qemu/hw/ssi/aspeed_smc.c
<<
>>
Prefs
   1/*
   2 * ASPEED AST2400 SMC Controller (SPI Flash Only)
   3 *
   4 * Copyright (C) 2016 IBM Corp.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "hw/sysbus.h"
  27#include "migration/vmstate.h"
  28#include "qemu/log.h"
  29#include "qemu/module.h"
  30#include "qemu/error-report.h"
  31#include "qapi/error.h"
  32#include "qemu/units.h"
  33#include "trace.h"
  34
  35#include "hw/irq.h"
  36#include "hw/qdev-properties.h"
  37#include "hw/ssi/aspeed_smc.h"
  38
  39/* CE Type Setting Register */
  40#define R_CONF            (0x00 / 4)
  41#define   CONF_LEGACY_DISABLE  (1 << 31)
  42#define   CONF_ENABLE_W4       20
  43#define   CONF_ENABLE_W3       19
  44#define   CONF_ENABLE_W2       18
  45#define   CONF_ENABLE_W1       17
  46#define   CONF_ENABLE_W0       16
  47#define   CONF_FLASH_TYPE4     8
  48#define   CONF_FLASH_TYPE3     6
  49#define   CONF_FLASH_TYPE2     4
  50#define   CONF_FLASH_TYPE1     2
  51#define   CONF_FLASH_TYPE0     0
  52#define      CONF_FLASH_TYPE_NOR   0x0
  53#define      CONF_FLASH_TYPE_NAND  0x1
  54#define      CONF_FLASH_TYPE_SPI   0x2 /* AST2600 is SPI only */
  55
  56/* CE Control Register */
  57#define R_CE_CTRL            (0x04 / 4)
  58#define   CTRL_EXTENDED4       4  /* 32 bit addressing for SPI */
  59#define   CTRL_EXTENDED3       3  /* 32 bit addressing for SPI */
  60#define   CTRL_EXTENDED2       2  /* 32 bit addressing for SPI */
  61#define   CTRL_EXTENDED1       1  /* 32 bit addressing for SPI */
  62#define   CTRL_EXTENDED0       0  /* 32 bit addressing for SPI */
  63
  64/* Interrupt Control and Status Register */
  65#define R_INTR_CTRL       (0x08 / 4)
  66#define   INTR_CTRL_DMA_STATUS            (1 << 11)
  67#define   INTR_CTRL_CMD_ABORT_STATUS      (1 << 10)
  68#define   INTR_CTRL_WRITE_PROTECT_STATUS  (1 << 9)
  69#define   INTR_CTRL_DMA_EN                (1 << 3)
  70#define   INTR_CTRL_CMD_ABORT_EN          (1 << 2)
  71#define   INTR_CTRL_WRITE_PROTECT_EN      (1 << 1)
  72
  73/* Command Control Register */
  74#define R_CE_CMD_CTRL      (0x0C / 4)
  75#define   CTRL_ADDR_BYTE0_DISABLE_SHIFT       4
  76#define   CTRL_DATA_BYTE0_DISABLE_SHIFT       0
  77
  78#define aspeed_smc_addr_byte_enabled(s, i)                               \
  79    (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i)))))
  80#define aspeed_smc_data_byte_enabled(s, i)                               \
  81    (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i)))))
  82
  83/* CEx Control Register */
  84#define R_CTRL0           (0x10 / 4)
  85#define   CTRL_IO_QPI              (1 << 31)
  86#define   CTRL_IO_QUAD_DATA        (1 << 30)
  87#define   CTRL_IO_DUAL_DATA        (1 << 29)
  88#define   CTRL_IO_DUAL_ADDR_DATA   (1 << 28) /* Includes dummies */
  89#define   CTRL_IO_QUAD_ADDR_DATA   (1 << 28) /* Includes dummies */
  90#define   CTRL_CMD_SHIFT           16
  91#define   CTRL_CMD_MASK            0xff
  92#define   CTRL_DUMMY_HIGH_SHIFT    14
  93#define   CTRL_AST2400_SPI_4BYTE   (1 << 13)
  94#define CE_CTRL_CLOCK_FREQ_SHIFT   8
  95#define CE_CTRL_CLOCK_FREQ_MASK    0xf
  96#define CE_CTRL_CLOCK_FREQ(div)                                         \
  97    (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
  98#define   CTRL_DUMMY_LOW_SHIFT     6 /* 2 bits [7:6] */
  99#define   CTRL_CE_STOP_ACTIVE      (1 << 2)
 100#define   CTRL_CMD_MODE_MASK       0x3
 101#define     CTRL_READMODE          0x0
 102#define     CTRL_FREADMODE         0x1
 103#define     CTRL_WRITEMODE         0x2
 104#define     CTRL_USERMODE          0x3
 105#define R_CTRL1           (0x14 / 4)
 106#define R_CTRL2           (0x18 / 4)
 107#define R_CTRL3           (0x1C / 4)
 108#define R_CTRL4           (0x20 / 4)
 109
 110/* CEx Segment Address Register */
 111#define R_SEG_ADDR0       (0x30 / 4)
 112#define   SEG_END_SHIFT        24   /* 8MB units */
 113#define   SEG_END_MASK         0xff
 114#define   SEG_START_SHIFT      16   /* address bit [A29-A23] */
 115#define   SEG_START_MASK       0xff
 116#define R_SEG_ADDR1       (0x34 / 4)
 117#define R_SEG_ADDR2       (0x38 / 4)
 118#define R_SEG_ADDR3       (0x3C / 4)
 119#define R_SEG_ADDR4       (0x40 / 4)
 120
 121/* Misc Control Register #1 */
 122#define R_MISC_CTRL1      (0x50 / 4)
 123
 124/* SPI dummy cycle data */
 125#define R_DUMMY_DATA      (0x54 / 4)
 126
 127/* FMC_WDT2 Control/Status Register for Alternate Boot (AST2600) */
 128#define R_FMC_WDT2_CTRL   (0x64 / 4)
 129#define   FMC_WDT2_CTRL_ALT_BOOT_MODE    BIT(6) /* O: 2 chips 1: 1 chip */
 130#define   FMC_WDT2_CTRL_SINGLE_BOOT_MODE BIT(5)
 131#define   FMC_WDT2_CTRL_BOOT_SOURCE      BIT(4) /* O: primary 1: alternate */
 132#define   FMC_WDT2_CTRL_EN               BIT(0)
 133
 134/* DMA Control/Status Register */
 135#define R_DMA_CTRL        (0x80 / 4)
 136#define   DMA_CTRL_REQUEST      (1 << 31)
 137#define   DMA_CTRL_GRANT        (1 << 30)
 138#define   DMA_CTRL_DELAY_MASK   0xf
 139#define   DMA_CTRL_DELAY_SHIFT  8
 140#define   DMA_CTRL_FREQ_MASK    0xf
 141#define   DMA_CTRL_FREQ_SHIFT   4
 142#define   DMA_CTRL_CALIB        (1 << 3)
 143#define   DMA_CTRL_CKSUM        (1 << 2)
 144#define   DMA_CTRL_WRITE        (1 << 1)
 145#define   DMA_CTRL_ENABLE       (1 << 0)
 146
 147/* DMA Flash Side Address */
 148#define R_DMA_FLASH_ADDR  (0x84 / 4)
 149
 150/* DMA DRAM Side Address */
 151#define R_DMA_DRAM_ADDR   (0x88 / 4)
 152
 153/* DMA Length Register */
 154#define R_DMA_LEN         (0x8C / 4)
 155
 156/* Checksum Calculation Result */
 157#define R_DMA_CHECKSUM    (0x90 / 4)
 158
 159/* Read Timing Compensation Register */
 160#define R_TIMINGS         (0x94 / 4)
 161
 162/* SPI controller registers and bits (AST2400) */
 163#define R_SPI_CONF        (0x00 / 4)
 164#define   SPI_CONF_ENABLE_W0   0
 165#define R_SPI_CTRL0       (0x4 / 4)
 166#define R_SPI_MISC_CTRL   (0x10 / 4)
 167#define R_SPI_TIMINGS     (0x14 / 4)
 168
 169#define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
 170#define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
 171
 172/*
 173 * DMA DRAM addresses should be 4 bytes aligned and the valid address
 174 * range is 0x40000000 - 0x5FFFFFFF (AST2400)
 175 *          0x80000000 - 0xBFFFFFFF (AST2500)
 176 *
 177 * DMA flash addresses should be 4 bytes aligned and the valid address
 178 * range is 0x20000000 - 0x2FFFFFFF.
 179 *
 180 * DMA length is from 4 bytes to 32MB
 181 *   0: 4 bytes
 182 *   0x7FFFFF: 32M bytes
 183 */
 184#define DMA_DRAM_ADDR(asc, val)   ((val) & (asc)->dma_dram_mask)
 185#define DMA_FLASH_ADDR(asc, val)  ((val) & (asc)->dma_flash_mask)
 186#define DMA_LENGTH(val)         ((val) & 0x01FFFFFC)
 187
 188/* Flash opcodes. */
 189#define SPI_OP_READ       0x03    /* Read data bytes (low frequency) */
 190
 191#define SNOOP_OFF         0xFF
 192#define SNOOP_START       0x0
 193
 194/*
 195 * Default segments mapping addresses and size for each peripheral per
 196 * controller. These can be changed when board is initialized with the
 197 * Segment Address Registers.
 198 */
 199static const AspeedSegments aspeed_2500_spi1_segments[];
 200static const AspeedSegments aspeed_2500_spi2_segments[];
 201
 202#define ASPEED_SMC_FEATURE_DMA       0x1
 203#define ASPEED_SMC_FEATURE_DMA_GRANT 0x2
 204#define ASPEED_SMC_FEATURE_WDT_CONTROL 0x4
 205
 206static inline bool aspeed_smc_has_dma(const AspeedSMCClass *asc)
 207{
 208    return !!(asc->features & ASPEED_SMC_FEATURE_DMA);
 209}
 210
 211static inline bool aspeed_smc_has_wdt_control(const AspeedSMCClass *asc)
 212{
 213    return !!(asc->features & ASPEED_SMC_FEATURE_WDT_CONTROL);
 214}
 215
 216#define aspeed_smc_error(fmt, ...)                                      \
 217    qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## __VA_ARGS__)
 218
 219static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
 220                                     const AspeedSegments *new,
 221                                     int cs)
 222{
 223    AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
 224    AspeedSegments seg;
 225    int i;
 226
 227    for (i = 0; i < asc->cs_num_max; i++) {
 228        if (i == cs) {
 229            continue;
 230        }
 231
 232        asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
 233
 234        if (new->addr + new->size > seg.addr &&
 235            new->addr < seg.addr + seg.size) {
 236            aspeed_smc_error("new segment CS%d [ 0x%"
 237                             HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
 238                             "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
 239                             cs, new->addr, new->addr + new->size,
 240                             i, seg.addr, seg.addr + seg.size);
 241            return true;
 242        }
 243    }
 244    return false;
 245}
 246
 247static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
 248                                                uint64_t regval)
 249{
 250    AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
 251    AspeedSMCFlash *fl = &s->flashes[cs];
 252    AspeedSegments seg;
 253
 254    asc->reg_to_segment(s, regval, &seg);
 255
 256    memory_region_transaction_begin();
 257    memory_region_set_size(&fl->mmio, seg.size);
 258    memory_region_set_address(&fl->mmio, seg.addr - asc->flash_window_base);
 259    memory_region_set_enabled(&fl->mmio, !!seg.size);
 260    memory_region_transaction_commit();
 261
 262    if (asc->segment_addr_mask) {
 263        regval &= asc->segment_addr_mask;
 264    }
 265
 266    s->regs[R_SEG_ADDR0 + cs] = regval;
 267}
 268
 269static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
 270                                         uint64_t new)
 271{
 272    AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
 273    AspeedSegments seg;
 274
 275    asc->reg_to_segment(s, new, &seg);
 276
 277    trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
 278
 279    /* The start address of CS0 is read-only */
 280    if (cs == 0 && seg.addr != asc->flash_window_base) {
 281        aspeed_smc_error("Tried to change CS0 start address to 0x%"
 282                         HWADDR_PRIx, seg.addr);
 283        seg.addr = asc->flash_window_base;
 284        new = asc->segment_to_reg(s, &seg);
 285    }
 286
 287    /*
 288     * The end address of the AST2500 spi controllers is also
 289     * read-only.
 290     */
 291    if ((asc->segments == aspeed_2500_spi1_segments ||
 292         asc->segments == aspeed_2500_spi2_segments) &&
 293        cs == asc->cs_num_max &&
 294        seg.addr + seg.size != asc->segments[cs].addr +
 295        asc->segments[cs].size) {
 296        aspeed_smc_error("Tried to change CS%d end address to 0x%"
 297                         HWADDR_PRIx, cs, seg.addr + seg.size);
 298        seg.size = asc->segments[cs].addr + asc->segments[cs].size -
 299            seg.addr;
 300        new = asc->segment_to_reg(s, &seg);
 301    }
 302
 303    /* Keep the segment in the overall flash window */
 304    if (seg.size &&
 305        (seg.addr + seg.size <= asc->flash_window_base ||
 306         seg.addr > asc->flash_window_base + asc->flash_window_size)) {
 307        aspeed_smc_error("new segment for CS%d is invalid : "
 308                         "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
 309                         cs, seg.addr, seg.addr + seg.size);
 310        return;
 311    }
 312
 313    /* Check start address vs. alignment */
 314    if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
 315        aspeed_smc_error("new segment for CS%d is not "
 316                         "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
 317                         cs, seg.addr, seg.addr + seg.size);
 318    }
 319
 320    /* And segments should not overlap (in the specs) */
 321    aspeed_smc_flash_overlap(s, &seg, cs);
 322
 323    /* All should be fine now to move the region */
 324    aspeed_smc_flash_set_segment_region(s, cs, new);
 325}
 326
 327static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
 328                                              unsigned size)
 329{
 330    aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u", addr, size);
 331    return 0;
 332}
 333
 334static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
 335                                           uint64_t data, unsigned size)
 336{
 337    aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u: 0x%" PRIx64,
 338                     addr, size, data);
 339}
 340
 341static const MemoryRegionOps aspeed_smc_flash_default_ops = {
 342    .read = aspeed_smc_flash_default_read,
 343    .write = aspeed_smc_flash_default_write,
 344    .endianness = DEVICE_LITTLE_ENDIAN,
 345    .valid = {
 346        .min_access_size = 1,
 347        .max_access_size = 4,
 348    },
 349};
 350
 351static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
 352{
 353    const AspeedSMCState *s = fl->controller;
 354
 355    return s->regs[s->r_ctrl0 + fl->cs] & CTRL_CMD_MODE_MASK;
 356}
 357
 358static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
 359{
 360    const AspeedSMCState *s = fl->controller;
 361
 362    return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->cs));
 363}
 364
 365static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
 366{
 367    const AspeedSMCState *s = fl->controller;
 368    int cmd = (s->regs[s->r_ctrl0 + fl->cs] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
 369
 370    /*
 371     * In read mode, the default SPI command is READ (0x3). In other
 372     * modes, the command should necessarily be defined
 373     *
 374     * TODO: add support for READ4 (0x13) on AST2600
 375     */
 376    if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
 377        cmd = SPI_OP_READ;
 378    }
 379
 380    if (!cmd) {
 381        aspeed_smc_error("no command defined for mode %d",
 382                         aspeed_smc_flash_mode(fl));
 383    }
 384
 385    return cmd;
 386}
 387
 388static inline int aspeed_smc_flash_addr_width(const AspeedSMCFlash *fl)
 389{
 390    const AspeedSMCState *s = fl->controller;
 391    AspeedSMCClass *asc = fl->asc;
 392
 393    if (asc->addr_width) {
 394        return asc->addr_width(s);
 395    } else {
 396        return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->cs)) ? 4 : 3;
 397    }
 398}
 399
 400static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
 401{
 402    AspeedSMCState *s = fl->controller;
 403
 404    trace_aspeed_smc_flash_select(fl->cs, unselect ? "un" : "");
 405
 406    qemu_set_irq(s->cs_lines[fl->cs], unselect);
 407}
 408
 409static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
 410{
 411    aspeed_smc_flash_do_select(fl, false);
 412}
 413
 414static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
 415{
 416    aspeed_smc_flash_do_select(fl, true);
 417}
 418
 419static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
 420                                              uint32_t addr)
 421{
 422    const AspeedSMCState *s = fl->controller;
 423    AspeedSMCClass *asc = fl->asc;
 424    AspeedSegments seg;
 425
 426    asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->cs], &seg);
 427    if ((addr % seg.size) != addr) {
 428        aspeed_smc_error("invalid address 0x%08x for CS%d segment : "
 429                         "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
 430                         addr, fl->cs, seg.addr, seg.addr + seg.size);
 431        addr %= seg.size;
 432    }
 433
 434    return addr;
 435}
 436
 437static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
 438{
 439    const AspeedSMCState *s = fl->controller;
 440    uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->cs];
 441    uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
 442    uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
 443    uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
 444
 445    if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
 446        dummies /= 2;
 447    }
 448
 449    return dummies;
 450}
 451
 452static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
 453{
 454    const AspeedSMCState *s = fl->controller;
 455    uint8_t cmd = aspeed_smc_flash_cmd(fl);
 456    int i = aspeed_smc_flash_addr_width(fl);
 457
 458    /* Flash access can not exceed CS segment */
 459    addr = aspeed_smc_check_segment_addr(fl, addr);
 460
 461    ssi_transfer(s->spi, cmd);
 462    while (i--) {
 463        if (aspeed_smc_addr_byte_enabled(s, i)) {
 464            ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff);
 465        }
 466    }
 467
 468    /*
 469     * Use fake transfers to model dummy bytes. The value should
 470     * be configured to some non-zero value in fast read mode and
 471     * zero in read mode. But, as the HW allows inconsistent
 472     * settings, let's check for fast read mode.
 473     */
 474    if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
 475        for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
 476            ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
 477        }
 478    }
 479}
 480
 481static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
 482{
 483    AspeedSMCFlash *fl = opaque;
 484    AspeedSMCState *s = fl->controller;
 485    uint64_t ret = 0;
 486    int i;
 487
 488    switch (aspeed_smc_flash_mode(fl)) {
 489    case CTRL_USERMODE:
 490        for (i = 0; i < size; i++) {
 491            ret |= (uint64_t) ssi_transfer(s->spi, 0x0) << (8 * i);
 492        }
 493        break;
 494    case CTRL_READMODE:
 495    case CTRL_FREADMODE:
 496        aspeed_smc_flash_select(fl);
 497        aspeed_smc_flash_setup(fl, addr);
 498
 499        for (i = 0; i < size; i++) {
 500            ret |= (uint64_t) ssi_transfer(s->spi, 0x0) << (8 * i);
 501        }
 502
 503        aspeed_smc_flash_unselect(fl);
 504        break;
 505    default:
 506        aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
 507    }
 508
 509    trace_aspeed_smc_flash_read(fl->cs, addr, size, ret,
 510                                aspeed_smc_flash_mode(fl));
 511    return ret;
 512}
 513
 514/*
 515 * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
 516 * common include header.
 517 */
 518typedef enum {
 519    READ = 0x3,         READ_4 = 0x13,
 520    FAST_READ = 0xb,    FAST_READ_4 = 0x0c,
 521    DOR = 0x3b,         DOR_4 = 0x3c,
 522    QOR = 0x6b,         QOR_4 = 0x6c,
 523    DIOR = 0xbb,        DIOR_4 = 0xbc,
 524    QIOR = 0xeb,        QIOR_4 = 0xec,
 525
 526    PP = 0x2,           PP_4 = 0x12,
 527    DPP = 0xa2,
 528    QPP = 0x32,         QPP_4 = 0x34,
 529} FlashCMD;
 530
 531static int aspeed_smc_num_dummies(uint8_t command)
 532{
 533    switch (command) { /* check for dummies */
 534    case READ: /* no dummy bytes/cycles */
 535    case PP:
 536    case DPP:
 537    case QPP:
 538    case READ_4:
 539    case PP_4:
 540    case QPP_4:
 541        return 0;
 542    case FAST_READ:
 543    case DOR:
 544    case QOR:
 545    case FAST_READ_4:
 546    case DOR_4:
 547    case QOR_4:
 548        return 1;
 549    case DIOR:
 550    case DIOR_4:
 551        return 2;
 552    case QIOR:
 553    case QIOR_4:
 554        return 4;
 555    default:
 556        return -1;
 557    }
 558}
 559
 560static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl,  uint64_t data,
 561                                unsigned size)
 562{
 563    AspeedSMCState *s = fl->controller;
 564    uint8_t addr_width = aspeed_smc_flash_addr_width(fl);
 565
 566    trace_aspeed_smc_do_snoop(fl->cs, s->snoop_index, s->snoop_dummies,
 567                              (uint8_t) data & 0xff);
 568
 569    if (s->snoop_index == SNOOP_OFF) {
 570        return false; /* Do nothing */
 571
 572    } else if (s->snoop_index == SNOOP_START) {
 573        uint8_t cmd = data & 0xff;
 574        int ndummies = aspeed_smc_num_dummies(cmd);
 575
 576        /*
 577         * No dummy cycles are expected with the current command. Turn
 578         * off snooping and let the transfer proceed normally.
 579         */
 580        if (ndummies <= 0) {
 581            s->snoop_index = SNOOP_OFF;
 582            return false;
 583        }
 584
 585        s->snoop_dummies = ndummies * 8;
 586
 587    } else if (s->snoop_index >= addr_width + 1) {
 588
 589        /* The SPI transfer has reached the dummy cycles sequence */
 590        for (; s->snoop_dummies; s->snoop_dummies--) {
 591            ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
 592        }
 593
 594        /* If no more dummy cycles are expected, turn off snooping */
 595        if (!s->snoop_dummies) {
 596            s->snoop_index = SNOOP_OFF;
 597        } else {
 598            s->snoop_index += size;
 599        }
 600
 601        /*
 602         * Dummy cycles have been faked already. Ignore the current
 603         * SPI transfer
 604         */
 605        return true;
 606    }
 607
 608    s->snoop_index += size;
 609    return false;
 610}
 611
 612static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
 613                                   unsigned size)
 614{
 615    AspeedSMCFlash *fl = opaque;
 616    AspeedSMCState *s = fl->controller;
 617    int i;
 618
 619    trace_aspeed_smc_flash_write(fl->cs, addr, size, data,
 620                                 aspeed_smc_flash_mode(fl));
 621
 622    if (!aspeed_smc_is_writable(fl)) {
 623        aspeed_smc_error("flash is not writable at 0x%" HWADDR_PRIx, addr);
 624        return;
 625    }
 626
 627    switch (aspeed_smc_flash_mode(fl)) {
 628    case CTRL_USERMODE:
 629        if (aspeed_smc_do_snoop(fl, data, size)) {
 630            break;
 631        }
 632
 633        for (i = 0; i < size; i++) {
 634            ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
 635        }
 636        break;
 637    case CTRL_WRITEMODE:
 638        aspeed_smc_flash_select(fl);
 639        aspeed_smc_flash_setup(fl, addr);
 640
 641        for (i = 0; i < size; i++) {
 642            ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
 643        }
 644
 645        aspeed_smc_flash_unselect(fl);
 646        break;
 647    default:
 648        aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
 649    }
 650}
 651
 652static const MemoryRegionOps aspeed_smc_flash_ops = {
 653    .read = aspeed_smc_flash_read,
 654    .write = aspeed_smc_flash_write,
 655    .endianness = DEVICE_LITTLE_ENDIAN,
 656    .valid = {
 657        .min_access_size = 1,
 658        .max_access_size = 4,
 659    },
 660};
 661
 662static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
 663{
 664    AspeedSMCState *s = fl->controller;
 665    bool unselect;
 666
 667    /* User mode selects the CS, other modes unselect */
 668    unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
 669
 670    /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
 671    if (!(s->regs[s->r_ctrl0 + fl->cs] & CTRL_CE_STOP_ACTIVE) &&
 672        value & CTRL_CE_STOP_ACTIVE) {
 673        unselect = true;
 674    }
 675
 676    s->regs[s->r_ctrl0 + fl->cs] = value;
 677
 678    s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
 679
 680    aspeed_smc_flash_do_select(fl, unselect);
 681}
 682
 683static void aspeed_smc_reset(DeviceState *d)
 684{
 685    AspeedSMCState *s = ASPEED_SMC(d);
 686    AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
 687    int i;
 688
 689    if (asc->resets) {
 690        memcpy(s->regs, asc->resets, sizeof s->regs);
 691    } else {
 692        memset(s->regs, 0, sizeof s->regs);
 693    }
 694
 695    /* Unselect all peripherals */
 696    for (i = 0; i < asc->cs_num_max; ++i) {
 697        s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
 698        qemu_set_irq(s->cs_lines[i], true);
 699    }
 700
 701    /* setup the default segment register values and regions for all */
 702    for (i = 0; i < asc->cs_num_max; ++i) {
 703        aspeed_smc_flash_set_segment_region(s, i,
 704                    asc->segment_to_reg(s, &asc->segments[i]));
 705    }
 706
 707    s->snoop_index = SNOOP_OFF;
 708    s->snoop_dummies = 0;
 709}
 710
 711static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
 712{
 713    AspeedSMCState *s = ASPEED_SMC(opaque);
 714    AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(opaque);
 715
 716    addr >>= 2;
 717
 718    if (addr == s->r_conf ||
 719        (addr >= s->r_timings &&
 720         addr < s->r_timings + asc->nregs_timings) ||
 721        addr == s->r_ce_ctrl ||
 722        addr == R_CE_CMD_CTRL ||
 723        addr == R_INTR_CTRL ||
 724        addr == R_DUMMY_DATA ||
 725        (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) ||
 726        (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) ||
 727        (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR) ||
 728        (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR) ||
 729        (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN) ||
 730        (aspeed_smc_has_dma(asc) && addr == R_DMA_CHECKSUM) ||
 731        (addr >= R_SEG_ADDR0 &&
 732         addr < R_SEG_ADDR0 + asc->cs_num_max) ||
 733        (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->cs_num_max)) {
 734
 735        trace_aspeed_smc_read(addr << 2, size, s->regs[addr]);
 736
 737        return s->regs[addr];
 738    } else {
 739        qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
 740                      __func__, addr);
 741        return -1;
 742    }
 743}
 744
 745static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
 746{
 747    /* HCLK/1 .. HCLK/16 */
 748    const uint8_t hclk_divisors[] = {
 749        15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
 750    };
 751    int i;
 752
 753    for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
 754        if (hclk_mask == hclk_divisors[i]) {
 755            return i + 1;
 756        }
 757    }
 758
 759    aspeed_smc_error("invalid HCLK mask %x", hclk_mask);
 760    return 0;
 761}
 762
 763/*
 764 * When doing calibration, the SPI clock rate in the CE0 Control
 765 * Register and the read delay cycles in the Read Timing Compensation
 766 * Register are set using bit[11:4] of the DMA Control Register.
 767 */
 768static void aspeed_smc_dma_calibration(AspeedSMCState *s)
 769{
 770    uint8_t delay =
 771        (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
 772    uint8_t hclk_mask =
 773        (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
 774    uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
 775    uint32_t hclk_shift = (hclk_div - 1) << 2;
 776    uint8_t cs;
 777
 778    /*
 779     * The Read Timing Compensation Register values apply to all CS on
 780     * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
 781     */
 782    if (hclk_div && hclk_div < 6) {
 783        s->regs[s->r_timings] &= ~(0xf << hclk_shift);
 784        s->regs[s->r_timings] |= delay << hclk_shift;
 785    }
 786
 787    /*
 788     * TODO: compute the CS from the DMA address and the segment
 789     * registers. This is not really a problem for now because the
 790     * Timing Register values apply to all CS and software uses CS0 to
 791     * do calibration.
 792     */
 793    cs = 0;
 794    s->regs[s->r_ctrl0 + cs] &=
 795        ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
 796    s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
 797}
 798
 799/*
 800 * Emulate read errors in the DMA Checksum Register for high
 801 * frequencies and optimistic settings of the Read Timing Compensation
 802 * Register. This will help in tuning the SPI timing calibration
 803 * algorithm.
 804 */
 805static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
 806{
 807    uint8_t delay =
 808        (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
 809    uint8_t hclk_mask =
 810        (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
 811
 812    /*
 813     * Typical values of a palmetto-bmc machine.
 814     */
 815    switch (aspeed_smc_hclk_divisor(hclk_mask)) {
 816    case 4 ... 16:
 817        return false;
 818    case 3: /* at least one HCLK cycle delay */
 819        return (delay & 0x7) < 1;
 820    case 2: /* at least two HCLK cycle delay */
 821        return (delay & 0x7) < 2;
 822    case 1: /* (> 100MHz) is above the max freq of the controller */
 823        return true;
 824    default:
 825        g_assert_not_reached();
 826    }
 827}
 828
 829/*
 830 * Accumulate the result of the reads to provide a checksum that will
 831 * be used to validate the read timing settings.
 832 */
 833static void aspeed_smc_dma_checksum(AspeedSMCState *s)
 834{
 835    MemTxResult result;
 836    uint32_t data;
 837
 838    if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
 839        aspeed_smc_error("invalid direction for DMA checksum");
 840        return;
 841    }
 842
 843    if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
 844        aspeed_smc_dma_calibration(s);
 845    }
 846
 847    while (s->regs[R_DMA_LEN]) {
 848        data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
 849                                    MEMTXATTRS_UNSPECIFIED, &result);
 850        if (result != MEMTX_OK) {
 851            aspeed_smc_error("Flash read failed @%08x",
 852                             s->regs[R_DMA_FLASH_ADDR]);
 853            return;
 854        }
 855        trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
 856
 857        /*
 858         * When the DMA is on-going, the DMA registers are updated
 859         * with the current working addresses and length.
 860         */
 861        s->regs[R_DMA_CHECKSUM] += data;
 862        s->regs[R_DMA_FLASH_ADDR] += 4;
 863        s->regs[R_DMA_LEN] -= 4;
 864    }
 865
 866    if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
 867        s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
 868    }
 869
 870}
 871
 872static void aspeed_smc_dma_rw(AspeedSMCState *s)
 873{
 874    MemTxResult result;
 875    uint32_t data;
 876
 877    trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ?
 878                            "write" : "read",
 879                            s->regs[R_DMA_FLASH_ADDR],
 880                            s->regs[R_DMA_DRAM_ADDR],
 881                            s->regs[R_DMA_LEN]);
 882    while (s->regs[R_DMA_LEN]) {
 883        if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
 884            data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
 885                                        MEMTXATTRS_UNSPECIFIED, &result);
 886            if (result != MEMTX_OK) {
 887                aspeed_smc_error("DRAM read failed @%08x",
 888                                 s->regs[R_DMA_DRAM_ADDR]);
 889                return;
 890            }
 891
 892            address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
 893                                 data, MEMTXATTRS_UNSPECIFIED, &result);
 894            if (result != MEMTX_OK) {
 895                aspeed_smc_error("Flash write failed @%08x",
 896                                 s->regs[R_DMA_FLASH_ADDR]);
 897                return;
 898            }
 899        } else {
 900            data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
 901                                        MEMTXATTRS_UNSPECIFIED, &result);
 902            if (result != MEMTX_OK) {
 903                aspeed_smc_error("Flash read failed @%08x",
 904                                 s->regs[R_DMA_FLASH_ADDR]);
 905                return;
 906            }
 907
 908            address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
 909                                 data, MEMTXATTRS_UNSPECIFIED, &result);
 910            if (result != MEMTX_OK) {
 911                aspeed_smc_error("DRAM write failed @%08x",
 912                                 s->regs[R_DMA_DRAM_ADDR]);
 913                return;
 914            }
 915        }
 916
 917        /*
 918         * When the DMA is on-going, the DMA registers are updated
 919         * with the current working addresses and length.
 920         */
 921        s->regs[R_DMA_FLASH_ADDR] += 4;
 922        s->regs[R_DMA_DRAM_ADDR] += 4;
 923        s->regs[R_DMA_LEN] -= 4;
 924        s->regs[R_DMA_CHECKSUM] += data;
 925    }
 926}
 927
 928static void aspeed_smc_dma_stop(AspeedSMCState *s)
 929{
 930    /*
 931     * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
 932     * engine is idle
 933     */
 934    s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
 935    s->regs[R_DMA_CHECKSUM] = 0;
 936
 937    /*
 938     * Lower the DMA irq in any case. The IRQ control register could
 939     * have been cleared before disabling the DMA.
 940     */
 941    qemu_irq_lower(s->irq);
 942}
 943
 944/*
 945 * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
 946 * can start even if the result of the previous was not collected.
 947 */
 948static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
 949{
 950    return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
 951        !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
 952}
 953
 954static void aspeed_smc_dma_done(AspeedSMCState *s)
 955{
 956    s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
 957    if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
 958        qemu_irq_raise(s->irq);
 959    }
 960}
 961
 962static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
 963{
 964    if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
 965        s->regs[R_DMA_CTRL] = dma_ctrl;
 966
 967        aspeed_smc_dma_stop(s);
 968        return;
 969    }
 970
 971    if (aspeed_smc_dma_in_progress(s)) {
 972        aspeed_smc_error("DMA in progress !");
 973        return;
 974    }
 975
 976    s->regs[R_DMA_CTRL] = dma_ctrl;
 977
 978    if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
 979        aspeed_smc_dma_checksum(s);
 980    } else {
 981        aspeed_smc_dma_rw(s);
 982    }
 983
 984    aspeed_smc_dma_done(s);
 985}
 986
 987static inline bool aspeed_smc_dma_granted(AspeedSMCState *s)
 988{
 989    AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
 990
 991    if (!(asc->features & ASPEED_SMC_FEATURE_DMA_GRANT)) {
 992        return true;
 993    }
 994
 995    if (!(s->regs[R_DMA_CTRL] & DMA_CTRL_GRANT)) {
 996        aspeed_smc_error("DMA not granted");
 997        return false;
 998    }
 999
1000    return true;
1001}
1002
1003static void aspeed_2600_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
1004{
1005    /* Preserve DMA bits  */
1006    dma_ctrl |= s->regs[R_DMA_CTRL] & (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1007
1008    if (dma_ctrl == 0xAEED0000) {
1009        /* automatically grant request */
1010        s->regs[R_DMA_CTRL] |= (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1011        return;
1012    }
1013
1014    /* clear request */
1015    if (dma_ctrl == 0xDEEA0000) {
1016        s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1017        return;
1018    }
1019
1020    if (!aspeed_smc_dma_granted(s)) {
1021        aspeed_smc_error("DMA not granted");
1022        return;
1023    }
1024
1025    aspeed_smc_dma_ctrl(s, dma_ctrl);
1026    s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1027}
1028
1029static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1030                             unsigned int size)
1031{
1032    AspeedSMCState *s = ASPEED_SMC(opaque);
1033    AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1034    uint32_t value = data;
1035
1036    trace_aspeed_smc_write(addr, size, data);
1037
1038    addr >>= 2;
1039
1040    if (addr == s->r_conf ||
1041        (addr >= s->r_timings &&
1042         addr < s->r_timings + asc->nregs_timings) ||
1043        addr == s->r_ce_ctrl) {
1044        s->regs[addr] = value;
1045    } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->cs_num_max) {
1046        int cs = addr - s->r_ctrl0;
1047        aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
1048    } else if (addr >= R_SEG_ADDR0 &&
1049               addr < R_SEG_ADDR0 + asc->cs_num_max) {
1050        int cs = addr - R_SEG_ADDR0;
1051
1052        if (value != s->regs[R_SEG_ADDR0 + cs]) {
1053            aspeed_smc_flash_set_segment(s, cs, value);
1054        }
1055    } else if (addr == R_CE_CMD_CTRL) {
1056        s->regs[addr] = value & 0xff;
1057    } else if (addr == R_DUMMY_DATA) {
1058        s->regs[addr] = value & 0xff;
1059    } else if (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) {
1060        s->regs[addr] = value & FMC_WDT2_CTRL_EN;
1061    } else if (addr == R_INTR_CTRL) {
1062        s->regs[addr] = value;
1063    } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) {
1064        asc->dma_ctrl(s, value);
1065    } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR &&
1066               aspeed_smc_dma_granted(s)) {
1067        s->regs[addr] = DMA_DRAM_ADDR(asc, value);
1068    } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR &&
1069               aspeed_smc_dma_granted(s)) {
1070        s->regs[addr] = DMA_FLASH_ADDR(asc, value);
1071    } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN &&
1072               aspeed_smc_dma_granted(s)) {
1073        s->regs[addr] = DMA_LENGTH(value);
1074    } else {
1075        qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1076                      __func__, addr);
1077        return;
1078    }
1079}
1080
1081static const MemoryRegionOps aspeed_smc_ops = {
1082    .read = aspeed_smc_read,
1083    .write = aspeed_smc_write,
1084    .endianness = DEVICE_LITTLE_ENDIAN,
1085};
1086
1087static void aspeed_smc_instance_init(Object *obj)
1088{
1089    AspeedSMCState *s = ASPEED_SMC(obj);
1090    AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1091    int i;
1092
1093    for (i = 0; i < asc->cs_num_max; i++) {
1094        object_initialize_child(obj, "flash[*]", &s->flashes[i],
1095                                TYPE_ASPEED_SMC_FLASH);
1096    }
1097}
1098
1099/*
1100 * Initialize the custom address spaces for DMAs
1101 */
1102static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1103{
1104    if (!s->dram_mr) {
1105        error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1106        return;
1107    }
1108
1109    address_space_init(&s->flash_as, &s->mmio_flash,
1110                       TYPE_ASPEED_SMC ".dma-flash");
1111    address_space_init(&s->dram_as, s->dram_mr,
1112                       TYPE_ASPEED_SMC ".dma-dram");
1113}
1114
1115static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1116{
1117    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1118    AspeedSMCState *s = ASPEED_SMC(dev);
1119    AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1120    int i;
1121    hwaddr offset = 0;
1122
1123    /* keep a copy under AspeedSMCState to speed up accesses */
1124    s->r_conf = asc->r_conf;
1125    s->r_ce_ctrl = asc->r_ce_ctrl;
1126    s->r_ctrl0 = asc->r_ctrl0;
1127    s->r_timings = asc->r_timings;
1128    s->conf_enable_w0 = asc->conf_enable_w0;
1129
1130    /* DMA irq. Keep it first for the initialization in the SoC */
1131    sysbus_init_irq(sbd, &s->irq);
1132
1133    s->spi = ssi_create_bus(dev, NULL);
1134
1135    /* Setup cs_lines for peripherals */
1136    s->cs_lines = g_new0(qemu_irq, asc->cs_num_max);
1137    qdev_init_gpio_out_named(DEVICE(s), s->cs_lines, "cs", asc->cs_num_max);
1138
1139    /* The memory region for the controller registers */
1140    memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1141                          TYPE_ASPEED_SMC, asc->nregs * 4);
1142    sysbus_init_mmio(sbd, &s->mmio);
1143
1144    /*
1145     * The container memory region representing the address space
1146     * window in which the flash modules are mapped. The size and
1147     * address depends on the SoC model and controller type.
1148     */
1149    memory_region_init(&s->mmio_flash_container, OBJECT(s),
1150                       TYPE_ASPEED_SMC ".container",
1151                       asc->flash_window_size);
1152    sysbus_init_mmio(sbd, &s->mmio_flash_container);
1153
1154    memory_region_init_io(&s->mmio_flash, OBJECT(s),
1155                          &aspeed_smc_flash_default_ops, s,
1156                          TYPE_ASPEED_SMC ".flash",
1157                          asc->flash_window_size);
1158    memory_region_add_subregion(&s->mmio_flash_container, 0x0,
1159                                &s->mmio_flash);
1160
1161    /*
1162     * Let's create a sub memory region for each possible peripheral. All
1163     * have a configurable memory segment in the overall flash mapping
1164     * window of the controller but, there is not necessarily a flash
1165     * module behind to handle the memory accesses. This depends on
1166     * the board configuration.
1167     */
1168    for (i = 0; i < asc->cs_num_max; ++i) {
1169        AspeedSMCFlash *fl = &s->flashes[i];
1170
1171        if (!object_property_set_link(OBJECT(fl), "controller", OBJECT(s),
1172                                      errp)) {
1173            return;
1174        }
1175        if (!object_property_set_uint(OBJECT(fl), "cs", i, errp)) {
1176            return;
1177        }
1178        if (!sysbus_realize(SYS_BUS_DEVICE(fl), errp)) {
1179            return;
1180        }
1181
1182        memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1183        offset += asc->segments[i].size;
1184    }
1185
1186    /* DMA support */
1187    if (aspeed_smc_has_dma(asc)) {
1188        aspeed_smc_dma_setup(s, errp);
1189    }
1190}
1191
1192static const VMStateDescription vmstate_aspeed_smc = {
1193    .name = "aspeed.smc",
1194    .version_id = 2,
1195    .minimum_version_id = 2,
1196    .fields = (VMStateField[]) {
1197        VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1198        VMSTATE_UINT8(snoop_index, AspeedSMCState),
1199        VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1200        VMSTATE_END_OF_LIST()
1201    }
1202};
1203
1204static Property aspeed_smc_properties[] = {
1205    DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1206    DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1207                     TYPE_MEMORY_REGION, MemoryRegion *),
1208    DEFINE_PROP_END_OF_LIST(),
1209};
1210
1211static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1212{
1213    DeviceClass *dc = DEVICE_CLASS(klass);
1214
1215    dc->realize = aspeed_smc_realize;
1216    dc->reset = aspeed_smc_reset;
1217    device_class_set_props(dc, aspeed_smc_properties);
1218    dc->vmsd = &vmstate_aspeed_smc;
1219}
1220
1221static const TypeInfo aspeed_smc_info = {
1222    .name           = TYPE_ASPEED_SMC,
1223    .parent         = TYPE_SYS_BUS_DEVICE,
1224    .instance_init  = aspeed_smc_instance_init,
1225    .instance_size  = sizeof(AspeedSMCState),
1226    .class_size     = sizeof(AspeedSMCClass),
1227    .class_init     = aspeed_smc_class_init,
1228    .abstract       = true,
1229};
1230
1231static void aspeed_smc_flash_realize(DeviceState *dev, Error **errp)
1232{
1233    AspeedSMCFlash *s = ASPEED_SMC_FLASH(dev);
1234    g_autofree char *name = g_strdup_printf(TYPE_ASPEED_SMC_FLASH ".%d", s->cs);
1235
1236    if (!s->controller) {
1237        error_setg(errp, TYPE_ASPEED_SMC_FLASH ": 'controller' link not set");
1238        return;
1239    }
1240
1241    s->asc = ASPEED_SMC_GET_CLASS(s->controller);
1242
1243    /*
1244     * Use the default segment value to size the memory region. This
1245     * can be changed by FW at runtime.
1246     */
1247    memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1248                          s, name, s->asc->segments[s->cs].size);
1249    sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
1250}
1251
1252static Property aspeed_smc_flash_properties[] = {
1253    DEFINE_PROP_UINT8("cs", AspeedSMCFlash, cs, 0),
1254    DEFINE_PROP_LINK("controller", AspeedSMCFlash, controller, TYPE_ASPEED_SMC,
1255                     AspeedSMCState *),
1256    DEFINE_PROP_END_OF_LIST(),
1257};
1258
1259static void aspeed_smc_flash_class_init(ObjectClass *klass, void *data)
1260{
1261    DeviceClass *dc = DEVICE_CLASS(klass);
1262
1263    dc->desc = "Aspeed SMC Flash device region";
1264    dc->realize = aspeed_smc_flash_realize;
1265    device_class_set_props(dc, aspeed_smc_flash_properties);
1266}
1267
1268static const TypeInfo aspeed_smc_flash_info = {
1269    .name           = TYPE_ASPEED_SMC_FLASH,
1270    .parent         = TYPE_SYS_BUS_DEVICE,
1271    .instance_size  = sizeof(AspeedSMCFlash),
1272    .class_init     = aspeed_smc_flash_class_init,
1273};
1274
1275/*
1276 * The Segment Registers of the AST2400 and AST2500 have a 8MB
1277 * unit. The address range of a flash SPI peripheral is encoded with
1278 * absolute addresses which should be part of the overall controller
1279 * window.
1280 */
1281static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
1282                                          const AspeedSegments *seg)
1283{
1284    uint32_t reg = 0;
1285    reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
1286    reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
1287    return reg;
1288}
1289
1290static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
1291                                      uint32_t reg, AspeedSegments *seg)
1292{
1293    seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
1294    seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
1295}
1296
1297static const AspeedSegments aspeed_2400_smc_segments[] = {
1298    { 0x10000000, 32 * MiB },
1299};
1300
1301static void aspeed_2400_smc_class_init(ObjectClass *klass, void *data)
1302{
1303    DeviceClass *dc = DEVICE_CLASS(klass);
1304    AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1305
1306    dc->desc               = "Aspeed 2400 SMC Controller";
1307    asc->r_conf            = R_CONF;
1308    asc->r_ce_ctrl         = R_CE_CTRL;
1309    asc->r_ctrl0           = R_CTRL0;
1310    asc->r_timings         = R_TIMINGS;
1311    asc->nregs_timings     = 1;
1312    asc->conf_enable_w0    = CONF_ENABLE_W0;
1313    asc->cs_num_max        = 1;
1314    asc->segments          = aspeed_2400_smc_segments;
1315    asc->flash_window_base = 0x10000000;
1316    asc->flash_window_size = 0x6000000;
1317    asc->features          = 0x0;
1318    asc->nregs             = ASPEED_SMC_R_SMC_MAX;
1319    asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1320    asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1321    asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1322}
1323
1324static const TypeInfo aspeed_2400_smc_info = {
1325    .name =  "aspeed.smc-ast2400",
1326    .parent = TYPE_ASPEED_SMC,
1327    .class_init = aspeed_2400_smc_class_init,
1328};
1329
1330static const uint32_t aspeed_2400_fmc_resets[ASPEED_SMC_R_MAX] = {
1331    /*
1332     * CE0 and CE1 types are HW strapped in SCU70. Do it here to
1333     * simplify the model.
1334     */
1335    [R_CONF] = CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0,
1336};
1337
1338static const AspeedSegments aspeed_2400_fmc_segments[] = {
1339    { 0x20000000, 64 * MiB }, /* start address is readonly */
1340    { 0x24000000, 32 * MiB },
1341    { 0x26000000, 32 * MiB },
1342    { 0x28000000, 32 * MiB },
1343    { 0x2A000000, 32 * MiB }
1344};
1345
1346static void aspeed_2400_fmc_class_init(ObjectClass *klass, void *data)
1347{
1348    DeviceClass *dc = DEVICE_CLASS(klass);
1349    AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1350
1351    dc->desc               = "Aspeed 2400 FMC Controller";
1352    asc->r_conf            = R_CONF;
1353    asc->r_ce_ctrl         = R_CE_CTRL;
1354    asc->r_ctrl0           = R_CTRL0;
1355    asc->r_timings         = R_TIMINGS;
1356    asc->nregs_timings     = 1;
1357    asc->conf_enable_w0    = CONF_ENABLE_W0;
1358    asc->cs_num_max        = 5;
1359    asc->segments          = aspeed_2400_fmc_segments;
1360    asc->segment_addr_mask = 0xffff0000;
1361    asc->resets            = aspeed_2400_fmc_resets;
1362    asc->flash_window_base = 0x20000000;
1363    asc->flash_window_size = 0x10000000;
1364    asc->features          = ASPEED_SMC_FEATURE_DMA;
1365    asc->dma_flash_mask    = 0x0FFFFFFC;
1366    asc->dma_dram_mask     = 0x1FFFFFFC;
1367    asc->nregs             = ASPEED_SMC_R_MAX;
1368    asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1369    asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1370    asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1371}
1372
1373static const TypeInfo aspeed_2400_fmc_info = {
1374    .name =  "aspeed.fmc-ast2400",
1375    .parent = TYPE_ASPEED_SMC,
1376    .class_init = aspeed_2400_fmc_class_init,
1377};
1378
1379static const AspeedSegments aspeed_2400_spi1_segments[] = {
1380    { 0x30000000, 64 * MiB },
1381};
1382
1383static int aspeed_2400_spi1_addr_width(const AspeedSMCState *s)
1384{
1385    return s->regs[R_SPI_CTRL0] & CTRL_AST2400_SPI_4BYTE ? 4 : 3;
1386}
1387
1388static void aspeed_2400_spi1_class_init(ObjectClass *klass, void *data)
1389{
1390    DeviceClass *dc = DEVICE_CLASS(klass);
1391    AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1392
1393    dc->desc               = "Aspeed 2400 SPI1 Controller";
1394    asc->r_conf            = R_SPI_CONF;
1395    asc->r_ce_ctrl         = 0xff;
1396    asc->r_ctrl0           = R_SPI_CTRL0;
1397    asc->r_timings         = R_SPI_TIMINGS;
1398    asc->nregs_timings     = 1;
1399    asc->conf_enable_w0    = SPI_CONF_ENABLE_W0;
1400    asc->cs_num_max        = 1;
1401    asc->segments          = aspeed_2400_spi1_segments;
1402    asc->flash_window_base = 0x30000000;
1403    asc->flash_window_size = 0x10000000;
1404    asc->features          = 0x0;
1405    asc->nregs             = ASPEED_SMC_R_SPI_MAX;
1406    asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1407    asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1408    asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1409    asc->addr_width        = aspeed_2400_spi1_addr_width;
1410}
1411
1412static const TypeInfo aspeed_2400_spi1_info = {
1413    .name =  "aspeed.spi1-ast2400",
1414    .parent = TYPE_ASPEED_SMC,
1415    .class_init = aspeed_2400_spi1_class_init,
1416};
1417
1418static const uint32_t aspeed_2500_fmc_resets[ASPEED_SMC_R_MAX] = {
1419    [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1420                CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1421};
1422
1423static const AspeedSegments aspeed_2500_fmc_segments[] = {
1424    { 0x20000000, 128 * MiB }, /* start address is readonly */
1425    { 0x28000000,  32 * MiB },
1426    { 0x2A000000,  32 * MiB },
1427};
1428
1429static void aspeed_2500_fmc_class_init(ObjectClass *klass, void *data)
1430{
1431    DeviceClass *dc = DEVICE_CLASS(klass);
1432    AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1433
1434    dc->desc               = "Aspeed 2600 FMC Controller";
1435    asc->r_conf            = R_CONF;
1436    asc->r_ce_ctrl         = R_CE_CTRL;
1437    asc->r_ctrl0           = R_CTRL0;
1438    asc->r_timings         = R_TIMINGS;
1439    asc->nregs_timings     = 1;
1440    asc->conf_enable_w0    = CONF_ENABLE_W0;
1441    asc->cs_num_max        = 3;
1442    asc->segments          = aspeed_2500_fmc_segments;
1443    asc->segment_addr_mask = 0xffff0000;
1444    asc->resets            = aspeed_2500_fmc_resets;
1445    asc->flash_window_base = 0x20000000;
1446    asc->flash_window_size = 0x10000000;
1447    asc->features          = ASPEED_SMC_FEATURE_DMA;
1448    asc->dma_flash_mask    = 0x0FFFFFFC;
1449    asc->dma_dram_mask     = 0x3FFFFFFC;
1450    asc->nregs             = ASPEED_SMC_R_MAX;
1451    asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1452    asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1453    asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1454}
1455
1456static const TypeInfo aspeed_2500_fmc_info = {
1457    .name =  "aspeed.fmc-ast2500",
1458    .parent = TYPE_ASPEED_SMC,
1459    .class_init = aspeed_2500_fmc_class_init,
1460};
1461
1462static const AspeedSegments aspeed_2500_spi1_segments[] = {
1463    { 0x30000000, 32 * MiB }, /* start address is readonly */
1464    { 0x32000000, 96 * MiB }, /* end address is readonly */
1465};
1466
1467static void aspeed_2500_spi1_class_init(ObjectClass *klass, void *data)
1468{
1469    DeviceClass *dc = DEVICE_CLASS(klass);
1470    AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1471
1472    dc->desc               = "Aspeed 2600 SPI1 Controller";
1473    asc->r_conf            = R_CONF;
1474    asc->r_ce_ctrl         = R_CE_CTRL;
1475    asc->r_ctrl0           = R_CTRL0;
1476    asc->r_timings         = R_TIMINGS;
1477    asc->nregs_timings     = 1;
1478    asc->conf_enable_w0    = CONF_ENABLE_W0;
1479    asc->cs_num_max        = 2;
1480    asc->segments          = aspeed_2500_spi1_segments;
1481    asc->segment_addr_mask = 0xffff0000;
1482    asc->flash_window_base = 0x30000000;
1483    asc->flash_window_size = 0x8000000;
1484    asc->features          = 0x0;
1485    asc->nregs             = ASPEED_SMC_R_MAX;
1486    asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1487    asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1488    asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1489}
1490
1491static const TypeInfo aspeed_2500_spi1_info = {
1492    .name =  "aspeed.spi1-ast2500",
1493    .parent = TYPE_ASPEED_SMC,
1494    .class_init = aspeed_2500_spi1_class_init,
1495};
1496
1497static const AspeedSegments aspeed_2500_spi2_segments[] = {
1498    { 0x38000000, 32 * MiB }, /* start address is readonly */
1499    { 0x3A000000, 96 * MiB }, /* end address is readonly */
1500};
1501
1502static void aspeed_2500_spi2_class_init(ObjectClass *klass, void *data)
1503{
1504    DeviceClass *dc = DEVICE_CLASS(klass);
1505    AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1506
1507    dc->desc               = "Aspeed 2600 SPI2 Controller";
1508    asc->r_conf            = R_CONF;
1509    asc->r_ce_ctrl         = R_CE_CTRL;
1510    asc->r_ctrl0           = R_CTRL0;
1511    asc->r_timings         = R_TIMINGS;
1512    asc->nregs_timings     = 1;
1513    asc->conf_enable_w0    = CONF_ENABLE_W0;
1514    asc->cs_num_max        = 2;
1515    asc->segments          = aspeed_2500_spi2_segments;
1516    asc->segment_addr_mask = 0xffff0000;
1517    asc->flash_window_base = 0x38000000;
1518    asc->flash_window_size = 0x8000000;
1519    asc->features          = 0x0;
1520    asc->nregs             = ASPEED_SMC_R_MAX;
1521    asc->segment_to_reg    = aspeed_smc_segment_to_reg;
1522    asc->reg_to_segment    = aspeed_smc_reg_to_segment;
1523    asc->dma_ctrl          = aspeed_smc_dma_ctrl;
1524}
1525
1526static const TypeInfo aspeed_2500_spi2_info = {
1527    .name =  "aspeed.spi2-ast2500",
1528    .parent = TYPE_ASPEED_SMC,
1529    .class_init = aspeed_2500_spi2_class_init,
1530};
1531
1532/*
1533 * The Segment Registers of the AST2600 have a 1MB unit. The address
1534 * range of a flash SPI peripheral is encoded with offsets in the overall
1535 * controller window. The previous SoC AST2400 and AST2500 used
1536 * absolute addresses. Only bits [27:20] are relevant and the end
1537 * address is an upper bound limit.
1538 */
1539#define AST2600_SEG_ADDR_MASK 0x0ff00000
1540
1541static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
1542                                               const AspeedSegments *seg)
1543{
1544    uint32_t reg = 0;
1545
1546    /* Disabled segments have a nil register */
1547    if (!seg->size) {
1548        return 0;
1549    }
1550
1551    reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
1552    reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
1553    return reg;
1554}
1555
1556static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
1557                                           uint32_t reg, AspeedSegments *seg)
1558{
1559    uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
1560    uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
1561    AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1562
1563    if (reg) {
1564        seg->addr = asc->flash_window_base + start_offset;
1565        seg->size = end_offset + MiB - start_offset;
1566    } else {
1567        seg->addr = asc->flash_window_base;
1568        seg->size = 0;
1569    }
1570}
1571
1572static const uint32_t aspeed_2600_fmc_resets[ASPEED_SMC_R_MAX] = {
1573    [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1574                CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1 |
1575                CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2),
1576};
1577
1578static const AspeedSegments aspeed_2600_fmc_segments[] = {
1579    { 0x0, 128 * MiB }, /* start address is readonly */
1580    { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1581    { 0x0, 0 }, /* disabled */
1582};
1583
1584static void aspeed_2600_fmc_class_init(ObjectClass *klass, void *data)
1585{
1586    DeviceClass *dc = DEVICE_CLASS(klass);
1587    AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1588
1589    dc->desc               = "Aspeed 2600 FMC Controller";
1590    asc->r_conf            = R_CONF;
1591    asc->r_ce_ctrl         = R_CE_CTRL;
1592    asc->r_ctrl0           = R_CTRL0;
1593    asc->r_timings         = R_TIMINGS;
1594    asc->nregs_timings     = 1;
1595    asc->conf_enable_w0    = CONF_ENABLE_W0;
1596    asc->cs_num_max        = 3;
1597    asc->segments          = aspeed_2600_fmc_segments;
1598    asc->segment_addr_mask = 0x0ff00ff0;
1599    asc->resets            = aspeed_2600_fmc_resets;
1600    asc->flash_window_base = 0x20000000;
1601    asc->flash_window_size = 0x10000000;
1602    asc->features          = ASPEED_SMC_FEATURE_DMA |
1603                             ASPEED_SMC_FEATURE_WDT_CONTROL;
1604    asc->dma_flash_mask    = 0x0FFFFFFC;
1605    asc->dma_dram_mask     = 0x3FFFFFFC;
1606    asc->nregs             = ASPEED_SMC_R_MAX;
1607    asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1608    asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1609    asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1610}
1611
1612static const TypeInfo aspeed_2600_fmc_info = {
1613    .name =  "aspeed.fmc-ast2600",
1614    .parent = TYPE_ASPEED_SMC,
1615    .class_init = aspeed_2600_fmc_class_init,
1616};
1617
1618static const AspeedSegments aspeed_2600_spi1_segments[] = {
1619    { 0x0, 128 * MiB }, /* start address is readonly */
1620    { 0x0, 0 }, /* disabled */
1621};
1622
1623static void aspeed_2600_spi1_class_init(ObjectClass *klass, void *data)
1624{
1625    DeviceClass *dc = DEVICE_CLASS(klass);
1626    AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1627
1628    dc->desc               = "Aspeed 2600 SPI1 Controller";
1629    asc->r_conf            = R_CONF;
1630    asc->r_ce_ctrl         = R_CE_CTRL;
1631    asc->r_ctrl0           = R_CTRL0;
1632    asc->r_timings         = R_TIMINGS;
1633    asc->nregs_timings     = 2;
1634    asc->conf_enable_w0    = CONF_ENABLE_W0;
1635    asc->cs_num_max        = 2;
1636    asc->segments          = aspeed_2600_spi1_segments;
1637    asc->segment_addr_mask = 0x0ff00ff0;
1638    asc->flash_window_base = 0x30000000;
1639    asc->flash_window_size = 0x10000000;
1640    asc->features          = ASPEED_SMC_FEATURE_DMA |
1641                             ASPEED_SMC_FEATURE_DMA_GRANT;
1642    asc->dma_flash_mask    = 0x0FFFFFFC;
1643    asc->dma_dram_mask     = 0x3FFFFFFC;
1644    asc->nregs             = ASPEED_SMC_R_MAX;
1645    asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1646    asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1647    asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1648}
1649
1650static const TypeInfo aspeed_2600_spi1_info = {
1651    .name =  "aspeed.spi1-ast2600",
1652    .parent = TYPE_ASPEED_SMC,
1653    .class_init = aspeed_2600_spi1_class_init,
1654};
1655
1656static const AspeedSegments aspeed_2600_spi2_segments[] = {
1657    { 0x0, 128 * MiB }, /* start address is readonly */
1658    { 0x0, 0 }, /* disabled */
1659    { 0x0, 0 }, /* disabled */
1660};
1661
1662static void aspeed_2600_spi2_class_init(ObjectClass *klass, void *data)
1663{
1664    DeviceClass *dc = DEVICE_CLASS(klass);
1665    AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1666
1667    dc->desc               = "Aspeed 2600 SPI2 Controller";
1668    asc->r_conf            = R_CONF;
1669    asc->r_ce_ctrl         = R_CE_CTRL;
1670    asc->r_ctrl0           = R_CTRL0;
1671    asc->r_timings         = R_TIMINGS;
1672    asc->nregs_timings     = 3;
1673    asc->conf_enable_w0    = CONF_ENABLE_W0;
1674    asc->cs_num_max        = 3;
1675    asc->segments          = aspeed_2600_spi2_segments;
1676    asc->segment_addr_mask = 0x0ff00ff0;
1677    asc->flash_window_base = 0x50000000;
1678    asc->flash_window_size = 0x10000000;
1679    asc->features          = ASPEED_SMC_FEATURE_DMA |
1680                             ASPEED_SMC_FEATURE_DMA_GRANT;
1681    asc->dma_flash_mask    = 0x0FFFFFFC;
1682    asc->dma_dram_mask     = 0x3FFFFFFC;
1683    asc->nregs             = ASPEED_SMC_R_MAX;
1684    asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1685    asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1686    asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1687}
1688
1689static const TypeInfo aspeed_2600_spi2_info = {
1690    .name =  "aspeed.spi2-ast2600",
1691    .parent = TYPE_ASPEED_SMC,
1692    .class_init = aspeed_2600_spi2_class_init,
1693};
1694
1695/*
1696 * The FMC Segment Registers of the AST1030 have a 512KB unit.
1697 * Only bits [27:19] are used for decoding.
1698 */
1699#define AST1030_SEG_ADDR_MASK 0x0ff80000
1700
1701static uint32_t aspeed_1030_smc_segment_to_reg(const AspeedSMCState *s,
1702        const AspeedSegments *seg)
1703{
1704    uint32_t reg = 0;
1705
1706    /* Disabled segments have a nil register */
1707    if (!seg->size) {
1708        return 0;
1709    }
1710
1711    reg |= (seg->addr & AST1030_SEG_ADDR_MASK) >> 16; /* start offset */
1712    reg |= (seg->addr + seg->size - 1) & AST1030_SEG_ADDR_MASK; /* end offset */
1713    return reg;
1714}
1715
1716static void aspeed_1030_smc_reg_to_segment(const AspeedSMCState *s,
1717        uint32_t reg, AspeedSegments *seg)
1718{
1719    uint32_t start_offset = (reg << 16) & AST1030_SEG_ADDR_MASK;
1720    uint32_t end_offset = reg & AST1030_SEG_ADDR_MASK;
1721    AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1722
1723    if (reg) {
1724        seg->addr = asc->flash_window_base + start_offset;
1725        seg->size = end_offset + (512 * KiB) - start_offset;
1726    } else {
1727        seg->addr = asc->flash_window_base;
1728        seg->size = 0;
1729    }
1730}
1731
1732static const uint32_t aspeed_1030_fmc_resets[ASPEED_SMC_R_MAX] = {
1733    [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1734                            CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1735};
1736
1737static const AspeedSegments aspeed_1030_fmc_segments[] = {
1738    { 0x0, 128 * MiB }, /* start address is readonly */
1739    { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1740    { 0x0, 0 }, /* disabled */
1741};
1742
1743static void aspeed_1030_fmc_class_init(ObjectClass *klass, void *data)
1744{
1745    DeviceClass *dc = DEVICE_CLASS(klass);
1746    AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1747
1748    dc->desc               = "Aspeed 1030 FMC Controller";
1749    asc->r_conf            = R_CONF;
1750    asc->r_ce_ctrl         = R_CE_CTRL;
1751    asc->r_ctrl0           = R_CTRL0;
1752    asc->r_timings         = R_TIMINGS;
1753    asc->nregs_timings     = 2;
1754    asc->conf_enable_w0    = CONF_ENABLE_W0;
1755    asc->cs_num_max        = 2;
1756    asc->segments          = aspeed_1030_fmc_segments;
1757    asc->segment_addr_mask = 0x0ff80ff8;
1758    asc->resets            = aspeed_1030_fmc_resets;
1759    asc->flash_window_base = 0x80000000;
1760    asc->flash_window_size = 0x10000000;
1761    asc->features          = ASPEED_SMC_FEATURE_DMA;
1762    asc->dma_flash_mask    = 0x0FFFFFFC;
1763    asc->dma_dram_mask     = 0x000BFFFC;
1764    asc->nregs             = ASPEED_SMC_R_MAX;
1765    asc->segment_to_reg    = aspeed_1030_smc_segment_to_reg;
1766    asc->reg_to_segment    = aspeed_1030_smc_reg_to_segment;
1767    asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1768}
1769
1770static const TypeInfo aspeed_1030_fmc_info = {
1771    .name =  "aspeed.fmc-ast1030",
1772    .parent = TYPE_ASPEED_SMC,
1773    .class_init = aspeed_1030_fmc_class_init,
1774};
1775
1776static const AspeedSegments aspeed_1030_spi1_segments[] = {
1777    { 0x0, 128 * MiB }, /* start address is readonly */
1778    { 0x0, 0 }, /* disabled */
1779};
1780
1781static void aspeed_1030_spi1_class_init(ObjectClass *klass, void *data)
1782{
1783    DeviceClass *dc = DEVICE_CLASS(klass);
1784    AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1785
1786    dc->desc               = "Aspeed 1030 SPI1 Controller";
1787    asc->r_conf            = R_CONF;
1788    asc->r_ce_ctrl         = R_CE_CTRL;
1789    asc->r_ctrl0           = R_CTRL0;
1790    asc->r_timings         = R_TIMINGS;
1791    asc->nregs_timings     = 2;
1792    asc->conf_enable_w0    = CONF_ENABLE_W0;
1793    asc->cs_num_max        = 2;
1794    asc->segments          = aspeed_1030_spi1_segments;
1795    asc->segment_addr_mask = 0x0ff00ff0;
1796    asc->flash_window_base = 0x90000000;
1797    asc->flash_window_size = 0x10000000;
1798    asc->features          = ASPEED_SMC_FEATURE_DMA;
1799    asc->dma_flash_mask    = 0x0FFFFFFC;
1800    asc->dma_dram_mask     = 0x000BFFFC;
1801    asc->nregs             = ASPEED_SMC_R_MAX;
1802    asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1803    asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1804    asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1805}
1806
1807static const TypeInfo aspeed_1030_spi1_info = {
1808    .name =  "aspeed.spi1-ast1030",
1809    .parent = TYPE_ASPEED_SMC,
1810    .class_init = aspeed_1030_spi1_class_init,
1811};
1812static const AspeedSegments aspeed_1030_spi2_segments[] = {
1813    { 0x0, 128 * MiB }, /* start address is readonly */
1814    { 0x0, 0 }, /* disabled */
1815};
1816
1817static void aspeed_1030_spi2_class_init(ObjectClass *klass, void *data)
1818{
1819    DeviceClass *dc = DEVICE_CLASS(klass);
1820    AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1821
1822    dc->desc               = "Aspeed 1030 SPI2 Controller";
1823    asc->r_conf            = R_CONF;
1824    asc->r_ce_ctrl         = R_CE_CTRL;
1825    asc->r_ctrl0           = R_CTRL0;
1826    asc->r_timings         = R_TIMINGS;
1827    asc->nregs_timings     = 2;
1828    asc->conf_enable_w0    = CONF_ENABLE_W0;
1829    asc->cs_num_max        = 2;
1830    asc->segments          = aspeed_1030_spi2_segments;
1831    asc->segment_addr_mask = 0x0ff00ff0;
1832    asc->flash_window_base = 0xb0000000;
1833    asc->flash_window_size = 0x10000000;
1834    asc->features          = ASPEED_SMC_FEATURE_DMA;
1835    asc->dma_flash_mask    = 0x0FFFFFFC;
1836    asc->dma_dram_mask     = 0x000BFFFC;
1837    asc->nregs             = ASPEED_SMC_R_MAX;
1838    asc->segment_to_reg    = aspeed_2600_smc_segment_to_reg;
1839    asc->reg_to_segment    = aspeed_2600_smc_reg_to_segment;
1840    asc->dma_ctrl          = aspeed_2600_smc_dma_ctrl;
1841}
1842
1843static const TypeInfo aspeed_1030_spi2_info = {
1844    .name =  "aspeed.spi2-ast1030",
1845    .parent = TYPE_ASPEED_SMC,
1846    .class_init = aspeed_1030_spi2_class_init,
1847};
1848
1849static void aspeed_smc_register_types(void)
1850{
1851    type_register_static(&aspeed_smc_flash_info);
1852    type_register_static(&aspeed_smc_info);
1853    type_register_static(&aspeed_2400_smc_info);
1854    type_register_static(&aspeed_2400_fmc_info);
1855    type_register_static(&aspeed_2400_spi1_info);
1856    type_register_static(&aspeed_2500_fmc_info);
1857    type_register_static(&aspeed_2500_spi1_info);
1858    type_register_static(&aspeed_2500_spi2_info);
1859    type_register_static(&aspeed_2600_fmc_info);
1860    type_register_static(&aspeed_2600_spi1_info);
1861    type_register_static(&aspeed_2600_spi2_info);
1862    type_register_static(&aspeed_1030_fmc_info);
1863    type_register_static(&aspeed_1030_spi1_info);
1864    type_register_static(&aspeed_1030_spi2_info);
1865}
1866
1867type_init(aspeed_smc_register_types)
1868