qemu/include/exec/ram_addr.h
<<
>>
Prefs
   1/*
   2 * Declarations for cpu physical memory functions
   3 *
   4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Avi Kivity <avi@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or
  10 * later.  See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14/*
  15 * This header is for use by exec.c and memory.c ONLY.  Do not include it.
  16 * The functions declared here will be removed soon.
  17 */
  18
  19#ifndef RAM_ADDR_H
  20#define RAM_ADDR_H
  21
  22#ifndef CONFIG_USER_ONLY
  23#include "cpu.h"
  24#include "sysemu/xen.h"
  25#include "sysemu/tcg.h"
  26#include "exec/ramlist.h"
  27#include "exec/ramblock.h"
  28
  29extern uint64_t total_dirty_pages;
  30
  31/**
  32 * clear_bmap_size: calculate clear bitmap size
  33 *
  34 * @pages: number of guest pages
  35 * @shift: guest page number shift
  36 *
  37 * Returns: number of bits for the clear bitmap
  38 */
  39static inline long clear_bmap_size(uint64_t pages, uint8_t shift)
  40{
  41    return DIV_ROUND_UP(pages, 1UL << shift);
  42}
  43
  44/**
  45 * clear_bmap_set: set clear bitmap for the page range.  Must be with
  46 * bitmap_mutex held.
  47 *
  48 * @rb: the ramblock to operate on
  49 * @start: the start page number
  50 * @size: number of pages to set in the bitmap
  51 *
  52 * Returns: None
  53 */
  54static inline void clear_bmap_set(RAMBlock *rb, uint64_t start,
  55                                  uint64_t npages)
  56{
  57    uint8_t shift = rb->clear_bmap_shift;
  58
  59    bitmap_set(rb->clear_bmap, start >> shift, clear_bmap_size(npages, shift));
  60}
  61
  62/**
  63 * clear_bmap_test_and_clear: test clear bitmap for the page, clear if set.
  64 * Must be with bitmap_mutex held.
  65 *
  66 * @rb: the ramblock to operate on
  67 * @page: the page number to check
  68 *
  69 * Returns: true if the bit was set, false otherwise
  70 */
  71static inline bool clear_bmap_test_and_clear(RAMBlock *rb, uint64_t page)
  72{
  73    uint8_t shift = rb->clear_bmap_shift;
  74
  75    return bitmap_test_and_clear(rb->clear_bmap, page >> shift, 1);
  76}
  77
  78static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
  79{
  80    return (b && b->host && offset < b->used_length) ? true : false;
  81}
  82
  83static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
  84{
  85    assert(offset_in_ramblock(block, offset));
  86    return (char *)block->host + offset;
  87}
  88
  89static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr,
  90                                                            RAMBlock *rb)
  91{
  92    uint64_t host_addr_offset =
  93            (uint64_t)(uintptr_t)(host_addr - (void *)rb->host);
  94    return host_addr_offset >> TARGET_PAGE_BITS;
  95}
  96
  97bool ramblock_is_pmem(RAMBlock *rb);
  98
  99long qemu_minrampagesize(void);
 100long qemu_maxrampagesize(void);
 101
 102/**
 103 * qemu_ram_alloc_from_file,
 104 * qemu_ram_alloc_from_fd:  Allocate a ram block from the specified backing
 105 *                          file or device
 106 *
 107 * Parameters:
 108 *  @size: the size in bytes of the ram block
 109 *  @mr: the memory region where the ram block is
 110 *  @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
 111 *              RAM_NORESERVE.
 112 *  @mem_path or @fd: specify the backing file or device
 113 *  @offset: Offset into target file
 114 *  @readonly: true to open @path for reading, false for read/write.
 115 *  @errp: pointer to Error*, to store an error if it happens
 116 *
 117 * Return:
 118 *  On success, return a pointer to the ram block.
 119 *  On failure, return NULL.
 120 */
 121RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
 122                                   uint32_t ram_flags, const char *mem_path,
 123                                   off_t offset, bool readonly, Error **errp);
 124RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
 125                                 uint32_t ram_flags, int fd, off_t offset,
 126                                 bool readonly, Error **errp);
 127
 128RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
 129                                  MemoryRegion *mr, Error **errp);
 130RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, MemoryRegion *mr,
 131                         Error **errp);
 132RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
 133                                    void (*resized)(const char*,
 134                                                    uint64_t length,
 135                                                    void *host),
 136                                    MemoryRegion *mr, Error **errp);
 137void qemu_ram_free(RAMBlock *block);
 138
 139int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
 140
 141void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length);
 142
 143/* Clear whole block of mem */
 144static inline void qemu_ram_block_writeback(RAMBlock *block)
 145{
 146    qemu_ram_msync(block, 0, block->used_length);
 147}
 148
 149#define DIRTY_CLIENTS_ALL     ((1 << DIRTY_MEMORY_NUM) - 1)
 150#define DIRTY_CLIENTS_NOCODE  (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
 151
 152static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
 153                                                 ram_addr_t length,
 154                                                 unsigned client)
 155{
 156    DirtyMemoryBlocks *blocks;
 157    unsigned long end, page;
 158    unsigned long idx, offset, base;
 159    bool dirty = false;
 160
 161    assert(client < DIRTY_MEMORY_NUM);
 162
 163    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
 164    page = start >> TARGET_PAGE_BITS;
 165
 166    WITH_RCU_READ_LOCK_GUARD() {
 167        blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
 168
 169        idx = page / DIRTY_MEMORY_BLOCK_SIZE;
 170        offset = page % DIRTY_MEMORY_BLOCK_SIZE;
 171        base = page - offset;
 172        while (page < end) {
 173            unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
 174            unsigned long num = next - base;
 175            unsigned long found = find_next_bit(blocks->blocks[idx],
 176                                                num, offset);
 177            if (found < num) {
 178                dirty = true;
 179                break;
 180            }
 181
 182            page = next;
 183            idx++;
 184            offset = 0;
 185            base += DIRTY_MEMORY_BLOCK_SIZE;
 186        }
 187    }
 188
 189    return dirty;
 190}
 191
 192static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
 193                                                 ram_addr_t length,
 194                                                 unsigned client)
 195{
 196    DirtyMemoryBlocks *blocks;
 197    unsigned long end, page;
 198    unsigned long idx, offset, base;
 199    bool dirty = true;
 200
 201    assert(client < DIRTY_MEMORY_NUM);
 202
 203    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
 204    page = start >> TARGET_PAGE_BITS;
 205
 206    RCU_READ_LOCK_GUARD();
 207
 208    blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
 209
 210    idx = page / DIRTY_MEMORY_BLOCK_SIZE;
 211    offset = page % DIRTY_MEMORY_BLOCK_SIZE;
 212    base = page - offset;
 213    while (page < end) {
 214        unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
 215        unsigned long num = next - base;
 216        unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
 217        if (found < num) {
 218            dirty = false;
 219            break;
 220        }
 221
 222        page = next;
 223        idx++;
 224        offset = 0;
 225        base += DIRTY_MEMORY_BLOCK_SIZE;
 226    }
 227
 228    return dirty;
 229}
 230
 231static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
 232                                                      unsigned client)
 233{
 234    return cpu_physical_memory_get_dirty(addr, 1, client);
 235}
 236
 237static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
 238{
 239    bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
 240    bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
 241    bool migration =
 242        cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
 243    return !(vga && code && migration);
 244}
 245
 246static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
 247                                                               ram_addr_t length,
 248                                                               uint8_t mask)
 249{
 250    uint8_t ret = 0;
 251
 252    if (mask & (1 << DIRTY_MEMORY_VGA) &&
 253        !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
 254        ret |= (1 << DIRTY_MEMORY_VGA);
 255    }
 256    if (mask & (1 << DIRTY_MEMORY_CODE) &&
 257        !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
 258        ret |= (1 << DIRTY_MEMORY_CODE);
 259    }
 260    if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
 261        !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
 262        ret |= (1 << DIRTY_MEMORY_MIGRATION);
 263    }
 264    return ret;
 265}
 266
 267static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
 268                                                      unsigned client)
 269{
 270    unsigned long page, idx, offset;
 271    DirtyMemoryBlocks *blocks;
 272
 273    assert(client < DIRTY_MEMORY_NUM);
 274
 275    page = addr >> TARGET_PAGE_BITS;
 276    idx = page / DIRTY_MEMORY_BLOCK_SIZE;
 277    offset = page % DIRTY_MEMORY_BLOCK_SIZE;
 278
 279    RCU_READ_LOCK_GUARD();
 280
 281    blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
 282
 283    set_bit_atomic(offset, blocks->blocks[idx]);
 284}
 285
 286static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
 287                                                       ram_addr_t length,
 288                                                       uint8_t mask)
 289{
 290    DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
 291    unsigned long end, page;
 292    unsigned long idx, offset, base;
 293    int i;
 294
 295    if (!mask && !xen_enabled()) {
 296        return;
 297    }
 298
 299    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
 300    page = start >> TARGET_PAGE_BITS;
 301
 302    WITH_RCU_READ_LOCK_GUARD() {
 303        for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
 304            blocks[i] = qatomic_rcu_read(&ram_list.dirty_memory[i]);
 305        }
 306
 307        idx = page / DIRTY_MEMORY_BLOCK_SIZE;
 308        offset = page % DIRTY_MEMORY_BLOCK_SIZE;
 309        base = page - offset;
 310        while (page < end) {
 311            unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
 312
 313            if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
 314                bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
 315                                  offset, next - page);
 316            }
 317            if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
 318                bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
 319                                  offset, next - page);
 320            }
 321            if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
 322                bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
 323                                  offset, next - page);
 324            }
 325
 326            page = next;
 327            idx++;
 328            offset = 0;
 329            base += DIRTY_MEMORY_BLOCK_SIZE;
 330        }
 331    }
 332
 333    xen_hvm_modified_memory(start, length);
 334}
 335
 336#if !defined(_WIN32)
 337
 338/*
 339 * Contrary to cpu_physical_memory_sync_dirty_bitmap() this function returns
 340 * the number of dirty pages in @bitmap passed as argument. On the other hand,
 341 * cpu_physical_memory_sync_dirty_bitmap() returns newly dirtied pages that
 342 * weren't set in the global migration bitmap.
 343 */
 344static inline
 345uint64_t cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
 346                                                ram_addr_t start,
 347                                                ram_addr_t pages)
 348{
 349    unsigned long i, j;
 350    unsigned long page_number, c, nbits;
 351    hwaddr addr;
 352    ram_addr_t ram_addr;
 353    uint64_t num_dirty = 0;
 354    unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
 355    unsigned long hpratio = qemu_real_host_page_size() / TARGET_PAGE_SIZE;
 356    unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
 357
 358    /* start address is aligned at the start of a word? */
 359    if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
 360        (hpratio == 1)) {
 361        unsigned long **blocks[DIRTY_MEMORY_NUM];
 362        unsigned long idx;
 363        unsigned long offset;
 364        long k;
 365        long nr = BITS_TO_LONGS(pages);
 366
 367        idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
 368        offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
 369                          DIRTY_MEMORY_BLOCK_SIZE);
 370
 371        WITH_RCU_READ_LOCK_GUARD() {
 372            for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
 373                blocks[i] =
 374                    qatomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
 375            }
 376
 377            for (k = 0; k < nr; k++) {
 378                if (bitmap[k]) {
 379                    unsigned long temp = leul_to_cpu(bitmap[k]);
 380
 381                    nbits = ctpopl(temp);
 382                    qatomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
 383
 384                    if (global_dirty_tracking) {
 385                        qatomic_or(
 386                                &blocks[DIRTY_MEMORY_MIGRATION][idx][offset],
 387                                temp);
 388                        if (unlikely(
 389                            global_dirty_tracking & GLOBAL_DIRTY_DIRTY_RATE)) {
 390                            total_dirty_pages += nbits;
 391                        }
 392                    }
 393
 394                    num_dirty += nbits;
 395
 396                    if (tcg_enabled()) {
 397                        qatomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset],
 398                                   temp);
 399                    }
 400                }
 401
 402                if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
 403                    offset = 0;
 404                    idx++;
 405                }
 406            }
 407        }
 408
 409        xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
 410    } else {
 411        uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
 412
 413        if (!global_dirty_tracking) {
 414            clients &= ~(1 << DIRTY_MEMORY_MIGRATION);
 415        }
 416
 417        /*
 418         * bitmap-traveling is faster than memory-traveling (for addr...)
 419         * especially when most of the memory is not dirty.
 420         */
 421        for (i = 0; i < len; i++) {
 422            if (bitmap[i] != 0) {
 423                c = leul_to_cpu(bitmap[i]);
 424                nbits = ctpopl(c);
 425                if (unlikely(global_dirty_tracking & GLOBAL_DIRTY_DIRTY_RATE)) {
 426                    total_dirty_pages += nbits;
 427                }
 428                num_dirty += nbits;
 429                do {
 430                    j = ctzl(c);
 431                    c &= ~(1ul << j);
 432                    page_number = (i * HOST_LONG_BITS + j) * hpratio;
 433                    addr = page_number * TARGET_PAGE_SIZE;
 434                    ram_addr = start + addr;
 435                    cpu_physical_memory_set_dirty_range(ram_addr,
 436                                       TARGET_PAGE_SIZE * hpratio, clients);
 437                } while (c != 0);
 438            }
 439        }
 440    }
 441
 442    return num_dirty;
 443}
 444#endif /* not _WIN32 */
 445
 446bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
 447                                              ram_addr_t length,
 448                                              unsigned client);
 449
 450DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
 451    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client);
 452
 453bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
 454                                            ram_addr_t start,
 455                                            ram_addr_t length);
 456
 457static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
 458                                                         ram_addr_t length)
 459{
 460    cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
 461    cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
 462    cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
 463}
 464
 465
 466/* Called with RCU critical section */
 467static inline
 468uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb,
 469                                               ram_addr_t start,
 470                                               ram_addr_t length)
 471{
 472    ram_addr_t addr;
 473    unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS);
 474    uint64_t num_dirty = 0;
 475    unsigned long *dest = rb->bmap;
 476
 477    /* start address and length is aligned at the start of a word? */
 478    if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) ==
 479         (start + rb->offset) &&
 480        !(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) {
 481        int k;
 482        int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
 483        unsigned long * const *src;
 484        unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
 485        unsigned long offset = BIT_WORD((word * BITS_PER_LONG) %
 486                                        DIRTY_MEMORY_BLOCK_SIZE);
 487        unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
 488
 489        src = qatomic_rcu_read(
 490                &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
 491
 492        for (k = page; k < page + nr; k++) {
 493            if (src[idx][offset]) {
 494                unsigned long bits = qatomic_xchg(&src[idx][offset], 0);
 495                unsigned long new_dirty;
 496                new_dirty = ~dest[k];
 497                dest[k] |= bits;
 498                new_dirty &= bits;
 499                num_dirty += ctpopl(new_dirty);
 500            }
 501
 502            if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
 503                offset = 0;
 504                idx++;
 505            }
 506        }
 507
 508        if (rb->clear_bmap) {
 509            /*
 510             * Postpone the dirty bitmap clear to the point before we
 511             * really send the pages, also we will split the clear
 512             * dirty procedure into smaller chunks.
 513             */
 514            clear_bmap_set(rb, start >> TARGET_PAGE_BITS,
 515                           length >> TARGET_PAGE_BITS);
 516        } else {
 517            /* Slow path - still do that in a huge chunk */
 518            memory_region_clear_dirty_bitmap(rb->mr, start, length);
 519        }
 520    } else {
 521        ram_addr_t offset = rb->offset;
 522
 523        for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
 524            if (cpu_physical_memory_test_and_clear_dirty(
 525                        start + addr + offset,
 526                        TARGET_PAGE_SIZE,
 527                        DIRTY_MEMORY_MIGRATION)) {
 528                long k = (start + addr) >> TARGET_PAGE_BITS;
 529                if (!test_and_set_bit(k, dest)) {
 530                    num_dirty++;
 531                }
 532            }
 533        }
 534    }
 535
 536    return num_dirty;
 537}
 538#endif
 539#endif
 540