qemu/linux-user/elfload.c
<<
>>
Prefs
   1/* This is the Linux kernel elf-loading code, ported into user space */
   2#include "qemu/osdep.h"
   3#include <sys/param.h>
   4
   5#include <sys/resource.h>
   6#include <sys/shm.h>
   7
   8#include "qemu.h"
   9#include "user-internals.h"
  10#include "signal-common.h"
  11#include "loader.h"
  12#include "user-mmap.h"
  13#include "disas/disas.h"
  14#include "qemu/bitops.h"
  15#include "qemu/path.h"
  16#include "qemu/queue.h"
  17#include "qemu/guest-random.h"
  18#include "qemu/units.h"
  19#include "qemu/selfmap.h"
  20#include "qemu/lockable.h"
  21#include "qapi/error.h"
  22#include "qemu/error-report.h"
  23#include "target_signal.h"
  24#include "accel/tcg/debuginfo.h"
  25
  26#ifdef _ARCH_PPC64
  27#undef ARCH_DLINFO
  28#undef ELF_PLATFORM
  29#undef ELF_HWCAP
  30#undef ELF_HWCAP2
  31#undef ELF_CLASS
  32#undef ELF_DATA
  33#undef ELF_ARCH
  34#endif
  35
  36#define ELF_OSABI   ELFOSABI_SYSV
  37
  38/* from personality.h */
  39
  40/*
  41 * Flags for bug emulation.
  42 *
  43 * These occupy the top three bytes.
  44 */
  45enum {
  46    ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
  47    FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
  48                                           descriptors (signal handling) */
  49    MMAP_PAGE_ZERO =    0x0100000,
  50    ADDR_COMPAT_LAYOUT = 0x0200000,
  51    READ_IMPLIES_EXEC = 0x0400000,
  52    ADDR_LIMIT_32BIT =  0x0800000,
  53    SHORT_INODE =       0x1000000,
  54    WHOLE_SECONDS =     0x2000000,
  55    STICKY_TIMEOUTS =   0x4000000,
  56    ADDR_LIMIT_3GB =    0x8000000,
  57};
  58
  59/*
  60 * Personality types.
  61 *
  62 * These go in the low byte.  Avoid using the top bit, it will
  63 * conflict with error returns.
  64 */
  65enum {
  66    PER_LINUX =         0x0000,
  67    PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
  68    PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
  69    PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  70    PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
  71    PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
  72    PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
  73    PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
  74    PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
  75    PER_BSD =           0x0006,
  76    PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
  77    PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
  78    PER_LINUX32 =       0x0008,
  79    PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
  80    PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
  81    PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
  82    PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
  83    PER_RISCOS =        0x000c,
  84    PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
  85    PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  86    PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
  87    PER_HPUX =          0x0010,
  88    PER_MASK =          0x00ff,
  89};
  90
  91/*
  92 * Return the base personality without flags.
  93 */
  94#define personality(pers)       (pers & PER_MASK)
  95
  96int info_is_fdpic(struct image_info *info)
  97{
  98    return info->personality == PER_LINUX_FDPIC;
  99}
 100
 101/* this flag is uneffective under linux too, should be deleted */
 102#ifndef MAP_DENYWRITE
 103#define MAP_DENYWRITE 0
 104#endif
 105
 106/* should probably go in elf.h */
 107#ifndef ELIBBAD
 108#define ELIBBAD 80
 109#endif
 110
 111#if TARGET_BIG_ENDIAN
 112#define ELF_DATA        ELFDATA2MSB
 113#else
 114#define ELF_DATA        ELFDATA2LSB
 115#endif
 116
 117#ifdef TARGET_ABI_MIPSN32
 118typedef abi_ullong      target_elf_greg_t;
 119#define tswapreg(ptr)   tswap64(ptr)
 120#else
 121typedef abi_ulong       target_elf_greg_t;
 122#define tswapreg(ptr)   tswapal(ptr)
 123#endif
 124
 125#ifdef USE_UID16
 126typedef abi_ushort      target_uid_t;
 127typedef abi_ushort      target_gid_t;
 128#else
 129typedef abi_uint        target_uid_t;
 130typedef abi_uint        target_gid_t;
 131#endif
 132typedef abi_int         target_pid_t;
 133
 134#ifdef TARGET_I386
 135
 136#define ELF_HWCAP get_elf_hwcap()
 137
 138static uint32_t get_elf_hwcap(void)
 139{
 140    X86CPU *cpu = X86_CPU(thread_cpu);
 141
 142    return cpu->env.features[FEAT_1_EDX];
 143}
 144
 145#ifdef TARGET_X86_64
 146#define ELF_START_MMAP 0x2aaaaab000ULL
 147
 148#define ELF_CLASS      ELFCLASS64
 149#define ELF_ARCH       EM_X86_64
 150
 151#define ELF_PLATFORM   "x86_64"
 152
 153static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 154{
 155    regs->rax = 0;
 156    regs->rsp = infop->start_stack;
 157    regs->rip = infop->entry;
 158}
 159
 160#define ELF_NREG    27
 161typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 162
 163/*
 164 * Note that ELF_NREG should be 29 as there should be place for
 165 * TRAPNO and ERR "registers" as well but linux doesn't dump
 166 * those.
 167 *
 168 * See linux kernel: arch/x86/include/asm/elf.h
 169 */
 170static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 171{
 172    (*regs)[0] = tswapreg(env->regs[15]);
 173    (*regs)[1] = tswapreg(env->regs[14]);
 174    (*regs)[2] = tswapreg(env->regs[13]);
 175    (*regs)[3] = tswapreg(env->regs[12]);
 176    (*regs)[4] = tswapreg(env->regs[R_EBP]);
 177    (*regs)[5] = tswapreg(env->regs[R_EBX]);
 178    (*regs)[6] = tswapreg(env->regs[11]);
 179    (*regs)[7] = tswapreg(env->regs[10]);
 180    (*regs)[8] = tswapreg(env->regs[9]);
 181    (*regs)[9] = tswapreg(env->regs[8]);
 182    (*regs)[10] = tswapreg(env->regs[R_EAX]);
 183    (*regs)[11] = tswapreg(env->regs[R_ECX]);
 184    (*regs)[12] = tswapreg(env->regs[R_EDX]);
 185    (*regs)[13] = tswapreg(env->regs[R_ESI]);
 186    (*regs)[14] = tswapreg(env->regs[R_EDI]);
 187    (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
 188    (*regs)[16] = tswapreg(env->eip);
 189    (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
 190    (*regs)[18] = tswapreg(env->eflags);
 191    (*regs)[19] = tswapreg(env->regs[R_ESP]);
 192    (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
 193    (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
 194    (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
 195    (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
 196    (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
 197    (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
 198    (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
 199}
 200
 201#if ULONG_MAX > UINT32_MAX
 202#define INIT_GUEST_COMMPAGE
 203static bool init_guest_commpage(void)
 204{
 205    /*
 206     * The vsyscall page is at a high negative address aka kernel space,
 207     * which means that we cannot actually allocate it with target_mmap.
 208     * We still should be able to use page_set_flags, unless the user
 209     * has specified -R reserved_va, which would trigger an assert().
 210     */
 211    if (reserved_va != 0 &&
 212        TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
 213        error_report("Cannot allocate vsyscall page");
 214        exit(EXIT_FAILURE);
 215    }
 216    page_set_flags(TARGET_VSYSCALL_PAGE,
 217                   TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
 218                   PAGE_EXEC | PAGE_VALID);
 219    return true;
 220}
 221#endif
 222#else
 223
 224#define ELF_START_MMAP 0x80000000
 225
 226/*
 227 * This is used to ensure we don't load something for the wrong architecture.
 228 */
 229#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
 230
 231/*
 232 * These are used to set parameters in the core dumps.
 233 */
 234#define ELF_CLASS       ELFCLASS32
 235#define ELF_ARCH        EM_386
 236
 237#define ELF_PLATFORM get_elf_platform()
 238#define EXSTACK_DEFAULT true
 239
 240static const char *get_elf_platform(void)
 241{
 242    static char elf_platform[] = "i386";
 243    int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
 244    if (family > 6) {
 245        family = 6;
 246    }
 247    if (family >= 3) {
 248        elf_platform[1] = '0' + family;
 249    }
 250    return elf_platform;
 251}
 252
 253static inline void init_thread(struct target_pt_regs *regs,
 254                               struct image_info *infop)
 255{
 256    regs->esp = infop->start_stack;
 257    regs->eip = infop->entry;
 258
 259    /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
 260       starts %edx contains a pointer to a function which might be
 261       registered using `atexit'.  This provides a mean for the
 262       dynamic linker to call DT_FINI functions for shared libraries
 263       that have been loaded before the code runs.
 264
 265       A value of 0 tells we have no such handler.  */
 266    regs->edx = 0;
 267}
 268
 269#define ELF_NREG    17
 270typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 271
 272/*
 273 * Note that ELF_NREG should be 19 as there should be place for
 274 * TRAPNO and ERR "registers" as well but linux doesn't dump
 275 * those.
 276 *
 277 * See linux kernel: arch/x86/include/asm/elf.h
 278 */
 279static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 280{
 281    (*regs)[0] = tswapreg(env->regs[R_EBX]);
 282    (*regs)[1] = tswapreg(env->regs[R_ECX]);
 283    (*regs)[2] = tswapreg(env->regs[R_EDX]);
 284    (*regs)[3] = tswapreg(env->regs[R_ESI]);
 285    (*regs)[4] = tswapreg(env->regs[R_EDI]);
 286    (*regs)[5] = tswapreg(env->regs[R_EBP]);
 287    (*regs)[6] = tswapreg(env->regs[R_EAX]);
 288    (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
 289    (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
 290    (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
 291    (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
 292    (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
 293    (*regs)[12] = tswapreg(env->eip);
 294    (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
 295    (*regs)[14] = tswapreg(env->eflags);
 296    (*regs)[15] = tswapreg(env->regs[R_ESP]);
 297    (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
 298}
 299#endif
 300
 301#define USE_ELF_CORE_DUMP
 302#define ELF_EXEC_PAGESIZE       4096
 303
 304#endif
 305
 306#ifdef TARGET_ARM
 307
 308#ifndef TARGET_AARCH64
 309/* 32 bit ARM definitions */
 310
 311#define ELF_START_MMAP 0x80000000
 312
 313#define ELF_ARCH        EM_ARM
 314#define ELF_CLASS       ELFCLASS32
 315#define EXSTACK_DEFAULT true
 316
 317static inline void init_thread(struct target_pt_regs *regs,
 318                               struct image_info *infop)
 319{
 320    abi_long stack = infop->start_stack;
 321    memset(regs, 0, sizeof(*regs));
 322
 323    regs->uregs[16] = ARM_CPU_MODE_USR;
 324    if (infop->entry & 1) {
 325        regs->uregs[16] |= CPSR_T;
 326    }
 327    regs->uregs[15] = infop->entry & 0xfffffffe;
 328    regs->uregs[13] = infop->start_stack;
 329    /* FIXME - what to for failure of get_user()? */
 330    get_user_ual(regs->uregs[2], stack + 8); /* envp */
 331    get_user_ual(regs->uregs[1], stack + 4); /* envp */
 332    /* XXX: it seems that r0 is zeroed after ! */
 333    regs->uregs[0] = 0;
 334    /* For uClinux PIC binaries.  */
 335    /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
 336    regs->uregs[10] = infop->start_data;
 337
 338    /* Support ARM FDPIC.  */
 339    if (info_is_fdpic(infop)) {
 340        /* As described in the ABI document, r7 points to the loadmap info
 341         * prepared by the kernel. If an interpreter is needed, r8 points
 342         * to the interpreter loadmap and r9 points to the interpreter
 343         * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
 344         * r9 points to the main program PT_DYNAMIC info.
 345         */
 346        regs->uregs[7] = infop->loadmap_addr;
 347        if (infop->interpreter_loadmap_addr) {
 348            /* Executable is dynamically loaded.  */
 349            regs->uregs[8] = infop->interpreter_loadmap_addr;
 350            regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
 351        } else {
 352            regs->uregs[8] = 0;
 353            regs->uregs[9] = infop->pt_dynamic_addr;
 354        }
 355    }
 356}
 357
 358#define ELF_NREG    18
 359typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 360
 361static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
 362{
 363    (*regs)[0] = tswapreg(env->regs[0]);
 364    (*regs)[1] = tswapreg(env->regs[1]);
 365    (*regs)[2] = tswapreg(env->regs[2]);
 366    (*regs)[3] = tswapreg(env->regs[3]);
 367    (*regs)[4] = tswapreg(env->regs[4]);
 368    (*regs)[5] = tswapreg(env->regs[5]);
 369    (*regs)[6] = tswapreg(env->regs[6]);
 370    (*regs)[7] = tswapreg(env->regs[7]);
 371    (*regs)[8] = tswapreg(env->regs[8]);
 372    (*regs)[9] = tswapreg(env->regs[9]);
 373    (*regs)[10] = tswapreg(env->regs[10]);
 374    (*regs)[11] = tswapreg(env->regs[11]);
 375    (*regs)[12] = tswapreg(env->regs[12]);
 376    (*regs)[13] = tswapreg(env->regs[13]);
 377    (*regs)[14] = tswapreg(env->regs[14]);
 378    (*regs)[15] = tswapreg(env->regs[15]);
 379
 380    (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
 381    (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
 382}
 383
 384#define USE_ELF_CORE_DUMP
 385#define ELF_EXEC_PAGESIZE       4096
 386
 387enum
 388{
 389    ARM_HWCAP_ARM_SWP       = 1 << 0,
 390    ARM_HWCAP_ARM_HALF      = 1 << 1,
 391    ARM_HWCAP_ARM_THUMB     = 1 << 2,
 392    ARM_HWCAP_ARM_26BIT     = 1 << 3,
 393    ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
 394    ARM_HWCAP_ARM_FPA       = 1 << 5,
 395    ARM_HWCAP_ARM_VFP       = 1 << 6,
 396    ARM_HWCAP_ARM_EDSP      = 1 << 7,
 397    ARM_HWCAP_ARM_JAVA      = 1 << 8,
 398    ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
 399    ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
 400    ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
 401    ARM_HWCAP_ARM_NEON      = 1 << 12,
 402    ARM_HWCAP_ARM_VFPv3     = 1 << 13,
 403    ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
 404    ARM_HWCAP_ARM_TLS       = 1 << 15,
 405    ARM_HWCAP_ARM_VFPv4     = 1 << 16,
 406    ARM_HWCAP_ARM_IDIVA     = 1 << 17,
 407    ARM_HWCAP_ARM_IDIVT     = 1 << 18,
 408    ARM_HWCAP_ARM_VFPD32    = 1 << 19,
 409    ARM_HWCAP_ARM_LPAE      = 1 << 20,
 410    ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
 411};
 412
 413enum {
 414    ARM_HWCAP2_ARM_AES      = 1 << 0,
 415    ARM_HWCAP2_ARM_PMULL    = 1 << 1,
 416    ARM_HWCAP2_ARM_SHA1     = 1 << 2,
 417    ARM_HWCAP2_ARM_SHA2     = 1 << 3,
 418    ARM_HWCAP2_ARM_CRC32    = 1 << 4,
 419};
 420
 421/* The commpage only exists for 32 bit kernels */
 422
 423#define HI_COMMPAGE (intptr_t)0xffff0f00u
 424
 425static bool init_guest_commpage(void)
 426{
 427    ARMCPU *cpu = ARM_CPU(thread_cpu);
 428    abi_ptr commpage;
 429    void *want;
 430    void *addr;
 431
 432    /*
 433     * M-profile allocates maximum of 2GB address space, so can never
 434     * allocate the commpage.  Skip it.
 435     */
 436    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
 437        return true;
 438    }
 439
 440    commpage = HI_COMMPAGE & -qemu_host_page_size;
 441    want = g2h_untagged(commpage);
 442    addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
 443                MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
 444
 445    if (addr == MAP_FAILED) {
 446        perror("Allocating guest commpage");
 447        exit(EXIT_FAILURE);
 448    }
 449    if (addr != want) {
 450        return false;
 451    }
 452
 453    /* Set kernel helper versions; rest of page is 0.  */
 454    __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
 455
 456    if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
 457        perror("Protecting guest commpage");
 458        exit(EXIT_FAILURE);
 459    }
 460
 461    page_set_flags(commpage, commpage | ~qemu_host_page_mask,
 462                   PAGE_READ | PAGE_EXEC | PAGE_VALID);
 463    return true;
 464}
 465
 466#define ELF_HWCAP get_elf_hwcap()
 467#define ELF_HWCAP2 get_elf_hwcap2()
 468
 469static uint32_t get_elf_hwcap(void)
 470{
 471    ARMCPU *cpu = ARM_CPU(thread_cpu);
 472    uint32_t hwcaps = 0;
 473
 474    hwcaps |= ARM_HWCAP_ARM_SWP;
 475    hwcaps |= ARM_HWCAP_ARM_HALF;
 476    hwcaps |= ARM_HWCAP_ARM_THUMB;
 477    hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
 478
 479    /* probe for the extra features */
 480#define GET_FEATURE(feat, hwcap) \
 481    do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
 482
 483#define GET_FEATURE_ID(feat, hwcap) \
 484    do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 485
 486    /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
 487    GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
 488    GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
 489    GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
 490    GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
 491    GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
 492    GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
 493    GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
 494    GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
 495    GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
 496
 497    if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
 498        cpu_isar_feature(aa32_fpdp_v3, cpu)) {
 499        hwcaps |= ARM_HWCAP_ARM_VFPv3;
 500        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
 501            hwcaps |= ARM_HWCAP_ARM_VFPD32;
 502        } else {
 503            hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
 504        }
 505    }
 506    GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
 507
 508    return hwcaps;
 509}
 510
 511static uint32_t get_elf_hwcap2(void)
 512{
 513    ARMCPU *cpu = ARM_CPU(thread_cpu);
 514    uint32_t hwcaps = 0;
 515
 516    GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
 517    GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
 518    GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
 519    GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
 520    GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
 521    return hwcaps;
 522}
 523
 524#undef GET_FEATURE
 525#undef GET_FEATURE_ID
 526
 527#define ELF_PLATFORM get_elf_platform()
 528
 529static const char *get_elf_platform(void)
 530{
 531    CPUARMState *env = thread_cpu->env_ptr;
 532
 533#if TARGET_BIG_ENDIAN
 534# define END  "b"
 535#else
 536# define END  "l"
 537#endif
 538
 539    if (arm_feature(env, ARM_FEATURE_V8)) {
 540        return "v8" END;
 541    } else if (arm_feature(env, ARM_FEATURE_V7)) {
 542        if (arm_feature(env, ARM_FEATURE_M)) {
 543            return "v7m" END;
 544        } else {
 545            return "v7" END;
 546        }
 547    } else if (arm_feature(env, ARM_FEATURE_V6)) {
 548        return "v6" END;
 549    } else if (arm_feature(env, ARM_FEATURE_V5)) {
 550        return "v5" END;
 551    } else {
 552        return "v4" END;
 553    }
 554
 555#undef END
 556}
 557
 558#else
 559/* 64 bit ARM definitions */
 560#define ELF_START_MMAP 0x80000000
 561
 562#define ELF_ARCH        EM_AARCH64
 563#define ELF_CLASS       ELFCLASS64
 564#if TARGET_BIG_ENDIAN
 565# define ELF_PLATFORM    "aarch64_be"
 566#else
 567# define ELF_PLATFORM    "aarch64"
 568#endif
 569
 570static inline void init_thread(struct target_pt_regs *regs,
 571                               struct image_info *infop)
 572{
 573    abi_long stack = infop->start_stack;
 574    memset(regs, 0, sizeof(*regs));
 575
 576    regs->pc = infop->entry & ~0x3ULL;
 577    regs->sp = stack;
 578}
 579
 580#define ELF_NREG    34
 581typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 582
 583static void elf_core_copy_regs(target_elf_gregset_t *regs,
 584                               const CPUARMState *env)
 585{
 586    int i;
 587
 588    for (i = 0; i < 32; i++) {
 589        (*regs)[i] = tswapreg(env->xregs[i]);
 590    }
 591    (*regs)[32] = tswapreg(env->pc);
 592    (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
 593}
 594
 595#define USE_ELF_CORE_DUMP
 596#define ELF_EXEC_PAGESIZE       4096
 597
 598enum {
 599    ARM_HWCAP_A64_FP            = 1 << 0,
 600    ARM_HWCAP_A64_ASIMD         = 1 << 1,
 601    ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
 602    ARM_HWCAP_A64_AES           = 1 << 3,
 603    ARM_HWCAP_A64_PMULL         = 1 << 4,
 604    ARM_HWCAP_A64_SHA1          = 1 << 5,
 605    ARM_HWCAP_A64_SHA2          = 1 << 6,
 606    ARM_HWCAP_A64_CRC32         = 1 << 7,
 607    ARM_HWCAP_A64_ATOMICS       = 1 << 8,
 608    ARM_HWCAP_A64_FPHP          = 1 << 9,
 609    ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
 610    ARM_HWCAP_A64_CPUID         = 1 << 11,
 611    ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
 612    ARM_HWCAP_A64_JSCVT         = 1 << 13,
 613    ARM_HWCAP_A64_FCMA          = 1 << 14,
 614    ARM_HWCAP_A64_LRCPC         = 1 << 15,
 615    ARM_HWCAP_A64_DCPOP         = 1 << 16,
 616    ARM_HWCAP_A64_SHA3          = 1 << 17,
 617    ARM_HWCAP_A64_SM3           = 1 << 18,
 618    ARM_HWCAP_A64_SM4           = 1 << 19,
 619    ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
 620    ARM_HWCAP_A64_SHA512        = 1 << 21,
 621    ARM_HWCAP_A64_SVE           = 1 << 22,
 622    ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
 623    ARM_HWCAP_A64_DIT           = 1 << 24,
 624    ARM_HWCAP_A64_USCAT         = 1 << 25,
 625    ARM_HWCAP_A64_ILRCPC        = 1 << 26,
 626    ARM_HWCAP_A64_FLAGM         = 1 << 27,
 627    ARM_HWCAP_A64_SSBS          = 1 << 28,
 628    ARM_HWCAP_A64_SB            = 1 << 29,
 629    ARM_HWCAP_A64_PACA          = 1 << 30,
 630    ARM_HWCAP_A64_PACG          = 1UL << 31,
 631
 632    ARM_HWCAP2_A64_DCPODP       = 1 << 0,
 633    ARM_HWCAP2_A64_SVE2         = 1 << 1,
 634    ARM_HWCAP2_A64_SVEAES       = 1 << 2,
 635    ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
 636    ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
 637    ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
 638    ARM_HWCAP2_A64_SVESM4       = 1 << 6,
 639    ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
 640    ARM_HWCAP2_A64_FRINT        = 1 << 8,
 641    ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
 642    ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
 643    ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
 644    ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
 645    ARM_HWCAP2_A64_I8MM         = 1 << 13,
 646    ARM_HWCAP2_A64_BF16         = 1 << 14,
 647    ARM_HWCAP2_A64_DGH          = 1 << 15,
 648    ARM_HWCAP2_A64_RNG          = 1 << 16,
 649    ARM_HWCAP2_A64_BTI          = 1 << 17,
 650    ARM_HWCAP2_A64_MTE          = 1 << 18,
 651    ARM_HWCAP2_A64_ECV          = 1 << 19,
 652    ARM_HWCAP2_A64_AFP          = 1 << 20,
 653    ARM_HWCAP2_A64_RPRES        = 1 << 21,
 654    ARM_HWCAP2_A64_MTE3         = 1 << 22,
 655    ARM_HWCAP2_A64_SME          = 1 << 23,
 656    ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
 657    ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
 658    ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
 659    ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
 660    ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
 661    ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
 662    ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
 663};
 664
 665#define ELF_HWCAP   get_elf_hwcap()
 666#define ELF_HWCAP2  get_elf_hwcap2()
 667
 668#define GET_FEATURE_ID(feat, hwcap) \
 669    do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 670
 671static uint32_t get_elf_hwcap(void)
 672{
 673    ARMCPU *cpu = ARM_CPU(thread_cpu);
 674    uint32_t hwcaps = 0;
 675
 676    hwcaps |= ARM_HWCAP_A64_FP;
 677    hwcaps |= ARM_HWCAP_A64_ASIMD;
 678    hwcaps |= ARM_HWCAP_A64_CPUID;
 679
 680    /* probe for the extra features */
 681
 682    GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
 683    GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
 684    GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
 685    GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
 686    GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
 687    GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
 688    GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
 689    GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
 690    GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
 691    GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
 692    GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
 693    GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
 694    GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
 695    GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
 696    GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
 697    GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
 698    GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
 699    GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
 700    GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
 701    GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
 702    GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
 703    GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
 704    GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
 705
 706    return hwcaps;
 707}
 708
 709static uint32_t get_elf_hwcap2(void)
 710{
 711    ARMCPU *cpu = ARM_CPU(thread_cpu);
 712    uint32_t hwcaps = 0;
 713
 714    GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
 715    GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
 716    GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
 717    GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
 718    GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
 719    GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
 720    GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
 721    GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
 722    GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
 723    GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
 724    GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
 725    GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
 726    GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
 727    GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
 728    GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
 729    GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
 730    GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
 731    GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
 732    GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
 733                              ARM_HWCAP2_A64_SME_F32F32 |
 734                              ARM_HWCAP2_A64_SME_B16F32 |
 735                              ARM_HWCAP2_A64_SME_F16F32 |
 736                              ARM_HWCAP2_A64_SME_I8I32));
 737    GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
 738    GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
 739    GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
 740
 741    return hwcaps;
 742}
 743
 744#undef GET_FEATURE_ID
 745
 746#endif /* not TARGET_AARCH64 */
 747#endif /* TARGET_ARM */
 748
 749#ifdef TARGET_SPARC
 750#ifdef TARGET_SPARC64
 751
 752#define ELF_START_MMAP 0x80000000
 753#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 754                    | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
 755#ifndef TARGET_ABI32
 756#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
 757#else
 758#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
 759#endif
 760
 761#define ELF_CLASS   ELFCLASS64
 762#define ELF_ARCH    EM_SPARCV9
 763#else
 764#define ELF_START_MMAP 0x80000000
 765#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 766                    | HWCAP_SPARC_MULDIV)
 767#define ELF_CLASS   ELFCLASS32
 768#define ELF_ARCH    EM_SPARC
 769#endif /* TARGET_SPARC64 */
 770
 771static inline void init_thread(struct target_pt_regs *regs,
 772                               struct image_info *infop)
 773{
 774    /* Note that target_cpu_copy_regs does not read psr/tstate. */
 775    regs->pc = infop->entry;
 776    regs->npc = regs->pc + 4;
 777    regs->y = 0;
 778    regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
 779                        - TARGET_STACK_BIAS);
 780}
 781#endif /* TARGET_SPARC */
 782
 783#ifdef TARGET_PPC
 784
 785#define ELF_MACHINE    PPC_ELF_MACHINE
 786#define ELF_START_MMAP 0x80000000
 787
 788#if defined(TARGET_PPC64)
 789
 790#define elf_check_arch(x) ( (x) == EM_PPC64 )
 791
 792#define ELF_CLASS       ELFCLASS64
 793
 794#else
 795
 796#define ELF_CLASS       ELFCLASS32
 797#define EXSTACK_DEFAULT true
 798
 799#endif
 800
 801#define ELF_ARCH        EM_PPC
 802
 803/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
 804   See arch/powerpc/include/asm/cputable.h.  */
 805enum {
 806    QEMU_PPC_FEATURE_32 = 0x80000000,
 807    QEMU_PPC_FEATURE_64 = 0x40000000,
 808    QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
 809    QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
 810    QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
 811    QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
 812    QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
 813    QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
 814    QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
 815    QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
 816    QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
 817    QEMU_PPC_FEATURE_NO_TB = 0x00100000,
 818    QEMU_PPC_FEATURE_POWER4 = 0x00080000,
 819    QEMU_PPC_FEATURE_POWER5 = 0x00040000,
 820    QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
 821    QEMU_PPC_FEATURE_CELL = 0x00010000,
 822    QEMU_PPC_FEATURE_BOOKE = 0x00008000,
 823    QEMU_PPC_FEATURE_SMT = 0x00004000,
 824    QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
 825    QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
 826    QEMU_PPC_FEATURE_PA6T = 0x00000800,
 827    QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
 828    QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
 829    QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
 830    QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
 831    QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
 832
 833    QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
 834    QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
 835
 836    /* Feature definitions in AT_HWCAP2.  */
 837    QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
 838    QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
 839    QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
 840    QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
 841    QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
 842    QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
 843    QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
 844    QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
 845    QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
 846    QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
 847    QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
 848    QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
 849    QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
 850    QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
 851    QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
 852};
 853
 854#define ELF_HWCAP get_elf_hwcap()
 855
 856static uint32_t get_elf_hwcap(void)
 857{
 858    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 859    uint32_t features = 0;
 860
 861    /* We don't have to be terribly complete here; the high points are
 862       Altivec/FP/SPE support.  Anything else is just a bonus.  */
 863#define GET_FEATURE(flag, feature)                                      \
 864    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 865#define GET_FEATURE2(flags, feature) \
 866    do { \
 867        if ((cpu->env.insns_flags2 & flags) == flags) { \
 868            features |= feature; \
 869        } \
 870    } while (0)
 871    GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
 872    GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
 873    GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
 874    GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
 875    GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
 876    GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
 877    GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
 878    GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
 879    GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
 880    GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
 881    GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
 882                  PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
 883                  QEMU_PPC_FEATURE_ARCH_2_06);
 884#undef GET_FEATURE
 885#undef GET_FEATURE2
 886
 887    return features;
 888}
 889
 890#define ELF_HWCAP2 get_elf_hwcap2()
 891
 892static uint32_t get_elf_hwcap2(void)
 893{
 894    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 895    uint32_t features = 0;
 896
 897#define GET_FEATURE(flag, feature)                                      \
 898    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 899#define GET_FEATURE2(flag, feature)                                      \
 900    do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
 901
 902    GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
 903    GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
 904    GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
 905                  PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
 906                  QEMU_PPC_FEATURE2_VEC_CRYPTO);
 907    GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
 908                 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
 909    GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
 910                 QEMU_PPC_FEATURE2_MMA);
 911
 912#undef GET_FEATURE
 913#undef GET_FEATURE2
 914
 915    return features;
 916}
 917
 918/*
 919 * The requirements here are:
 920 * - keep the final alignment of sp (sp & 0xf)
 921 * - make sure the 32-bit value at the first 16 byte aligned position of
 922 *   AUXV is greater than 16 for glibc compatibility.
 923 *   AT_IGNOREPPC is used for that.
 924 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
 925 *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
 926 */
 927#define DLINFO_ARCH_ITEMS       5
 928#define ARCH_DLINFO                                     \
 929    do {                                                \
 930        PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
 931        /*                                              \
 932         * Handle glibc compatibility: these magic entries must \
 933         * be at the lowest addresses in the final auxv.        \
 934         */                                             \
 935        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 936        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 937        NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
 938        NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
 939        NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
 940    } while (0)
 941
 942static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
 943{
 944    _regs->gpr[1] = infop->start_stack;
 945#if defined(TARGET_PPC64)
 946    if (get_ppc64_abi(infop) < 2) {
 947        uint64_t val;
 948        get_user_u64(val, infop->entry + 8);
 949        _regs->gpr[2] = val + infop->load_bias;
 950        get_user_u64(val, infop->entry);
 951        infop->entry = val + infop->load_bias;
 952    } else {
 953        _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
 954    }
 955#endif
 956    _regs->nip = infop->entry;
 957}
 958
 959/* See linux kernel: arch/powerpc/include/asm/elf.h.  */
 960#define ELF_NREG 48
 961typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 962
 963static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
 964{
 965    int i;
 966    target_ulong ccr = 0;
 967
 968    for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
 969        (*regs)[i] = tswapreg(env->gpr[i]);
 970    }
 971
 972    (*regs)[32] = tswapreg(env->nip);
 973    (*regs)[33] = tswapreg(env->msr);
 974    (*regs)[35] = tswapreg(env->ctr);
 975    (*regs)[36] = tswapreg(env->lr);
 976    (*regs)[37] = tswapreg(cpu_read_xer(env));
 977
 978    ccr = ppc_get_cr(env);
 979    (*regs)[38] = tswapreg(ccr);
 980}
 981
 982#define USE_ELF_CORE_DUMP
 983#define ELF_EXEC_PAGESIZE       4096
 984
 985#endif
 986
 987#ifdef TARGET_LOONGARCH64
 988
 989#define ELF_START_MMAP 0x80000000
 990
 991#define ELF_CLASS   ELFCLASS64
 992#define ELF_ARCH    EM_LOONGARCH
 993#define EXSTACK_DEFAULT true
 994
 995#define elf_check_arch(x) ((x) == EM_LOONGARCH)
 996
 997static inline void init_thread(struct target_pt_regs *regs,
 998                               struct image_info *infop)
 999{
1000    /*Set crmd PG,DA = 1,0 */
1001    regs->csr.crmd = 2 << 3;
1002    regs->csr.era = infop->entry;
1003    regs->regs[3] = infop->start_stack;
1004}
1005
1006/* See linux kernel: arch/loongarch/include/asm/elf.h */
1007#define ELF_NREG 45
1008typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1009
1010enum {
1011    TARGET_EF_R0 = 0,
1012    TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1013    TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1014};
1015
1016static void elf_core_copy_regs(target_elf_gregset_t *regs,
1017                               const CPULoongArchState *env)
1018{
1019    int i;
1020
1021    (*regs)[TARGET_EF_R0] = 0;
1022
1023    for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1024        (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1025    }
1026
1027    (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1028    (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1029}
1030
1031#define USE_ELF_CORE_DUMP
1032#define ELF_EXEC_PAGESIZE        4096
1033
1034#define ELF_HWCAP get_elf_hwcap()
1035
1036/* See arch/loongarch/include/uapi/asm/hwcap.h */
1037enum {
1038    HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1039    HWCAP_LOONGARCH_LAM      = (1 << 1),
1040    HWCAP_LOONGARCH_UAL      = (1 << 2),
1041    HWCAP_LOONGARCH_FPU      = (1 << 3),
1042    HWCAP_LOONGARCH_LSX      = (1 << 4),
1043    HWCAP_LOONGARCH_LASX     = (1 << 5),
1044    HWCAP_LOONGARCH_CRC32    = (1 << 6),
1045    HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1046    HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1047    HWCAP_LOONGARCH_LVZ      = (1 << 9),
1048    HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1049    HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1050    HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1051};
1052
1053static uint32_t get_elf_hwcap(void)
1054{
1055    LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1056    uint32_t hwcaps = 0;
1057
1058    hwcaps |= HWCAP_LOONGARCH_CRC32;
1059
1060    if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1061        hwcaps |= HWCAP_LOONGARCH_UAL;
1062    }
1063
1064    if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1065        hwcaps |= HWCAP_LOONGARCH_FPU;
1066    }
1067
1068    if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1069        hwcaps |= HWCAP_LOONGARCH_LAM;
1070    }
1071
1072    return hwcaps;
1073}
1074
1075#define ELF_PLATFORM "loongarch"
1076
1077#endif /* TARGET_LOONGARCH64 */
1078
1079#ifdef TARGET_MIPS
1080
1081#define ELF_START_MMAP 0x80000000
1082
1083#ifdef TARGET_MIPS64
1084#define ELF_CLASS   ELFCLASS64
1085#else
1086#define ELF_CLASS   ELFCLASS32
1087#endif
1088#define ELF_ARCH    EM_MIPS
1089#define EXSTACK_DEFAULT true
1090
1091#ifdef TARGET_ABI_MIPSN32
1092#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1093#else
1094#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1095#endif
1096
1097#define ELF_BASE_PLATFORM get_elf_base_platform()
1098
1099#define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1100    do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1101    { return _base_platform; } } while (0)
1102
1103static const char *get_elf_base_platform(void)
1104{
1105    MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1106
1107    /* 64 bit ISAs goes first */
1108    MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1109    MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1110    MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1111    MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1112    MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1113    MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1114    MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1115
1116    /* 32 bit ISAs */
1117    MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1118    MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1119    MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1120    MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1121    MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1122
1123    /* Fallback */
1124    return "mips";
1125}
1126#undef MATCH_PLATFORM_INSN
1127
1128static inline void init_thread(struct target_pt_regs *regs,
1129                               struct image_info *infop)
1130{
1131    regs->cp0_status = 2 << CP0St_KSU;
1132    regs->cp0_epc = infop->entry;
1133    regs->regs[29] = infop->start_stack;
1134}
1135
1136/* See linux kernel: arch/mips/include/asm/elf.h.  */
1137#define ELF_NREG 45
1138typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1139
1140/* See linux kernel: arch/mips/include/asm/reg.h.  */
1141enum {
1142#ifdef TARGET_MIPS64
1143    TARGET_EF_R0 = 0,
1144#else
1145    TARGET_EF_R0 = 6,
1146#endif
1147    TARGET_EF_R26 = TARGET_EF_R0 + 26,
1148    TARGET_EF_R27 = TARGET_EF_R0 + 27,
1149    TARGET_EF_LO = TARGET_EF_R0 + 32,
1150    TARGET_EF_HI = TARGET_EF_R0 + 33,
1151    TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1152    TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1153    TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1154    TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1155};
1156
1157/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1158static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1159{
1160    int i;
1161
1162    for (i = 0; i < TARGET_EF_R0; i++) {
1163        (*regs)[i] = 0;
1164    }
1165    (*regs)[TARGET_EF_R0] = 0;
1166
1167    for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1168        (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1169    }
1170
1171    (*regs)[TARGET_EF_R26] = 0;
1172    (*regs)[TARGET_EF_R27] = 0;
1173    (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1174    (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1175    (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1176    (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1177    (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1178    (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1179}
1180
1181#define USE_ELF_CORE_DUMP
1182#define ELF_EXEC_PAGESIZE        4096
1183
1184/* See arch/mips/include/uapi/asm/hwcap.h.  */
1185enum {
1186    HWCAP_MIPS_R6           = (1 << 0),
1187    HWCAP_MIPS_MSA          = (1 << 1),
1188    HWCAP_MIPS_CRC32        = (1 << 2),
1189    HWCAP_MIPS_MIPS16       = (1 << 3),
1190    HWCAP_MIPS_MDMX         = (1 << 4),
1191    HWCAP_MIPS_MIPS3D       = (1 << 5),
1192    HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1193    HWCAP_MIPS_DSP          = (1 << 7),
1194    HWCAP_MIPS_DSP2         = (1 << 8),
1195    HWCAP_MIPS_DSP3         = (1 << 9),
1196    HWCAP_MIPS_MIPS16E2     = (1 << 10),
1197    HWCAP_LOONGSON_MMI      = (1 << 11),
1198    HWCAP_LOONGSON_EXT      = (1 << 12),
1199    HWCAP_LOONGSON_EXT2     = (1 << 13),
1200    HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1201};
1202
1203#define ELF_HWCAP get_elf_hwcap()
1204
1205#define GET_FEATURE_INSN(_flag, _hwcap) \
1206    do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1207
1208#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1209    do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1210
1211#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1212    do { \
1213        if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1214            hwcaps |= _hwcap; \
1215        } \
1216    } while (0)
1217
1218static uint32_t get_elf_hwcap(void)
1219{
1220    MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1221    uint32_t hwcaps = 0;
1222
1223    GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1224                        2, HWCAP_MIPS_R6);
1225    GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1226    GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1227    GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1228
1229    return hwcaps;
1230}
1231
1232#undef GET_FEATURE_REG_EQU
1233#undef GET_FEATURE_REG_SET
1234#undef GET_FEATURE_INSN
1235
1236#endif /* TARGET_MIPS */
1237
1238#ifdef TARGET_MICROBLAZE
1239
1240#define ELF_START_MMAP 0x80000000
1241
1242#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1243
1244#define ELF_CLASS   ELFCLASS32
1245#define ELF_ARCH    EM_MICROBLAZE
1246
1247static inline void init_thread(struct target_pt_regs *regs,
1248                               struct image_info *infop)
1249{
1250    regs->pc = infop->entry;
1251    regs->r1 = infop->start_stack;
1252
1253}
1254
1255#define ELF_EXEC_PAGESIZE        4096
1256
1257#define USE_ELF_CORE_DUMP
1258#define ELF_NREG 38
1259typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1260
1261/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1262static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1263{
1264    int i, pos = 0;
1265
1266    for (i = 0; i < 32; i++) {
1267        (*regs)[pos++] = tswapreg(env->regs[i]);
1268    }
1269
1270    (*regs)[pos++] = tswapreg(env->pc);
1271    (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1272    (*regs)[pos++] = 0;
1273    (*regs)[pos++] = tswapreg(env->ear);
1274    (*regs)[pos++] = 0;
1275    (*regs)[pos++] = tswapreg(env->esr);
1276}
1277
1278#endif /* TARGET_MICROBLAZE */
1279
1280#ifdef TARGET_NIOS2
1281
1282#define ELF_START_MMAP 0x80000000
1283
1284#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1285
1286#define ELF_CLASS   ELFCLASS32
1287#define ELF_ARCH    EM_ALTERA_NIOS2
1288
1289static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1290{
1291    regs->ea = infop->entry;
1292    regs->sp = infop->start_stack;
1293}
1294
1295#define LO_COMMPAGE  TARGET_PAGE_SIZE
1296
1297static bool init_guest_commpage(void)
1298{
1299    static const uint8_t kuser_page[4 + 2 * 64] = {
1300        /* __kuser_helper_version */
1301        [0x00] = 0x02, 0x00, 0x00, 0x00,
1302
1303        /* __kuser_cmpxchg */
1304        [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1305                 0x3a, 0x28, 0x00, 0xf8,  /* ret */
1306
1307        /* __kuser_sigtramp */
1308        [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1309                 0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1310    };
1311
1312    void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1313    void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1314                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1315
1316    if (addr == MAP_FAILED) {
1317        perror("Allocating guest commpage");
1318        exit(EXIT_FAILURE);
1319    }
1320    if (addr != want) {
1321        return false;
1322    }
1323
1324    memcpy(addr, kuser_page, sizeof(kuser_page));
1325
1326    if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1327        perror("Protecting guest commpage");
1328        exit(EXIT_FAILURE);
1329    }
1330
1331    page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1332                   PAGE_READ | PAGE_EXEC | PAGE_VALID);
1333    return true;
1334}
1335
1336#define ELF_EXEC_PAGESIZE        4096
1337
1338#define USE_ELF_CORE_DUMP
1339#define ELF_NREG 49
1340typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1341
1342/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1343static void elf_core_copy_regs(target_elf_gregset_t *regs,
1344                               const CPUNios2State *env)
1345{
1346    int i;
1347
1348    (*regs)[0] = -1;
1349    for (i = 1; i < 8; i++)    /* r0-r7 */
1350        (*regs)[i] = tswapreg(env->regs[i + 7]);
1351
1352    for (i = 8; i < 16; i++)   /* r8-r15 */
1353        (*regs)[i] = tswapreg(env->regs[i - 8]);
1354
1355    for (i = 16; i < 24; i++)  /* r16-r23 */
1356        (*regs)[i] = tswapreg(env->regs[i + 7]);
1357    (*regs)[24] = -1;    /* R_ET */
1358    (*regs)[25] = -1;    /* R_BT */
1359    (*regs)[26] = tswapreg(env->regs[R_GP]);
1360    (*regs)[27] = tswapreg(env->regs[R_SP]);
1361    (*regs)[28] = tswapreg(env->regs[R_FP]);
1362    (*regs)[29] = tswapreg(env->regs[R_EA]);
1363    (*regs)[30] = -1;    /* R_SSTATUS */
1364    (*regs)[31] = tswapreg(env->regs[R_RA]);
1365
1366    (*regs)[32] = tswapreg(env->pc);
1367
1368    (*regs)[33] = -1; /* R_STATUS */
1369    (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1370
1371    for (i = 35; i < 49; i++)    /* ... */
1372        (*regs)[i] = -1;
1373}
1374
1375#endif /* TARGET_NIOS2 */
1376
1377#ifdef TARGET_OPENRISC
1378
1379#define ELF_START_MMAP 0x08000000
1380
1381#define ELF_ARCH EM_OPENRISC
1382#define ELF_CLASS ELFCLASS32
1383#define ELF_DATA  ELFDATA2MSB
1384
1385static inline void init_thread(struct target_pt_regs *regs,
1386                               struct image_info *infop)
1387{
1388    regs->pc = infop->entry;
1389    regs->gpr[1] = infop->start_stack;
1390}
1391
1392#define USE_ELF_CORE_DUMP
1393#define ELF_EXEC_PAGESIZE 8192
1394
1395/* See linux kernel arch/openrisc/include/asm/elf.h.  */
1396#define ELF_NREG 34 /* gprs and pc, sr */
1397typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1398
1399static void elf_core_copy_regs(target_elf_gregset_t *regs,
1400                               const CPUOpenRISCState *env)
1401{
1402    int i;
1403
1404    for (i = 0; i < 32; i++) {
1405        (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1406    }
1407    (*regs)[32] = tswapreg(env->pc);
1408    (*regs)[33] = tswapreg(cpu_get_sr(env));
1409}
1410#define ELF_HWCAP 0
1411#define ELF_PLATFORM NULL
1412
1413#endif /* TARGET_OPENRISC */
1414
1415#ifdef TARGET_SH4
1416
1417#define ELF_START_MMAP 0x80000000
1418
1419#define ELF_CLASS ELFCLASS32
1420#define ELF_ARCH  EM_SH
1421
1422static inline void init_thread(struct target_pt_regs *regs,
1423                               struct image_info *infop)
1424{
1425    /* Check other registers XXXXX */
1426    regs->pc = infop->entry;
1427    regs->regs[15] = infop->start_stack;
1428}
1429
1430/* See linux kernel: arch/sh/include/asm/elf.h.  */
1431#define ELF_NREG 23
1432typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1433
1434/* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1435enum {
1436    TARGET_REG_PC = 16,
1437    TARGET_REG_PR = 17,
1438    TARGET_REG_SR = 18,
1439    TARGET_REG_GBR = 19,
1440    TARGET_REG_MACH = 20,
1441    TARGET_REG_MACL = 21,
1442    TARGET_REG_SYSCALL = 22
1443};
1444
1445static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1446                                      const CPUSH4State *env)
1447{
1448    int i;
1449
1450    for (i = 0; i < 16; i++) {
1451        (*regs)[i] = tswapreg(env->gregs[i]);
1452    }
1453
1454    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1455    (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1456    (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1457    (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1458    (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1459    (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1460    (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1461}
1462
1463#define USE_ELF_CORE_DUMP
1464#define ELF_EXEC_PAGESIZE        4096
1465
1466enum {
1467    SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1468    SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1469    SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1470    SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1471    SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1472    SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1473    SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1474    SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1475    SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1476    SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1477};
1478
1479#define ELF_HWCAP get_elf_hwcap()
1480
1481static uint32_t get_elf_hwcap(void)
1482{
1483    SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1484    uint32_t hwcap = 0;
1485
1486    hwcap |= SH_CPU_HAS_FPU;
1487
1488    if (cpu->env.features & SH_FEATURE_SH4A) {
1489        hwcap |= SH_CPU_HAS_LLSC;
1490    }
1491
1492    return hwcap;
1493}
1494
1495#endif
1496
1497#ifdef TARGET_CRIS
1498
1499#define ELF_START_MMAP 0x80000000
1500
1501#define ELF_CLASS ELFCLASS32
1502#define ELF_ARCH  EM_CRIS
1503
1504static inline void init_thread(struct target_pt_regs *regs,
1505                               struct image_info *infop)
1506{
1507    regs->erp = infop->entry;
1508}
1509
1510#define ELF_EXEC_PAGESIZE        8192
1511
1512#endif
1513
1514#ifdef TARGET_M68K
1515
1516#define ELF_START_MMAP 0x80000000
1517
1518#define ELF_CLASS       ELFCLASS32
1519#define ELF_ARCH        EM_68K
1520
1521/* ??? Does this need to do anything?
1522   #define ELF_PLAT_INIT(_r) */
1523
1524static inline void init_thread(struct target_pt_regs *regs,
1525                               struct image_info *infop)
1526{
1527    regs->usp = infop->start_stack;
1528    regs->sr = 0;
1529    regs->pc = infop->entry;
1530}
1531
1532/* See linux kernel: arch/m68k/include/asm/elf.h.  */
1533#define ELF_NREG 20
1534typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1535
1536static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1537{
1538    (*regs)[0] = tswapreg(env->dregs[1]);
1539    (*regs)[1] = tswapreg(env->dregs[2]);
1540    (*regs)[2] = tswapreg(env->dregs[3]);
1541    (*regs)[3] = tswapreg(env->dregs[4]);
1542    (*regs)[4] = tswapreg(env->dregs[5]);
1543    (*regs)[5] = tswapreg(env->dregs[6]);
1544    (*regs)[6] = tswapreg(env->dregs[7]);
1545    (*regs)[7] = tswapreg(env->aregs[0]);
1546    (*regs)[8] = tswapreg(env->aregs[1]);
1547    (*regs)[9] = tswapreg(env->aregs[2]);
1548    (*regs)[10] = tswapreg(env->aregs[3]);
1549    (*regs)[11] = tswapreg(env->aregs[4]);
1550    (*regs)[12] = tswapreg(env->aregs[5]);
1551    (*regs)[13] = tswapreg(env->aregs[6]);
1552    (*regs)[14] = tswapreg(env->dregs[0]);
1553    (*regs)[15] = tswapreg(env->aregs[7]);
1554    (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1555    (*regs)[17] = tswapreg(env->sr);
1556    (*regs)[18] = tswapreg(env->pc);
1557    (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1558}
1559
1560#define USE_ELF_CORE_DUMP
1561#define ELF_EXEC_PAGESIZE       8192
1562
1563#endif
1564
1565#ifdef TARGET_ALPHA
1566
1567#define ELF_START_MMAP (0x30000000000ULL)
1568
1569#define ELF_CLASS      ELFCLASS64
1570#define ELF_ARCH       EM_ALPHA
1571
1572static inline void init_thread(struct target_pt_regs *regs,
1573                               struct image_info *infop)
1574{
1575    regs->pc = infop->entry;
1576    regs->ps = 8;
1577    regs->usp = infop->start_stack;
1578}
1579
1580#define ELF_EXEC_PAGESIZE        8192
1581
1582#endif /* TARGET_ALPHA */
1583
1584#ifdef TARGET_S390X
1585
1586#define ELF_START_MMAP (0x20000000000ULL)
1587
1588#define ELF_CLASS       ELFCLASS64
1589#define ELF_DATA        ELFDATA2MSB
1590#define ELF_ARCH        EM_S390
1591
1592#include "elf.h"
1593
1594#define ELF_HWCAP get_elf_hwcap()
1595
1596#define GET_FEATURE(_feat, _hwcap) \
1597    do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1598
1599uint32_t get_elf_hwcap(void)
1600{
1601    /*
1602     * Let's assume we always have esan3 and zarch.
1603     * 31-bit processes can use 64-bit registers (high gprs).
1604     */
1605    uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1606
1607    GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1608    GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1609    GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1610    GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1611    if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1612        s390_has_feat(S390_FEAT_ETF3_ENH)) {
1613        hwcap |= HWCAP_S390_ETF3EH;
1614    }
1615    GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1616    GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1617
1618    return hwcap;
1619}
1620
1621const char *elf_hwcap_str(uint32_t bit)
1622{
1623    static const char *hwcap_str[] = {
1624        [HWCAP_S390_NR_ESAN3]     = "esan3",
1625        [HWCAP_S390_NR_ZARCH]     = "zarch",
1626        [HWCAP_S390_NR_STFLE]     = "stfle",
1627        [HWCAP_S390_NR_MSA]       = "msa",
1628        [HWCAP_S390_NR_LDISP]     = "ldisp",
1629        [HWCAP_S390_NR_EIMM]      = "eimm",
1630        [HWCAP_S390_NR_DFP]       = "dfp",
1631        [HWCAP_S390_NR_HPAGE]     = "edat",
1632        [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1633        [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1634        [HWCAP_S390_NR_TE]        = "te",
1635        [HWCAP_S390_NR_VXRS]      = "vx",
1636        [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1637        [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1638        [HWCAP_S390_NR_GS]        = "gs",
1639        [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1640        [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1641        [HWCAP_S390_NR_SORT]      = "sort",
1642        [HWCAP_S390_NR_DFLT]      = "dflt",
1643        [HWCAP_S390_NR_NNPA]      = "nnpa",
1644        [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1645        [HWCAP_S390_NR_SIE]       = "sie",
1646    };
1647
1648    return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1649}
1650
1651static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1652{
1653    regs->psw.addr = infop->entry;
1654    regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1655                     PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1656                     PSW_MASK_32;
1657    regs->gprs[15] = infop->start_stack;
1658}
1659
1660/* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1661#define ELF_NREG 27
1662typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1663
1664enum {
1665    TARGET_REG_PSWM = 0,
1666    TARGET_REG_PSWA = 1,
1667    TARGET_REG_GPRS = 2,
1668    TARGET_REG_ARS = 18,
1669    TARGET_REG_ORIG_R2 = 26,
1670};
1671
1672static void elf_core_copy_regs(target_elf_gregset_t *regs,
1673                               const CPUS390XState *env)
1674{
1675    int i;
1676    uint32_t *aregs;
1677
1678    (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1679    (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1680    for (i = 0; i < 16; i++) {
1681        (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1682    }
1683    aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1684    for (i = 0; i < 16; i++) {
1685        aregs[i] = tswap32(env->aregs[i]);
1686    }
1687    (*regs)[TARGET_REG_ORIG_R2] = 0;
1688}
1689
1690#define USE_ELF_CORE_DUMP
1691#define ELF_EXEC_PAGESIZE 4096
1692
1693#endif /* TARGET_S390X */
1694
1695#ifdef TARGET_RISCV
1696
1697#define ELF_START_MMAP 0x80000000
1698#define ELF_ARCH  EM_RISCV
1699
1700#ifdef TARGET_RISCV32
1701#define ELF_CLASS ELFCLASS32
1702#else
1703#define ELF_CLASS ELFCLASS64
1704#endif
1705
1706#define ELF_HWCAP get_elf_hwcap()
1707
1708static uint32_t get_elf_hwcap(void)
1709{
1710#define MISA_BIT(EXT) (1 << (EXT - 'A'))
1711    RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1712    uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1713                    | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1714                    | MISA_BIT('V');
1715
1716    return cpu->env.misa_ext & mask;
1717#undef MISA_BIT
1718}
1719
1720static inline void init_thread(struct target_pt_regs *regs,
1721                               struct image_info *infop)
1722{
1723    regs->sepc = infop->entry;
1724    regs->sp = infop->start_stack;
1725}
1726
1727#define ELF_EXEC_PAGESIZE 4096
1728
1729#endif /* TARGET_RISCV */
1730
1731#ifdef TARGET_HPPA
1732
1733#define ELF_START_MMAP  0x80000000
1734#define ELF_CLASS       ELFCLASS32
1735#define ELF_ARCH        EM_PARISC
1736#define ELF_PLATFORM    "PARISC"
1737#define STACK_GROWS_DOWN 0
1738#define STACK_ALIGNMENT  64
1739
1740static inline void init_thread(struct target_pt_regs *regs,
1741                               struct image_info *infop)
1742{
1743    regs->iaoq[0] = infop->entry;
1744    regs->iaoq[1] = infop->entry + 4;
1745    regs->gr[23] = 0;
1746    regs->gr[24] = infop->argv;
1747    regs->gr[25] = infop->argc;
1748    /* The top-of-stack contains a linkage buffer.  */
1749    regs->gr[30] = infop->start_stack + 64;
1750    regs->gr[31] = infop->entry;
1751}
1752
1753#define LO_COMMPAGE  0
1754
1755static bool init_guest_commpage(void)
1756{
1757    void *want = g2h_untagged(LO_COMMPAGE);
1758    void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1759                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1760
1761    if (addr == MAP_FAILED) {
1762        perror("Allocating guest commpage");
1763        exit(EXIT_FAILURE);
1764    }
1765    if (addr != want) {
1766        return false;
1767    }
1768
1769    /*
1770     * On Linux, page zero is normally marked execute only + gateway.
1771     * Normal read or write is supposed to fail (thus PROT_NONE above),
1772     * but specific offsets have kernel code mapped to raise permissions
1773     * and implement syscalls.  Here, simply mark the page executable.
1774     * Special case the entry points during translation (see do_page_zero).
1775     */
1776    page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1777                   PAGE_EXEC | PAGE_VALID);
1778    return true;
1779}
1780
1781#endif /* TARGET_HPPA */
1782
1783#ifdef TARGET_XTENSA
1784
1785#define ELF_START_MMAP 0x20000000
1786
1787#define ELF_CLASS       ELFCLASS32
1788#define ELF_ARCH        EM_XTENSA
1789
1790static inline void init_thread(struct target_pt_regs *regs,
1791                               struct image_info *infop)
1792{
1793    regs->windowbase = 0;
1794    regs->windowstart = 1;
1795    regs->areg[1] = infop->start_stack;
1796    regs->pc = infop->entry;
1797    if (info_is_fdpic(infop)) {
1798        regs->areg[4] = infop->loadmap_addr;
1799        regs->areg[5] = infop->interpreter_loadmap_addr;
1800        if (infop->interpreter_loadmap_addr) {
1801            regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1802        } else {
1803            regs->areg[6] = infop->pt_dynamic_addr;
1804        }
1805    }
1806}
1807
1808/* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1809#define ELF_NREG 128
1810typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1811
1812enum {
1813    TARGET_REG_PC,
1814    TARGET_REG_PS,
1815    TARGET_REG_LBEG,
1816    TARGET_REG_LEND,
1817    TARGET_REG_LCOUNT,
1818    TARGET_REG_SAR,
1819    TARGET_REG_WINDOWSTART,
1820    TARGET_REG_WINDOWBASE,
1821    TARGET_REG_THREADPTR,
1822    TARGET_REG_AR0 = 64,
1823};
1824
1825static void elf_core_copy_regs(target_elf_gregset_t *regs,
1826                               const CPUXtensaState *env)
1827{
1828    unsigned i;
1829
1830    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1831    (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1832    (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1833    (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1834    (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1835    (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1836    (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1837    (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1838    (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1839    xtensa_sync_phys_from_window((CPUXtensaState *)env);
1840    for (i = 0; i < env->config->nareg; ++i) {
1841        (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1842    }
1843}
1844
1845#define USE_ELF_CORE_DUMP
1846#define ELF_EXEC_PAGESIZE       4096
1847
1848#endif /* TARGET_XTENSA */
1849
1850#ifdef TARGET_HEXAGON
1851
1852#define ELF_START_MMAP 0x20000000
1853
1854#define ELF_CLASS       ELFCLASS32
1855#define ELF_ARCH        EM_HEXAGON
1856
1857static inline void init_thread(struct target_pt_regs *regs,
1858                               struct image_info *infop)
1859{
1860    regs->sepc = infop->entry;
1861    regs->sp = infop->start_stack;
1862}
1863
1864#endif /* TARGET_HEXAGON */
1865
1866#ifndef ELF_BASE_PLATFORM
1867#define ELF_BASE_PLATFORM (NULL)
1868#endif
1869
1870#ifndef ELF_PLATFORM
1871#define ELF_PLATFORM (NULL)
1872#endif
1873
1874#ifndef ELF_MACHINE
1875#define ELF_MACHINE ELF_ARCH
1876#endif
1877
1878#ifndef elf_check_arch
1879#define elf_check_arch(x) ((x) == ELF_ARCH)
1880#endif
1881
1882#ifndef elf_check_abi
1883#define elf_check_abi(x) (1)
1884#endif
1885
1886#ifndef ELF_HWCAP
1887#define ELF_HWCAP 0
1888#endif
1889
1890#ifndef STACK_GROWS_DOWN
1891#define STACK_GROWS_DOWN 1
1892#endif
1893
1894#ifndef STACK_ALIGNMENT
1895#define STACK_ALIGNMENT 16
1896#endif
1897
1898#ifdef TARGET_ABI32
1899#undef ELF_CLASS
1900#define ELF_CLASS ELFCLASS32
1901#undef bswaptls
1902#define bswaptls(ptr) bswap32s(ptr)
1903#endif
1904
1905#ifndef EXSTACK_DEFAULT
1906#define EXSTACK_DEFAULT false
1907#endif
1908
1909#include "elf.h"
1910
1911/* We must delay the following stanzas until after "elf.h". */
1912#if defined(TARGET_AARCH64)
1913
1914static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1915                                    const uint32_t *data,
1916                                    struct image_info *info,
1917                                    Error **errp)
1918{
1919    if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1920        if (pr_datasz != sizeof(uint32_t)) {
1921            error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1922            return false;
1923        }
1924        /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1925        info->note_flags = *data;
1926    }
1927    return true;
1928}
1929#define ARCH_USE_GNU_PROPERTY 1
1930
1931#else
1932
1933static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1934                                    const uint32_t *data,
1935                                    struct image_info *info,
1936                                    Error **errp)
1937{
1938    g_assert_not_reached();
1939}
1940#define ARCH_USE_GNU_PROPERTY 0
1941
1942#endif
1943
1944struct exec
1945{
1946    unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1947    unsigned int a_text;   /* length of text, in bytes */
1948    unsigned int a_data;   /* length of data, in bytes */
1949    unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1950    unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1951    unsigned int a_entry;  /* start address */
1952    unsigned int a_trsize; /* length of relocation info for text, in bytes */
1953    unsigned int a_drsize; /* length of relocation info for data, in bytes */
1954};
1955
1956
1957#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1958#define OMAGIC 0407
1959#define NMAGIC 0410
1960#define ZMAGIC 0413
1961#define QMAGIC 0314
1962
1963#define DLINFO_ITEMS 16
1964
1965static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1966{
1967    memcpy(to, from, n);
1968}
1969
1970#ifdef BSWAP_NEEDED
1971static void bswap_ehdr(struct elfhdr *ehdr)
1972{
1973    bswap16s(&ehdr->e_type);            /* Object file type */
1974    bswap16s(&ehdr->e_machine);         /* Architecture */
1975    bswap32s(&ehdr->e_version);         /* Object file version */
1976    bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1977    bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1978    bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1979    bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1980    bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1981    bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1982    bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1983    bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1984    bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1985    bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1986}
1987
1988static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1989{
1990    int i;
1991    for (i = 0; i < phnum; ++i, ++phdr) {
1992        bswap32s(&phdr->p_type);        /* Segment type */
1993        bswap32s(&phdr->p_flags);       /* Segment flags */
1994        bswaptls(&phdr->p_offset);      /* Segment file offset */
1995        bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1996        bswaptls(&phdr->p_paddr);       /* Segment physical address */
1997        bswaptls(&phdr->p_filesz);      /* Segment size in file */
1998        bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1999        bswaptls(&phdr->p_align);       /* Segment alignment */
2000    }
2001}
2002
2003static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2004{
2005    int i;
2006    for (i = 0; i < shnum; ++i, ++shdr) {
2007        bswap32s(&shdr->sh_name);
2008        bswap32s(&shdr->sh_type);
2009        bswaptls(&shdr->sh_flags);
2010        bswaptls(&shdr->sh_addr);
2011        bswaptls(&shdr->sh_offset);
2012        bswaptls(&shdr->sh_size);
2013        bswap32s(&shdr->sh_link);
2014        bswap32s(&shdr->sh_info);
2015        bswaptls(&shdr->sh_addralign);
2016        bswaptls(&shdr->sh_entsize);
2017    }
2018}
2019
2020static void bswap_sym(struct elf_sym *sym)
2021{
2022    bswap32s(&sym->st_name);
2023    bswaptls(&sym->st_value);
2024    bswaptls(&sym->st_size);
2025    bswap16s(&sym->st_shndx);
2026}
2027
2028#ifdef TARGET_MIPS
2029static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2030{
2031    bswap16s(&abiflags->version);
2032    bswap32s(&abiflags->ases);
2033    bswap32s(&abiflags->isa_ext);
2034    bswap32s(&abiflags->flags1);
2035    bswap32s(&abiflags->flags2);
2036}
2037#endif
2038#else
2039static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2040static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2041static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2042static inline void bswap_sym(struct elf_sym *sym) { }
2043#ifdef TARGET_MIPS
2044static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2045#endif
2046#endif
2047
2048#ifdef USE_ELF_CORE_DUMP
2049static int elf_core_dump(int, const CPUArchState *);
2050#endif /* USE_ELF_CORE_DUMP */
2051static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2052
2053/* Verify the portions of EHDR within E_IDENT for the target.
2054   This can be performed before bswapping the entire header.  */
2055static bool elf_check_ident(struct elfhdr *ehdr)
2056{
2057    return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2058            && ehdr->e_ident[EI_MAG1] == ELFMAG1
2059            && ehdr->e_ident[EI_MAG2] == ELFMAG2
2060            && ehdr->e_ident[EI_MAG3] == ELFMAG3
2061            && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2062            && ehdr->e_ident[EI_DATA] == ELF_DATA
2063            && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2064}
2065
2066/* Verify the portions of EHDR outside of E_IDENT for the target.
2067   This has to wait until after bswapping the header.  */
2068static bool elf_check_ehdr(struct elfhdr *ehdr)
2069{
2070    return (elf_check_arch(ehdr->e_machine)
2071            && elf_check_abi(ehdr->e_flags)
2072            && ehdr->e_ehsize == sizeof(struct elfhdr)
2073            && ehdr->e_phentsize == sizeof(struct elf_phdr)
2074            && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2075}
2076
2077/*
2078 * 'copy_elf_strings()' copies argument/envelope strings from user
2079 * memory to free pages in kernel mem. These are in a format ready
2080 * to be put directly into the top of new user memory.
2081 *
2082 */
2083static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2084                                  abi_ulong p, abi_ulong stack_limit)
2085{
2086    char *tmp;
2087    int len, i;
2088    abi_ulong top = p;
2089
2090    if (!p) {
2091        return 0;       /* bullet-proofing */
2092    }
2093
2094    if (STACK_GROWS_DOWN) {
2095        int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2096        for (i = argc - 1; i >= 0; --i) {
2097            tmp = argv[i];
2098            if (!tmp) {
2099                fprintf(stderr, "VFS: argc is wrong");
2100                exit(-1);
2101            }
2102            len = strlen(tmp) + 1;
2103            tmp += len;
2104
2105            if (len > (p - stack_limit)) {
2106                return 0;
2107            }
2108            while (len) {
2109                int bytes_to_copy = (len > offset) ? offset : len;
2110                tmp -= bytes_to_copy;
2111                p -= bytes_to_copy;
2112                offset -= bytes_to_copy;
2113                len -= bytes_to_copy;
2114
2115                memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2116
2117                if (offset == 0) {
2118                    memcpy_to_target(p, scratch, top - p);
2119                    top = p;
2120                    offset = TARGET_PAGE_SIZE;
2121                }
2122            }
2123        }
2124        if (p != top) {
2125            memcpy_to_target(p, scratch + offset, top - p);
2126        }
2127    } else {
2128        int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2129        for (i = 0; i < argc; ++i) {
2130            tmp = argv[i];
2131            if (!tmp) {
2132                fprintf(stderr, "VFS: argc is wrong");
2133                exit(-1);
2134            }
2135            len = strlen(tmp) + 1;
2136            if (len > (stack_limit - p)) {
2137                return 0;
2138            }
2139            while (len) {
2140                int bytes_to_copy = (len > remaining) ? remaining : len;
2141
2142                memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2143
2144                tmp += bytes_to_copy;
2145                remaining -= bytes_to_copy;
2146                p += bytes_to_copy;
2147                len -= bytes_to_copy;
2148
2149                if (remaining == 0) {
2150                    memcpy_to_target(top, scratch, p - top);
2151                    top = p;
2152                    remaining = TARGET_PAGE_SIZE;
2153                }
2154            }
2155        }
2156        if (p != top) {
2157            memcpy_to_target(top, scratch, p - top);
2158        }
2159    }
2160
2161    return p;
2162}
2163
2164/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2165 * argument/environment space. Newer kernels (>2.6.33) allow more,
2166 * dependent on stack size, but guarantee at least 32 pages for
2167 * backwards compatibility.
2168 */
2169#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2170
2171static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2172                                 struct image_info *info)
2173{
2174    abi_ulong size, error, guard;
2175    int prot;
2176
2177    size = guest_stack_size;
2178    if (size < STACK_LOWER_LIMIT) {
2179        size = STACK_LOWER_LIMIT;
2180    }
2181
2182    if (STACK_GROWS_DOWN) {
2183        guard = TARGET_PAGE_SIZE;
2184        if (guard < qemu_real_host_page_size()) {
2185            guard = qemu_real_host_page_size();
2186        }
2187    } else {
2188        /* no guard page for hppa target where stack grows upwards. */
2189        guard = 0;
2190    }
2191
2192    prot = PROT_READ | PROT_WRITE;
2193    if (info->exec_stack) {
2194        prot |= PROT_EXEC;
2195    }
2196    error = target_mmap(0, size + guard, prot,
2197                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2198    if (error == -1) {
2199        perror("mmap stack");
2200        exit(-1);
2201    }
2202
2203    /* We reserve one extra page at the top of the stack as guard.  */
2204    if (STACK_GROWS_DOWN) {
2205        target_mprotect(error, guard, PROT_NONE);
2206        info->stack_limit = error + guard;
2207        return info->stack_limit + size - sizeof(void *);
2208    } else {
2209        info->stack_limit = error + size;
2210        return error;
2211    }
2212}
2213
2214/**
2215 * zero_bss:
2216 *
2217 * Map and zero the bss.  We need to explicitly zero any fractional pages
2218 * after the data section (i.e. bss).  Return false on mapping failure.
2219 */
2220static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, int prot)
2221{
2222    abi_ulong align_bss;
2223
2224    align_bss = TARGET_PAGE_ALIGN(start_bss);
2225    end_bss = TARGET_PAGE_ALIGN(end_bss);
2226
2227    if (start_bss < align_bss) {
2228        int flags = page_get_flags(start_bss);
2229
2230        if (!(flags & PAGE_VALID)) {
2231            /* Map the start of the bss. */
2232            align_bss -= TARGET_PAGE_SIZE;
2233        } else if (flags & PAGE_WRITE) {
2234            /* The page is already mapped writable. */
2235            memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2236        } else {
2237            /* Read-only zeros? */
2238            g_assert_not_reached();
2239        }
2240    }
2241
2242    return align_bss >= end_bss ||
2243           target_mmap(align_bss, end_bss - align_bss, prot,
2244                       MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) != -1;
2245}
2246
2247#if defined(TARGET_ARM)
2248static int elf_is_fdpic(struct elfhdr *exec)
2249{
2250    return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2251}
2252#elif defined(TARGET_XTENSA)
2253static int elf_is_fdpic(struct elfhdr *exec)
2254{
2255    return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2256}
2257#else
2258/* Default implementation, always false.  */
2259static int elf_is_fdpic(struct elfhdr *exec)
2260{
2261    return 0;
2262}
2263#endif
2264
2265static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2266{
2267    uint16_t n;
2268    struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2269
2270    /* elf32_fdpic_loadseg */
2271    n = info->nsegs;
2272    while (n--) {
2273        sp -= 12;
2274        put_user_u32(loadsegs[n].addr, sp+0);
2275        put_user_u32(loadsegs[n].p_vaddr, sp+4);
2276        put_user_u32(loadsegs[n].p_memsz, sp+8);
2277    }
2278
2279    /* elf32_fdpic_loadmap */
2280    sp -= 4;
2281    put_user_u16(0, sp+0); /* version */
2282    put_user_u16(info->nsegs, sp+2); /* nsegs */
2283
2284    info->personality = PER_LINUX_FDPIC;
2285    info->loadmap_addr = sp;
2286
2287    return sp;
2288}
2289
2290static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2291                                   struct elfhdr *exec,
2292                                   struct image_info *info,
2293                                   struct image_info *interp_info)
2294{
2295    abi_ulong sp;
2296    abi_ulong u_argc, u_argv, u_envp, u_auxv;
2297    int size;
2298    int i;
2299    abi_ulong u_rand_bytes;
2300    uint8_t k_rand_bytes[16];
2301    abi_ulong u_platform, u_base_platform;
2302    const char *k_platform, *k_base_platform;
2303    const int n = sizeof(elf_addr_t);
2304
2305    sp = p;
2306
2307    /* Needs to be before we load the env/argc/... */
2308    if (elf_is_fdpic(exec)) {
2309        /* Need 4 byte alignment for these structs */
2310        sp &= ~3;
2311        sp = loader_build_fdpic_loadmap(info, sp);
2312        info->other_info = interp_info;
2313        if (interp_info) {
2314            interp_info->other_info = info;
2315            sp = loader_build_fdpic_loadmap(interp_info, sp);
2316            info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2317            info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2318        } else {
2319            info->interpreter_loadmap_addr = 0;
2320            info->interpreter_pt_dynamic_addr = 0;
2321        }
2322    }
2323
2324    u_base_platform = 0;
2325    k_base_platform = ELF_BASE_PLATFORM;
2326    if (k_base_platform) {
2327        size_t len = strlen(k_base_platform) + 1;
2328        if (STACK_GROWS_DOWN) {
2329            sp -= (len + n - 1) & ~(n - 1);
2330            u_base_platform = sp;
2331            /* FIXME - check return value of memcpy_to_target() for failure */
2332            memcpy_to_target(sp, k_base_platform, len);
2333        } else {
2334            memcpy_to_target(sp, k_base_platform, len);
2335            u_base_platform = sp;
2336            sp += len + 1;
2337        }
2338    }
2339
2340    u_platform = 0;
2341    k_platform = ELF_PLATFORM;
2342    if (k_platform) {
2343        size_t len = strlen(k_platform) + 1;
2344        if (STACK_GROWS_DOWN) {
2345            sp -= (len + n - 1) & ~(n - 1);
2346            u_platform = sp;
2347            /* FIXME - check return value of memcpy_to_target() for failure */
2348            memcpy_to_target(sp, k_platform, len);
2349        } else {
2350            memcpy_to_target(sp, k_platform, len);
2351            u_platform = sp;
2352            sp += len + 1;
2353        }
2354    }
2355
2356    /* Provide 16 byte alignment for the PRNG, and basic alignment for
2357     * the argv and envp pointers.
2358     */
2359    if (STACK_GROWS_DOWN) {
2360        sp = QEMU_ALIGN_DOWN(sp, 16);
2361    } else {
2362        sp = QEMU_ALIGN_UP(sp, 16);
2363    }
2364
2365    /*
2366     * Generate 16 random bytes for userspace PRNG seeding.
2367     */
2368    qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2369    if (STACK_GROWS_DOWN) {
2370        sp -= 16;
2371        u_rand_bytes = sp;
2372        /* FIXME - check return value of memcpy_to_target() for failure */
2373        memcpy_to_target(sp, k_rand_bytes, 16);
2374    } else {
2375        memcpy_to_target(sp, k_rand_bytes, 16);
2376        u_rand_bytes = sp;
2377        sp += 16;
2378    }
2379
2380    size = (DLINFO_ITEMS + 1) * 2;
2381    if (k_base_platform)
2382        size += 2;
2383    if (k_platform)
2384        size += 2;
2385#ifdef DLINFO_ARCH_ITEMS
2386    size += DLINFO_ARCH_ITEMS * 2;
2387#endif
2388#ifdef ELF_HWCAP2
2389    size += 2;
2390#endif
2391    info->auxv_len = size * n;
2392
2393    size += envc + argc + 2;
2394    size += 1;  /* argc itself */
2395    size *= n;
2396
2397    /* Allocate space and finalize stack alignment for entry now.  */
2398    if (STACK_GROWS_DOWN) {
2399        u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2400        sp = u_argc;
2401    } else {
2402        u_argc = sp;
2403        sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2404    }
2405
2406    u_argv = u_argc + n;
2407    u_envp = u_argv + (argc + 1) * n;
2408    u_auxv = u_envp + (envc + 1) * n;
2409    info->saved_auxv = u_auxv;
2410    info->argc = argc;
2411    info->envc = envc;
2412    info->argv = u_argv;
2413    info->envp = u_envp;
2414
2415    /* This is correct because Linux defines
2416     * elf_addr_t as Elf32_Off / Elf64_Off
2417     */
2418#define NEW_AUX_ENT(id, val) do {               \
2419        put_user_ual(id, u_auxv);  u_auxv += n; \
2420        put_user_ual(val, u_auxv); u_auxv += n; \
2421    } while(0)
2422
2423#ifdef ARCH_DLINFO
2424    /*
2425     * ARCH_DLINFO must come first so platform specific code can enforce
2426     * special alignment requirements on the AUXV if necessary (eg. PPC).
2427     */
2428    ARCH_DLINFO;
2429#endif
2430    /* There must be exactly DLINFO_ITEMS entries here, or the assert
2431     * on info->auxv_len will trigger.
2432     */
2433    NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2434    NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2435    NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2436    if ((info->alignment & ~qemu_host_page_mask) != 0) {
2437        /* Target doesn't support host page size alignment */
2438        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2439    } else {
2440        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2441                                               qemu_host_page_size)));
2442    }
2443    NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2444    NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2445    NEW_AUX_ENT(AT_ENTRY, info->entry);
2446    NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2447    NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2448    NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2449    NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2450    NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2451    NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2452    NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2453    NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2454    NEW_AUX_ENT(AT_EXECFN, info->file_string);
2455
2456#ifdef ELF_HWCAP2
2457    NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2458#endif
2459
2460    if (u_base_platform) {
2461        NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2462    }
2463    if (u_platform) {
2464        NEW_AUX_ENT(AT_PLATFORM, u_platform);
2465    }
2466    NEW_AUX_ENT (AT_NULL, 0);
2467#undef NEW_AUX_ENT
2468
2469    /* Check that our initial calculation of the auxv length matches how much
2470     * we actually put into it.
2471     */
2472    assert(info->auxv_len == u_auxv - info->saved_auxv);
2473
2474    put_user_ual(argc, u_argc);
2475
2476    p = info->arg_strings;
2477    for (i = 0; i < argc; ++i) {
2478        put_user_ual(p, u_argv);
2479        u_argv += n;
2480        p += target_strlen(p) + 1;
2481    }
2482    put_user_ual(0, u_argv);
2483
2484    p = info->env_strings;
2485    for (i = 0; i < envc; ++i) {
2486        put_user_ual(p, u_envp);
2487        u_envp += n;
2488        p += target_strlen(p) + 1;
2489    }
2490    put_user_ual(0, u_envp);
2491
2492    return sp;
2493}
2494
2495#if defined(HI_COMMPAGE)
2496#define LO_COMMPAGE -1
2497#elif defined(LO_COMMPAGE)
2498#define HI_COMMPAGE 0
2499#else
2500#define HI_COMMPAGE 0
2501#define LO_COMMPAGE -1
2502#ifndef INIT_GUEST_COMMPAGE
2503#define init_guest_commpage() true
2504#endif
2505#endif
2506
2507/**
2508 * pgb_try_mmap:
2509 * @addr: host start address
2510 * @addr_last: host last address
2511 * @keep: do not unmap the probe region
2512 *
2513 * Return 1 if [@addr, @addr_last] is not mapped in the host,
2514 * return 0 if it is not available to map, and -1 on mmap error.
2515 * If @keep, the region is left mapped on success, otherwise unmapped.
2516 */
2517static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2518{
2519    size_t size = addr_last - addr + 1;
2520    void *p = mmap((void *)addr, size, PROT_NONE,
2521                   MAP_ANONYMOUS | MAP_PRIVATE |
2522                   MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2523    int ret;
2524
2525    if (p == MAP_FAILED) {
2526        return errno == EEXIST ? 0 : -1;
2527    }
2528    ret = p == (void *)addr;
2529    if (!keep || !ret) {
2530        munmap(p, size);
2531    }
2532    return ret;
2533}
2534
2535/**
2536 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2537 * @addr: host address
2538 * @addr_last: host last address
2539 * @brk: host brk
2540 *
2541 * Like pgb_try_mmap, but additionally reserve some memory following brk.
2542 */
2543static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2544                                 uintptr_t brk, bool keep)
2545{
2546    uintptr_t brk_last = brk + 16 * MiB - 1;
2547
2548    /* Do not map anything close to the host brk. */
2549    if (addr <= brk_last && brk <= addr_last) {
2550        return 0;
2551    }
2552    return pgb_try_mmap(addr, addr_last, keep);
2553}
2554
2555/**
2556 * pgb_try_mmap_set:
2557 * @ga: set of guest addrs
2558 * @base: guest_base
2559 * @brk: host brk
2560 *
2561 * Return true if all @ga can be mapped by the host at @base.
2562 * On success, retain the mapping at index 0 for reserved_va.
2563 */
2564
2565typedef struct PGBAddrs {
2566    uintptr_t bounds[3][2]; /* start/last pairs */
2567    int nbounds;
2568} PGBAddrs;
2569
2570static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2571{
2572    for (int i = ga->nbounds - 1; i >= 0; --i) {
2573        if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2574                                  ga->bounds[i][1] + base,
2575                                  brk, i == 0 && reserved_va) <= 0) {
2576            return false;
2577        }
2578    }
2579    return true;
2580}
2581
2582/**
2583 * pgb_addr_set:
2584 * @ga: output set of guest addrs
2585 * @guest_loaddr: guest image low address
2586 * @guest_loaddr: guest image high address
2587 * @identity: create for identity mapping
2588 *
2589 * Fill in @ga with the image, COMMPAGE and NULL page.
2590 */
2591static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2592                         abi_ulong guest_hiaddr, bool try_identity)
2593{
2594    int n;
2595
2596    /*
2597     * With a low commpage, or a guest mapped very low,
2598     * we may not be able to use the identity map.
2599     */
2600    if (try_identity) {
2601        if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2602            return false;
2603        }
2604        if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2605            return false;
2606        }
2607    }
2608
2609    memset(ga, 0, sizeof(*ga));
2610    n = 0;
2611
2612    if (reserved_va) {
2613        ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2614        ga->bounds[n][1] = reserved_va;
2615        n++;
2616        /* LO_COMMPAGE and NULL handled by reserving from 0. */
2617    } else {
2618        /* Add any LO_COMMPAGE or NULL page. */
2619        if (LO_COMMPAGE != -1) {
2620            ga->bounds[n][0] = 0;
2621            ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2622            n++;
2623        } else if (!try_identity) {
2624            ga->bounds[n][0] = 0;
2625            ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2626            n++;
2627        }
2628
2629        /* Add the guest image for ET_EXEC. */
2630        if (guest_loaddr) {
2631            ga->bounds[n][0] = guest_loaddr;
2632            ga->bounds[n][1] = guest_hiaddr;
2633            n++;
2634        }
2635    }
2636
2637    /*
2638     * Temporarily disable
2639     *   "comparison is always false due to limited range of data type"
2640     * due to comparison between unsigned and (possible) 0.
2641     */
2642#pragma GCC diagnostic push
2643#pragma GCC diagnostic ignored "-Wtype-limits"
2644
2645    /* Add any HI_COMMPAGE not covered by reserved_va. */
2646    if (reserved_va < HI_COMMPAGE) {
2647        ga->bounds[n][0] = HI_COMMPAGE & qemu_host_page_mask;
2648        ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2649        n++;
2650    }
2651
2652#pragma GCC diagnostic pop
2653
2654    ga->nbounds = n;
2655    return true;
2656}
2657
2658static void pgb_fail_in_use(const char *image_name)
2659{
2660    error_report("%s: requires virtual address space that is in use "
2661                 "(omit the -B option or choose a different value)",
2662                 image_name);
2663    exit(EXIT_FAILURE);
2664}
2665
2666static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2667                      uintptr_t guest_hiaddr, uintptr_t align)
2668{
2669    PGBAddrs ga;
2670    uintptr_t brk = (uintptr_t)sbrk(0);
2671
2672    if (!QEMU_IS_ALIGNED(guest_base, align)) {
2673        fprintf(stderr, "Requested guest base %p does not satisfy "
2674                "host minimum alignment (0x%" PRIxPTR ")\n",
2675                (void *)guest_base, align);
2676        exit(EXIT_FAILURE);
2677    }
2678
2679    if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2680        || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2681        pgb_fail_in_use(image_name);
2682    }
2683}
2684
2685/**
2686 * pgb_find_fallback:
2687 *
2688 * This is a fallback method for finding holes in the host address space
2689 * if we don't have the benefit of being able to access /proc/self/map.
2690 * It can potentially take a very long time as we can only dumbly iterate
2691 * up the host address space seeing if the allocation would work.
2692 */
2693static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2694                                   uintptr_t brk)
2695{
2696    /* TODO: come up with a better estimate of how much to skip. */
2697    uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2698
2699    for (uintptr_t base = skip; ; base += skip) {
2700        base = ROUND_UP(base, align);
2701        if (pgb_try_mmap_set(ga, base, brk)) {
2702            return base;
2703        }
2704        if (base >= -skip) {
2705            return -1;
2706        }
2707    }
2708}
2709
2710static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2711                               IntervalTreeRoot *root)
2712{
2713    for (int i = ga->nbounds - 1; i >= 0; --i) {
2714        uintptr_t s = base + ga->bounds[i][0];
2715        uintptr_t l = base + ga->bounds[i][1];
2716        IntervalTreeNode *n;
2717
2718        if (l < s) {
2719            /* Wraparound. Skip to advance S to mmap_min_addr. */
2720            return mmap_min_addr - s;
2721        }
2722
2723        n = interval_tree_iter_first(root, s, l);
2724        if (n != NULL) {
2725            /* Conflict.  Skip to advance S to LAST + 1. */
2726            return n->last - s + 1;
2727        }
2728    }
2729    return 0;  /* success */
2730}
2731
2732static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2733                                uintptr_t align, uintptr_t brk)
2734{
2735    uintptr_t last = mmap_min_addr;
2736    uintptr_t base, skip;
2737
2738    while (true) {
2739        base = ROUND_UP(last, align);
2740        if (base < last) {
2741            return -1;
2742        }
2743
2744        skip = pgb_try_itree(ga, base, root);
2745        if (skip == 0) {
2746            break;
2747        }
2748
2749        last = base + skip;
2750        if (last < base) {
2751            return -1;
2752        }
2753    }
2754
2755    /*
2756     * We've chosen 'base' based on holes in the interval tree,
2757     * but we don't yet know if it is a valid host address.
2758     * Because it is the first matching hole, if the host addresses
2759     * are invalid we know there are no further matches.
2760     */
2761    return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2762}
2763
2764static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2765                        uintptr_t guest_hiaddr, uintptr_t align)
2766{
2767    IntervalTreeRoot *root;
2768    uintptr_t brk, ret;
2769    PGBAddrs ga;
2770
2771    assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2772
2773    /* Try the identity map first. */
2774    if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2775        brk = (uintptr_t)sbrk(0);
2776        if (pgb_try_mmap_set(&ga, 0, brk)) {
2777            guest_base = 0;
2778            return;
2779        }
2780    }
2781
2782    /*
2783     * Rebuild the address set for non-identity map.
2784     * This differs in the mapping of the guest NULL page.
2785     */
2786    pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
2787
2788    root = read_self_maps();
2789
2790    /* Read brk after we've read the maps, which will malloc. */
2791    brk = (uintptr_t)sbrk(0);
2792
2793    if (!root) {
2794        ret = pgb_find_fallback(&ga, align, brk);
2795    } else {
2796        /*
2797         * Reserve the area close to the host brk.
2798         * This will be freed with the rest of the tree.
2799         */
2800        IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2801        b->start = brk;
2802        b->last = brk + 16 * MiB - 1;
2803        interval_tree_insert(b, root);
2804
2805        ret = pgb_find_itree(&ga, root, align, brk);
2806        free_self_maps(root);
2807    }
2808
2809    if (ret == -1) {
2810        int w = TARGET_LONG_BITS / 4;
2811
2812        error_report("%s: Unable to find a guest_base to satisfy all "
2813                     "guest address mapping requirements", image_name);
2814
2815        for (int i = 0; i < ga.nbounds; ++i) {
2816            error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
2817                         w, (uint64_t)ga.bounds[i][0],
2818                         w, (uint64_t)ga.bounds[i][1]);
2819        }
2820        exit(EXIT_FAILURE);
2821    }
2822    guest_base = ret;
2823}
2824
2825void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2826                      abi_ulong guest_hiaddr)
2827{
2828    /* In order to use host shmat, we must be able to honor SHMLBA.  */
2829    uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2830
2831    /* Sanity check the guest binary. */
2832    if (reserved_va) {
2833        if (guest_hiaddr > reserved_va) {
2834            error_report("%s: requires more than reserved virtual "
2835                         "address space (0x%" PRIx64 " > 0x%lx)",
2836                         image_name, (uint64_t)guest_hiaddr, reserved_va);
2837            exit(EXIT_FAILURE);
2838        }
2839    } else {
2840        if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
2841            error_report("%s: requires more virtual address space "
2842                         "than the host can provide (0x%" PRIx64 ")",
2843                         image_name, (uint64_t)guest_hiaddr + 1);
2844            exit(EXIT_FAILURE);
2845        }
2846    }
2847
2848    if (have_guest_base) {
2849        pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
2850    } else {
2851        pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
2852    }
2853
2854    /* Reserve and initialize the commpage. */
2855    if (!init_guest_commpage()) {
2856        /* We have already probed for the commpage being free. */
2857        g_assert_not_reached();
2858    }
2859
2860    assert(QEMU_IS_ALIGNED(guest_base, align));
2861    qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2862                  "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2863}
2864
2865enum {
2866    /* The string "GNU\0" as a magic number. */
2867    GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2868    NOTE_DATA_SZ = 1 * KiB,
2869    NOTE_NAME_SZ = 4,
2870    ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2871};
2872
2873/*
2874 * Process a single gnu_property entry.
2875 * Return false for error.
2876 */
2877static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2878                               struct image_info *info, bool have_prev_type,
2879                               uint32_t *prev_type, Error **errp)
2880{
2881    uint32_t pr_type, pr_datasz, step;
2882
2883    if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2884        goto error_data;
2885    }
2886    datasz -= *off;
2887    data += *off / sizeof(uint32_t);
2888
2889    if (datasz < 2 * sizeof(uint32_t)) {
2890        goto error_data;
2891    }
2892    pr_type = data[0];
2893    pr_datasz = data[1];
2894    data += 2;
2895    datasz -= 2 * sizeof(uint32_t);
2896    step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2897    if (step > datasz) {
2898        goto error_data;
2899    }
2900
2901    /* Properties are supposed to be unique and sorted on pr_type. */
2902    if (have_prev_type && pr_type <= *prev_type) {
2903        if (pr_type == *prev_type) {
2904            error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2905        } else {
2906            error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2907        }
2908        return false;
2909    }
2910    *prev_type = pr_type;
2911
2912    if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2913        return false;
2914    }
2915
2916    *off += 2 * sizeof(uint32_t) + step;
2917    return true;
2918
2919 error_data:
2920    error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2921    return false;
2922}
2923
2924/* Process NT_GNU_PROPERTY_TYPE_0. */
2925static bool parse_elf_properties(int image_fd,
2926                                 struct image_info *info,
2927                                 const struct elf_phdr *phdr,
2928                                 char bprm_buf[BPRM_BUF_SIZE],
2929                                 Error **errp)
2930{
2931    union {
2932        struct elf_note nhdr;
2933        uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2934    } note;
2935
2936    int n, off, datasz;
2937    bool have_prev_type;
2938    uint32_t prev_type;
2939
2940    /* Unless the arch requires properties, ignore them. */
2941    if (!ARCH_USE_GNU_PROPERTY) {
2942        return true;
2943    }
2944
2945    /* If the properties are crazy large, that's too bad. */
2946    n = phdr->p_filesz;
2947    if (n > sizeof(note)) {
2948        error_setg(errp, "PT_GNU_PROPERTY too large");
2949        return false;
2950    }
2951    if (n < sizeof(note.nhdr)) {
2952        error_setg(errp, "PT_GNU_PROPERTY too small");
2953        return false;
2954    }
2955
2956    if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2957        memcpy(&note, bprm_buf + phdr->p_offset, n);
2958    } else {
2959        ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2960        if (len != n) {
2961            error_setg_errno(errp, errno, "Error reading file header");
2962            return false;
2963        }
2964    }
2965
2966    /*
2967     * The contents of a valid PT_GNU_PROPERTY is a sequence
2968     * of uint32_t -- swap them all now.
2969     */
2970#ifdef BSWAP_NEEDED
2971    for (int i = 0; i < n / 4; i++) {
2972        bswap32s(note.data + i);
2973    }
2974#endif
2975
2976    /*
2977     * Note that nhdr is 3 words, and that the "name" described by namesz
2978     * immediately follows nhdr and is thus at the 4th word.  Further, all
2979     * of the inputs to the kernel's round_up are multiples of 4.
2980     */
2981    if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2982        note.nhdr.n_namesz != NOTE_NAME_SZ ||
2983        note.data[3] != GNU0_MAGIC) {
2984        error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2985        return false;
2986    }
2987    off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2988
2989    datasz = note.nhdr.n_descsz + off;
2990    if (datasz > n) {
2991        error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2992        return false;
2993    }
2994
2995    have_prev_type = false;
2996    prev_type = 0;
2997    while (1) {
2998        if (off == datasz) {
2999            return true;  /* end, exit ok */
3000        }
3001        if (!parse_elf_property(note.data, &off, datasz, info,
3002                                have_prev_type, &prev_type, errp)) {
3003            return false;
3004        }
3005        have_prev_type = true;
3006    }
3007}
3008
3009/* Load an ELF image into the address space.
3010
3011   IMAGE_NAME is the filename of the image, to use in error messages.
3012   IMAGE_FD is the open file descriptor for the image.
3013
3014   BPRM_BUF is a copy of the beginning of the file; this of course
3015   contains the elf file header at offset 0.  It is assumed that this
3016   buffer is sufficiently aligned to present no problems to the host
3017   in accessing data at aligned offsets within the buffer.
3018
3019   On return: INFO values will be filled in, as necessary or available.  */
3020
3021static void load_elf_image(const char *image_name, int image_fd,
3022                           struct image_info *info, char **pinterp_name,
3023                           char bprm_buf[BPRM_BUF_SIZE])
3024{
3025    struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
3026    struct elf_phdr *phdr;
3027    abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3028    int i, retval, prot_exec;
3029    Error *err = NULL;
3030
3031    /* First of all, some simple consistency checks */
3032    if (!elf_check_ident(ehdr)) {
3033        error_setg(&err, "Invalid ELF image for this architecture");
3034        goto exit_errmsg;
3035    }
3036    bswap_ehdr(ehdr);
3037    if (!elf_check_ehdr(ehdr)) {
3038        error_setg(&err, "Invalid ELF image for this architecture");
3039        goto exit_errmsg;
3040    }
3041
3042    i = ehdr->e_phnum * sizeof(struct elf_phdr);
3043    if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3044        phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
3045    } else {
3046        phdr = (struct elf_phdr *) alloca(i);
3047        retval = pread(image_fd, phdr, i, ehdr->e_phoff);
3048        if (retval != i) {
3049            goto exit_read;
3050        }
3051    }
3052    bswap_phdr(phdr, ehdr->e_phnum);
3053
3054    info->nsegs = 0;
3055    info->pt_dynamic_addr = 0;
3056
3057    mmap_lock();
3058
3059    /*
3060     * Find the maximum size of the image and allocate an appropriate
3061     * amount of memory to handle that.  Locate the interpreter, if any.
3062     */
3063    loaddr = -1, hiaddr = 0;
3064    info->alignment = 0;
3065    info->exec_stack = EXSTACK_DEFAULT;
3066    for (i = 0; i < ehdr->e_phnum; ++i) {
3067        struct elf_phdr *eppnt = phdr + i;
3068        if (eppnt->p_type == PT_LOAD) {
3069            abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3070            if (a < loaddr) {
3071                loaddr = a;
3072            }
3073            a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3074            if (a > hiaddr) {
3075                hiaddr = a;
3076            }
3077            ++info->nsegs;
3078            info->alignment |= eppnt->p_align;
3079        } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3080            g_autofree char *interp_name = NULL;
3081
3082            if (*pinterp_name) {
3083                error_setg(&err, "Multiple PT_INTERP entries");
3084                goto exit_errmsg;
3085            }
3086
3087            interp_name = g_malloc(eppnt->p_filesz);
3088
3089            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3090                memcpy(interp_name, bprm_buf + eppnt->p_offset,
3091                       eppnt->p_filesz);
3092            } else {
3093                retval = pread(image_fd, interp_name, eppnt->p_filesz,
3094                               eppnt->p_offset);
3095                if (retval != eppnt->p_filesz) {
3096                    goto exit_read;
3097                }
3098            }
3099            if (interp_name[eppnt->p_filesz - 1] != 0) {
3100                error_setg(&err, "Invalid PT_INTERP entry");
3101                goto exit_errmsg;
3102            }
3103            *pinterp_name = g_steal_pointer(&interp_name);
3104        } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3105            if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3106                goto exit_errmsg;
3107            }
3108        } else if (eppnt->p_type == PT_GNU_STACK) {
3109            info->exec_stack = eppnt->p_flags & PF_X;
3110        }
3111    }
3112
3113    load_addr = loaddr;
3114
3115    if (pinterp_name != NULL) {
3116        if (ehdr->e_type == ET_EXEC) {
3117            /*
3118             * Make sure that the low address does not conflict with
3119             * MMAP_MIN_ADDR or the QEMU application itself.
3120             */
3121            probe_guest_base(image_name, loaddr, hiaddr);
3122        } else {
3123            abi_ulong align;
3124
3125            /*
3126             * The binary is dynamic, but we still need to
3127             * select guest_base.  In this case we pass a size.
3128             */
3129            probe_guest_base(image_name, 0, hiaddr - loaddr);
3130
3131            /*
3132             * Avoid collision with the loader by providing a different
3133             * default load address.
3134             */
3135            load_addr += elf_et_dyn_base;
3136
3137            /*
3138             * TODO: Better support for mmap alignment is desirable.
3139             * Since we do not have complete control over the guest
3140             * address space, we prefer the kernel to choose some address
3141             * rather than force the use of LOAD_ADDR via MAP_FIXED.
3142             * But without MAP_FIXED we cannot guarantee alignment,
3143             * only suggest it.
3144             */
3145            align = pow2ceil(info->alignment);
3146            if (align) {
3147                load_addr &= -align;
3148            }
3149        }
3150    }
3151
3152    /*
3153     * Reserve address space for all of this.
3154     *
3155     * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3156     * exactly the address range that is required.  Without reserved_va,
3157     * the guest address space is not isolated.  We have attempted to avoid
3158     * conflict with the host program itself via probe_guest_base, but using
3159     * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3160     *
3161     * Otherwise this is ET_DYN, and we are searching for a location
3162     * that can hold the memory space required.  If the image is
3163     * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3164     * honor that address if it happens to be free.
3165     *
3166     * In both cases, we will overwrite pages in this range with mappings
3167     * from the executable.
3168     */
3169    load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3170                            MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3171                            (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3172                            -1, 0);
3173    if (load_addr == -1) {
3174        goto exit_mmap;
3175    }
3176    load_bias = load_addr - loaddr;
3177
3178    if (elf_is_fdpic(ehdr)) {
3179        struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3180            g_malloc(sizeof(*loadsegs) * info->nsegs);
3181
3182        for (i = 0; i < ehdr->e_phnum; ++i) {
3183            switch (phdr[i].p_type) {
3184            case PT_DYNAMIC:
3185                info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3186                break;
3187            case PT_LOAD:
3188                loadsegs->addr = phdr[i].p_vaddr + load_bias;
3189                loadsegs->p_vaddr = phdr[i].p_vaddr;
3190                loadsegs->p_memsz = phdr[i].p_memsz;
3191                ++loadsegs;
3192                break;
3193            }
3194        }
3195    }
3196
3197    info->load_bias = load_bias;
3198    info->code_offset = load_bias;
3199    info->data_offset = load_bias;
3200    info->load_addr = load_addr;
3201    info->entry = ehdr->e_entry + load_bias;
3202    info->start_code = -1;
3203    info->end_code = 0;
3204    info->start_data = -1;
3205    info->end_data = 0;
3206    /* Usual start for brk is after all sections of the main executable. */
3207    info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3208    info->elf_flags = ehdr->e_flags;
3209
3210    prot_exec = PROT_EXEC;
3211#ifdef TARGET_AARCH64
3212    /*
3213     * If the BTI feature is present, this indicates that the executable
3214     * pages of the startup binary should be mapped with PROT_BTI, so that
3215     * branch targets are enforced.
3216     *
3217     * The startup binary is either the interpreter or the static executable.
3218     * The interpreter is responsible for all pages of a dynamic executable.
3219     *
3220     * Elf notes are backward compatible to older cpus.
3221     * Do not enable BTI unless it is supported.
3222     */
3223    if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3224        && (pinterp_name == NULL || *pinterp_name == 0)
3225        && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3226        prot_exec |= TARGET_PROT_BTI;
3227    }
3228#endif
3229
3230    for (i = 0; i < ehdr->e_phnum; i++) {
3231        struct elf_phdr *eppnt = phdr + i;
3232        if (eppnt->p_type == PT_LOAD) {
3233            abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3234            int elf_prot = 0;
3235
3236            if (eppnt->p_flags & PF_R) {
3237                elf_prot |= PROT_READ;
3238            }
3239            if (eppnt->p_flags & PF_W) {
3240                elf_prot |= PROT_WRITE;
3241            }
3242            if (eppnt->p_flags & PF_X) {
3243                elf_prot |= prot_exec;
3244            }
3245
3246            vaddr = load_bias + eppnt->p_vaddr;
3247            vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3248            vaddr_ps = vaddr & TARGET_PAGE_MASK;
3249
3250            vaddr_ef = vaddr + eppnt->p_filesz;
3251            vaddr_em = vaddr + eppnt->p_memsz;
3252
3253            /*
3254             * Some segments may be completely empty, with a non-zero p_memsz
3255             * but no backing file segment.
3256             */
3257            if (eppnt->p_filesz != 0) {
3258                error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3259                                    elf_prot, MAP_PRIVATE | MAP_FIXED,
3260                                    image_fd, eppnt->p_offset - vaddr_po);
3261                if (error == -1) {
3262                    goto exit_mmap;
3263                }
3264            }
3265
3266            /* If the load segment requests extra zeros (e.g. bss), map it. */
3267            if (vaddr_ef < vaddr_em &&
3268                !zero_bss(vaddr_ef, vaddr_em, elf_prot)) {
3269                goto exit_mmap;
3270            }
3271
3272            /* Find the full program boundaries.  */
3273            if (elf_prot & PROT_EXEC) {
3274                if (vaddr < info->start_code) {
3275                    info->start_code = vaddr;
3276                }
3277                if (vaddr_ef > info->end_code) {
3278                    info->end_code = vaddr_ef;
3279                }
3280            }
3281            if (elf_prot & PROT_WRITE) {
3282                if (vaddr < info->start_data) {
3283                    info->start_data = vaddr;
3284                }
3285                if (vaddr_ef > info->end_data) {
3286                    info->end_data = vaddr_ef;
3287                }
3288            }
3289#ifdef TARGET_MIPS
3290        } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3291            Mips_elf_abiflags_v0 abiflags;
3292            if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3293                error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3294                goto exit_errmsg;
3295            }
3296            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3297                memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3298                       sizeof(Mips_elf_abiflags_v0));
3299            } else {
3300                retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3301                               eppnt->p_offset);
3302                if (retval != sizeof(Mips_elf_abiflags_v0)) {
3303                    goto exit_read;
3304                }
3305            }
3306            bswap_mips_abiflags(&abiflags);
3307            info->fp_abi = abiflags.fp_abi;
3308#endif
3309        }
3310    }
3311
3312    if (info->end_data == 0) {
3313        info->start_data = info->end_code;
3314        info->end_data = info->end_code;
3315    }
3316
3317    if (qemu_log_enabled()) {
3318        load_symbols(ehdr, image_fd, load_bias);
3319    }
3320
3321    debuginfo_report_elf(image_name, image_fd, load_bias);
3322
3323    mmap_unlock();
3324
3325    close(image_fd);
3326    return;
3327
3328 exit_read:
3329    if (retval >= 0) {
3330        error_setg(&err, "Incomplete read of file header");
3331    } else {
3332        error_setg_errno(&err, errno, "Error reading file header");
3333    }
3334    goto exit_errmsg;
3335 exit_mmap:
3336    error_setg_errno(&err, errno, "Error mapping file");
3337    goto exit_errmsg;
3338 exit_errmsg:
3339    error_reportf_err(err, "%s: ", image_name);
3340    exit(-1);
3341}
3342
3343static void load_elf_interp(const char *filename, struct image_info *info,
3344                            char bprm_buf[BPRM_BUF_SIZE])
3345{
3346    int fd, retval;
3347    Error *err = NULL;
3348
3349    fd = open(path(filename), O_RDONLY);
3350    if (fd < 0) {
3351        error_setg_file_open(&err, errno, filename);
3352        error_report_err(err);
3353        exit(-1);
3354    }
3355
3356    retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3357    if (retval < 0) {
3358        error_setg_errno(&err, errno, "Error reading file header");
3359        error_reportf_err(err, "%s: ", filename);
3360        exit(-1);
3361    }
3362
3363    if (retval < BPRM_BUF_SIZE) {
3364        memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3365    }
3366
3367    load_elf_image(filename, fd, info, NULL, bprm_buf);
3368}
3369
3370static int symfind(const void *s0, const void *s1)
3371{
3372    struct elf_sym *sym = (struct elf_sym *)s1;
3373    __typeof(sym->st_value) addr = *(uint64_t *)s0;
3374    int result = 0;
3375
3376    if (addr < sym->st_value) {
3377        result = -1;
3378    } else if (addr >= sym->st_value + sym->st_size) {
3379        result = 1;
3380    }
3381    return result;
3382}
3383
3384static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3385{
3386#if ELF_CLASS == ELFCLASS32
3387    struct elf_sym *syms = s->disas_symtab.elf32;
3388#else
3389    struct elf_sym *syms = s->disas_symtab.elf64;
3390#endif
3391
3392    // binary search
3393    struct elf_sym *sym;
3394
3395    sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3396    if (sym != NULL) {
3397        return s->disas_strtab + sym->st_name;
3398    }
3399
3400    return "";
3401}
3402
3403/* FIXME: This should use elf_ops.h  */
3404static int symcmp(const void *s0, const void *s1)
3405{
3406    struct elf_sym *sym0 = (struct elf_sym *)s0;
3407    struct elf_sym *sym1 = (struct elf_sym *)s1;
3408    return (sym0->st_value < sym1->st_value)
3409        ? -1
3410        : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3411}
3412
3413/* Best attempt to load symbols from this ELF object. */
3414static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3415{
3416    int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3417    uint64_t segsz;
3418    struct elf_shdr *shdr;
3419    char *strings = NULL;
3420    struct syminfo *s = NULL;
3421    struct elf_sym *new_syms, *syms = NULL;
3422
3423    shnum = hdr->e_shnum;
3424    i = shnum * sizeof(struct elf_shdr);
3425    shdr = (struct elf_shdr *)alloca(i);
3426    if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3427        return;
3428    }
3429
3430    bswap_shdr(shdr, shnum);
3431    for (i = 0; i < shnum; ++i) {
3432        if (shdr[i].sh_type == SHT_SYMTAB) {
3433            sym_idx = i;
3434            str_idx = shdr[i].sh_link;
3435            goto found;
3436        }
3437    }
3438
3439    /* There will be no symbol table if the file was stripped.  */
3440    return;
3441
3442 found:
3443    /* Now know where the strtab and symtab are.  Snarf them.  */
3444    s = g_try_new(struct syminfo, 1);
3445    if (!s) {
3446        goto give_up;
3447    }
3448
3449    segsz = shdr[str_idx].sh_size;
3450    s->disas_strtab = strings = g_try_malloc(segsz);
3451    if (!strings ||
3452        pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3453        goto give_up;
3454    }
3455
3456    segsz = shdr[sym_idx].sh_size;
3457    syms = g_try_malloc(segsz);
3458    if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3459        goto give_up;
3460    }
3461
3462    if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3463        /* Implausibly large symbol table: give up rather than ploughing
3464         * on with the number of symbols calculation overflowing
3465         */
3466        goto give_up;
3467    }
3468    nsyms = segsz / sizeof(struct elf_sym);
3469    for (i = 0; i < nsyms; ) {
3470        bswap_sym(syms + i);
3471        /* Throw away entries which we do not need.  */
3472        if (syms[i].st_shndx == SHN_UNDEF
3473            || syms[i].st_shndx >= SHN_LORESERVE
3474            || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3475            if (i < --nsyms) {
3476                syms[i] = syms[nsyms];
3477            }
3478        } else {
3479#if defined(TARGET_ARM) || defined (TARGET_MIPS)
3480            /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3481            syms[i].st_value &= ~(target_ulong)1;
3482#endif
3483            syms[i].st_value += load_bias;
3484            i++;
3485        }
3486    }
3487
3488    /* No "useful" symbol.  */
3489    if (nsyms == 0) {
3490        goto give_up;
3491    }
3492
3493    /* Attempt to free the storage associated with the local symbols
3494       that we threw away.  Whether or not this has any effect on the
3495       memory allocation depends on the malloc implementation and how
3496       many symbols we managed to discard.  */
3497    new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3498    if (new_syms == NULL) {
3499        goto give_up;
3500    }
3501    syms = new_syms;
3502
3503    qsort(syms, nsyms, sizeof(*syms), symcmp);
3504
3505    s->disas_num_syms = nsyms;
3506#if ELF_CLASS == ELFCLASS32
3507    s->disas_symtab.elf32 = syms;
3508#else
3509    s->disas_symtab.elf64 = syms;
3510#endif
3511    s->lookup_symbol = lookup_symbolxx;
3512    s->next = syminfos;
3513    syminfos = s;
3514
3515    return;
3516
3517give_up:
3518    g_free(s);
3519    g_free(strings);
3520    g_free(syms);
3521}
3522
3523uint32_t get_elf_eflags(int fd)
3524{
3525    struct elfhdr ehdr;
3526    off_t offset;
3527    int ret;
3528
3529    /* Read ELF header */
3530    offset = lseek(fd, 0, SEEK_SET);
3531    if (offset == (off_t) -1) {
3532        return 0;
3533    }
3534    ret = read(fd, &ehdr, sizeof(ehdr));
3535    if (ret < sizeof(ehdr)) {
3536        return 0;
3537    }
3538    offset = lseek(fd, offset, SEEK_SET);
3539    if (offset == (off_t) -1) {
3540        return 0;
3541    }
3542
3543    /* Check ELF signature */
3544    if (!elf_check_ident(&ehdr)) {
3545        return 0;
3546    }
3547
3548    /* check header */
3549    bswap_ehdr(&ehdr);
3550    if (!elf_check_ehdr(&ehdr)) {
3551        return 0;
3552    }
3553
3554    /* return architecture id */
3555    return ehdr.e_flags;
3556}
3557
3558int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3559{
3560    struct image_info interp_info;
3561    struct elfhdr elf_ex;
3562    char *elf_interpreter = NULL;
3563    char *scratch;
3564
3565    memset(&interp_info, 0, sizeof(interp_info));
3566#ifdef TARGET_MIPS
3567    interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3568#endif
3569
3570    info->start_mmap = (abi_ulong)ELF_START_MMAP;
3571
3572    load_elf_image(bprm->filename, bprm->fd, info,
3573                   &elf_interpreter, bprm->buf);
3574
3575    /* ??? We need a copy of the elf header for passing to create_elf_tables.
3576       If we do nothing, we'll have overwritten this when we re-use bprm->buf
3577       when we load the interpreter.  */
3578    elf_ex = *(struct elfhdr *)bprm->buf;
3579
3580    /* Do this so that we can load the interpreter, if need be.  We will
3581       change some of these later */
3582    bprm->p = setup_arg_pages(bprm, info);
3583
3584    scratch = g_new0(char, TARGET_PAGE_SIZE);
3585    if (STACK_GROWS_DOWN) {
3586        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3587                                   bprm->p, info->stack_limit);
3588        info->file_string = bprm->p;
3589        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3590                                   bprm->p, info->stack_limit);
3591        info->env_strings = bprm->p;
3592        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3593                                   bprm->p, info->stack_limit);
3594        info->arg_strings = bprm->p;
3595    } else {
3596        info->arg_strings = bprm->p;
3597        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3598                                   bprm->p, info->stack_limit);
3599        info->env_strings = bprm->p;
3600        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3601                                   bprm->p, info->stack_limit);
3602        info->file_string = bprm->p;
3603        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3604                                   bprm->p, info->stack_limit);
3605    }
3606
3607    g_free(scratch);
3608
3609    if (!bprm->p) {
3610        fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3611        exit(-1);
3612    }
3613
3614    if (elf_interpreter) {
3615        load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3616
3617        /*
3618         * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3619         * with the mappings the interpreter can be loaded above but
3620         * near the main executable, which can leave very little room
3621         * for the heap.
3622         * If the current brk has less than 16MB, use the end of the
3623         * interpreter.
3624         */
3625        if (interp_info.brk > info->brk &&
3626            interp_info.load_bias - info->brk < 16 * MiB)  {
3627            info->brk = interp_info.brk;
3628        }
3629
3630        /* If the program interpreter is one of these two, then assume
3631           an iBCS2 image.  Otherwise assume a native linux image.  */
3632
3633        if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3634            || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3635            info->personality = PER_SVR4;
3636
3637            /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3638               and some applications "depend" upon this behavior.  Since
3639               we do not have the power to recompile these, we emulate
3640               the SVr4 behavior.  Sigh.  */
3641            target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3642                        MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3643        }
3644#ifdef TARGET_MIPS
3645        info->interp_fp_abi = interp_info.fp_abi;
3646#endif
3647    }
3648
3649    /*
3650     * TODO: load a vdso, which would also contain the signal trampolines.
3651     * Otherwise, allocate a private page to hold them.
3652     */
3653    if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3654        abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3655                                          PROT_READ | PROT_WRITE,
3656                                          MAP_PRIVATE | MAP_ANON, -1, 0);
3657        if (tramp_page == -1) {
3658            return -errno;
3659        }
3660
3661        setup_sigtramp(tramp_page);
3662        target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3663    }
3664
3665    bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3666                                info, (elf_interpreter ? &interp_info : NULL));
3667    info->start_stack = bprm->p;
3668
3669    /* If we have an interpreter, set that as the program's entry point.
3670       Copy the load_bias as well, to help PPC64 interpret the entry
3671       point as a function descriptor.  Do this after creating elf tables
3672       so that we copy the original program entry point into the AUXV.  */
3673    if (elf_interpreter) {
3674        info->load_bias = interp_info.load_bias;
3675        info->entry = interp_info.entry;
3676        g_free(elf_interpreter);
3677    }
3678
3679#ifdef USE_ELF_CORE_DUMP
3680    bprm->core_dump = &elf_core_dump;
3681#endif
3682
3683    return 0;
3684}
3685
3686#ifdef USE_ELF_CORE_DUMP
3687/*
3688 * Definitions to generate Intel SVR4-like core files.
3689 * These mostly have the same names as the SVR4 types with "target_elf_"
3690 * tacked on the front to prevent clashes with linux definitions,
3691 * and the typedef forms have been avoided.  This is mostly like
3692 * the SVR4 structure, but more Linuxy, with things that Linux does
3693 * not support and which gdb doesn't really use excluded.
3694 *
3695 * Fields we don't dump (their contents is zero) in linux-user qemu
3696 * are marked with XXX.
3697 *
3698 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3699 *
3700 * Porting ELF coredump for target is (quite) simple process.  First you
3701 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3702 * the target resides):
3703 *
3704 * #define USE_ELF_CORE_DUMP
3705 *
3706 * Next you define type of register set used for dumping.  ELF specification
3707 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3708 *
3709 * typedef <target_regtype> target_elf_greg_t;
3710 * #define ELF_NREG <number of registers>
3711 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3712 *
3713 * Last step is to implement target specific function that copies registers
3714 * from given cpu into just specified register set.  Prototype is:
3715 *
3716 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3717 *                                const CPUArchState *env);
3718 *
3719 * Parameters:
3720 *     regs - copy register values into here (allocated and zeroed by caller)
3721 *     env - copy registers from here
3722 *
3723 * Example for ARM target is provided in this file.
3724 */
3725
3726/* An ELF note in memory */
3727struct memelfnote {
3728    const char *name;
3729    size_t     namesz;
3730    size_t     namesz_rounded;
3731    int        type;
3732    size_t     datasz;
3733    size_t     datasz_rounded;
3734    void       *data;
3735    size_t     notesz;
3736};
3737
3738struct target_elf_siginfo {
3739    abi_int    si_signo; /* signal number */
3740    abi_int    si_code;  /* extra code */
3741    abi_int    si_errno; /* errno */
3742};
3743
3744struct target_elf_prstatus {
3745    struct target_elf_siginfo pr_info;      /* Info associated with signal */
3746    abi_short          pr_cursig;    /* Current signal */
3747    abi_ulong          pr_sigpend;   /* XXX */
3748    abi_ulong          pr_sighold;   /* XXX */
3749    target_pid_t       pr_pid;
3750    target_pid_t       pr_ppid;
3751    target_pid_t       pr_pgrp;
3752    target_pid_t       pr_sid;
3753    struct target_timeval pr_utime;  /* XXX User time */
3754    struct target_timeval pr_stime;  /* XXX System time */
3755    struct target_timeval pr_cutime; /* XXX Cumulative user time */
3756    struct target_timeval pr_cstime; /* XXX Cumulative system time */
3757    target_elf_gregset_t      pr_reg;       /* GP registers */
3758    abi_int            pr_fpvalid;   /* XXX */
3759};
3760
3761#define ELF_PRARGSZ     (80) /* Number of chars for args */
3762
3763struct target_elf_prpsinfo {
3764    char         pr_state;       /* numeric process state */
3765    char         pr_sname;       /* char for pr_state */
3766    char         pr_zomb;        /* zombie */
3767    char         pr_nice;        /* nice val */
3768    abi_ulong    pr_flag;        /* flags */
3769    target_uid_t pr_uid;
3770    target_gid_t pr_gid;
3771    target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3772    /* Lots missing */
3773    char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3774    char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3775};
3776
3777/* Here is the structure in which status of each thread is captured. */
3778struct elf_thread_status {
3779    QTAILQ_ENTRY(elf_thread_status)  ets_link;
3780    struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3781#if 0
3782    elf_fpregset_t fpu;             /* NT_PRFPREG */
3783    struct task_struct *thread;
3784    elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3785#endif
3786    struct memelfnote notes[1];
3787    int num_notes;
3788};
3789
3790struct elf_note_info {
3791    struct memelfnote   *notes;
3792    struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3793    struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3794
3795    QTAILQ_HEAD(, elf_thread_status) thread_list;
3796#if 0
3797    /*
3798     * Current version of ELF coredump doesn't support
3799     * dumping fp regs etc.
3800     */
3801    elf_fpregset_t *fpu;
3802    elf_fpxregset_t *xfpu;
3803    int thread_status_size;
3804#endif
3805    int notes_size;
3806    int numnote;
3807};
3808
3809struct vm_area_struct {
3810    target_ulong   vma_start;  /* start vaddr of memory region */
3811    target_ulong   vma_end;    /* end vaddr of memory region */
3812    abi_ulong      vma_flags;  /* protection etc. flags for the region */
3813    QTAILQ_ENTRY(vm_area_struct) vma_link;
3814};
3815
3816struct mm_struct {
3817    QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3818    int mm_count;           /* number of mappings */
3819};
3820
3821static struct mm_struct *vma_init(void);
3822static void vma_delete(struct mm_struct *);
3823static int vma_add_mapping(struct mm_struct *, target_ulong,
3824                           target_ulong, abi_ulong);
3825static int vma_get_mapping_count(const struct mm_struct *);
3826static struct vm_area_struct *vma_first(const struct mm_struct *);
3827static struct vm_area_struct *vma_next(struct vm_area_struct *);
3828static abi_ulong vma_dump_size(const struct vm_area_struct *);
3829static int vma_walker(void *priv, target_ulong start, target_ulong end,
3830                      unsigned long flags);
3831
3832static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3833static void fill_note(struct memelfnote *, const char *, int,
3834                      unsigned int, void *);
3835static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3836static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3837static void fill_auxv_note(struct memelfnote *, const TaskState *);
3838static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3839static size_t note_size(const struct memelfnote *);
3840static void free_note_info(struct elf_note_info *);
3841static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3842static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3843
3844static int dump_write(int, const void *, size_t);
3845static int write_note(struct memelfnote *, int);
3846static int write_note_info(struct elf_note_info *, int);
3847
3848#ifdef BSWAP_NEEDED
3849static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3850{
3851    prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3852    prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3853    prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3854    prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3855    prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3856    prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3857    prstatus->pr_pid = tswap32(prstatus->pr_pid);
3858    prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3859    prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3860    prstatus->pr_sid = tswap32(prstatus->pr_sid);
3861    /* cpu times are not filled, so we skip them */
3862    /* regs should be in correct format already */
3863    prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3864}
3865
3866static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3867{
3868    psinfo->pr_flag = tswapal(psinfo->pr_flag);
3869    psinfo->pr_uid = tswap16(psinfo->pr_uid);
3870    psinfo->pr_gid = tswap16(psinfo->pr_gid);
3871    psinfo->pr_pid = tswap32(psinfo->pr_pid);
3872    psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3873    psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3874    psinfo->pr_sid = tswap32(psinfo->pr_sid);
3875}
3876
3877static void bswap_note(struct elf_note *en)
3878{
3879    bswap32s(&en->n_namesz);
3880    bswap32s(&en->n_descsz);
3881    bswap32s(&en->n_type);
3882}
3883#else
3884static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3885static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3886static inline void bswap_note(struct elf_note *en) { }
3887#endif /* BSWAP_NEEDED */
3888
3889/*
3890 * Minimal support for linux memory regions.  These are needed
3891 * when we are finding out what memory exactly belongs to
3892 * emulated process.  No locks needed here, as long as
3893 * thread that received the signal is stopped.
3894 */
3895
3896static struct mm_struct *vma_init(void)
3897{
3898    struct mm_struct *mm;
3899
3900    if ((mm = g_malloc(sizeof (*mm))) == NULL)
3901        return (NULL);
3902
3903    mm->mm_count = 0;
3904    QTAILQ_INIT(&mm->mm_mmap);
3905
3906    return (mm);
3907}
3908
3909static void vma_delete(struct mm_struct *mm)
3910{
3911    struct vm_area_struct *vma;
3912
3913    while ((vma = vma_first(mm)) != NULL) {
3914        QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3915        g_free(vma);
3916    }
3917    g_free(mm);
3918}
3919
3920static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3921                           target_ulong end, abi_ulong flags)
3922{
3923    struct vm_area_struct *vma;
3924
3925    if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3926        return (-1);
3927
3928    vma->vma_start = start;
3929    vma->vma_end = end;
3930    vma->vma_flags = flags;
3931
3932    QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3933    mm->mm_count++;
3934
3935    return (0);
3936}
3937
3938static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3939{
3940    return (QTAILQ_FIRST(&mm->mm_mmap));
3941}
3942
3943static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3944{
3945    return (QTAILQ_NEXT(vma, vma_link));
3946}
3947
3948static int vma_get_mapping_count(const struct mm_struct *mm)
3949{
3950    return (mm->mm_count);
3951}
3952
3953/*
3954 * Calculate file (dump) size of given memory region.
3955 */
3956static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3957{
3958    /* if we cannot even read the first page, skip it */
3959    if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3960        return (0);
3961
3962    /*
3963     * Usually we don't dump executable pages as they contain
3964     * non-writable code that debugger can read directly from
3965     * target library etc.  However, thread stacks are marked
3966     * also executable so we read in first page of given region
3967     * and check whether it contains elf header.  If there is
3968     * no elf header, we dump it.
3969     */
3970    if (vma->vma_flags & PROT_EXEC) {
3971        char page[TARGET_PAGE_SIZE];
3972
3973        if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3974            return 0;
3975        }
3976        if ((page[EI_MAG0] == ELFMAG0) &&
3977            (page[EI_MAG1] == ELFMAG1) &&
3978            (page[EI_MAG2] == ELFMAG2) &&
3979            (page[EI_MAG3] == ELFMAG3)) {
3980            /*
3981             * Mappings are possibly from ELF binary.  Don't dump
3982             * them.
3983             */
3984            return (0);
3985        }
3986    }
3987
3988    return (vma->vma_end - vma->vma_start);
3989}
3990
3991static int vma_walker(void *priv, target_ulong start, target_ulong end,
3992                      unsigned long flags)
3993{
3994    struct mm_struct *mm = (struct mm_struct *)priv;
3995
3996    vma_add_mapping(mm, start, end, flags);
3997    return (0);
3998}
3999
4000static void fill_note(struct memelfnote *note, const char *name, int type,
4001                      unsigned int sz, void *data)
4002{
4003    unsigned int namesz;
4004
4005    namesz = strlen(name) + 1;
4006    note->name = name;
4007    note->namesz = namesz;
4008    note->namesz_rounded = roundup(namesz, sizeof (int32_t));
4009    note->type = type;
4010    note->datasz = sz;
4011    note->datasz_rounded = roundup(sz, sizeof (int32_t));
4012
4013    note->data = data;
4014
4015    /*
4016     * We calculate rounded up note size here as specified by
4017     * ELF document.
4018     */
4019    note->notesz = sizeof (struct elf_note) +
4020        note->namesz_rounded + note->datasz_rounded;
4021}
4022
4023static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4024                            uint32_t flags)
4025{
4026    (void) memset(elf, 0, sizeof(*elf));
4027
4028    (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4029    elf->e_ident[EI_CLASS] = ELF_CLASS;
4030    elf->e_ident[EI_DATA] = ELF_DATA;
4031    elf->e_ident[EI_VERSION] = EV_CURRENT;
4032    elf->e_ident[EI_OSABI] = ELF_OSABI;
4033
4034    elf->e_type = ET_CORE;
4035    elf->e_machine = machine;
4036    elf->e_version = EV_CURRENT;
4037    elf->e_phoff = sizeof(struct elfhdr);
4038    elf->e_flags = flags;
4039    elf->e_ehsize = sizeof(struct elfhdr);
4040    elf->e_phentsize = sizeof(struct elf_phdr);
4041    elf->e_phnum = segs;
4042
4043    bswap_ehdr(elf);
4044}
4045
4046static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4047{
4048    phdr->p_type = PT_NOTE;
4049    phdr->p_offset = offset;
4050    phdr->p_vaddr = 0;
4051    phdr->p_paddr = 0;
4052    phdr->p_filesz = sz;
4053    phdr->p_memsz = 0;
4054    phdr->p_flags = 0;
4055    phdr->p_align = 0;
4056
4057    bswap_phdr(phdr, 1);
4058}
4059
4060static size_t note_size(const struct memelfnote *note)
4061{
4062    return (note->notesz);
4063}
4064
4065static void fill_prstatus(struct target_elf_prstatus *prstatus,
4066                          const TaskState *ts, int signr)
4067{
4068    (void) memset(prstatus, 0, sizeof (*prstatus));
4069    prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4070    prstatus->pr_pid = ts->ts_tid;
4071    prstatus->pr_ppid = getppid();
4072    prstatus->pr_pgrp = getpgrp();
4073    prstatus->pr_sid = getsid(0);
4074
4075    bswap_prstatus(prstatus);
4076}
4077
4078static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4079{
4080    char *base_filename;
4081    unsigned int i, len;
4082
4083    (void) memset(psinfo, 0, sizeof (*psinfo));
4084
4085    len = ts->info->env_strings - ts->info->arg_strings;
4086    if (len >= ELF_PRARGSZ)
4087        len = ELF_PRARGSZ - 1;
4088    if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4089        return -EFAULT;
4090    }
4091    for (i = 0; i < len; i++)
4092        if (psinfo->pr_psargs[i] == 0)
4093            psinfo->pr_psargs[i] = ' ';
4094    psinfo->pr_psargs[len] = 0;
4095
4096    psinfo->pr_pid = getpid();
4097    psinfo->pr_ppid = getppid();
4098    psinfo->pr_pgrp = getpgrp();
4099    psinfo->pr_sid = getsid(0);
4100    psinfo->pr_uid = getuid();
4101    psinfo->pr_gid = getgid();
4102
4103    base_filename = g_path_get_basename(ts->bprm->filename);
4104    /*
4105     * Using strncpy here is fine: at max-length,
4106     * this field is not NUL-terminated.
4107     */
4108    (void) strncpy(psinfo->pr_fname, base_filename,
4109                   sizeof(psinfo->pr_fname));
4110
4111    g_free(base_filename);
4112    bswap_psinfo(psinfo);
4113    return (0);
4114}
4115
4116static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4117{
4118    elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4119    elf_addr_t orig_auxv = auxv;
4120    void *ptr;
4121    int len = ts->info->auxv_len;
4122
4123    /*
4124     * Auxiliary vector is stored in target process stack.  It contains
4125     * {type, value} pairs that we need to dump into note.  This is not
4126     * strictly necessary but we do it here for sake of completeness.
4127     */
4128
4129    /* read in whole auxv vector and copy it to memelfnote */
4130    ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4131    if (ptr != NULL) {
4132        fill_note(note, "CORE", NT_AUXV, len, ptr);
4133        unlock_user(ptr, auxv, len);
4134    }
4135}
4136
4137/*
4138 * Constructs name of coredump file.  We have following convention
4139 * for the name:
4140 *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4141 *
4142 * Returns the filename
4143 */
4144static char *core_dump_filename(const TaskState *ts)
4145{
4146    g_autoptr(GDateTime) now = g_date_time_new_now_local();
4147    g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4148    g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4149
4150    return g_strdup_printf("qemu_%s_%s_%d.core",
4151                           base_filename, nowstr, (int)getpid());
4152}
4153
4154static int dump_write(int fd, const void *ptr, size_t size)
4155{
4156    const char *bufp = (const char *)ptr;
4157    ssize_t bytes_written, bytes_left;
4158    struct rlimit dumpsize;
4159    off_t pos;
4160
4161    bytes_written = 0;
4162    getrlimit(RLIMIT_CORE, &dumpsize);
4163    if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4164        if (errno == ESPIPE) { /* not a seekable stream */
4165            bytes_left = size;
4166        } else {
4167            return pos;
4168        }
4169    } else {
4170        if (dumpsize.rlim_cur <= pos) {
4171            return -1;
4172        } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4173            bytes_left = size;
4174        } else {
4175            size_t limit_left=dumpsize.rlim_cur - pos;
4176            bytes_left = limit_left >= size ? size : limit_left ;
4177        }
4178    }
4179
4180    /*
4181     * In normal conditions, single write(2) should do but
4182     * in case of socket etc. this mechanism is more portable.
4183     */
4184    do {
4185        bytes_written = write(fd, bufp, bytes_left);
4186        if (bytes_written < 0) {
4187            if (errno == EINTR)
4188                continue;
4189            return (-1);
4190        } else if (bytes_written == 0) { /* eof */
4191            return (-1);
4192        }
4193        bufp += bytes_written;
4194        bytes_left -= bytes_written;
4195    } while (bytes_left > 0);
4196
4197    return (0);
4198}
4199
4200static int write_note(struct memelfnote *men, int fd)
4201{
4202    struct elf_note en;
4203
4204    en.n_namesz = men->namesz;
4205    en.n_type = men->type;
4206    en.n_descsz = men->datasz;
4207
4208    bswap_note(&en);
4209
4210    if (dump_write(fd, &en, sizeof(en)) != 0)
4211        return (-1);
4212    if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4213        return (-1);
4214    if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4215        return (-1);
4216
4217    return (0);
4218}
4219
4220static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4221{
4222    CPUState *cpu = env_cpu((CPUArchState *)env);
4223    TaskState *ts = (TaskState *)cpu->opaque;
4224    struct elf_thread_status *ets;
4225
4226    ets = g_malloc0(sizeof (*ets));
4227    ets->num_notes = 1; /* only prstatus is dumped */
4228    fill_prstatus(&ets->prstatus, ts, 0);
4229    elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4230    fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4231              &ets->prstatus);
4232
4233    QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4234
4235    info->notes_size += note_size(&ets->notes[0]);
4236}
4237
4238static void init_note_info(struct elf_note_info *info)
4239{
4240    /* Initialize the elf_note_info structure so that it is at
4241     * least safe to call free_note_info() on it. Must be
4242     * called before calling fill_note_info().
4243     */
4244    memset(info, 0, sizeof (*info));
4245    QTAILQ_INIT(&info->thread_list);
4246}
4247
4248static int fill_note_info(struct elf_note_info *info,
4249                          long signr, const CPUArchState *env)
4250{
4251#define NUMNOTES 3
4252    CPUState *cpu = env_cpu((CPUArchState *)env);
4253    TaskState *ts = (TaskState *)cpu->opaque;
4254    int i;
4255
4256    info->notes = g_new0(struct memelfnote, NUMNOTES);
4257    if (info->notes == NULL)
4258        return (-ENOMEM);
4259    info->prstatus = g_malloc0(sizeof (*info->prstatus));
4260    if (info->prstatus == NULL)
4261        return (-ENOMEM);
4262    info->psinfo = g_malloc0(sizeof (*info->psinfo));
4263    if (info->prstatus == NULL)
4264        return (-ENOMEM);
4265
4266    /*
4267     * First fill in status (and registers) of current thread
4268     * including process info & aux vector.
4269     */
4270    fill_prstatus(info->prstatus, ts, signr);
4271    elf_core_copy_regs(&info->prstatus->pr_reg, env);
4272    fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4273              sizeof (*info->prstatus), info->prstatus);
4274    fill_psinfo(info->psinfo, ts);
4275    fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4276              sizeof (*info->psinfo), info->psinfo);
4277    fill_auxv_note(&info->notes[2], ts);
4278    info->numnote = 3;
4279
4280    info->notes_size = 0;
4281    for (i = 0; i < info->numnote; i++)
4282        info->notes_size += note_size(&info->notes[i]);
4283
4284    /* read and fill status of all threads */
4285    WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4286        CPU_FOREACH(cpu) {
4287            if (cpu == thread_cpu) {
4288                continue;
4289            }
4290            fill_thread_info(info, cpu->env_ptr);
4291        }
4292    }
4293
4294    return (0);
4295}
4296
4297static void free_note_info(struct elf_note_info *info)
4298{
4299    struct elf_thread_status *ets;
4300
4301    while (!QTAILQ_EMPTY(&info->thread_list)) {
4302        ets = QTAILQ_FIRST(&info->thread_list);
4303        QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4304        g_free(ets);
4305    }
4306
4307    g_free(info->prstatus);
4308    g_free(info->psinfo);
4309    g_free(info->notes);
4310}
4311
4312static int write_note_info(struct elf_note_info *info, int fd)
4313{
4314    struct elf_thread_status *ets;
4315    int i, error = 0;
4316
4317    /* write prstatus, psinfo and auxv for current thread */
4318    for (i = 0; i < info->numnote; i++)
4319        if ((error = write_note(&info->notes[i], fd)) != 0)
4320            return (error);
4321
4322    /* write prstatus for each thread */
4323    QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4324        if ((error = write_note(&ets->notes[0], fd)) != 0)
4325            return (error);
4326    }
4327
4328    return (0);
4329}
4330
4331/*
4332 * Write out ELF coredump.
4333 *
4334 * See documentation of ELF object file format in:
4335 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4336 *
4337 * Coredump format in linux is following:
4338 *
4339 * 0   +----------------------+         \
4340 *     | ELF header           | ET_CORE  |
4341 *     +----------------------+          |
4342 *     | ELF program headers  |          |--- headers
4343 *     | - NOTE section       |          |
4344 *     | - PT_LOAD sections   |          |
4345 *     +----------------------+         /
4346 *     | NOTEs:               |
4347 *     | - NT_PRSTATUS        |
4348 *     | - NT_PRSINFO         |
4349 *     | - NT_AUXV            |
4350 *     +----------------------+ <-- aligned to target page
4351 *     | Process memory dump  |
4352 *     :                      :
4353 *     .                      .
4354 *     :                      :
4355 *     |                      |
4356 *     +----------------------+
4357 *
4358 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4359 * NT_PRSINFO  -> struct elf_prpsinfo
4360 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4361 *
4362 * Format follows System V format as close as possible.  Current
4363 * version limitations are as follows:
4364 *     - no floating point registers are dumped
4365 *
4366 * Function returns 0 in case of success, negative errno otherwise.
4367 *
4368 * TODO: make this work also during runtime: it should be
4369 * possible to force coredump from running process and then
4370 * continue processing.  For example qemu could set up SIGUSR2
4371 * handler (provided that target process haven't registered
4372 * handler for that) that does the dump when signal is received.
4373 */
4374static int elf_core_dump(int signr, const CPUArchState *env)
4375{
4376    const CPUState *cpu = env_cpu((CPUArchState *)env);
4377    const TaskState *ts = (const TaskState *)cpu->opaque;
4378    struct vm_area_struct *vma = NULL;
4379    g_autofree char *corefile = NULL;
4380    struct elf_note_info info;
4381    struct elfhdr elf;
4382    struct elf_phdr phdr;
4383    struct rlimit dumpsize;
4384    struct mm_struct *mm = NULL;
4385    off_t offset = 0, data_offset = 0;
4386    int segs = 0;
4387    int fd = -1;
4388
4389    init_note_info(&info);
4390
4391    errno = 0;
4392    getrlimit(RLIMIT_CORE, &dumpsize);
4393    if (dumpsize.rlim_cur == 0)
4394        return 0;
4395
4396    corefile = core_dump_filename(ts);
4397
4398    if ((fd = open(corefile, O_WRONLY | O_CREAT,
4399                   S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4400        return (-errno);
4401
4402    /*
4403     * Walk through target process memory mappings and
4404     * set up structure containing this information.  After
4405     * this point vma_xxx functions can be used.
4406     */
4407    if ((mm = vma_init()) == NULL)
4408        goto out;
4409
4410    walk_memory_regions(mm, vma_walker);
4411    segs = vma_get_mapping_count(mm);
4412
4413    /*
4414     * Construct valid coredump ELF header.  We also
4415     * add one more segment for notes.
4416     */
4417    fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4418    if (dump_write(fd, &elf, sizeof (elf)) != 0)
4419        goto out;
4420
4421    /* fill in the in-memory version of notes */
4422    if (fill_note_info(&info, signr, env) < 0)
4423        goto out;
4424
4425    offset += sizeof (elf);                             /* elf header */
4426    offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4427
4428    /* write out notes program header */
4429    fill_elf_note_phdr(&phdr, info.notes_size, offset);
4430
4431    offset += info.notes_size;
4432    if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4433        goto out;
4434
4435    /*
4436     * ELF specification wants data to start at page boundary so
4437     * we align it here.
4438     */
4439    data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4440
4441    /*
4442     * Write program headers for memory regions mapped in
4443     * the target process.
4444     */
4445    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4446        (void) memset(&phdr, 0, sizeof (phdr));
4447
4448        phdr.p_type = PT_LOAD;
4449        phdr.p_offset = offset;
4450        phdr.p_vaddr = vma->vma_start;
4451        phdr.p_paddr = 0;
4452        phdr.p_filesz = vma_dump_size(vma);
4453        offset += phdr.p_filesz;
4454        phdr.p_memsz = vma->vma_end - vma->vma_start;
4455        phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4456        if (vma->vma_flags & PROT_WRITE)
4457            phdr.p_flags |= PF_W;
4458        if (vma->vma_flags & PROT_EXEC)
4459            phdr.p_flags |= PF_X;
4460        phdr.p_align = ELF_EXEC_PAGESIZE;
4461
4462        bswap_phdr(&phdr, 1);
4463        if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4464            goto out;
4465        }
4466    }
4467
4468    /*
4469     * Next we write notes just after program headers.  No
4470     * alignment needed here.
4471     */
4472    if (write_note_info(&info, fd) < 0)
4473        goto out;
4474
4475    /* align data to page boundary */
4476    if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4477        goto out;
4478
4479    /*
4480     * Finally we can dump process memory into corefile as well.
4481     */
4482    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4483        abi_ulong addr;
4484        abi_ulong end;
4485
4486        end = vma->vma_start + vma_dump_size(vma);
4487
4488        for (addr = vma->vma_start; addr < end;
4489             addr += TARGET_PAGE_SIZE) {
4490            char page[TARGET_PAGE_SIZE];
4491            int error;
4492
4493            /*
4494             *  Read in page from target process memory and
4495             *  write it to coredump file.
4496             */
4497            error = copy_from_user(page, addr, sizeof (page));
4498            if (error != 0) {
4499                (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4500                               addr);
4501                errno = -error;
4502                goto out;
4503            }
4504            if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4505                goto out;
4506        }
4507    }
4508
4509 out:
4510    free_note_info(&info);
4511    if (mm != NULL)
4512        vma_delete(mm);
4513    (void) close(fd);
4514
4515    if (errno != 0)
4516        return (-errno);
4517    return (0);
4518}
4519#endif /* USE_ELF_CORE_DUMP */
4520
4521void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4522{
4523    init_thread(regs, infop);
4524}
4525