qemu/migration/postcopy-ram.c
<<
>>
Prefs
   1/*
   2 * Postcopy migration for RAM
   3 *
   4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Dave Gilbert  <dgilbert@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14/*
  15 * Postcopy is a migration technique where the execution flips from the
  16 * source to the destination before all the data has been copied.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "qemu/madvise.h"
  21#include "exec/target_page.h"
  22#include "migration.h"
  23#include "qemu-file.h"
  24#include "savevm.h"
  25#include "postcopy-ram.h"
  26#include "ram.h"
  27#include "qapi/error.h"
  28#include "qemu/notify.h"
  29#include "qemu/rcu.h"
  30#include "sysemu/sysemu.h"
  31#include "qemu/error-report.h"
  32#include "trace.h"
  33#include "hw/boards.h"
  34#include "exec/ramblock.h"
  35#include "socket.h"
  36#include "yank_functions.h"
  37#include "tls.h"
  38#include "qemu/userfaultfd.h"
  39#include "qemu/mmap-alloc.h"
  40#include "options.h"
  41
  42/* Arbitrary limit on size of each discard command,
  43 * keeps them around ~200 bytes
  44 */
  45#define MAX_DISCARDS_PER_COMMAND 12
  46
  47struct PostcopyDiscardState {
  48    const char *ramblock_name;
  49    uint16_t cur_entry;
  50    /*
  51     * Start and length of a discard range (bytes)
  52     */
  53    uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
  54    uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
  55    unsigned int nsentwords;
  56    unsigned int nsentcmds;
  57};
  58
  59static NotifierWithReturnList postcopy_notifier_list;
  60
  61void postcopy_infrastructure_init(void)
  62{
  63    notifier_with_return_list_init(&postcopy_notifier_list);
  64}
  65
  66void postcopy_add_notifier(NotifierWithReturn *nn)
  67{
  68    notifier_with_return_list_add(&postcopy_notifier_list, nn);
  69}
  70
  71void postcopy_remove_notifier(NotifierWithReturn *n)
  72{
  73    notifier_with_return_remove(n);
  74}
  75
  76int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
  77{
  78    struct PostcopyNotifyData pnd;
  79    pnd.reason = reason;
  80    pnd.errp = errp;
  81
  82    return notifier_with_return_list_notify(&postcopy_notifier_list,
  83                                            &pnd);
  84}
  85
  86/*
  87 * NOTE: this routine is not thread safe, we can't call it concurrently. But it
  88 * should be good enough for migration's purposes.
  89 */
  90void postcopy_thread_create(MigrationIncomingState *mis,
  91                            QemuThread *thread, const char *name,
  92                            void *(*fn)(void *), int joinable)
  93{
  94    qemu_sem_init(&mis->thread_sync_sem, 0);
  95    qemu_thread_create(thread, name, fn, mis, joinable);
  96    qemu_sem_wait(&mis->thread_sync_sem);
  97    qemu_sem_destroy(&mis->thread_sync_sem);
  98}
  99
 100/* Postcopy needs to detect accesses to pages that haven't yet been copied
 101 * across, and efficiently map new pages in, the techniques for doing this
 102 * are target OS specific.
 103 */
 104#if defined(__linux__)
 105
 106#include <poll.h>
 107#include <sys/ioctl.h>
 108#include <sys/syscall.h>
 109#include <asm/types.h> /* for __u64 */
 110#endif
 111
 112#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
 113#include <sys/eventfd.h>
 114#include <linux/userfaultfd.h>
 115
 116typedef struct PostcopyBlocktimeContext {
 117    /* time when page fault initiated per vCPU */
 118    uint32_t *page_fault_vcpu_time;
 119    /* page address per vCPU */
 120    uintptr_t *vcpu_addr;
 121    uint32_t total_blocktime;
 122    /* blocktime per vCPU */
 123    uint32_t *vcpu_blocktime;
 124    /* point in time when last page fault was initiated */
 125    uint32_t last_begin;
 126    /* number of vCPU are suspended */
 127    int smp_cpus_down;
 128    uint64_t start_time;
 129
 130    /*
 131     * Handler for exit event, necessary for
 132     * releasing whole blocktime_ctx
 133     */
 134    Notifier exit_notifier;
 135} PostcopyBlocktimeContext;
 136
 137static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
 138{
 139    g_free(ctx->page_fault_vcpu_time);
 140    g_free(ctx->vcpu_addr);
 141    g_free(ctx->vcpu_blocktime);
 142    g_free(ctx);
 143}
 144
 145static void migration_exit_cb(Notifier *n, void *data)
 146{
 147    PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
 148                                                 exit_notifier);
 149    destroy_blocktime_context(ctx);
 150}
 151
 152static struct PostcopyBlocktimeContext *blocktime_context_new(void)
 153{
 154    MachineState *ms = MACHINE(qdev_get_machine());
 155    unsigned int smp_cpus = ms->smp.cpus;
 156    PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
 157    ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
 158    ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
 159    ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
 160
 161    ctx->exit_notifier.notify = migration_exit_cb;
 162    ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 163    qemu_add_exit_notifier(&ctx->exit_notifier);
 164    return ctx;
 165}
 166
 167static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
 168{
 169    MachineState *ms = MACHINE(qdev_get_machine());
 170    uint32List *list = NULL;
 171    int i;
 172
 173    for (i = ms->smp.cpus - 1; i >= 0; i--) {
 174        QAPI_LIST_PREPEND(list, ctx->vcpu_blocktime[i]);
 175    }
 176
 177    return list;
 178}
 179
 180/*
 181 * This function just populates MigrationInfo from postcopy's
 182 * blocktime context. It will not populate MigrationInfo,
 183 * unless postcopy-blocktime capability was set.
 184 *
 185 * @info: pointer to MigrationInfo to populate
 186 */
 187void fill_destination_postcopy_migration_info(MigrationInfo *info)
 188{
 189    MigrationIncomingState *mis = migration_incoming_get_current();
 190    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 191
 192    if (!bc) {
 193        return;
 194    }
 195
 196    info->has_postcopy_blocktime = true;
 197    info->postcopy_blocktime = bc->total_blocktime;
 198    info->has_postcopy_vcpu_blocktime = true;
 199    info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
 200}
 201
 202static uint32_t get_postcopy_total_blocktime(void)
 203{
 204    MigrationIncomingState *mis = migration_incoming_get_current();
 205    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 206
 207    if (!bc) {
 208        return 0;
 209    }
 210
 211    return bc->total_blocktime;
 212}
 213
 214/**
 215 * receive_ufd_features: check userfault fd features, to request only supported
 216 * features in the future.
 217 *
 218 * Returns: true on success
 219 *
 220 * __NR_userfaultfd - should be checked before
 221 *  @features: out parameter will contain uffdio_api.features provided by kernel
 222 *              in case of success
 223 */
 224static bool receive_ufd_features(uint64_t *features)
 225{
 226    struct uffdio_api api_struct = {0};
 227    int ufd;
 228    bool ret = true;
 229
 230    ufd = uffd_open(O_CLOEXEC);
 231    if (ufd == -1) {
 232        error_report("%s: uffd_open() failed: %s", __func__, strerror(errno));
 233        return false;
 234    }
 235
 236    /* ask features */
 237    api_struct.api = UFFD_API;
 238    api_struct.features = 0;
 239    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 240        error_report("%s: UFFDIO_API failed: %s", __func__,
 241                     strerror(errno));
 242        ret = false;
 243        goto release_ufd;
 244    }
 245
 246    *features = api_struct.features;
 247
 248release_ufd:
 249    close(ufd);
 250    return ret;
 251}
 252
 253/**
 254 * request_ufd_features: this function should be called only once on a newly
 255 * opened ufd, subsequent calls will lead to error.
 256 *
 257 * Returns: true on success
 258 *
 259 * @ufd: fd obtained from userfaultfd syscall
 260 * @features: bit mask see UFFD_API_FEATURES
 261 */
 262static bool request_ufd_features(int ufd, uint64_t features)
 263{
 264    struct uffdio_api api_struct = {0};
 265    uint64_t ioctl_mask;
 266
 267    api_struct.api = UFFD_API;
 268    api_struct.features = features;
 269    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 270        error_report("%s failed: UFFDIO_API failed: %s", __func__,
 271                     strerror(errno));
 272        return false;
 273    }
 274
 275    ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
 276                 (__u64)1 << _UFFDIO_UNREGISTER;
 277    if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
 278        error_report("Missing userfault features: %" PRIx64,
 279                     (uint64_t)(~api_struct.ioctls & ioctl_mask));
 280        return false;
 281    }
 282
 283    return true;
 284}
 285
 286static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis,
 287                                Error **errp)
 288{
 289    uint64_t asked_features = 0;
 290    static uint64_t supported_features;
 291
 292    ERRP_GUARD();
 293    /*
 294     * it's not possible to
 295     * request UFFD_API twice per one fd
 296     * userfault fd features is persistent
 297     */
 298    if (!supported_features) {
 299        if (!receive_ufd_features(&supported_features)) {
 300            error_setg(errp, "Userfault feature detection failed");
 301            return false;
 302        }
 303    }
 304
 305#ifdef UFFD_FEATURE_THREAD_ID
 306    if (UFFD_FEATURE_THREAD_ID & supported_features) {
 307        asked_features |= UFFD_FEATURE_THREAD_ID;
 308        if (migrate_postcopy_blocktime()) {
 309            if (!mis->blocktime_ctx) {
 310                mis->blocktime_ctx = blocktime_context_new();
 311            }
 312        }
 313    }
 314#endif
 315
 316    /*
 317     * request features, even if asked_features is 0, due to
 318     * kernel expects UFFD_API before UFFDIO_REGISTER, per
 319     * userfault file descriptor
 320     */
 321    if (!request_ufd_features(ufd, asked_features)) {
 322        error_setg(errp, "Failed features %" PRIu64, asked_features);
 323        return false;
 324    }
 325
 326    if (qemu_real_host_page_size() != ram_pagesize_summary()) {
 327        bool have_hp = false;
 328        /* We've got a huge page */
 329#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
 330        have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
 331#endif
 332        if (!have_hp) {
 333            error_setg(errp,
 334                       "Userfault on this host does not support huge pages");
 335            return false;
 336        }
 337    }
 338    return true;
 339}
 340
 341/* Callback from postcopy_ram_supported_by_host block iterator.
 342 */
 343static int test_ramblock_postcopiable(RAMBlock *rb, Error **errp)
 344{
 345    const char *block_name = qemu_ram_get_idstr(rb);
 346    ram_addr_t length = qemu_ram_get_used_length(rb);
 347    size_t pagesize = qemu_ram_pagesize(rb);
 348    QemuFsType fs;
 349
 350    if (length % pagesize) {
 351        error_setg(errp,
 352                   "Postcopy requires RAM blocks to be a page size multiple,"
 353                   " block %s is 0x" RAM_ADDR_FMT " bytes with a "
 354                   "page size of 0x%zx", block_name, length, pagesize);
 355        return 1;
 356    }
 357
 358    if (rb->fd >= 0) {
 359        fs = qemu_fd_getfs(rb->fd);
 360        if (fs != QEMU_FS_TYPE_TMPFS && fs != QEMU_FS_TYPE_HUGETLBFS) {
 361            error_setg(errp,
 362                       "Host backend files need to be TMPFS or HUGETLBFS only");
 363            return 1;
 364        }
 365    }
 366
 367    return 0;
 368}
 369
 370/*
 371 * Note: This has the side effect of munlock'ing all of RAM, that's
 372 * normally fine since if the postcopy succeeds it gets turned back on at the
 373 * end.
 374 */
 375bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp)
 376{
 377    long pagesize = qemu_real_host_page_size();
 378    int ufd = -1;
 379    bool ret = false; /* Error unless we change it */
 380    void *testarea = NULL;
 381    struct uffdio_register reg_struct;
 382    struct uffdio_range range_struct;
 383    uint64_t feature_mask;
 384    RAMBlock *block;
 385
 386    ERRP_GUARD();
 387    if (qemu_target_page_size() > pagesize) {
 388        error_setg(errp, "Target page size bigger than host page size");
 389        goto out;
 390    }
 391
 392    ufd = uffd_open(O_CLOEXEC);
 393    if (ufd == -1) {
 394        error_setg(errp, "Userfaultfd not available: %s", strerror(errno));
 395        goto out;
 396    }
 397
 398    /* Give devices a chance to object */
 399    if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, errp)) {
 400        goto out;
 401    }
 402
 403    /* Version and features check */
 404    if (!ufd_check_and_apply(ufd, mis, errp)) {
 405        goto out;
 406    }
 407
 408    /*
 409     * We don't support postcopy with some type of ramblocks.
 410     *
 411     * NOTE: we explicitly ignored migrate_ram_is_ignored() instead we checked
 412     * all possible ramblocks.  This is because this function can be called
 413     * when creating the migration object, during the phase RAM_MIGRATABLE
 414     * is not even properly set for all the ramblocks.
 415     *
 416     * A side effect of this is we'll also check against RAM_SHARED
 417     * ramblocks even if migrate_ignore_shared() is set (in which case
 418     * we'll never migrate RAM_SHARED at all), but normally this shouldn't
 419     * affect in reality, or we can revisit.
 420     */
 421    RAMBLOCK_FOREACH(block) {
 422        if (test_ramblock_postcopiable(block, errp)) {
 423            goto out;
 424        }
 425    }
 426
 427    /*
 428     * userfault and mlock don't go together; we'll put it back later if
 429     * it was enabled.
 430     */
 431    if (munlockall()) {
 432        error_setg(errp, "munlockall() failed: %s", strerror(errno));
 433        goto out;
 434    }
 435
 436    /*
 437     *  We need to check that the ops we need are supported on anon memory
 438     *  To do that we need to register a chunk and see the flags that
 439     *  are returned.
 440     */
 441    testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
 442                                    MAP_ANONYMOUS, -1, 0);
 443    if (testarea == MAP_FAILED) {
 444        error_setg(errp, "Failed to map test area: %s", strerror(errno));
 445        goto out;
 446    }
 447    g_assert(QEMU_PTR_IS_ALIGNED(testarea, pagesize));
 448
 449    reg_struct.range.start = (uintptr_t)testarea;
 450    reg_struct.range.len = pagesize;
 451    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 452
 453    if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
 454        error_setg(errp, "UFFDIO_REGISTER failed: %s", strerror(errno));
 455        goto out;
 456    }
 457
 458    range_struct.start = (uintptr_t)testarea;
 459    range_struct.len = pagesize;
 460    if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
 461        error_setg(errp, "UFFDIO_UNREGISTER failed: %s", strerror(errno));
 462        goto out;
 463    }
 464
 465    feature_mask = (__u64)1 << _UFFDIO_WAKE |
 466                   (__u64)1 << _UFFDIO_COPY |
 467                   (__u64)1 << _UFFDIO_ZEROPAGE;
 468    if ((reg_struct.ioctls & feature_mask) != feature_mask) {
 469        error_setg(errp, "Missing userfault map features: %" PRIx64,
 470                   (uint64_t)(~reg_struct.ioctls & feature_mask));
 471        goto out;
 472    }
 473
 474    /* Success! */
 475    ret = true;
 476out:
 477    if (testarea) {
 478        munmap(testarea, pagesize);
 479    }
 480    if (ufd != -1) {
 481        close(ufd);
 482    }
 483    return ret;
 484}
 485
 486/*
 487 * Setup an area of RAM so that it *can* be used for postcopy later; this
 488 * must be done right at the start prior to pre-copy.
 489 * opaque should be the MIS.
 490 */
 491static int init_range(RAMBlock *rb, void *opaque)
 492{
 493    const char *block_name = qemu_ram_get_idstr(rb);
 494    void *host_addr = qemu_ram_get_host_addr(rb);
 495    ram_addr_t offset = qemu_ram_get_offset(rb);
 496    ram_addr_t length = qemu_ram_get_used_length(rb);
 497    trace_postcopy_init_range(block_name, host_addr, offset, length);
 498
 499    /*
 500     * Save the used_length before running the guest. In case we have to
 501     * resize RAM blocks when syncing RAM block sizes from the source during
 502     * precopy, we'll update it manually via the ram block notifier.
 503     */
 504    rb->postcopy_length = length;
 505
 506    /*
 507     * We need the whole of RAM to be truly empty for postcopy, so things
 508     * like ROMs and any data tables built during init must be zero'd
 509     * - we're going to get the copy from the source anyway.
 510     * (Precopy will just overwrite this data, so doesn't need the discard)
 511     */
 512    if (ram_discard_range(block_name, 0, length)) {
 513        return -1;
 514    }
 515
 516    return 0;
 517}
 518
 519/*
 520 * At the end of migration, undo the effects of init_range
 521 * opaque should be the MIS.
 522 */
 523static int cleanup_range(RAMBlock *rb, void *opaque)
 524{
 525    const char *block_name = qemu_ram_get_idstr(rb);
 526    void *host_addr = qemu_ram_get_host_addr(rb);
 527    ram_addr_t offset = qemu_ram_get_offset(rb);
 528    ram_addr_t length = rb->postcopy_length;
 529    MigrationIncomingState *mis = opaque;
 530    struct uffdio_range range_struct;
 531    trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
 532
 533    /*
 534     * We turned off hugepage for the precopy stage with postcopy enabled
 535     * we can turn it back on now.
 536     */
 537    qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
 538
 539    /*
 540     * We can also turn off userfault now since we should have all the
 541     * pages.   It can be useful to leave it on to debug postcopy
 542     * if you're not sure it's always getting every page.
 543     */
 544    range_struct.start = (uintptr_t)host_addr;
 545    range_struct.len = length;
 546
 547    if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
 548        error_report("%s: userfault unregister %s", __func__, strerror(errno));
 549
 550        return -1;
 551    }
 552
 553    return 0;
 554}
 555
 556/*
 557 * Initialise postcopy-ram, setting the RAM to a state where we can go into
 558 * postcopy later; must be called prior to any precopy.
 559 * called from arch_init's similarly named ram_postcopy_incoming_init
 560 */
 561int postcopy_ram_incoming_init(MigrationIncomingState *mis)
 562{
 563    if (foreach_not_ignored_block(init_range, NULL)) {
 564        return -1;
 565    }
 566
 567    return 0;
 568}
 569
 570static void postcopy_temp_pages_cleanup(MigrationIncomingState *mis)
 571{
 572    int i;
 573
 574    if (mis->postcopy_tmp_pages) {
 575        for (i = 0; i < mis->postcopy_channels; i++) {
 576            if (mis->postcopy_tmp_pages[i].tmp_huge_page) {
 577                munmap(mis->postcopy_tmp_pages[i].tmp_huge_page,
 578                       mis->largest_page_size);
 579                mis->postcopy_tmp_pages[i].tmp_huge_page = NULL;
 580            }
 581        }
 582        g_free(mis->postcopy_tmp_pages);
 583        mis->postcopy_tmp_pages = NULL;
 584    }
 585
 586    if (mis->postcopy_tmp_zero_page) {
 587        munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
 588        mis->postcopy_tmp_zero_page = NULL;
 589    }
 590}
 591
 592/*
 593 * At the end of a migration where postcopy_ram_incoming_init was called.
 594 */
 595int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
 596{
 597    trace_postcopy_ram_incoming_cleanup_entry();
 598
 599    if (mis->preempt_thread_status == PREEMPT_THREAD_CREATED) {
 600        /* Notify the fast load thread to quit */
 601        mis->preempt_thread_status = PREEMPT_THREAD_QUIT;
 602        if (mis->postcopy_qemufile_dst) {
 603            qemu_file_shutdown(mis->postcopy_qemufile_dst);
 604        }
 605        qemu_thread_join(&mis->postcopy_prio_thread);
 606        mis->preempt_thread_status = PREEMPT_THREAD_NONE;
 607    }
 608
 609    if (mis->have_fault_thread) {
 610        Error *local_err = NULL;
 611
 612        /* Let the fault thread quit */
 613        qatomic_set(&mis->fault_thread_quit, 1);
 614        postcopy_fault_thread_notify(mis);
 615        trace_postcopy_ram_incoming_cleanup_join();
 616        qemu_thread_join(&mis->fault_thread);
 617
 618        if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
 619            error_report_err(local_err);
 620            return -1;
 621        }
 622
 623        if (foreach_not_ignored_block(cleanup_range, mis)) {
 624            return -1;
 625        }
 626
 627        trace_postcopy_ram_incoming_cleanup_closeuf();
 628        close(mis->userfault_fd);
 629        close(mis->userfault_event_fd);
 630        mis->have_fault_thread = false;
 631    }
 632
 633    if (enable_mlock) {
 634        if (os_mlock() < 0) {
 635            error_report("mlock: %s", strerror(errno));
 636            /*
 637             * It doesn't feel right to fail at this point, we have a valid
 638             * VM state.
 639             */
 640        }
 641    }
 642
 643    postcopy_temp_pages_cleanup(mis);
 644
 645    trace_postcopy_ram_incoming_cleanup_blocktime(
 646            get_postcopy_total_blocktime());
 647
 648    trace_postcopy_ram_incoming_cleanup_exit();
 649    return 0;
 650}
 651
 652/*
 653 * Disable huge pages on an area
 654 */
 655static int nhp_range(RAMBlock *rb, void *opaque)
 656{
 657    const char *block_name = qemu_ram_get_idstr(rb);
 658    void *host_addr = qemu_ram_get_host_addr(rb);
 659    ram_addr_t offset = qemu_ram_get_offset(rb);
 660    ram_addr_t length = rb->postcopy_length;
 661    trace_postcopy_nhp_range(block_name, host_addr, offset, length);
 662
 663    /*
 664     * Before we do discards we need to ensure those discards really
 665     * do delete areas of the page, even if THP thinks a hugepage would
 666     * be a good idea, so force hugepages off.
 667     */
 668    qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
 669
 670    return 0;
 671}
 672
 673/*
 674 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
 675 * however leaving it until after precopy means that most of the precopy
 676 * data is still THPd
 677 */
 678int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
 679{
 680    if (foreach_not_ignored_block(nhp_range, mis)) {
 681        return -1;
 682    }
 683
 684    postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
 685
 686    return 0;
 687}
 688
 689/*
 690 * Mark the given area of RAM as requiring notification to unwritten areas
 691 * Used as a  callback on foreach_not_ignored_block.
 692 *   host_addr: Base of area to mark
 693 *   offset: Offset in the whole ram arena
 694 *   length: Length of the section
 695 *   opaque: MigrationIncomingState pointer
 696 * Returns 0 on success
 697 */
 698static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
 699{
 700    MigrationIncomingState *mis = opaque;
 701    struct uffdio_register reg_struct;
 702
 703    reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
 704    reg_struct.range.len = rb->postcopy_length;
 705    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 706
 707    /* Now tell our userfault_fd that it's responsible for this area */
 708    if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
 709        error_report("%s userfault register: %s", __func__, strerror(errno));
 710        return -1;
 711    }
 712    if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
 713        error_report("%s userfault: Region doesn't support COPY", __func__);
 714        return -1;
 715    }
 716    if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
 717        qemu_ram_set_uf_zeroable(rb);
 718    }
 719
 720    return 0;
 721}
 722
 723int postcopy_wake_shared(struct PostCopyFD *pcfd,
 724                         uint64_t client_addr,
 725                         RAMBlock *rb)
 726{
 727    size_t pagesize = qemu_ram_pagesize(rb);
 728    struct uffdio_range range;
 729    int ret;
 730    trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
 731    range.start = ROUND_DOWN(client_addr, pagesize);
 732    range.len = pagesize;
 733    ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
 734    if (ret) {
 735        error_report("%s: Failed to wake: %zx in %s (%s)",
 736                     __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
 737                     strerror(errno));
 738    }
 739    return ret;
 740}
 741
 742static int postcopy_request_page(MigrationIncomingState *mis, RAMBlock *rb,
 743                                 ram_addr_t start, uint64_t haddr)
 744{
 745    void *aligned = (void *)(uintptr_t)ROUND_DOWN(haddr, qemu_ram_pagesize(rb));
 746
 747    /*
 748     * Discarded pages (via RamDiscardManager) are never migrated. On unlikely
 749     * access, place a zeropage, which will also set the relevant bits in the
 750     * recv_bitmap accordingly, so we won't try placing a zeropage twice.
 751     *
 752     * Checking a single bit is sufficient to handle pagesize > TPS as either
 753     * all relevant bits are set or not.
 754     */
 755    assert(QEMU_IS_ALIGNED(start, qemu_ram_pagesize(rb)));
 756    if (ramblock_page_is_discarded(rb, start)) {
 757        bool received = ramblock_recv_bitmap_test_byte_offset(rb, start);
 758
 759        return received ? 0 : postcopy_place_page_zero(mis, aligned, rb);
 760    }
 761
 762    return migrate_send_rp_req_pages(mis, rb, start, haddr);
 763}
 764
 765/*
 766 * Callback from shared fault handlers to ask for a page,
 767 * the page must be specified by a RAMBlock and an offset in that rb
 768 * Note: Only for use by shared fault handlers (in fault thread)
 769 */
 770int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
 771                                 uint64_t client_addr, uint64_t rb_offset)
 772{
 773    uint64_t aligned_rbo = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
 774    MigrationIncomingState *mis = migration_incoming_get_current();
 775
 776    trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
 777                                       rb_offset);
 778    if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
 779        trace_postcopy_request_shared_page_present(pcfd->idstr,
 780                                        qemu_ram_get_idstr(rb), rb_offset);
 781        return postcopy_wake_shared(pcfd, client_addr, rb);
 782    }
 783    postcopy_request_page(mis, rb, aligned_rbo, client_addr);
 784    return 0;
 785}
 786
 787static int get_mem_fault_cpu_index(uint32_t pid)
 788{
 789    CPUState *cpu_iter;
 790
 791    CPU_FOREACH(cpu_iter) {
 792        if (cpu_iter->thread_id == pid) {
 793            trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
 794            return cpu_iter->cpu_index;
 795        }
 796    }
 797    trace_get_mem_fault_cpu_index(-1, pid);
 798    return -1;
 799}
 800
 801static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
 802{
 803    int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
 804                                    dc->start_time;
 805    return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
 806}
 807
 808/*
 809 * This function is being called when pagefault occurs. It
 810 * tracks down vCPU blocking time.
 811 *
 812 * @addr: faulted host virtual address
 813 * @ptid: faulted process thread id
 814 * @rb: ramblock appropriate to addr
 815 */
 816static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
 817                                          RAMBlock *rb)
 818{
 819    int cpu, already_received;
 820    MigrationIncomingState *mis = migration_incoming_get_current();
 821    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 822    uint32_t low_time_offset;
 823
 824    if (!dc || ptid == 0) {
 825        return;
 826    }
 827    cpu = get_mem_fault_cpu_index(ptid);
 828    if (cpu < 0) {
 829        return;
 830    }
 831
 832    low_time_offset = get_low_time_offset(dc);
 833    if (dc->vcpu_addr[cpu] == 0) {
 834        qatomic_inc(&dc->smp_cpus_down);
 835    }
 836
 837    qatomic_xchg(&dc->last_begin, low_time_offset);
 838    qatomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
 839    qatomic_xchg(&dc->vcpu_addr[cpu], addr);
 840
 841    /*
 842     * check it here, not at the beginning of the function,
 843     * due to, check could occur early than bitmap_set in
 844     * qemu_ufd_copy_ioctl
 845     */
 846    already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
 847    if (already_received) {
 848        qatomic_xchg(&dc->vcpu_addr[cpu], 0);
 849        qatomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
 850        qatomic_dec(&dc->smp_cpus_down);
 851    }
 852    trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
 853                                        cpu, already_received);
 854}
 855
 856/*
 857 *  This function just provide calculated blocktime per cpu and trace it.
 858 *  Total blocktime is calculated in mark_postcopy_blocktime_end.
 859 *
 860 *
 861 * Assume we have 3 CPU
 862 *
 863 *      S1        E1           S1               E1
 864 * -----***********------------xxx***************------------------------> CPU1
 865 *
 866 *             S2                E2
 867 * ------------****************xxx---------------------------------------> CPU2
 868 *
 869 *                         S3            E3
 870 * ------------------------****xxx********-------------------------------> CPU3
 871 *
 872 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
 873 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
 874 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
 875 *            it's a part of total blocktime.
 876 * S1 - here is last_begin
 877 * Legend of the picture is following:
 878 *              * - means blocktime per vCPU
 879 *              x - means overlapped blocktime (total blocktime)
 880 *
 881 * @addr: host virtual address
 882 */
 883static void mark_postcopy_blocktime_end(uintptr_t addr)
 884{
 885    MigrationIncomingState *mis = migration_incoming_get_current();
 886    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 887    MachineState *ms = MACHINE(qdev_get_machine());
 888    unsigned int smp_cpus = ms->smp.cpus;
 889    int i, affected_cpu = 0;
 890    bool vcpu_total_blocktime = false;
 891    uint32_t read_vcpu_time, low_time_offset;
 892
 893    if (!dc) {
 894        return;
 895    }
 896
 897    low_time_offset = get_low_time_offset(dc);
 898    /* lookup cpu, to clear it,
 899     * that algorithm looks straightforward, but it's not
 900     * optimal, more optimal algorithm is keeping tree or hash
 901     * where key is address value is a list of  */
 902    for (i = 0; i < smp_cpus; i++) {
 903        uint32_t vcpu_blocktime = 0;
 904
 905        read_vcpu_time = qatomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
 906        if (qatomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
 907            read_vcpu_time == 0) {
 908            continue;
 909        }
 910        qatomic_xchg(&dc->vcpu_addr[i], 0);
 911        vcpu_blocktime = low_time_offset - read_vcpu_time;
 912        affected_cpu += 1;
 913        /* we need to know is that mark_postcopy_end was due to
 914         * faulted page, another possible case it's prefetched
 915         * page and in that case we shouldn't be here */
 916        if (!vcpu_total_blocktime &&
 917            qatomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
 918            vcpu_total_blocktime = true;
 919        }
 920        /* continue cycle, due to one page could affect several vCPUs */
 921        dc->vcpu_blocktime[i] += vcpu_blocktime;
 922    }
 923
 924    qatomic_sub(&dc->smp_cpus_down, affected_cpu);
 925    if (vcpu_total_blocktime) {
 926        dc->total_blocktime += low_time_offset - qatomic_fetch_add(
 927                &dc->last_begin, 0);
 928    }
 929    trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
 930                                      affected_cpu);
 931}
 932
 933static void postcopy_pause_fault_thread(MigrationIncomingState *mis)
 934{
 935    trace_postcopy_pause_fault_thread();
 936    qemu_sem_wait(&mis->postcopy_pause_sem_fault);
 937    trace_postcopy_pause_fault_thread_continued();
 938}
 939
 940/*
 941 * Handle faults detected by the USERFAULT markings
 942 */
 943static void *postcopy_ram_fault_thread(void *opaque)
 944{
 945    MigrationIncomingState *mis = opaque;
 946    struct uffd_msg msg;
 947    int ret;
 948    size_t index;
 949    RAMBlock *rb = NULL;
 950
 951    trace_postcopy_ram_fault_thread_entry();
 952    rcu_register_thread();
 953    mis->last_rb = NULL; /* last RAMBlock we sent part of */
 954    qemu_sem_post(&mis->thread_sync_sem);
 955
 956    struct pollfd *pfd;
 957    size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
 958
 959    pfd = g_new0(struct pollfd, pfd_len);
 960
 961    pfd[0].fd = mis->userfault_fd;
 962    pfd[0].events = POLLIN;
 963    pfd[1].fd = mis->userfault_event_fd;
 964    pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
 965    trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
 966    for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
 967        struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
 968                                                 struct PostCopyFD, index);
 969        pfd[2 + index].fd = pcfd->fd;
 970        pfd[2 + index].events = POLLIN;
 971        trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
 972                                                  pcfd->fd);
 973    }
 974
 975    while (true) {
 976        ram_addr_t rb_offset;
 977        int poll_result;
 978
 979        /*
 980         * We're mainly waiting for the kernel to give us a faulting HVA,
 981         * however we can be told to quit via userfault_quit_fd which is
 982         * an eventfd
 983         */
 984
 985        poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
 986        if (poll_result == -1) {
 987            error_report("%s: userfault poll: %s", __func__, strerror(errno));
 988            break;
 989        }
 990
 991        if (!mis->to_src_file) {
 992            /*
 993             * Possibly someone tells us that the return path is
 994             * broken already using the event. We should hold until
 995             * the channel is rebuilt.
 996             */
 997            postcopy_pause_fault_thread(mis);
 998        }
 999
1000        if (pfd[1].revents) {
1001            uint64_t tmp64 = 0;
1002
1003            /* Consume the signal */
1004            if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
1005                /* Nothing obviously nicer than posting this error. */
1006                error_report("%s: read() failed", __func__);
1007            }
1008
1009            if (qatomic_read(&mis->fault_thread_quit)) {
1010                trace_postcopy_ram_fault_thread_quit();
1011                break;
1012            }
1013        }
1014
1015        if (pfd[0].revents) {
1016            poll_result--;
1017            ret = read(mis->userfault_fd, &msg, sizeof(msg));
1018            if (ret != sizeof(msg)) {
1019                if (errno == EAGAIN) {
1020                    /*
1021                     * if a wake up happens on the other thread just after
1022                     * the poll, there is nothing to read.
1023                     */
1024                    continue;
1025                }
1026                if (ret < 0) {
1027                    error_report("%s: Failed to read full userfault "
1028                                 "message: %s",
1029                                 __func__, strerror(errno));
1030                    break;
1031                } else {
1032                    error_report("%s: Read %d bytes from userfaultfd "
1033                                 "expected %zd",
1034                                 __func__, ret, sizeof(msg));
1035                    break; /* Lost alignment, don't know what we'd read next */
1036                }
1037            }
1038            if (msg.event != UFFD_EVENT_PAGEFAULT) {
1039                error_report("%s: Read unexpected event %ud from userfaultfd",
1040                             __func__, msg.event);
1041                continue; /* It's not a page fault, shouldn't happen */
1042            }
1043
1044            rb = qemu_ram_block_from_host(
1045                     (void *)(uintptr_t)msg.arg.pagefault.address,
1046                     true, &rb_offset);
1047            if (!rb) {
1048                error_report("postcopy_ram_fault_thread: Fault outside guest: %"
1049                             PRIx64, (uint64_t)msg.arg.pagefault.address);
1050                break;
1051            }
1052
1053            rb_offset = ROUND_DOWN(rb_offset, qemu_ram_pagesize(rb));
1054            trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
1055                                                qemu_ram_get_idstr(rb),
1056                                                rb_offset,
1057                                                msg.arg.pagefault.feat.ptid);
1058            mark_postcopy_blocktime_begin(
1059                    (uintptr_t)(msg.arg.pagefault.address),
1060                                msg.arg.pagefault.feat.ptid, rb);
1061
1062retry:
1063            /*
1064             * Send the request to the source - we want to request one
1065             * of our host page sizes (which is >= TPS)
1066             */
1067            ret = postcopy_request_page(mis, rb, rb_offset,
1068                                        msg.arg.pagefault.address);
1069            if (ret) {
1070                /* May be network failure, try to wait for recovery */
1071                postcopy_pause_fault_thread(mis);
1072                goto retry;
1073            }
1074        }
1075
1076        /* Now handle any requests from external processes on shared memory */
1077        /* TODO: May need to handle devices deregistering during postcopy */
1078        for (index = 2; index < pfd_len && poll_result; index++) {
1079            if (pfd[index].revents) {
1080                struct PostCopyFD *pcfd =
1081                    &g_array_index(mis->postcopy_remote_fds,
1082                                   struct PostCopyFD, index - 2);
1083
1084                poll_result--;
1085                if (pfd[index].revents & POLLERR) {
1086                    error_report("%s: POLLERR on poll %zd fd=%d",
1087                                 __func__, index, pcfd->fd);
1088                    pfd[index].events = 0;
1089                    continue;
1090                }
1091
1092                ret = read(pcfd->fd, &msg, sizeof(msg));
1093                if (ret != sizeof(msg)) {
1094                    if (errno == EAGAIN) {
1095                        /*
1096                         * if a wake up happens on the other thread just after
1097                         * the poll, there is nothing to read.
1098                         */
1099                        continue;
1100                    }
1101                    if (ret < 0) {
1102                        error_report("%s: Failed to read full userfault "
1103                                     "message: %s (shared) revents=%d",
1104                                     __func__, strerror(errno),
1105                                     pfd[index].revents);
1106                        /*TODO: Could just disable this sharer */
1107                        break;
1108                    } else {
1109                        error_report("%s: Read %d bytes from userfaultfd "
1110                                     "expected %zd (shared)",
1111                                     __func__, ret, sizeof(msg));
1112                        /*TODO: Could just disable this sharer */
1113                        break; /*Lost alignment,don't know what we'd read next*/
1114                    }
1115                }
1116                if (msg.event != UFFD_EVENT_PAGEFAULT) {
1117                    error_report("%s: Read unexpected event %ud "
1118                                 "from userfaultfd (shared)",
1119                                 __func__, msg.event);
1120                    continue; /* It's not a page fault, shouldn't happen */
1121                }
1122                /* Call the device handler registered with us */
1123                ret = pcfd->handler(pcfd, &msg);
1124                if (ret) {
1125                    error_report("%s: Failed to resolve shared fault on %zd/%s",
1126                                 __func__, index, pcfd->idstr);
1127                    /* TODO: Fail? Disable this sharer? */
1128                }
1129            }
1130        }
1131    }
1132    rcu_unregister_thread();
1133    trace_postcopy_ram_fault_thread_exit();
1134    g_free(pfd);
1135    return NULL;
1136}
1137
1138static int postcopy_temp_pages_setup(MigrationIncomingState *mis)
1139{
1140    PostcopyTmpPage *tmp_page;
1141    int err, i, channels;
1142    void *temp_page;
1143
1144    if (migrate_postcopy_preempt()) {
1145        /* If preemption enabled, need extra channel for urgent requests */
1146        mis->postcopy_channels = RAM_CHANNEL_MAX;
1147    } else {
1148        /* Both precopy/postcopy on the same channel */
1149        mis->postcopy_channels = 1;
1150    }
1151
1152    channels = mis->postcopy_channels;
1153    mis->postcopy_tmp_pages = g_malloc0_n(sizeof(PostcopyTmpPage), channels);
1154
1155    for (i = 0; i < channels; i++) {
1156        tmp_page = &mis->postcopy_tmp_pages[i];
1157        temp_page = mmap(NULL, mis->largest_page_size, PROT_READ | PROT_WRITE,
1158                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1159        if (temp_page == MAP_FAILED) {
1160            err = errno;
1161            error_report("%s: Failed to map postcopy_tmp_pages[%d]: %s",
1162                         __func__, i, strerror(err));
1163            /* Clean up will be done later */
1164            return -err;
1165        }
1166        tmp_page->tmp_huge_page = temp_page;
1167        /* Initialize default states for each tmp page */
1168        postcopy_temp_page_reset(tmp_page);
1169    }
1170
1171    /*
1172     * Map large zero page when kernel can't use UFFDIO_ZEROPAGE for hugepages
1173     */
1174    mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1175                                       PROT_READ | PROT_WRITE,
1176                                       MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1177    if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1178        err = errno;
1179        mis->postcopy_tmp_zero_page = NULL;
1180        error_report("%s: Failed to map large zero page %s",
1181                     __func__, strerror(err));
1182        return -err;
1183    }
1184
1185    memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1186
1187    return 0;
1188}
1189
1190int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1191{
1192    Error *local_err = NULL;
1193
1194    /* Open the fd for the kernel to give us userfaults */
1195    mis->userfault_fd = uffd_open(O_CLOEXEC | O_NONBLOCK);
1196    if (mis->userfault_fd == -1) {
1197        error_report("%s: Failed to open userfault fd: %s", __func__,
1198                     strerror(errno));
1199        return -1;
1200    }
1201
1202    /*
1203     * Although the host check already tested the API, we need to
1204     * do the check again as an ABI handshake on the new fd.
1205     */
1206    if (!ufd_check_and_apply(mis->userfault_fd, mis, &local_err)) {
1207        error_report_err(local_err);
1208        return -1;
1209    }
1210
1211    /* Now an eventfd we use to tell the fault-thread to quit */
1212    mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1213    if (mis->userfault_event_fd == -1) {
1214        error_report("%s: Opening userfault_event_fd: %s", __func__,
1215                     strerror(errno));
1216        close(mis->userfault_fd);
1217        return -1;
1218    }
1219
1220    postcopy_thread_create(mis, &mis->fault_thread, "fault-default",
1221                           postcopy_ram_fault_thread, QEMU_THREAD_JOINABLE);
1222    mis->have_fault_thread = true;
1223
1224    /* Mark so that we get notified of accesses to unwritten areas */
1225    if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1226        error_report("ram_block_enable_notify failed");
1227        return -1;
1228    }
1229
1230    if (postcopy_temp_pages_setup(mis)) {
1231        /* Error dumped in the sub-function */
1232        return -1;
1233    }
1234
1235    if (migrate_postcopy_preempt()) {
1236        /*
1237         * This thread needs to be created after the temp pages because
1238         * it'll fetch RAM_CHANNEL_POSTCOPY PostcopyTmpPage immediately.
1239         */
1240        postcopy_thread_create(mis, &mis->postcopy_prio_thread, "fault-fast",
1241                               postcopy_preempt_thread, QEMU_THREAD_JOINABLE);
1242        mis->preempt_thread_status = PREEMPT_THREAD_CREATED;
1243    }
1244
1245    trace_postcopy_ram_enable_notify();
1246
1247    return 0;
1248}
1249
1250static int qemu_ufd_copy_ioctl(MigrationIncomingState *mis, void *host_addr,
1251                               void *from_addr, uint64_t pagesize, RAMBlock *rb)
1252{
1253    int userfault_fd = mis->userfault_fd;
1254    int ret;
1255
1256    if (from_addr) {
1257        struct uffdio_copy copy_struct;
1258        copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1259        copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1260        copy_struct.len = pagesize;
1261        copy_struct.mode = 0;
1262        ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1263    } else {
1264        struct uffdio_zeropage zero_struct;
1265        zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1266        zero_struct.range.len = pagesize;
1267        zero_struct.mode = 0;
1268        ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1269    }
1270    if (!ret) {
1271        qemu_mutex_lock(&mis->page_request_mutex);
1272        ramblock_recv_bitmap_set_range(rb, host_addr,
1273                                       pagesize / qemu_target_page_size());
1274        /*
1275         * If this page resolves a page fault for a previous recorded faulted
1276         * address, take a special note to maintain the requested page list.
1277         */
1278        if (g_tree_lookup(mis->page_requested, host_addr)) {
1279            g_tree_remove(mis->page_requested, host_addr);
1280            mis->page_requested_count--;
1281            trace_postcopy_page_req_del(host_addr, mis->page_requested_count);
1282        }
1283        qemu_mutex_unlock(&mis->page_request_mutex);
1284        mark_postcopy_blocktime_end((uintptr_t)host_addr);
1285    }
1286    return ret;
1287}
1288
1289int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1290{
1291    int i;
1292    MigrationIncomingState *mis = migration_incoming_get_current();
1293    GArray *pcrfds = mis->postcopy_remote_fds;
1294
1295    for (i = 0; i < pcrfds->len; i++) {
1296        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1297        int ret = cur->waker(cur, rb, offset);
1298        if (ret) {
1299            return ret;
1300        }
1301    }
1302    return 0;
1303}
1304
1305/*
1306 * Place a host page (from) at (host) atomically
1307 * returns 0 on success
1308 */
1309int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1310                        RAMBlock *rb)
1311{
1312    size_t pagesize = qemu_ram_pagesize(rb);
1313
1314    /* copy also acks to the kernel waking the stalled thread up
1315     * TODO: We can inhibit that ack and only do it if it was requested
1316     * which would be slightly cheaper, but we'd have to be careful
1317     * of the order of updating our page state.
1318     */
1319    if (qemu_ufd_copy_ioctl(mis, host, from, pagesize, rb)) {
1320        int e = errno;
1321        error_report("%s: %s copy host: %p from: %p (size: %zd)",
1322                     __func__, strerror(e), host, from, pagesize);
1323
1324        return -e;
1325    }
1326
1327    trace_postcopy_place_page(host);
1328    return postcopy_notify_shared_wake(rb,
1329                                       qemu_ram_block_host_offset(rb, host));
1330}
1331
1332/*
1333 * Place a zero page at (host) atomically
1334 * returns 0 on success
1335 */
1336int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1337                             RAMBlock *rb)
1338{
1339    size_t pagesize = qemu_ram_pagesize(rb);
1340    trace_postcopy_place_page_zero(host);
1341
1342    /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1343     * but it's not available for everything (e.g. hugetlbpages)
1344     */
1345    if (qemu_ram_is_uf_zeroable(rb)) {
1346        if (qemu_ufd_copy_ioctl(mis, host, NULL, pagesize, rb)) {
1347            int e = errno;
1348            error_report("%s: %s zero host: %p",
1349                         __func__, strerror(e), host);
1350
1351            return -e;
1352        }
1353        return postcopy_notify_shared_wake(rb,
1354                                           qemu_ram_block_host_offset(rb,
1355                                                                      host));
1356    } else {
1357        return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page, rb);
1358    }
1359}
1360
1361#else
1362/* No target OS support, stubs just fail */
1363void fill_destination_postcopy_migration_info(MigrationInfo *info)
1364{
1365}
1366
1367bool postcopy_ram_supported_by_host(MigrationIncomingState *mis, Error **errp)
1368{
1369    error_report("%s: No OS support", __func__);
1370    return false;
1371}
1372
1373int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1374{
1375    error_report("postcopy_ram_incoming_init: No OS support");
1376    return -1;
1377}
1378
1379int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1380{
1381    assert(0);
1382    return -1;
1383}
1384
1385int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1386{
1387    assert(0);
1388    return -1;
1389}
1390
1391int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1392                                 uint64_t client_addr, uint64_t rb_offset)
1393{
1394    assert(0);
1395    return -1;
1396}
1397
1398int postcopy_ram_incoming_setup(MigrationIncomingState *mis)
1399{
1400    assert(0);
1401    return -1;
1402}
1403
1404int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1405                        RAMBlock *rb)
1406{
1407    assert(0);
1408    return -1;
1409}
1410
1411int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1412                        RAMBlock *rb)
1413{
1414    assert(0);
1415    return -1;
1416}
1417
1418int postcopy_wake_shared(struct PostCopyFD *pcfd,
1419                         uint64_t client_addr,
1420                         RAMBlock *rb)
1421{
1422    assert(0);
1423    return -1;
1424}
1425#endif
1426
1427/* ------------------------------------------------------------------------- */
1428void postcopy_temp_page_reset(PostcopyTmpPage *tmp_page)
1429{
1430    tmp_page->target_pages = 0;
1431    tmp_page->host_addr = NULL;
1432    /*
1433     * This is set to true when reset, and cleared as long as we received any
1434     * of the non-zero small page within this huge page.
1435     */
1436    tmp_page->all_zero = true;
1437}
1438
1439void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1440{
1441    uint64_t tmp64 = 1;
1442
1443    /*
1444     * Wakeup the fault_thread.  It's an eventfd that should currently
1445     * be at 0, we're going to increment it to 1
1446     */
1447    if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1448        /* Not much we can do here, but may as well report it */
1449        error_report("%s: incrementing failed: %s", __func__,
1450                     strerror(errno));
1451    }
1452}
1453
1454/**
1455 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1456 *   asking to discard individual ranges.
1457 *
1458 * @ms: The current migration state.
1459 * @offset: the bitmap offset of the named RAMBlock in the migration bitmap.
1460 * @name: RAMBlock that discards will operate on.
1461 */
1462static PostcopyDiscardState pds = {0};
1463void postcopy_discard_send_init(MigrationState *ms, const char *name)
1464{
1465    pds.ramblock_name = name;
1466    pds.cur_entry = 0;
1467    pds.nsentwords = 0;
1468    pds.nsentcmds = 0;
1469}
1470
1471/**
1472 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1473 *   discard. May send a discard message, may just leave it queued to
1474 *   be sent later.
1475 *
1476 * @ms: Current migration state.
1477 * @start,@length: a range of pages in the migration bitmap in the
1478 *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1479 */
1480void postcopy_discard_send_range(MigrationState *ms, unsigned long start,
1481                                 unsigned long length)
1482{
1483    size_t tp_size = qemu_target_page_size();
1484    /* Convert to byte offsets within the RAM block */
1485    pds.start_list[pds.cur_entry] = start  * tp_size;
1486    pds.length_list[pds.cur_entry] = length * tp_size;
1487    trace_postcopy_discard_send_range(pds.ramblock_name, start, length);
1488    pds.cur_entry++;
1489    pds.nsentwords++;
1490
1491    if (pds.cur_entry == MAX_DISCARDS_PER_COMMAND) {
1492        /* Full set, ship it! */
1493        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1494                                              pds.ramblock_name,
1495                                              pds.cur_entry,
1496                                              pds.start_list,
1497                                              pds.length_list);
1498        pds.nsentcmds++;
1499        pds.cur_entry = 0;
1500    }
1501}
1502
1503/**
1504 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1505 * bitmap code. Sends any outstanding discard messages, frees the PDS
1506 *
1507 * @ms: Current migration state.
1508 */
1509void postcopy_discard_send_finish(MigrationState *ms)
1510{
1511    /* Anything unsent? */
1512    if (pds.cur_entry) {
1513        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1514                                              pds.ramblock_name,
1515                                              pds.cur_entry,
1516                                              pds.start_list,
1517                                              pds.length_list);
1518        pds.nsentcmds++;
1519    }
1520
1521    trace_postcopy_discard_send_finish(pds.ramblock_name, pds.nsentwords,
1522                                       pds.nsentcmds);
1523}
1524
1525/*
1526 * Current state of incoming postcopy; note this is not part of
1527 * MigrationIncomingState since it's state is used during cleanup
1528 * at the end as MIS is being freed.
1529 */
1530static PostcopyState incoming_postcopy_state;
1531
1532PostcopyState  postcopy_state_get(void)
1533{
1534    return qatomic_load_acquire(&incoming_postcopy_state);
1535}
1536
1537/* Set the state and return the old state */
1538PostcopyState postcopy_state_set(PostcopyState new_state)
1539{
1540    return qatomic_xchg(&incoming_postcopy_state, new_state);
1541}
1542
1543/* Register a handler for external shared memory postcopy
1544 * called on the destination.
1545 */
1546void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1547{
1548    MigrationIncomingState *mis = migration_incoming_get_current();
1549
1550    mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1551                                                  *pcfd);
1552}
1553
1554/* Unregister a handler for external shared memory postcopy
1555 */
1556void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1557{
1558    guint i;
1559    MigrationIncomingState *mis = migration_incoming_get_current();
1560    GArray *pcrfds = mis->postcopy_remote_fds;
1561
1562    if (!pcrfds) {
1563        /* migration has already finished and freed the array */
1564        return;
1565    }
1566    for (i = 0; i < pcrfds->len; i++) {
1567        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1568        if (cur->fd == pcfd->fd) {
1569            mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1570            return;
1571        }
1572    }
1573}
1574
1575void postcopy_preempt_new_channel(MigrationIncomingState *mis, QEMUFile *file)
1576{
1577    /*
1578     * The new loading channel has its own threads, so it needs to be
1579     * blocked too.  It's by default true, just be explicit.
1580     */
1581    qemu_file_set_blocking(file, true);
1582    mis->postcopy_qemufile_dst = file;
1583    qemu_sem_post(&mis->postcopy_qemufile_dst_done);
1584    trace_postcopy_preempt_new_channel();
1585}
1586
1587/*
1588 * Setup the postcopy preempt channel with the IOC.  If ERROR is specified,
1589 * setup the error instead.  This helper will free the ERROR if specified.
1590 */
1591static void
1592postcopy_preempt_send_channel_done(MigrationState *s,
1593                                   QIOChannel *ioc, Error *local_err)
1594{
1595    if (local_err) {
1596        migrate_set_error(s, local_err);
1597        error_free(local_err);
1598    } else {
1599        migration_ioc_register_yank(ioc);
1600        s->postcopy_qemufile_src = qemu_file_new_output(ioc);
1601        trace_postcopy_preempt_new_channel();
1602    }
1603
1604    /*
1605     * Kick the waiter in all cases.  The waiter should check upon
1606     * postcopy_qemufile_src to know whether it failed or not.
1607     */
1608    qemu_sem_post(&s->postcopy_qemufile_src_sem);
1609}
1610
1611static void
1612postcopy_preempt_tls_handshake(QIOTask *task, gpointer opaque)
1613{
1614    g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1615    MigrationState *s = opaque;
1616    Error *local_err = NULL;
1617
1618    qio_task_propagate_error(task, &local_err);
1619    postcopy_preempt_send_channel_done(s, ioc, local_err);
1620}
1621
1622static void
1623postcopy_preempt_send_channel_new(QIOTask *task, gpointer opaque)
1624{
1625    g_autoptr(QIOChannel) ioc = QIO_CHANNEL(qio_task_get_source(task));
1626    MigrationState *s = opaque;
1627    QIOChannelTLS *tioc;
1628    Error *local_err = NULL;
1629
1630    if (qio_task_propagate_error(task, &local_err)) {
1631        goto out;
1632    }
1633
1634    if (migrate_channel_requires_tls_upgrade(ioc)) {
1635        tioc = migration_tls_client_create(ioc, s->hostname, &local_err);
1636        if (!tioc) {
1637            goto out;
1638        }
1639        trace_postcopy_preempt_tls_handshake();
1640        qio_channel_set_name(QIO_CHANNEL(tioc), "migration-tls-preempt");
1641        qio_channel_tls_handshake(tioc, postcopy_preempt_tls_handshake,
1642                                  s, NULL, NULL);
1643        /* Setup the channel until TLS handshake finished */
1644        return;
1645    }
1646
1647out:
1648    /* This handles both good and error cases */
1649    postcopy_preempt_send_channel_done(s, ioc, local_err);
1650}
1651
1652/*
1653 * This function will kick off an async task to establish the preempt
1654 * channel, and wait until the connection setup completed.  Returns 0 if
1655 * channel established, -1 for error.
1656 */
1657int postcopy_preempt_establish_channel(MigrationState *s)
1658{
1659    /* If preempt not enabled, no need to wait */
1660    if (!migrate_postcopy_preempt()) {
1661        return 0;
1662    }
1663
1664    /*
1665     * Kick off async task to establish preempt channel.  Only do so with
1666     * 8.0+ machines, because 7.1/7.2 require the channel to be created in
1667     * setup phase of migration (even if racy in an unreliable network).
1668     */
1669    if (!s->preempt_pre_7_2) {
1670        postcopy_preempt_setup(s);
1671    }
1672
1673    /*
1674     * We need the postcopy preempt channel to be established before
1675     * starting doing anything.
1676     */
1677    qemu_sem_wait(&s->postcopy_qemufile_src_sem);
1678
1679    return s->postcopy_qemufile_src ? 0 : -1;
1680}
1681
1682void postcopy_preempt_setup(MigrationState *s)
1683{
1684    /* Kick an async task to connect */
1685    socket_send_channel_create(postcopy_preempt_send_channel_new, s);
1686}
1687
1688static void postcopy_pause_ram_fast_load(MigrationIncomingState *mis)
1689{
1690    trace_postcopy_pause_fast_load();
1691    qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1692    qemu_sem_wait(&mis->postcopy_pause_sem_fast_load);
1693    qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1694    trace_postcopy_pause_fast_load_continued();
1695}
1696
1697static bool preempt_thread_should_run(MigrationIncomingState *mis)
1698{
1699    return mis->preempt_thread_status != PREEMPT_THREAD_QUIT;
1700}
1701
1702void *postcopy_preempt_thread(void *opaque)
1703{
1704    MigrationIncomingState *mis = opaque;
1705    int ret;
1706
1707    trace_postcopy_preempt_thread_entry();
1708
1709    rcu_register_thread();
1710
1711    qemu_sem_post(&mis->thread_sync_sem);
1712
1713    /*
1714     * The preempt channel is established in asynchronous way.  Wait
1715     * for its completion.
1716     */
1717    qemu_sem_wait(&mis->postcopy_qemufile_dst_done);
1718
1719    /* Sending RAM_SAVE_FLAG_EOS to terminate this thread */
1720    qemu_mutex_lock(&mis->postcopy_prio_thread_mutex);
1721    while (preempt_thread_should_run(mis)) {
1722        ret = ram_load_postcopy(mis->postcopy_qemufile_dst,
1723                                RAM_CHANNEL_POSTCOPY);
1724        /* If error happened, go into recovery routine */
1725        if (ret && preempt_thread_should_run(mis)) {
1726            postcopy_pause_ram_fast_load(mis);
1727        } else {
1728            /* We're done */
1729            break;
1730        }
1731    }
1732    qemu_mutex_unlock(&mis->postcopy_prio_thread_mutex);
1733
1734    rcu_unregister_thread();
1735
1736    trace_postcopy_preempt_thread_exit();
1737
1738    return NULL;
1739}
1740