qemu/hw/timer/arm_mptimer.c
<<
>>
Prefs
   1/*
   2 * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Copyright (c) 2011 Linaro Limited
   6 * Written by Paul Brook, Peter Maydell
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License
  10 * as published by the Free Software Foundation; either version
  11 * 2 of the License, or (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "hw/hw.h"
  24#include "hw/irq.h"
  25#include "hw/ptimer.h"
  26#include "hw/qdev-properties.h"
  27#include "hw/timer/arm_mptimer.h"
  28#include "migration/vmstate.h"
  29#include "qapi/error.h"
  30#include "qemu/module.h"
  31#include "hw/core/cpu.h"
  32
  33#define PTIMER_POLICY                       \
  34    (PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD |  \
  35     PTIMER_POLICY_CONTINUOUS_TRIGGER    |  \
  36     PTIMER_POLICY_NO_IMMEDIATE_TRIGGER  |  \
  37     PTIMER_POLICY_NO_IMMEDIATE_RELOAD   |  \
  38     PTIMER_POLICY_NO_COUNTER_ROUND_DOWN)
  39
  40/* This device implements the per-cpu private timer and watchdog block
  41 * which is used in both the ARM11MPCore and Cortex-A9MP.
  42 */
  43
  44static inline int get_current_cpu(ARMMPTimerState *s)
  45{
  46    int cpu_id = current_cpu ? current_cpu->cpu_index : 0;
  47
  48    if (cpu_id >= s->num_cpu) {
  49        hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
  50                 s->num_cpu, cpu_id);
  51    }
  52
  53    return cpu_id;
  54}
  55
  56static inline void timerblock_update_irq(TimerBlock *tb)
  57{
  58    qemu_set_irq(tb->irq, tb->status && (tb->control & 4));
  59}
  60
  61/* Return conversion factor from mpcore timer ticks to qemu timer ticks.  */
  62static inline uint32_t timerblock_scale(uint32_t control)
  63{
  64    return (((control >> 8) & 0xff) + 1) * 10;
  65}
  66
  67/* Must be called within a ptimer transaction block */
  68static inline void timerblock_set_count(struct ptimer_state *timer,
  69                                        uint32_t control, uint64_t *count)
  70{
  71    /* PTimer would trigger interrupt for periodic timer when counter set
  72     * to 0, MPtimer under certain condition only.
  73     */
  74    if ((control & 3) == 3 && (control & 0xff00) == 0 && *count == 0) {
  75        *count = ptimer_get_limit(timer);
  76    }
  77    ptimer_set_count(timer, *count);
  78}
  79
  80/* Must be called within a ptimer transaction block */
  81static inline void timerblock_run(struct ptimer_state *timer,
  82                                  uint32_t control, uint32_t load)
  83{
  84    if ((control & 1) && ((control & 0xff00) || load != 0)) {
  85        ptimer_run(timer, !(control & 2));
  86    }
  87}
  88
  89static void timerblock_tick(void *opaque)
  90{
  91    TimerBlock *tb = (TimerBlock *)opaque;
  92    /* Periodic timer with load = 0 and prescaler != 0 would re-trigger
  93     * IRQ after one period, otherwise it either stops or wraps around.
  94     */
  95    if ((tb->control & 2) && (tb->control & 0xff00) == 0 &&
  96            ptimer_get_limit(tb->timer) == 0) {
  97        ptimer_stop(tb->timer);
  98    }
  99    tb->status = 1;
 100    timerblock_update_irq(tb);
 101}
 102
 103static uint64_t timerblock_read(void *opaque, hwaddr addr,
 104                                unsigned size)
 105{
 106    TimerBlock *tb = (TimerBlock *)opaque;
 107    switch (addr) {
 108    case 0: /* Load */
 109        return ptimer_get_limit(tb->timer);
 110    case 4: /* Counter.  */
 111        return ptimer_get_count(tb->timer);
 112    case 8: /* Control.  */
 113        return tb->control;
 114    case 12: /* Interrupt status.  */
 115        return tb->status;
 116    default:
 117        return 0;
 118    }
 119}
 120
 121static void timerblock_write(void *opaque, hwaddr addr,
 122                             uint64_t value, unsigned size)
 123{
 124    TimerBlock *tb = (TimerBlock *)opaque;
 125    uint32_t control = tb->control;
 126    switch (addr) {
 127    case 0: /* Load */
 128        ptimer_transaction_begin(tb->timer);
 129        /* Setting load to 0 stops the timer without doing the tick if
 130         * prescaler = 0.
 131         */
 132        if ((control & 1) && (control & 0xff00) == 0 && value == 0) {
 133            ptimer_stop(tb->timer);
 134        }
 135        ptimer_set_limit(tb->timer, value, 1);
 136        timerblock_run(tb->timer, control, value);
 137        ptimer_transaction_commit(tb->timer);
 138        break;
 139    case 4: /* Counter.  */
 140        ptimer_transaction_begin(tb->timer);
 141        /* Setting counter to 0 stops the one-shot timer, or periodic with
 142         * load = 0, without doing the tick if prescaler = 0.
 143         */
 144        if ((control & 1) && (control & 0xff00) == 0 && value == 0 &&
 145                (!(control & 2) || ptimer_get_limit(tb->timer) == 0)) {
 146            ptimer_stop(tb->timer);
 147        }
 148        timerblock_set_count(tb->timer, control, &value);
 149        timerblock_run(tb->timer, control, value);
 150        ptimer_transaction_commit(tb->timer);
 151        break;
 152    case 8: /* Control.  */
 153        ptimer_transaction_begin(tb->timer);
 154        if ((control & 3) != (value & 3)) {
 155            ptimer_stop(tb->timer);
 156        }
 157        if ((control & 0xff00) != (value & 0xff00)) {
 158            ptimer_set_period(tb->timer, timerblock_scale(value));
 159        }
 160        if (value & 1) {
 161            uint64_t count = ptimer_get_count(tb->timer);
 162            /* Re-load periodic timer counter if needed.  */
 163            if ((value & 2) && count == 0) {
 164                timerblock_set_count(tb->timer, value, &count);
 165            }
 166            timerblock_run(tb->timer, value, count);
 167        }
 168        tb->control = value;
 169        ptimer_transaction_commit(tb->timer);
 170        break;
 171    case 12: /* Interrupt status.  */
 172        tb->status &= ~value;
 173        timerblock_update_irq(tb);
 174        break;
 175    }
 176}
 177
 178/* Wrapper functions to implement the "read timer/watchdog for
 179 * the current CPU" memory regions.
 180 */
 181static uint64_t arm_thistimer_read(void *opaque, hwaddr addr,
 182                                   unsigned size)
 183{
 184    ARMMPTimerState *s = (ARMMPTimerState *)opaque;
 185    int id = get_current_cpu(s);
 186    return timerblock_read(&s->timerblock[id], addr, size);
 187}
 188
 189static void arm_thistimer_write(void *opaque, hwaddr addr,
 190                                uint64_t value, unsigned size)
 191{
 192    ARMMPTimerState *s = (ARMMPTimerState *)opaque;
 193    int id = get_current_cpu(s);
 194    timerblock_write(&s->timerblock[id], addr, value, size);
 195}
 196
 197static const MemoryRegionOps arm_thistimer_ops = {
 198    .read = arm_thistimer_read,
 199    .write = arm_thistimer_write,
 200    .valid = {
 201        .min_access_size = 4,
 202        .max_access_size = 4,
 203    },
 204    .endianness = DEVICE_NATIVE_ENDIAN,
 205};
 206
 207static const MemoryRegionOps timerblock_ops = {
 208    .read = timerblock_read,
 209    .write = timerblock_write,
 210    .valid = {
 211        .min_access_size = 4,
 212        .max_access_size = 4,
 213    },
 214    .endianness = DEVICE_NATIVE_ENDIAN,
 215};
 216
 217static void timerblock_reset(TimerBlock *tb)
 218{
 219    tb->control = 0;
 220    tb->status = 0;
 221    if (tb->timer) {
 222        ptimer_transaction_begin(tb->timer);
 223        ptimer_stop(tb->timer);
 224        ptimer_set_limit(tb->timer, 0, 1);
 225        ptimer_set_period(tb->timer, timerblock_scale(0));
 226        ptimer_transaction_commit(tb->timer);
 227    }
 228}
 229
 230static void arm_mptimer_reset(DeviceState *dev)
 231{
 232    ARMMPTimerState *s = ARM_MPTIMER(dev);
 233    int i;
 234
 235    for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
 236        timerblock_reset(&s->timerblock[i]);
 237    }
 238}
 239
 240static void arm_mptimer_init(Object *obj)
 241{
 242    ARMMPTimerState *s = ARM_MPTIMER(obj);
 243
 244    memory_region_init_io(&s->iomem, obj, &arm_thistimer_ops, s,
 245                          "arm_mptimer_timer", 0x20);
 246    sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
 247}
 248
 249static void arm_mptimer_realize(DeviceState *dev, Error **errp)
 250{
 251    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 252    ARMMPTimerState *s = ARM_MPTIMER(dev);
 253    int i;
 254
 255    if (s->num_cpu < 1 || s->num_cpu > ARM_MPTIMER_MAX_CPUS) {
 256        error_setg(errp, "num-cpu must be between 1 and %d",
 257                   ARM_MPTIMER_MAX_CPUS);
 258        return;
 259    }
 260    /* We implement one timer block per CPU, and expose multiple MMIO regions:
 261     *  * region 0 is "timer for this core"
 262     *  * region 1 is "timer for core 0"
 263     *  * region 2 is "timer for core 1"
 264     * and so on.
 265     * The outgoing interrupt lines are
 266     *  * timer for core 0
 267     *  * timer for core 1
 268     * and so on.
 269     */
 270    for (i = 0; i < s->num_cpu; i++) {
 271        TimerBlock *tb = &s->timerblock[i];
 272        tb->timer = ptimer_init(timerblock_tick, tb, PTIMER_POLICY);
 273        sysbus_init_irq(sbd, &tb->irq);
 274        memory_region_init_io(&tb->iomem, OBJECT(s), &timerblock_ops, tb,
 275                              "arm_mptimer_timerblock", 0x20);
 276        sysbus_init_mmio(sbd, &tb->iomem);
 277    }
 278}
 279
 280static const VMStateDescription vmstate_timerblock = {
 281    .name = "arm_mptimer_timerblock",
 282    .version_id = 3,
 283    .minimum_version_id = 3,
 284    .fields = (VMStateField[]) {
 285        VMSTATE_UINT32(control, TimerBlock),
 286        VMSTATE_UINT32(status, TimerBlock),
 287        VMSTATE_PTIMER(timer, TimerBlock),
 288        VMSTATE_END_OF_LIST()
 289    }
 290};
 291
 292static const VMStateDescription vmstate_arm_mptimer = {
 293    .name = "arm_mptimer",
 294    .version_id = 3,
 295    .minimum_version_id = 3,
 296    .fields = (VMStateField[]) {
 297        VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu,
 298                                     3, vmstate_timerblock, TimerBlock),
 299        VMSTATE_END_OF_LIST()
 300    }
 301};
 302
 303static Property arm_mptimer_properties[] = {
 304    DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0),
 305    DEFINE_PROP_END_OF_LIST()
 306};
 307
 308static void arm_mptimer_class_init(ObjectClass *klass, void *data)
 309{
 310    DeviceClass *dc = DEVICE_CLASS(klass);
 311
 312    dc->realize = arm_mptimer_realize;
 313    dc->vmsd = &vmstate_arm_mptimer;
 314    dc->reset = arm_mptimer_reset;
 315    device_class_set_props(dc, arm_mptimer_properties);
 316}
 317
 318static const TypeInfo arm_mptimer_info = {
 319    .name          = TYPE_ARM_MPTIMER,
 320    .parent        = TYPE_SYS_BUS_DEVICE,
 321    .instance_size = sizeof(ARMMPTimerState),
 322    .instance_init = arm_mptimer_init,
 323    .class_init    = arm_mptimer_class_init,
 324};
 325
 326static void arm_mptimer_register_types(void)
 327{
 328    type_register_static(&arm_mptimer_info);
 329}
 330
 331type_init(arm_mptimer_register_types)
 332