doorbell write"
7665                           " for nonexistent queue,"
7666                           " sqid=%"PRIu32", ignoring", qid);
7667
7668            if (n->outstanding_aers) {
7669                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7670                                   NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
7671                                   NVME_LOG_ERROR_INFO);
7672            }
7673
7674            return;
7675        }
7676
7677        sq = n->sq[qid];
7678        if (unlikely(new_tail >= sq->size)) {
7679            NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
7680                           "submission queue doorbell write value"
7681                           " beyond queue size, sqid=%"PRIu32","
7682                           " new_tail=%"PRIu16", ignoring",
7683                           qid, new_tail);
7684
7685            if (n->outstanding_aers) {
7686                nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
7687                                   NVME_AER_INFO_ERR_INVALID_DB_VALUE,
7688                                   NVME_LOG_ERROR_INFO);
7689            }
7690
7691            return;
7692        }
7693
7694        trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
7695
7696        sq->tail = new_tail;
7697        if (!qid && n->dbbuf_enabled) {
7698            /*
7699             * The spec states "the host shall also update the controller's
7700             * corresponding doorbell property to match the value of that entry
7701             * in the Shadow Doorbell buffer."
7702             *
7703             * Since this context is currently a VM trap, we can safely enforce
7704             * the requirement from the device side in case the host is
7705             * misbehaving.
7706             *
7707             * Note, we shouldn't have to do this, but various drivers
7708             * including ones that run on Linux, are not updating Admin Queues,
7709             * so we can't trust reading it for an appropriate sq tail.
7710             */
7711            stl_le_pci_dma(pci, sq->db_addr, sq->tail, MEMTXATTRS_UNSPECIFIED);
7712        }
7713
7714        qemu_bh_schedule(sq->bh);
7715    }
7716}
7717
7718static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
7719                            unsigned size)
7720{
7721    NvmeCtrl *n = (NvmeCtrl *)opaque;
7722
7723    trace_pci_nvme_mmio_write(addr, data, size);
7724
7725    if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
7726        addr != NVME_REG_CSTS) {
7727        trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
7728        return;
7729    }
7730
7731    if (addr < sizeof(n->bar)) {
7732        nvme_write_bar(n, addr, data, size);
7733    } else {
7734        nvme_process_db(n, addr, data);
7735    }
7736}
7737
7738static const MemoryRegionOps nvme_mmio_ops = {
7739    .read = nvme_mmio_read,
7740    .write = nvme_mmio_write,
7741    .endianness = DEVICE_LITTLE_ENDIAN,
7742    .impl = {
7743        .min_access_size = 2,
7744        .max_access_size = 8,
7745    },
7746};
7747
7748static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
7749                           unsigned size)
7750{
7751    NvmeCtrl *n = (NvmeCtrl *)opaque;
7752    stn_le_p(&n->cmb.buf[addr], size, data);
7753}
7754
7755static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
7756{
7757    NvmeCtrl *n = (NvmeCtrl *)opaque;
7758    return ldn_le_p(&n->cmb.buf[addr], size);
7759}
7760
7761static const MemoryRegionOps nvme_cmb_ops = {
7762    .read = nvme_cmb_read,
7763    .write = nvme_cmb_write,
7764    .endianness = DEVICE_LITTLE_ENDIAN,
7765    .impl = {
7766        .min_access_size = 1,
7767        .max_access_size = 8,
7768    },
7769};
7770
7771static bool nvme_check_params(NvmeCtrl *n, Error **errp)
7772{
7773    NvmeParams *params = &n->params;
7774
7775    if (params->num_queues) {
7776        warn_report("num_queues is deprecated; please use max_ioqpairs "
7777                    "instead");
7778
7779        params->max_ioqpairs = params->num_queues - 1;
7780    }
7781
7782    if (n->namespace.blkconf.blk && n->subsys) {
7783        error_setg(errp, "subsystem support is unavailable with legacy "
7784                   "namespace ('drive' property)");
7785        return false;
7786    }
7787
7788    if (params->max_ioqpairs < 1 ||
7789        params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
7790        error_setg(errp, "max_ioqpairs must be between 1 and %d",
7791                   NVME_MAX_IOQPAIRS);
7792        return false;
7793    }
7794
7795    if (params->msix_qsize < 1 ||
7796        params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
7797        error_setg(errp, "msix_qsize must be between 1 and %d",
7798                   PCI_MSIX_FLAGS_QSIZE + 1);
7799        return false;
7800    }
7801
7802    if (!params->serial) {
7803        error_setg(errp, "serial property not set");
7804        return false;
7805    }
7806
7807    if (n->pmr.dev) {
7808        if (host_memory_backend_is_mapped(n->pmr.dev)) {
7809            error_setg(errp, "can't use already busy memdev: %s",
7810                       object_get_canonical_path_component(OBJECT(n->pmr.dev)));
7811            return false;
7812        }
7813
7814        if (!is_power_of_2(n->pmr.dev->size)) {
7815            error_setg(errp, "pmr backend size needs to be power of 2 in size");
7816            return false;
7817        }
7818
7819        host_memory_backend_set_mapped(n->pmr.dev, true);
7820    }
7821
7822    if (n->params.zasl > n->params.mdts) {
7823        error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
7824                   "than or equal to mdts (Maximum Data Transfer Size)");
7825        return false;
7826    }
7827
7828    if (!n->params.vsl) {
7829        error_setg(errp, "vsl must be non-zero");
7830        return false;
7831    }
7832
7833    if (params->sriov_max_vfs) {
7834        if (!n->subsys) {
7835            error_setg(errp, "subsystem is required for the use of SR-IOV");
7836            return false;
7837        }
7838
7839        if (params->sriov_max_vfs > NVME_MAX_VFS) {
7840            error_setg(errp, "sriov_max_vfs must be between 0 and %d",
7841                       NVME_MAX_VFS);
7842            return false;
7843        }
7844
7845        if (params->cmb_size_mb) {
7846            error_setg(errp, "CMB is not supported with SR-IOV");
7847            return false;
7848        }
7849
7850        if (n->pmr.dev) {
7851            error_setg(errp, "PMR is not supported with SR-IOV");
7852            return false;
7853        }
7854
7855        if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7856            error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7857                       " must be set for the use of SR-IOV");
7858            return false;
7859        }
7860
7861        if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7862            error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7863                       " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7864            return false;
7865        }
7866
7867        if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7868            error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7869                       " greater than or equal to 2");
7870            return false;
7871        }
7872
7873        if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7874            error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7875                       " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7876            return false;
7877        }
7878
7879        if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7880            error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7881                       " greater than or equal to 1");
7882            return false;
7883        }
7884
7885        if (params->sriov_max_vi_per_vf &&
7886            (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7887            error_setg(errp, "sriov_max_vi_per_vf must meet:"
7888                       " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7889                       " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7890            return false;
7891        }
7892
7893        if (params->sriov_max_vq_per_vf &&
7894            (params->sriov_max_vq_per_vf < 2 ||
7895             (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7896            error_setg(errp, "sriov_max_vq_per_vf must meet:"
7897                       " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7898                       " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7899            return false;
7900        }
7901    }
7902
7903    return true;
7904}
7905
7906static void nvme_init_state(NvmeCtrl *n)
7907{
7908    NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7909    NvmeSecCtrlList *list = &n->sec_ctrl_list;
7910    NvmeSecCtrlEntry *sctrl;
7911    PCIDevice *pci = PCI_DEVICE(n);
7912    uint8_t max_vfs;
7913    int i;
7914
7915    if (pci_is_vf(pci)) {
7916        sctrl = nvme_sctrl(n);
7917        max_vfs = 0;
7918        n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7919        n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7920    } else {
7921        max_vfs = n->params.sriov_max_vfs;
7922        n->conf_ioqpairs = n->params.max_ioqpairs;
7923        n->conf_msix_qsize = n->params.msix_qsize;
7924    }
7925
7926    n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7927    n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7928    n->temperature = NVME_TEMPERATURE;
7929    n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7930    n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7931    n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7932    QTAILQ_INIT(&n->aer_queue);
7933
7934    list->numcntl = cpu_to_le16(max_vfs);
7935    for (i = 0; i < max_vfs; i++) {
7936        sctrl = &list->sec[i];
7937        sctrl->pcid = cpu_to_le16(n->cntlid);
7938        sctrl->vfn = cpu_to_le16(i + 1);
7939    }
7940
7941    cap->cntlid = cpu_to_le16(n->cntlid);
7942    cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7943
7944    if (pci_is_vf(pci)) {
7945        cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7946    } else {
7947        cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7948                                 n->params.sriov_vq_flexible);
7949        cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7950        cap->vqrfap = cap->vqfrt;
7951        cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7952        cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7953                        cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7954                        cap->vqfrt / MAX(max_vfs, 1);
7955    }
7956
7957    if (pci_is_vf(pci)) {
7958        cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7959    } else {
7960        cap->viprt = cpu_to_le16(n->params.msix_qsize -
7961                                 n->params.sriov_vi_flexible);
7962        cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7963        cap->virfap = cap->vifrt;
7964        cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7965        cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7966                        cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7967                        cap->vifrt / MAX(max_vfs, 1);
7968    }
7969}
7970
7971static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7972{
7973    uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7974    uint64_t cap = ldq_le_p(&n->bar.cap);
7975
7976    n->cmb.buf = g_malloc0(cmb_size);
7977    memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7978                          "nvme-cmb", cmb_size);
7979    pci_register_bar(pci_dev, NVME_CMB_BIR,
7980                     PCI_BASE_ADDRESS_SPACE_MEMORY |
7981                     PCI_BASE_ADDRESS_MEM_TYPE_64 |
7982                     PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
7983
7984    NVME_CAP_SET_CMBS(cap, 1);
7985    stq_le_p(&n->bar.cap, cap);
7986
7987    if (n->params.legacy_cmb) {
7988        nvme_cmb_enable_regs(n);
7989        n->cmb.cmse = true;
7990    }
7991}
7992
7993static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
7994{
7995    uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
7996
7997    NVME_PMRCAP_SET_RDS(pmrcap, 1);
7998    NVME_PMRCAP_SET_WDS(pmrcap, 1);
7999    NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
8000    /* Turn on bit 1 support */
8001    NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
8002    NVME_PMRCAP_SET_CMSS(pmrcap, 1);
8003    stl_le_p(&n->bar.pmrcap, pmrcap);
8004
8005    pci_register_bar(pci_dev, NVME_PMR_BIR,
8006                     PCI_BASE_ADDRESS_SPACE_MEMORY |
8007                     PCI_BASE_ADDRESS_MEM_TYPE_64 |
8008                     PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
8009
8010    memory_region_set_enabled(&n->pmr.dev->mr, false);
8011}
8012
8013static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
8014                              unsigned *msix_table_offset,
8015                              unsigned *msix_pba_offset)
8016{
8017    uint64_t bar_size, msix_table_size, msix_pba_size;
8018
8019    bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
8020    bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
8021
8022    if (msix_table_offset) {
8023        *msix_table_offset = bar_size;
8024    }
8025
8026    msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
8027    bar_size += msix_table_size;
8028    bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
8029
8030    if (msix_pba_offset) {
8031        *msix_pba_offset = bar_size;
8032    }
8033
8034    msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
8035    bar_size += msix_pba_size;
8036
8037    bar_size = pow2ceil(bar_size);
8038    return bar_size;
8039}
8040
8041static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
8042{
8043    uint16_t vf_dev_id = n->params.use_intel_id ?
8044                         PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
8045    NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
8046    uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
8047                                      le16_to_cpu(cap->vifrsm),
8048                                      NULL, NULL);
8049
8050    pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
8051                       n->params.sriov_max_vfs, n->params.sriov_max_vfs,
8052                       NVME_VF_OFFSET, NVME_VF_STRIDE);
8053
8054    pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8055                              PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
8056}
8057
8058static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
8059{
8060    Error *err = NULL;
8061    int ret;
8062
8063    ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
8064                             PCI_PM_SIZEOF, &err);
8065    if (err) {
8066        error_report_err(err);
8067        return ret;
8068    }
8069
8070    pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
8071                 PCI_PM_CAP_VER_1_2);
8072    pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
8073                 PCI_PM_CTRL_NO_SOFT_RESET);
8074    pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
8075                 PCI_PM_CTRL_STATE_MASK);
8076
8077    return 0;
8078}
8079
8080static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
8081{
8082    ERRP_GUARD();
8083    uint8_t *pci_conf = pci_dev->config;
8084    uint64_t bar_size;
8085    unsigned msix_table_offset, msix_pba_offset;
8086    int ret;
8087
8088    pci_conf[PCI_INTERRUPT_PIN] = 1;
8089    pci_config_set_prog_interface(pci_conf, 0x2);
8090
8091    if (n->params.use_intel_id) {
8092        pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
8093        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
8094    } else {
8095        pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
8096        pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
8097    }
8098
8099    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
8100    nvme_add_pm_capability(pci_dev, 0x60);
8101    pcie_endpoint_cap_init(pci_dev, 0x80);
8102    pcie_cap_flr_init(pci_dev);
8103    if (n->params.sriov_max_vfs) {
8104        pcie_ari_init(pci_dev, 0x100);
8105    }
8106
8107    /* add one to max_ioqpairs to account for the admin queue pair */
8108    bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
8109                             &msix_table_offset, &msix_pba_offset);
8110
8111    memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
8112    memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
8113                          msix_table_offset);
8114    memory_region_add_subregion(&n->bar0, 0, &n->iomem);
8115
8116    if (pci_is_vf(pci_dev)) {
8117        pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
8118    } else {
8119        pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
8120                         PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
8121    }
8122    ret = msix_init(pci_dev, n->params.msix_qsize,
8123                    &n->bar0, 0, msix_table_offset,
8124                    &n->bar0, 0, msix_pba_offset, 0, errp);
8125    if (ret == -ENOTSUP) {
8126        /* report that msix is not supported, but do not error out */
8127        warn_report_err(*errp);
8128        *errp = NULL;
8129    } else if (ret < 0) {
8130        /* propagate error to caller */
8131        return false;
8132    }
8133
8134    nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
8135
8136    if (n->params.cmb_size_mb) {
8137        nvme_init_cmb(n, pci_dev);
8138    }
8139
8140    if (n->pmr.dev) {
8141        nvme_init_pmr(n, pci_dev);
8142    }
8143
8144    if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
8145        nvme_init_sriov(n, pci_dev, 0x120);
8146    }
8147
8148    return true;
8149}
8150
8151static void nvme_init_subnqn(NvmeCtrl *n)
8152{
8153    NvmeSubsystem *subsys = n->subsys;
8154    NvmeIdCtrl *id = &n->id_ctrl;
8155
8156    if (!subsys) {
8157        snprintf((char *)id->subnqn, sizeof(id->subnqn),
8158                 "nqn.2019-08.org.qemu:%s", n->params.serial);
8159    } else {
8160        pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
8161    }
8162}
8163
8164static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
8165{
8166    NvmeIdCtrl *id = &n->id_ctrl;
8167    uint8_t *pci_conf = pci_dev->config;
8168    uint64_t cap = ldq_le_p(&n->bar.cap);
8169    NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
8170    uint32_t ctratt;
8171
8172    id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
8173    id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
8174    strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
8175    strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
8176    strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
8177
8178    id->cntlid = cpu_to_le16(n->cntlid);
8179
8180    id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
8181    ctratt = NVME_CTRATT_ELBAS;
8182
8183    id->rab = 6;
8184
8185    if (n->params.use_intel_id) {
8186        id->ieee[0] = 0xb3;
8187        id->ieee[1] = 0x02;
8188        id->ieee[2] = 0x00;
8189    } else {
8190        id->ieee[0] = 0x00;
8191        id->ieee[1] = 0x54;
8192        id->ieee[2] = 0x52;
8193    }
8194
8195    id->mdts = n->params.mdts;
8196    id->ver = cpu_to_le32(NVME_SPEC_VER);
8197    id->oacs =
8198        cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF |
8199                    NVME_OACS_DIRECTIVES);
8200    id->cntrltype = 0x1;
8201
8202    /*
8203     * Because the controller always completes the Abort command immediately,
8204     * there can never be more than one concurrently executing Abort command,
8205     * so this value is never used for anything. Note that there can easily be
8206     * many Abort commands in the queues, but they are not considered
8207     * "executing" until processed by nvme_abort.
8208     *
8209     * The specification recommends a value of 3 for Abort Command Limit (four
8210     * concurrently outstanding Abort commands), so lets use that though it is
8211     * inconsequential.
8212     */
8213    id->acl = 3;
8214    id->aerl = n->params.aerl;
8215    id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
8216    id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
8217
8218    /* recommended default value (~70 C) */
8219    id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
8220    id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
8221
8222    id->sqes = (NVME_SQES << 4) | NVME_SQES;
8223    id->cqes = (NVME_CQES << 4) | NVME_CQES;
8224    id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
8225    id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
8226                           NVME_ONCS_FEATURES | NVME_ONCS_DSM |
8227                           NVME_ONCS_COMPARE | NVME_ONCS_COPY);
8228
8229    /*
8230     * NOTE: If this device ever supports a command set that does NOT use 0x0
8231     * as a Flush-equivalent operation, support for the broadcast NSID in Flush
8232     * should probably be removed.
8233     *
8234     * See comment in nvme_io_cmd.
8235     */
8236    id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
8237
8238    id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
8239    id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
8240
8241    nvme_init_subnqn(n);
8242
8243    id->psd[0].mp = cpu_to_le16(0x9c4);
8244    id->psd[0].enlat = cpu_to_le32(0x10);
8245    id->psd[0].exlat = cpu_to_le32(0x4);
8246
8247    if (n->subsys) {
8248        id->cmic |= NVME_CMIC_MULTI_CTRL;
8249        ctratt |= NVME_CTRATT_ENDGRPS;
8250
8251        id->endgidmax = cpu_to_le16(0x1);
8252
8253        if (n->subsys->endgrp.fdp.enabled) {
8254            ctratt |= NVME_CTRATT_FDPS;
8255        }
8256    }
8257
8258    id->ctratt = cpu_to_le32(ctratt);
8259
8260    NVME_CAP_SET_MQES(cap, 0x7ff);
8261    NVME_CAP_SET_CQR(cap, 1);
8262    NVME_CAP_SET_TO(cap, 0xf);
8263    NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
8264    NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
8265    NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
8266    NVME_CAP_SET_MPSMAX(cap, 4);
8267    NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
8268    NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
8269    stq_le_p(&n->bar.cap, cap);
8270
8271    stl_le_p(&n->bar.vs, NVME_SPEC_VER);
8272    n->bar.intmc = n->bar.intms = 0;
8273
8274    if (pci_is_vf(pci_dev) && !sctrl->scs) {
8275        stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
8276    }
8277}
8278
8279static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
8280{
8281    int cntlid;
8282
8283    if (!n->subsys) {
8284        return 0;
8285    }
8286
8287    cntlid = nvme_subsys_register_ctrl(n, errp);
8288    if (cntlid < 0) {
8289        return -1;
8290    }
8291
8292    n->cntlid = cntlid;
8293
8294    return 0;
8295}
8296
8297void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
8298{
8299    uint32_t nsid = ns->params.nsid;
8300    assert(nsid && nsid <= NVME_MAX_NAMESPACES);
8301
8302    n->namespaces[nsid] = ns;
8303    ns->attached++;
8304
8305    n->dmrsl = MIN_NON_ZERO(n->dmrsl,
8306                            BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
8307}
8308
8309static void nvme_realize(PCIDevice *pci_dev, Error **errp)
8310{
8311    NvmeCtrl *n = NVME(pci_dev);
8312    DeviceState *dev = DEVICE(pci_dev);
8313    NvmeNamespace *ns;
8314    NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
8315
8316    if (pci_is_vf(pci_dev)) {
8317        /*
8318         * VFs derive settings from the parent. PF's lifespan exceeds
8319         * that of VF's, so it's safe to share params.serial.
8320         */
8321        memcpy(&n->params, &pn->params, sizeof(NvmeParams));
8322        n->subsys = pn->subsys;
8323    }
8324
8325    if (!nvme_check_params(n, errp)) {
8326        return;
8327    }
8328
8329    qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id);
8330
8331    if (nvme_init_subsys(n, errp)) {
8332        return;
8333    }
8334    nvme_init_state(n);
8335    if (!nvme_init_pci(n, pci_dev, errp)) {
8336        return;
8337    }
8338    nvme_init_ctrl(n, pci_dev);
8339
8340    /* setup a namespace if the controller drive property was given */
8341    if (n->namespace.blkconf.blk) {
8342        ns = &n->namespace;
8343        ns->params.nsid = 1;
8344
8345        if (nvme_ns_setup(ns, errp)) {
8346            return;
8347        }
8348
8349        nvme_attach_ns(n, ns);
8350    }
8351}
8352
8353static void nvme_exit(PCIDevice *pci_dev)
8354{
8355    NvmeCtrl *n = NVME(pci_dev);
8356    NvmeNamespace *ns;
8357    int i;
8358
8359    nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
8360
8361    if (n->subsys) {
8362        for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
8363            ns = nvme_ns(n, i);
8364            if (ns) {
8365                ns->attached--;
8366            }
8367        }
8368
8369        nvme_subsys_unregister_ctrl(n->subsys, n);
8370    }
8371
8372    g_free(n->cq);
8373    g_free(n->sq);
8374    g_free(n->aer_reqs);
8375
8376    if (n->params.cmb_size_mb) {
8377        g_free(n->cmb.buf);
8378    }
8379
8380    if (n->pmr.dev) {
8381        host_memory_backend_set_mapped(n->pmr.dev, false);
8382    }
8383
8384    if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
8385        pcie_sriov_pf_exit(pci_dev);
8386    }
8387
8388    msix_uninit(pci_dev, &n->bar0, &n->bar0);
8389    memory_region_del_subregion(&n->bar0, &n->iomem);
8390}
8391
8392static Property nvme_props[] = {
8393    DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
8394    DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
8395                     HostMemoryBackend *),
8396    DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
8397                     NvmeSubsystem *),
8398    DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
8399    DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
8400    DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
8401    DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
8402    DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
8403    DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
8404    DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
8405    DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
8406    DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
8407    DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
8408    DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
8409    DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
8410    DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
8411    DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
8412                     params.auto_transition_zones, true),
8413    DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
8414    DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
8415                       params.sriov_vq_flexible, 0),
8416    DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
8417                       params.sriov_vi_flexible, 0),
8418    DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
8419                      params.sriov_max_vi_per_vf, 0),
8420    DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
8421                      params.sriov_max_vq_per_vf, 0),
8422    DEFINE_PROP_END_OF_LIST(),
8423};
8424
8425static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
8426                                   void *opaque, Error **errp)
8427{
8428    NvmeCtrl *n = NVME(obj);
8429    uint8_t value = n->smart_critical_warning;
8430
8431    visit_type_uint8(v, name, &value, errp);
8432}
8433
8434static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
8435                                   void *opaque, Error **errp)
8436{
8437    NvmeCtrl *n = NVME(obj);
8438    uint8_t value, old_value, cap = 0, index, event;
8439
8440    if (!visit_type_uint8(v, name, &value, errp)) {
8441        return;
8442    }
8443
8444    cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
8445          | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
8446    if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
8447        cap |= NVME_SMART_PMR_UNRELIABLE;
8448    }
8449
8450    if ((value & cap) != value) {
8451        error_setg(errp, "unsupported smart critical warning bits: 0x%x",
8452                   value & ~cap);
8453        return;
8454    }
8455
8456    old_value = n->smart_critical_warning;
8457    n->smart_critical_warning = value;
8458
8459    /* only inject new bits of smart critical warning */
8460    for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
8461        event = 1 << index;
8462        if (value & ~old_value & event)
8463            nvme_smart_event(n, event);
8464    }
8465}
8466
8467static void nvme_pci_reset(DeviceState *qdev)
8468{
8469    PCIDevice *pci_dev = PCI_DEVICE(qdev);
8470    NvmeCtrl *n = NVME(pci_dev);
8471
8472    trace_pci_nvme_pci_reset();
8473    nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
8474}
8475
8476static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
8477                                      uint32_t val, int len)
8478{
8479    NvmeCtrl *n = NVME(dev);
8480    NvmeSecCtrlEntry *sctrl;
8481    uint16_t sriov_cap = dev->exp.sriov_cap;
8482    uint32_t off = address - sriov_cap;
8483    int i, num_vfs;
8484
8485    if (!sriov_cap) {
8486        return;
8487    }
8488
8489    if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
8490        if (!(val & PCI_SRIOV_CTRL_VFE)) {
8491            num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
8492            for (i = 0; i < num_vfs; i++) {
8493                sctrl = &n->sec_ctrl_list.sec[i];
8494                nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
8495            }
8496        }
8497    }
8498}
8499
8500static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
8501                                  uint32_t val, int len)
8502{
8503    nvme_sriov_pre_write_ctrl(dev, address, val, len);
8504    pci_default_write_config(dev, address, val, len);
8505    pcie_cap_flr_write_config(dev, address, val, len);
8506}
8507
8508static const VMStateDescription nvme_vmstate = {
8509    .name = "nvme",
8510    .unmigratable = 1,
8511};
8512
8513static void nvme_class_init(ObjectClass *oc, void *data)
8514{
8515    DeviceClass *dc = DEVICE_CLASS(oc);
8516    PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
8517
8518    pc->realize = nvme_realize;
8519    pc->config_write = nvme_pci_write_config;
8520    pc->exit = nvme_exit;
8521    pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
8522    pc->revision = 2;
8523
8524    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
8525    dc->desc = "Non-Volatile Memory Express";
8526    device_class_set_props(dc, nvme_props);
8527    dc->vmsd = &nvme_vmstate;
8528    dc->reset = nvme_pci_reset;
8529}
8530
8531static void nvme_instance_init(Object *obj)
8532{
8533    NvmeCtrl *n = NVME(obj);
8534
8535    device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
8536                                  "bootindex", "/namespace@1,0",
8537                                  DEVICE(obj));
8538
8539    object_property_add(obj, "smart_critical_warning", "uint8",
8540                        nvme_get_smart_warning,
8541                        nvme_set_smart_warning, NULL, NULL);
8542}
8543
8544static const TypeInfo nvme_info = {
8545    .name          = TYPE_NVME,
8546    .parent        = TYPE_PCI_DEVICE,
8547    .instance_size = sizeof(NvmeCtrl),
8548    .instance_init = nvme_instance_init,
8549    .class_init    = nvme_class_init,
8550    .interfaces = (InterfaceInfo[]) {
8551        { INTERFACE_PCIE_DEVICE },
8552        { }
8553    },
8554};
8555
8556static const TypeInfo nvme_bus_info = {
8557    .name = TYPE_NVME_BUS,
8558    .parent = TYPE_BUS,
8559    .instance_size = sizeof(NvmeBus),
8560};
8561
8562static void nvme_register_types(void)
8563{
8564    type_register_static(&nvme_info);
8565    type_register_static(&nvme_bus_info);
8566}
8567
8568type_init(nvme_register_types)
8569