qemu/include/hw/xen/interface/xen.h
<<
>>
Prefs
   1/******************************************************************************
   2 * xen.h
   3 *
   4 * Guest OS interface to Xen.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to
   8 * deal in the Software without restriction, including without limitation the
   9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  10 * sell copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22 * DEALINGS IN THE SOFTWARE.
  23 *
  24 * Copyright (c) 2004, K A Fraser
  25 */
  26
  27#ifndef __XEN_PUBLIC_XEN_H__
  28#define __XEN_PUBLIC_XEN_H__
  29
  30#include "xen-compat.h"
  31
  32#if defined(__i386__) || defined(__x86_64__)
  33#include "arch-x86/xen.h"
  34#elif defined(__arm__) || defined (__aarch64__)
  35#include "arch-arm.h"
  36#else
  37#error "Unsupported architecture"
  38#endif
  39
  40#ifndef __ASSEMBLY__
  41/* Guest handles for primitive C types. */
  42DEFINE_XEN_GUEST_HANDLE(char);
  43__DEFINE_XEN_GUEST_HANDLE(uchar, unsigned char);
  44DEFINE_XEN_GUEST_HANDLE(int);
  45__DEFINE_XEN_GUEST_HANDLE(uint,  unsigned int);
  46#if __XEN_INTERFACE_VERSION__ < 0x00040300
  47DEFINE_XEN_GUEST_HANDLE(long);
  48__DEFINE_XEN_GUEST_HANDLE(ulong, unsigned long);
  49#endif
  50DEFINE_XEN_GUEST_HANDLE(void);
  51
  52DEFINE_XEN_GUEST_HANDLE(uint64_t);
  53DEFINE_XEN_GUEST_HANDLE(xen_pfn_t);
  54DEFINE_XEN_GUEST_HANDLE(xen_ulong_t);
  55
  56/* Define a variable length array (depends on compiler). */
  57#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
  58#define XEN_FLEX_ARRAY_DIM
  59#elif defined(__GNUC__)
  60#define XEN_FLEX_ARRAY_DIM  0
  61#else
  62#define XEN_FLEX_ARRAY_DIM  1 /* variable size */
  63#endif
  64
  65/* Turn a plain number into a C unsigned (long (long)) constant. */
  66#define __xen_mk_uint(x)  x ## U
  67#define __xen_mk_ulong(x) x ## UL
  68#ifndef __xen_mk_ullong
  69# define __xen_mk_ullong(x) x ## ULL
  70#endif
  71#define xen_mk_uint(x)    __xen_mk_uint(x)
  72#define xen_mk_ulong(x)   __xen_mk_ulong(x)
  73#define xen_mk_ullong(x)  __xen_mk_ullong(x)
  74
  75#else
  76
  77/* In assembly code we cannot use C numeric constant suffixes. */
  78#define xen_mk_uint(x)   x
  79#define xen_mk_ulong(x)  x
  80#define xen_mk_ullong(x) x
  81
  82#endif
  83
  84/*
  85 * HYPERCALLS
  86 */
  87
  88/* `incontents 100 hcalls List of hypercalls
  89 * ` enum hypercall_num { // __HYPERVISOR_* => HYPERVISOR_*()
  90 */
  91
  92#define __HYPERVISOR_set_trap_table        0
  93#define __HYPERVISOR_mmu_update            1
  94#define __HYPERVISOR_set_gdt               2
  95#define __HYPERVISOR_stack_switch          3
  96#define __HYPERVISOR_set_callbacks         4
  97#define __HYPERVISOR_fpu_taskswitch        5
  98#define __HYPERVISOR_sched_op_compat       6 /* compat since 0x00030101 */
  99#define __HYPERVISOR_platform_op           7
 100#define __HYPERVISOR_set_debugreg          8
 101#define __HYPERVISOR_get_debugreg          9
 102#define __HYPERVISOR_update_descriptor    10
 103#define __HYPERVISOR_memory_op            12
 104#define __HYPERVISOR_multicall            13
 105#define __HYPERVISOR_update_va_mapping    14
 106#define __HYPERVISOR_set_timer_op         15
 107#define __HYPERVISOR_event_channel_op_compat 16 /* compat since 0x00030202 */
 108#define __HYPERVISOR_xen_version          17
 109#define __HYPERVISOR_console_io           18
 110#define __HYPERVISOR_physdev_op_compat    19 /* compat since 0x00030202 */
 111#define __HYPERVISOR_grant_table_op       20
 112#define __HYPERVISOR_vm_assist            21
 113#define __HYPERVISOR_update_va_mapping_otherdomain 22
 114#define __HYPERVISOR_iret                 23 /* x86 only */
 115#define __HYPERVISOR_vcpu_op              24
 116#define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
 117#define __HYPERVISOR_mmuext_op            26
 118#define __HYPERVISOR_xsm_op               27
 119#define __HYPERVISOR_nmi_op               28
 120#define __HYPERVISOR_sched_op             29
 121#define __HYPERVISOR_callback_op          30
 122#define __HYPERVISOR_xenoprof_op          31
 123#define __HYPERVISOR_event_channel_op     32
 124#define __HYPERVISOR_physdev_op           33
 125#define __HYPERVISOR_hvm_op               34
 126#define __HYPERVISOR_sysctl               35
 127#define __HYPERVISOR_domctl               36
 128#define __HYPERVISOR_kexec_op             37
 129#define __HYPERVISOR_tmem_op              38
 130#define __HYPERVISOR_argo_op              39
 131#define __HYPERVISOR_xenpmu_op            40
 132#define __HYPERVISOR_dm_op                41
 133#define __HYPERVISOR_hypfs_op             42
 134
 135/* Architecture-specific hypercall definitions. */
 136#define __HYPERVISOR_arch_0               48
 137#define __HYPERVISOR_arch_1               49
 138#define __HYPERVISOR_arch_2               50
 139#define __HYPERVISOR_arch_3               51
 140#define __HYPERVISOR_arch_4               52
 141#define __HYPERVISOR_arch_5               53
 142#define __HYPERVISOR_arch_6               54
 143#define __HYPERVISOR_arch_7               55
 144
 145/* ` } */
 146
 147/*
 148 * HYPERCALL COMPATIBILITY.
 149 */
 150
 151/* New sched_op hypercall introduced in 0x00030101. */
 152#if __XEN_INTERFACE_VERSION__ < 0x00030101
 153#undef __HYPERVISOR_sched_op
 154#define __HYPERVISOR_sched_op __HYPERVISOR_sched_op_compat
 155#endif
 156
 157/* New event-channel and physdev hypercalls introduced in 0x00030202. */
 158#if __XEN_INTERFACE_VERSION__ < 0x00030202
 159#undef __HYPERVISOR_event_channel_op
 160#define __HYPERVISOR_event_channel_op __HYPERVISOR_event_channel_op_compat
 161#undef __HYPERVISOR_physdev_op
 162#define __HYPERVISOR_physdev_op __HYPERVISOR_physdev_op_compat
 163#endif
 164
 165/* New platform_op hypercall introduced in 0x00030204. */
 166#if __XEN_INTERFACE_VERSION__ < 0x00030204
 167#define __HYPERVISOR_dom0_op __HYPERVISOR_platform_op
 168#endif
 169
 170/*
 171 * VIRTUAL INTERRUPTS
 172 *
 173 * Virtual interrupts that a guest OS may receive from Xen.
 174 *
 175 * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
 176 * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
 177 * The latter can be allocated only once per guest: they must initially be
 178 * allocated to VCPU0 but can subsequently be re-bound.
 179 */
 180/* ` enum virq { */
 181#define VIRQ_TIMER      0  /* V. Timebase update, and/or requested timeout.  */
 182#define VIRQ_DEBUG      1  /* V. Request guest to dump debug info.           */
 183#define VIRQ_CONSOLE    2  /* G. (DOM0) Bytes received on emergency console. */
 184#define VIRQ_DOM_EXC    3  /* G. (DOM0) Exceptional event for some domain.   */
 185#define VIRQ_TBUF       4  /* G. (DOM0) Trace buffer has records available.  */
 186#define VIRQ_DEBUGGER   6  /* G. (DOM0) A domain has paused for debugging.   */
 187#define VIRQ_XENOPROF   7  /* V. XenOprofile interrupt: new sample available */
 188#define VIRQ_CON_RING   8  /* G. (DOM0) Bytes received on console            */
 189#define VIRQ_PCPU_STATE 9  /* G. (DOM0) PCPU state changed                   */
 190#define VIRQ_MEM_EVENT  10 /* G. (DOM0) A memory event has occurred          */
 191#define VIRQ_ARGO       11 /* G. Argo interdomain message notification       */
 192#define VIRQ_ENOMEM     12 /* G. (DOM0) Low on heap memory       */
 193#define VIRQ_XENPMU     13 /* V.  PMC interrupt                              */
 194
 195/* Architecture-specific VIRQ definitions. */
 196#define VIRQ_ARCH_0    16
 197#define VIRQ_ARCH_1    17
 198#define VIRQ_ARCH_2    18
 199#define VIRQ_ARCH_3    19
 200#define VIRQ_ARCH_4    20
 201#define VIRQ_ARCH_5    21
 202#define VIRQ_ARCH_6    22
 203#define VIRQ_ARCH_7    23
 204/* ` } */
 205
 206#define NR_VIRQS       24
 207
 208/*
 209 * ` enum neg_errnoval
 210 * ` HYPERVISOR_mmu_update(const struct mmu_update reqs[],
 211 * `                       unsigned count, unsigned *done_out,
 212 * `                       unsigned foreigndom)
 213 * `
 214 * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
 215 * @count is the length of the above array.
 216 * @pdone is an output parameter indicating number of completed operations
 217 * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
 218 *                    hypercall invocation. Can be DOMID_SELF.
 219 * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
 220 *                     in this hypercall invocation. The value of this field
 221 *                     (x) encodes the PFD as follows:
 222 *                     x == 0 => PFD == DOMID_SELF
 223 *                     x != 0 => PFD == x - 1
 224 *
 225 * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
 226 * -------------
 227 * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
 228 * Updates an entry in a page table belonging to PFD. If updating an L1 table,
 229 * and the new table entry is valid/present, the mapped frame must belong to
 230 * FD. If attempting to map an I/O page then the caller assumes the privilege
 231 * of the FD.
 232 * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
 233 * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
 234 * ptr[:2]  -- Machine address of the page-table entry to modify.
 235 * val      -- Value to write.
 236 *
 237 * There also certain implicit requirements when using this hypercall. The
 238 * pages that make up a pagetable must be mapped read-only in the guest.
 239 * This prevents uncontrolled guest updates to the pagetable. Xen strictly
 240 * enforces this, and will disallow any pagetable update which will end up
 241 * mapping pagetable page RW, and will disallow using any writable page as a
 242 * pagetable. In practice it means that when constructing a page table for a
 243 * process, thread, etc, we MUST be very dilligient in following these rules:
 244 *  1). Start with top-level page (PGD or in Xen language: L4). Fill out
 245 *      the entries.
 246 *  2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
 247 *      or L2).
 248 *  3). Start filling out the PTE table (L1) with the PTE entries. Once
 249 *      done, make sure to set each of those entries to RO (so writeable bit
 250 *      is unset). Once that has been completed, set the PMD (L2) for this
 251 *      PTE table as RO.
 252 *  4). When completed with all of the PMD (L2) entries, and all of them have
 253 *      been set to RO, make sure to set RO the PUD (L3). Do the same
 254 *      operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
 255 *  5). Now before you can use those pages (so setting the cr3), you MUST also
 256 *      pin them so that the hypervisor can verify the entries. This is done
 257 *      via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
 258 *      number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
 259 *      MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
 260 *      issued.
 261 * For 32-bit guests, the L4 is not used (as there is less pagetables), so
 262 * instead use L3.
 263 * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
 264 * hypercall. Also if so desired the OS can also try to write to the PTE
 265 * and be trapped by the hypervisor (as the PTE entry is RO).
 266 *
 267 * To deallocate the pages, the operations are the reverse of the steps
 268 * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
 269 * pagetable MUST not be in use (meaning that the cr3 is not set to it).
 270 *
 271 * ptr[1:0] == MMU_MACHPHYS_UPDATE:
 272 * Updates an entry in the machine->pseudo-physical mapping table.
 273 * ptr[:2]  -- Machine address within the frame whose mapping to modify.
 274 *             The frame must belong to the FD, if one is specified.
 275 * val      -- Value to write into the mapping entry.
 276 *
 277 * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
 278 * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
 279 * with those in @val.
 280 *
 281 * ptr[1:0] == MMU_PT_UPDATE_NO_TRANSLATE:
 282 * As MMU_NORMAL_PT_UPDATE above, but @val is not translated though FD
 283 * page tables.
 284 *
 285 * @val is usually the machine frame number along with some attributes.
 286 * The attributes by default follow the architecture defined bits. Meaning that
 287 * if this is a X86_64 machine and four page table layout is used, the layout
 288 * of val is:
 289 *  - 63 if set means No execute (NX)
 290 *  - 46-13 the machine frame number
 291 *  - 12 available for guest
 292 *  - 11 available for guest
 293 *  - 10 available for guest
 294 *  - 9 available for guest
 295 *  - 8 global
 296 *  - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
 297 *  - 6 dirty
 298 *  - 5 accessed
 299 *  - 4 page cached disabled
 300 *  - 3 page write through
 301 *  - 2 userspace accessible
 302 *  - 1 writeable
 303 *  - 0 present
 304 *
 305 *  The one bits that does not fit with the default layout is the PAGE_PSE
 306 *  also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
 307 *  HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
 308 *  (or 2MB) instead of using the PAGE_PSE bit.
 309 *
 310 *  The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
 311 *  using it as the Page Attribute Table (PAT) bit - for details on it please
 312 *  refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
 313 *  pages instead of using MTRRs.
 314 *
 315 *  The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
 316 *                    PAT4                 PAT0
 317 *  +-----+-----+----+----+----+-----+----+----+
 318 *  | UC  | UC- | WC | WB | UC | UC- | WC | WB |  <= Linux
 319 *  +-----+-----+----+----+----+-----+----+----+
 320 *  | UC  | UC- | WT | WB | UC | UC- | WT | WB |  <= BIOS (default when machine boots)
 321 *  +-----+-----+----+----+----+-----+----+----+
 322 *  | rsv | rsv | WP | WC | UC | UC- | WT | WB |  <= Xen
 323 *  +-----+-----+----+----+----+-----+----+----+
 324 *
 325 *  The lookup of this index table translates to looking up
 326 *  Bit 7, Bit 4, and Bit 3 of val entry:
 327 *
 328 *  PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
 329 *
 330 *  If all bits are off, then we are using PAT0. If bit 3 turned on,
 331 *  then we are using PAT1, if bit 3 and bit 4, then PAT2..
 332 *
 333 *  As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
 334 *  that if a guest that follows Linux's PAT setup and would like to set Write
 335 *  Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
 336 *  set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
 337 *  caching as:
 338 *
 339 *   WB = none (so PAT0)
 340 *   WC = PWT (bit 3 on)
 341 *   UC = PWT | PCD (bit 3 and 4 are on).
 342 *
 343 * To make it work with Xen, it needs to translate the WC bit as so:
 344 *
 345 *  PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
 346 *
 347 * And to translate back it would:
 348 *
 349 * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
 350 */
 351#define MMU_NORMAL_PT_UPDATE       0 /* checked '*ptr = val'. ptr is MA.      */
 352#define MMU_MACHPHYS_UPDATE        1 /* ptr = MA of frame to modify entry for */
 353#define MMU_PT_UPDATE_PRESERVE_AD  2 /* atomically: *ptr = val | (*ptr&(A|D)) */
 354#define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA.      */
 355                                     /* val never translated.                 */
 356
 357/*
 358 * MMU EXTENDED OPERATIONS
 359 *
 360 * ` enum neg_errnoval
 361 * ` HYPERVISOR_mmuext_op(mmuext_op_t uops[],
 362 * `                      unsigned int count,
 363 * `                      unsigned int *pdone,
 364 * `                      unsigned int foreigndom)
 365 */
 366/* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
 367 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
 368 * Where the FD has some effect, it is described below.
 369 *
 370 * cmd: MMUEXT_(UN)PIN_*_TABLE
 371 * mfn: Machine frame number to be (un)pinned as a p.t. page.
 372 *      The frame must belong to the FD, if one is specified.
 373 *
 374 * cmd: MMUEXT_NEW_BASEPTR
 375 * mfn: Machine frame number of new page-table base to install in MMU.
 376 *
 377 * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
 378 * mfn: Machine frame number of new page-table base to install in MMU
 379 *      when in user space.
 380 *
 381 * cmd: MMUEXT_TLB_FLUSH_LOCAL
 382 * No additional arguments. Flushes local TLB.
 383 *
 384 * cmd: MMUEXT_INVLPG_LOCAL
 385 * linear_addr: Linear address to be flushed from the local TLB.
 386 *
 387 * cmd: MMUEXT_TLB_FLUSH_MULTI
 388 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
 389 *
 390 * cmd: MMUEXT_INVLPG_MULTI
 391 * linear_addr: Linear address to be flushed.
 392 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
 393 *
 394 * cmd: MMUEXT_TLB_FLUSH_ALL
 395 * No additional arguments. Flushes all VCPUs' TLBs.
 396 *
 397 * cmd: MMUEXT_INVLPG_ALL
 398 * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
 399 *
 400 * cmd: MMUEXT_FLUSH_CACHE
 401 * No additional arguments. Writes back and flushes cache contents.
 402 *
 403 * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
 404 * No additional arguments. Writes back and flushes cache contents
 405 * on all CPUs in the system.
 406 *
 407 * cmd: MMUEXT_SET_LDT
 408 * linear_addr: Linear address of LDT base (NB. must be page-aligned).
 409 * nr_ents: Number of entries in LDT.
 410 *
 411 * cmd: MMUEXT_CLEAR_PAGE
 412 * mfn: Machine frame number to be cleared.
 413 *
 414 * cmd: MMUEXT_COPY_PAGE
 415 * mfn: Machine frame number of the destination page.
 416 * src_mfn: Machine frame number of the source page.
 417 *
 418 * cmd: MMUEXT_[UN]MARK_SUPER
 419 * mfn: Machine frame number of head of superpage to be [un]marked.
 420 */
 421/* ` enum mmuext_cmd { */
 422#define MMUEXT_PIN_L1_TABLE      0
 423#define MMUEXT_PIN_L2_TABLE      1
 424#define MMUEXT_PIN_L3_TABLE      2
 425#define MMUEXT_PIN_L4_TABLE      3
 426#define MMUEXT_UNPIN_TABLE       4
 427#define MMUEXT_NEW_BASEPTR       5
 428#define MMUEXT_TLB_FLUSH_LOCAL   6
 429#define MMUEXT_INVLPG_LOCAL      7
 430#define MMUEXT_TLB_FLUSH_MULTI   8
 431#define MMUEXT_INVLPG_MULTI      9
 432#define MMUEXT_TLB_FLUSH_ALL    10
 433#define MMUEXT_INVLPG_ALL       11
 434#define MMUEXT_FLUSH_CACHE      12
 435#define MMUEXT_SET_LDT          13
 436#define MMUEXT_NEW_USER_BASEPTR 15
 437#define MMUEXT_CLEAR_PAGE       16
 438#define MMUEXT_COPY_PAGE        17
 439#define MMUEXT_FLUSH_CACHE_GLOBAL 18
 440#define MMUEXT_MARK_SUPER       19
 441#define MMUEXT_UNMARK_SUPER     20
 442/* ` } */
 443
 444#ifndef __ASSEMBLY__
 445struct mmuext_op {
 446    unsigned int cmd; /* => enum mmuext_cmd */
 447    union {
 448        /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
 449         * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
 450        xen_pfn_t     mfn;
 451        /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
 452        unsigned long linear_addr;
 453    } arg1;
 454    union {
 455        /* SET_LDT */
 456        unsigned int nr_ents;
 457        /* TLB_FLUSH_MULTI, INVLPG_MULTI */
 458#if __XEN_INTERFACE_VERSION__ >= 0x00030205
 459        XEN_GUEST_HANDLE(const_void) vcpumask;
 460#else
 461        const void *vcpumask;
 462#endif
 463        /* COPY_PAGE */
 464        xen_pfn_t src_mfn;
 465    } arg2;
 466};
 467typedef struct mmuext_op mmuext_op_t;
 468DEFINE_XEN_GUEST_HANDLE(mmuext_op_t);
 469#endif
 470
 471/*
 472 * ` enum neg_errnoval
 473 * ` HYPERVISOR_update_va_mapping(unsigned long va, u64 val,
 474 * `                              enum uvm_flags flags)
 475 * `
 476 * ` enum neg_errnoval
 477 * ` HYPERVISOR_update_va_mapping_otherdomain(unsigned long va, u64 val,
 478 * `                                          enum uvm_flags flags,
 479 * `                                          domid_t domid)
 480 * `
 481 * ` @va: The virtual address whose mapping we want to change
 482 * ` @val: The new page table entry, must contain a machine address
 483 * ` @flags: Control TLB flushes
 484 */
 485/* These are passed as 'flags' to update_va_mapping. They can be ORed. */
 486/* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
 487/* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
 488/* ` enum uvm_flags { */
 489#define UVMF_NONE           (xen_mk_ulong(0)<<0) /* No flushing at all.   */
 490#define UVMF_TLB_FLUSH      (xen_mk_ulong(1)<<0) /* Flush entire TLB(s).  */
 491#define UVMF_INVLPG         (xen_mk_ulong(2)<<0) /* Flush only one entry. */
 492#define UVMF_FLUSHTYPE_MASK (xen_mk_ulong(3)<<0)
 493#define UVMF_MULTI          (xen_mk_ulong(0)<<2) /* Flush subset of TLBs. */
 494#define UVMF_LOCAL          (xen_mk_ulong(0)<<2) /* Flush local TLB.      */
 495#define UVMF_ALL            (xen_mk_ulong(1)<<2) /* Flush all TLBs.       */
 496/* ` } */
 497
 498/*
 499 * ` int
 500 * ` HYPERVISOR_console_io(unsigned int cmd,
 501 * `                       unsigned int count,
 502 * `                       char buffer[]);
 503 *
 504 * @cmd: Command (see below)
 505 * @count: Size of the buffer to read/write
 506 * @buffer: Pointer in the guest memory
 507 *
 508 * List of commands:
 509 *
 510 *  * CONSOLEIO_write: Write the buffer to Xen console.
 511 *      For the hardware domain, all the characters in the buffer will
 512 *      be written. Characters will be printed directly to the console.
 513 *      For all the other domains, only the printable characters will be
 514 *      written. Characters may be buffered until a newline (i.e '\n') is
 515 *      found.
 516 *      @return 0 on success, otherwise return an error code.
 517 *  * CONSOLEIO_read: Attempts to read up to @count characters from Xen
 518 *      console. The maximum buffer size (i.e. @count) supported is 2GB.
 519 *      @return the number of characters read on success, otherwise return
 520 *      an error code.
 521 */
 522#define CONSOLEIO_write         0
 523#define CONSOLEIO_read          1
 524
 525/*
 526 * Commands to HYPERVISOR_vm_assist().
 527 */
 528#define VMASST_CMD_enable                0
 529#define VMASST_CMD_disable               1
 530
 531/* x86/32 guests: simulate full 4GB segment limits. */
 532#define VMASST_TYPE_4gb_segments         0
 533
 534/* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
 535#define VMASST_TYPE_4gb_segments_notify  1
 536
 537/*
 538 * x86 guests: support writes to bottom-level PTEs.
 539 * NB1. Page-directory entries cannot be written.
 540 * NB2. Guest must continue to remove all writable mappings of PTEs.
 541 */
 542#define VMASST_TYPE_writable_pagetables  2
 543
 544/* x86/PAE guests: support PDPTs above 4GB. */
 545#define VMASST_TYPE_pae_extended_cr3     3
 546
 547/*
 548 * x86 guests: Sane behaviour for virtual iopl
 549 *  - virtual iopl updated from do_iret() hypercalls.
 550 *  - virtual iopl reported in bounce frames.
 551 *  - guest kernels assumed to be level 0 for the purpose of iopl checks.
 552 */
 553#define VMASST_TYPE_architectural_iopl   4
 554
 555/*
 556 * All guests: activate update indicator in vcpu_runstate_info
 557 * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
 558 * vcpu_runstate_info during updates of the runstate information.
 559 */
 560#define VMASST_TYPE_runstate_update_flag 5
 561
 562/*
 563 * x86/64 guests: strictly hide M2P from user mode.
 564 * This allows the guest to control respective hypervisor behavior:
 565 * - when not set, L4 tables get created with the respective slot blank,
 566 *   and whenever the L4 table gets used as a kernel one the missing
 567 *   mapping gets inserted,
 568 * - when set, L4 tables get created with the respective slot initialized
 569 *   as before, and whenever the L4 table gets used as a user one the
 570 *   mapping gets zapped.
 571 */
 572#define VMASST_TYPE_m2p_strict           32
 573
 574#if __XEN_INTERFACE_VERSION__ < 0x00040600
 575#define MAX_VMASST_TYPE                  3
 576#endif
 577
 578/* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
 579#define DOMID_FIRST_RESERVED xen_mk_uint(0x7FF0)
 580
 581/* DOMID_SELF is used in certain contexts to refer to oneself. */
 582#define DOMID_SELF           xen_mk_uint(0x7FF0)
 583
 584/*
 585 * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
 586 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
 587 * is useful to ensure that no mappings to the OS's own heap are accidentally
 588 * installed. (e.g., in Linux this could cause havoc as reference counts
 589 * aren't adjusted on the I/O-mapping code path).
 590 * This only makes sense as HYPERVISOR_mmu_update()'s and
 591 * HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument. For
 592 * HYPERVISOR_mmu_update() context it can be specified by any calling domain,
 593 * otherwise it's only permitted if the caller is privileged.
 594 */
 595#define DOMID_IO             xen_mk_uint(0x7FF1)
 596
 597/*
 598 * DOMID_XEN is used to allow privileged domains to map restricted parts of
 599 * Xen's heap space (e.g., the machine_to_phys table).
 600 * This only makes sense as
 601 * - HYPERVISOR_mmu_update()'s, HYPERVISOR_mmuext_op()'s, or
 602 *   HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument,
 603 * - with XENMAPSPACE_gmfn_foreign,
 604 * and is only permitted if the caller is privileged.
 605 */
 606#define DOMID_XEN            xen_mk_uint(0x7FF2)
 607
 608/*
 609 * DOMID_COW is used as the owner of sharable pages */
 610#define DOMID_COW            xen_mk_uint(0x7FF3)
 611
 612/* DOMID_INVALID is used to identify pages with unknown owner. */
 613#define DOMID_INVALID        xen_mk_uint(0x7FF4)
 614
 615/* Idle domain. */
 616#define DOMID_IDLE           xen_mk_uint(0x7FFF)
 617
 618/* Mask for valid domain id values */
 619#define DOMID_MASK           xen_mk_uint(0x7FFF)
 620
 621#ifndef __ASSEMBLY__
 622
 623typedef uint16_t domid_t;
 624
 625/*
 626 * Send an array of these to HYPERVISOR_mmu_update().
 627 * NB. The fields are natural pointer/address size for this architecture.
 628 */
 629struct mmu_update {
 630    uint64_t ptr;       /* Machine address of PTE. */
 631    uint64_t val;       /* New contents of PTE.    */
 632};
 633typedef struct mmu_update mmu_update_t;
 634DEFINE_XEN_GUEST_HANDLE(mmu_update_t);
 635
 636/*
 637 * ` enum neg_errnoval
 638 * ` HYPERVISOR_multicall(multicall_entry_t call_list[],
 639 * `                      uint32_t nr_calls);
 640 *
 641 * NB. The fields are logically the natural register size for this
 642 * architecture. In cases where xen_ulong_t is larger than this then
 643 * any unused bits in the upper portion must be zero.
 644 */
 645struct multicall_entry {
 646    xen_ulong_t op, result;
 647    xen_ulong_t args[6];
 648};
 649typedef struct multicall_entry multicall_entry_t;
 650DEFINE_XEN_GUEST_HANDLE(multicall_entry_t);
 651
 652#if __XEN_INTERFACE_VERSION__ < 0x00040400
 653/*
 654 * Event channel endpoints per domain (when using the 2-level ABI):
 655 *  1024 if a long is 32 bits; 4096 if a long is 64 bits.
 656 */
 657#define NR_EVENT_CHANNELS EVTCHN_2L_NR_CHANNELS
 658#endif
 659
 660struct vcpu_time_info {
 661    /*
 662     * Updates to the following values are preceded and followed by an
 663     * increment of 'version'. The guest can therefore detect updates by
 664     * looking for changes to 'version'. If the least-significant bit of
 665     * the version number is set then an update is in progress and the guest
 666     * must wait to read a consistent set of values.
 667     * The correct way to interact with the version number is similar to
 668     * Linux's seqlock: see the implementations of read_seqbegin/read_seqretry.
 669     */
 670    uint32_t version;
 671    uint32_t pad0;
 672    uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
 673    uint64_t system_time;     /* Time, in nanosecs, since boot.    */
 674    /*
 675     * Current system time:
 676     *   system_time +
 677     *   ((((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul) >> 32)
 678     * CPU frequency (Hz):
 679     *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
 680     */
 681    uint32_t tsc_to_system_mul;
 682    int8_t   tsc_shift;
 683#if __XEN_INTERFACE_VERSION__ > 0x040600
 684    uint8_t  flags;
 685    uint8_t  pad1[2];
 686#else
 687    int8_t   pad1[3];
 688#endif
 689}; /* 32 bytes */
 690typedef struct vcpu_time_info vcpu_time_info_t;
 691
 692#define XEN_PVCLOCK_TSC_STABLE_BIT     (1 << 0)
 693#define XEN_PVCLOCK_GUEST_STOPPED      (1 << 1)
 694
 695struct vcpu_info {
 696    /*
 697     * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
 698     * a pending notification for a particular VCPU. It is then cleared
 699     * by the guest OS /before/ checking for pending work, thus avoiding
 700     * a set-and-check race. Note that the mask is only accessed by Xen
 701     * on the CPU that is currently hosting the VCPU. This means that the
 702     * pending and mask flags can be updated by the guest without special
 703     * synchronisation (i.e., no need for the x86 LOCK prefix).
 704     * This may seem suboptimal because if the pending flag is set by
 705     * a different CPU then an IPI may be scheduled even when the mask
 706     * is set. However, note:
 707     *  1. The task of 'interrupt holdoff' is covered by the per-event-
 708     *     channel mask bits. A 'noisy' event that is continually being
 709     *     triggered can be masked at source at this very precise
 710     *     granularity.
 711     *  2. The main purpose of the per-VCPU mask is therefore to restrict
 712     *     reentrant execution: whether for concurrency control, or to
 713     *     prevent unbounded stack usage. Whatever the purpose, we expect
 714     *     that the mask will be asserted only for short periods at a time,
 715     *     and so the likelihood of a 'spurious' IPI is suitably small.
 716     * The mask is read before making an event upcall to the guest: a
 717     * non-zero mask therefore guarantees that the VCPU will not receive
 718     * an upcall activation. The mask is cleared when the VCPU requests
 719     * to block: this avoids wakeup-waiting races.
 720     */
 721    uint8_t evtchn_upcall_pending;
 722#ifdef XEN_HAVE_PV_UPCALL_MASK
 723    uint8_t evtchn_upcall_mask;
 724#else /* XEN_HAVE_PV_UPCALL_MASK */
 725    uint8_t pad0;
 726#endif /* XEN_HAVE_PV_UPCALL_MASK */
 727    xen_ulong_t evtchn_pending_sel;
 728    struct arch_vcpu_info arch;
 729    vcpu_time_info_t time;
 730}; /* 64 bytes (x86) */
 731#ifndef __XEN__
 732typedef struct vcpu_info vcpu_info_t;
 733#endif
 734
 735/*
 736 * `incontents 200 startofday_shared Start-of-day shared data structure
 737 * Xen/kernel shared data -- pointer provided in start_info.
 738 *
 739 * This structure is defined to be both smaller than a page, and the
 740 * only data on the shared page, but may vary in actual size even within
 741 * compatible Xen versions; guests should not rely on the size
 742 * of this structure remaining constant.
 743 */
 744struct shared_info {
 745    struct vcpu_info vcpu_info[XEN_LEGACY_MAX_VCPUS];
 746
 747    /*
 748     * A domain can create "event channels" on which it can send and receive
 749     * asynchronous event notifications. There are three classes of event that
 750     * are delivered by this mechanism:
 751     *  1. Bi-directional inter- and intra-domain connections. Domains must
 752     *     arrange out-of-band to set up a connection (usually by allocating
 753     *     an unbound 'listener' port and avertising that via a storage service
 754     *     such as xenstore).
 755     *  2. Physical interrupts. A domain with suitable hardware-access
 756     *     privileges can bind an event-channel port to a physical interrupt
 757     *     source.
 758     *  3. Virtual interrupts ('events'). A domain can bind an event-channel
 759     *     port to a virtual interrupt source, such as the virtual-timer
 760     *     device or the emergency console.
 761     *
 762     * Event channels are addressed by a "port index". Each channel is
 763     * associated with two bits of information:
 764     *  1. PENDING -- notifies the domain that there is a pending notification
 765     *     to be processed. This bit is cleared by the guest.
 766     *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
 767     *     will cause an asynchronous upcall to be scheduled. This bit is only
 768     *     updated by the guest. It is read-only within Xen. If a channel
 769     *     becomes pending while the channel is masked then the 'edge' is lost
 770     *     (i.e., when the channel is unmasked, the guest must manually handle
 771     *     pending notifications as no upcall will be scheduled by Xen).
 772     *
 773     * To expedite scanning of pending notifications, any 0->1 pending
 774     * transition on an unmasked channel causes a corresponding bit in a
 775     * per-vcpu selector word to be set. Each bit in the selector covers a
 776     * 'C long' in the PENDING bitfield array.
 777     */
 778    xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
 779    xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
 780
 781    /*
 782     * Wallclock time: updated by control software or RTC emulation.
 783     * Guests should base their gettimeofday() syscall on this
 784     * wallclock-base value.
 785     * The values of wc_sec and wc_nsec are offsets from the Unix epoch
 786     * adjusted by the domain's 'time offset' (in seconds) as set either
 787     * by XEN_DOMCTL_settimeoffset, or adjusted via a guest write to the
 788     * emulated RTC.
 789     */
 790    uint32_t wc_version;      /* Version counter: see vcpu_time_info_t. */
 791    uint32_t wc_sec;
 792    uint32_t wc_nsec;
 793#if !defined(__i386__)
 794    uint32_t wc_sec_hi;
 795# define xen_wc_sec_hi wc_sec_hi
 796#elif !defined(__XEN__) && !defined(__XEN_TOOLS__)
 797# define xen_wc_sec_hi arch.wc_sec_hi
 798#endif
 799
 800    struct arch_shared_info arch;
 801
 802};
 803#ifndef __XEN__
 804typedef struct shared_info shared_info_t;
 805#endif
 806
 807/*
 808 * `incontents 200 startofday Start-of-day memory layout
 809 *
 810 *  1. The domain is started within contiguous virtual-memory region.
 811 *  2. The contiguous region ends on an aligned 4MB boundary.
 812 *  3. This the order of bootstrap elements in the initial virtual region:
 813 *      a. relocated kernel image
 814 *      b. initial ram disk              [mod_start, mod_len]
 815 *         (may be omitted)
 816 *      c. list of allocated page frames [mfn_list, nr_pages]
 817 *         (unless relocated due to XEN_ELFNOTE_INIT_P2M)
 818 *      d. start_info_t structure        [register rSI (x86)]
 819 *         in case of dom0 this page contains the console info, too
 820 *      e. unless dom0: xenstore ring page
 821 *      f. unless dom0: console ring page
 822 *      g. bootstrap page tables         [pt_base and CR3 (x86)]
 823 *      h. bootstrap stack               [register ESP (x86)]
 824 *  4. Bootstrap elements are packed together, but each is 4kB-aligned.
 825 *  5. The list of page frames forms a contiguous 'pseudo-physical' memory
 826 *     layout for the domain. In particular, the bootstrap virtual-memory
 827 *     region is a 1:1 mapping to the first section of the pseudo-physical map.
 828 *  6. All bootstrap elements are mapped read-writable for the guest OS. The
 829 *     only exception is the bootstrap page table, which is mapped read-only.
 830 *  7. There is guaranteed to be at least 512kB padding after the final
 831 *     bootstrap element. If necessary, the bootstrap virtual region is
 832 *     extended by an extra 4MB to ensure this.
 833 *
 834 * Note: Prior to 25833:bb85bbccb1c9. ("x86/32-on-64 adjust Dom0 initial page
 835 * table layout") a bug caused the pt_base (3.g above) and cr3 to not point
 836 * to the start of the guest page tables (it was offset by two pages).
 837 * This only manifested itself on 32-on-64 dom0 kernels and not 32-on-64 domU
 838 * or 64-bit kernels of any colour. The page tables for a 32-on-64 dom0 got
 839 * allocated in the order: 'first L1','first L2', 'first L3', so the offset
 840 * to the page table base is by two pages back. The initial domain if it is
 841 * 32-bit and runs under a 64-bit hypervisor should _NOT_ use two of the
 842 * pages preceding pt_base and mark them as reserved/unused.
 843 */
 844#ifdef XEN_HAVE_PV_GUEST_ENTRY
 845struct start_info {
 846    /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
 847    char magic[32];             /* "xen-<version>-<platform>".            */
 848    unsigned long nr_pages;     /* Total pages allocated to this domain.  */
 849    unsigned long shared_info;  /* MACHINE address of shared info struct. */
 850    uint32_t flags;             /* SIF_xxx flags.                         */
 851    xen_pfn_t store_mfn;        /* MACHINE page number of shared page.    */
 852    uint32_t store_evtchn;      /* Event channel for store communication. */
 853    union {
 854        struct {
 855            xen_pfn_t mfn;      /* MACHINE page number of console page.   */
 856            uint32_t  evtchn;   /* Event channel for console page.        */
 857        } domU;
 858        struct {
 859            uint32_t info_off;  /* Offset of console_info struct.         */
 860            uint32_t info_size; /* Size of console_info struct from start.*/
 861        } dom0;
 862    } console;
 863    /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
 864    unsigned long pt_base;      /* VIRTUAL address of page directory.     */
 865    unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
 866    unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
 867    unsigned long mod_start;    /* VIRTUAL address of pre-loaded module   */
 868                                /* (PFN of pre-loaded module if           */
 869                                /*  SIF_MOD_START_PFN set in flags).      */
 870    unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
 871#define MAX_GUEST_CMDLINE 1024
 872    int8_t cmd_line[MAX_GUEST_CMDLINE];
 873    /* The pfn range here covers both page table and p->m table frames.   */
 874    unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table.    */
 875    unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table.  */
 876};
 877typedef struct start_info start_info_t;
 878
 879/* New console union for dom0 introduced in 0x00030203. */
 880#if __XEN_INTERFACE_VERSION__ < 0x00030203
 881#define console_mfn    console.domU.mfn
 882#define console_evtchn console.domU.evtchn
 883#endif
 884#endif /* XEN_HAVE_PV_GUEST_ENTRY */
 885
 886/* These flags are passed in the 'flags' field of start_info_t. */
 887#define SIF_PRIVILEGED    (1<<0)  /* Is the domain privileged? */
 888#define SIF_INITDOMAIN    (1<<1)  /* Is this the initial control domain? */
 889#define SIF_MULTIBOOT_MOD (1<<2)  /* Is mod_start a multiboot module? */
 890#define SIF_MOD_START_PFN (1<<3)  /* Is mod_start a PFN? */
 891#define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */
 892                                   /* P->M making the 3 level tree obsolete? */
 893#define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
 894
 895/*
 896 * A multiboot module is a package containing modules very similar to a
 897 * multiboot module array. The only differences are:
 898 * - the array of module descriptors is by convention simply at the beginning
 899 *   of the multiboot module,
 900 * - addresses in the module descriptors are based on the beginning of the
 901 *   multiboot module,
 902 * - the number of modules is determined by a termination descriptor that has
 903 *   mod_start == 0.
 904 *
 905 * This permits to both build it statically and reference it in a configuration
 906 * file, and let the PV guest easily rebase the addresses to virtual addresses
 907 * and at the same time count the number of modules.
 908 */
 909struct xen_multiboot_mod_list
 910{
 911    /* Address of first byte of the module */
 912    uint32_t mod_start;
 913    /* Address of last byte of the module (inclusive) */
 914    uint32_t mod_end;
 915    /* Address of zero-terminated command line */
 916    uint32_t cmdline;
 917    /* Unused, must be zero */
 918    uint32_t pad;
 919};
 920/*
 921 * `incontents 200 startofday_dom0_console Dom0_console
 922 *
 923 * The console structure in start_info.console.dom0
 924 *
 925 * This structure includes a variety of information required to
 926 * have a working VGA/VESA console.
 927 */
 928typedef struct dom0_vga_console_info {
 929    uint8_t video_type; /* DOM0_VGA_CONSOLE_??? */
 930#define XEN_VGATYPE_TEXT_MODE_3 0x03
 931#define XEN_VGATYPE_VESA_LFB    0x23
 932#define XEN_VGATYPE_EFI_LFB     0x70
 933
 934    union {
 935        struct {
 936            /* Font height, in pixels. */
 937            uint16_t font_height;
 938            /* Cursor location (column, row). */
 939            uint16_t cursor_x, cursor_y;
 940            /* Number of rows and columns (dimensions in characters). */
 941            uint16_t rows, columns;
 942        } text_mode_3;
 943
 944        struct {
 945            /* Width and height, in pixels. */
 946            uint16_t width, height;
 947            /* Bytes per scan line. */
 948            uint16_t bytes_per_line;
 949            /* Bits per pixel. */
 950            uint16_t bits_per_pixel;
 951            /* LFB physical address, and size (in units of 64kB). */
 952            uint32_t lfb_base;
 953            uint32_t lfb_size;
 954            /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
 955            uint8_t  red_pos, red_size;
 956            uint8_t  green_pos, green_size;
 957            uint8_t  blue_pos, blue_size;
 958            uint8_t  rsvd_pos, rsvd_size;
 959#if __XEN_INTERFACE_VERSION__ >= 0x00030206
 960            /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
 961            uint32_t gbl_caps;
 962            /* Mode attributes (offset 0x0, VESA command 0x4f01). */
 963            uint16_t mode_attrs;
 964            uint16_t pad;
 965#endif
 966#if __XEN_INTERFACE_VERSION__ >= 0x00040d00
 967            /* high 32 bits of lfb_base */
 968            uint32_t ext_lfb_base;
 969#endif
 970        } vesa_lfb;
 971    } u;
 972} dom0_vga_console_info_t;
 973#define xen_vga_console_info dom0_vga_console_info
 974#define xen_vga_console_info_t dom0_vga_console_info_t
 975
 976typedef uint8_t xen_domain_handle_t[16];
 977
 978__DEFINE_XEN_GUEST_HANDLE(uint8,  uint8_t);
 979__DEFINE_XEN_GUEST_HANDLE(uint16, uint16_t);
 980__DEFINE_XEN_GUEST_HANDLE(uint32, uint32_t);
 981__DEFINE_XEN_GUEST_HANDLE(uint64, uint64_t);
 982
 983typedef struct {
 984    uint8_t a[16];
 985} xen_uuid_t;
 986
 987/*
 988 * XEN_DEFINE_UUID(0x00112233, 0x4455, 0x6677, 0x8899,
 989 *                 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff)
 990 * will construct UUID 00112233-4455-6677-8899-aabbccddeeff presented as
 991 * {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
 992 * 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
 993 *
 994 * NB: This is compatible with Linux kernel and with libuuid, but it is not
 995 * compatible with Microsoft, as they use mixed-endian encoding (some
 996 * components are little-endian, some are big-endian).
 997 */
 998#define XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)            \
 999    {{((a) >> 24) & 0xFF, ((a) >> 16) & 0xFF,                           \
1000      ((a) >>  8) & 0xFF, ((a) >>  0) & 0xFF,                           \
1001      ((b) >>  8) & 0xFF, ((b) >>  0) & 0xFF,                           \
1002      ((c) >>  8) & 0xFF, ((c) >>  0) & 0xFF,                           \
1003      ((d) >>  8) & 0xFF, ((d) >>  0) & 0xFF,                           \
1004                e1, e2, e3, e4, e5, e6}}
1005
1006#if defined(__STDC_VERSION__) ? __STDC_VERSION__ >= 199901L : defined(__GNUC__)
1007#define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6)             \
1008    ((xen_uuid_t)XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6))
1009#else
1010#define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6)             \
1011    XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)
1012#endif /* __STDC_VERSION__ / __GNUC__ */
1013
1014#endif /* !__ASSEMBLY__ */
1015
1016/* Default definitions for macros used by domctl/sysctl. */
1017#if defined(__XEN__) || defined(__XEN_TOOLS__)
1018
1019#ifndef int64_aligned_t
1020#define int64_aligned_t int64_t
1021#endif
1022#ifndef uint64_aligned_t
1023#define uint64_aligned_t uint64_t
1024#endif
1025#ifndef XEN_GUEST_HANDLE_64
1026#define XEN_GUEST_HANDLE_64(name) XEN_GUEST_HANDLE(name)
1027#endif
1028
1029#ifndef __ASSEMBLY__
1030struct xenctl_bitmap {
1031    XEN_GUEST_HANDLE_64(uint8) bitmap;
1032    uint32_t nr_bits;
1033};
1034typedef struct xenctl_bitmap xenctl_bitmap_t;
1035#endif
1036
1037#endif /* defined(__XEN__) || defined(__XEN_TOOLS__) */
1038
1039#endif /* __XEN_PUBLIC_XEN_H__ */
1040
1041/*
1042 * Local variables:
1043 * mode: C
1044 * c-file-style: "BSD"
1045 * c-basic-offset: 4
1046 * tab-width: 4
1047 * indent-tabs-mode: nil
1048 * End:
1049 */
1050