qemu/migration/rdma.c
<<
>>
Prefs
   1/*
   2 * RDMA protocol and interfaces
   3 *
   4 * Copyright IBM, Corp. 2010-2013
   5 * Copyright Red Hat, Inc. 2015-2016
   6 *
   7 * Authors:
   8 *  Michael R. Hines <mrhines@us.ibm.com>
   9 *  Jiuxing Liu <jl@us.ibm.com>
  10 *  Daniel P. Berrange <berrange@redhat.com>
  11 *
  12 * This work is licensed under the terms of the GNU GPL, version 2 or
  13 * later.  See the COPYING file in the top-level directory.
  14 *
  15 */
  16
  17#include "qemu/osdep.h"
  18#include "qapi/error.h"
  19#include "qemu/cutils.h"
  20#include "exec/target_page.h"
  21#include "rdma.h"
  22#include "migration.h"
  23#include "migration-stats.h"
  24#include "qemu-file.h"
  25#include "ram.h"
  26#include "qemu/error-report.h"
  27#include "qemu/main-loop.h"
  28#include "qemu/module.h"
  29#include "qemu/rcu.h"
  30#include "qemu/sockets.h"
  31#include "qemu/bitmap.h"
  32#include "qemu/coroutine.h"
  33#include "exec/memory.h"
  34#include <sys/socket.h>
  35#include <netdb.h>
  36#include <arpa/inet.h>
  37#include <rdma/rdma_cma.h>
  38#include "trace.h"
  39#include "qom/object.h"
  40#include "options.h"
  41#include <poll.h>
  42
  43/*
  44 * Print and error on both the Monitor and the Log file.
  45 */
  46#define ERROR(errp, fmt, ...) \
  47    do { \
  48        fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
  49        if (errp && (*(errp) == NULL)) { \
  50            error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
  51        } \
  52    } while (0)
  53
  54#define RDMA_RESOLVE_TIMEOUT_MS 10000
  55
  56/* Do not merge data if larger than this. */
  57#define RDMA_MERGE_MAX (2 * 1024 * 1024)
  58#define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
  59
  60#define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
  61
  62/*
  63 * This is only for non-live state being migrated.
  64 * Instead of RDMA_WRITE messages, we use RDMA_SEND
  65 * messages for that state, which requires a different
  66 * delivery design than main memory.
  67 */
  68#define RDMA_SEND_INCREMENT 32768
  69
  70/*
  71 * Maximum size infiniband SEND message
  72 */
  73#define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
  74#define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
  75
  76#define RDMA_CONTROL_VERSION_CURRENT 1
  77/*
  78 * Capabilities for negotiation.
  79 */
  80#define RDMA_CAPABILITY_PIN_ALL 0x01
  81
  82/*
  83 * Add the other flags above to this list of known capabilities
  84 * as they are introduced.
  85 */
  86static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
  87
  88#define CHECK_ERROR_STATE() \
  89    do { \
  90        if (rdma->error_state) { \
  91            if (!rdma->error_reported) { \
  92                error_report("RDMA is in an error state waiting migration" \
  93                                " to abort!"); \
  94                rdma->error_reported = 1; \
  95            } \
  96            return rdma->error_state; \
  97        } \
  98    } while (0)
  99
 100/*
 101 * A work request ID is 64-bits and we split up these bits
 102 * into 3 parts:
 103 *
 104 * bits 0-15 : type of control message, 2^16
 105 * bits 16-29: ram block index, 2^14
 106 * bits 30-63: ram block chunk number, 2^34
 107 *
 108 * The last two bit ranges are only used for RDMA writes,
 109 * in order to track their completion and potentially
 110 * also track unregistration status of the message.
 111 */
 112#define RDMA_WRID_TYPE_SHIFT  0UL
 113#define RDMA_WRID_BLOCK_SHIFT 16UL
 114#define RDMA_WRID_CHUNK_SHIFT 30UL
 115
 116#define RDMA_WRID_TYPE_MASK \
 117    ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
 118
 119#define RDMA_WRID_BLOCK_MASK \
 120    (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
 121
 122#define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
 123
 124/*
 125 * RDMA migration protocol:
 126 * 1. RDMA Writes (data messages, i.e. RAM)
 127 * 2. IB Send/Recv (control channel messages)
 128 */
 129enum {
 130    RDMA_WRID_NONE = 0,
 131    RDMA_WRID_RDMA_WRITE = 1,
 132    RDMA_WRID_SEND_CONTROL = 2000,
 133    RDMA_WRID_RECV_CONTROL = 4000,
 134};
 135
 136static const char *wrid_desc[] = {
 137    [RDMA_WRID_NONE] = "NONE",
 138    [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
 139    [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
 140    [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
 141};
 142
 143/*
 144 * Work request IDs for IB SEND messages only (not RDMA writes).
 145 * This is used by the migration protocol to transmit
 146 * control messages (such as device state and registration commands)
 147 *
 148 * We could use more WRs, but we have enough for now.
 149 */
 150enum {
 151    RDMA_WRID_READY = 0,
 152    RDMA_WRID_DATA,
 153    RDMA_WRID_CONTROL,
 154    RDMA_WRID_MAX,
 155};
 156
 157/*
 158 * SEND/RECV IB Control Messages.
 159 */
 160enum {
 161    RDMA_CONTROL_NONE = 0,
 162    RDMA_CONTROL_ERROR,
 163    RDMA_CONTROL_READY,               /* ready to receive */
 164    RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
 165    RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
 166    RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
 167    RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
 168    RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
 169    RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
 170    RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
 171    RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
 172    RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
 173};
 174
 175
 176/*
 177 * Memory and MR structures used to represent an IB Send/Recv work request.
 178 * This is *not* used for RDMA writes, only IB Send/Recv.
 179 */
 180typedef struct {
 181    uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
 182    struct   ibv_mr *control_mr;               /* registration metadata */
 183    size_t   control_len;                      /* length of the message */
 184    uint8_t *control_curr;                     /* start of unconsumed bytes */
 185} RDMAWorkRequestData;
 186
 187/*
 188 * Negotiate RDMA capabilities during connection-setup time.
 189 */
 190typedef struct {
 191    uint32_t version;
 192    uint32_t flags;
 193} RDMACapabilities;
 194
 195static void caps_to_network(RDMACapabilities *cap)
 196{
 197    cap->version = htonl(cap->version);
 198    cap->flags = htonl(cap->flags);
 199}
 200
 201static void network_to_caps(RDMACapabilities *cap)
 202{
 203    cap->version = ntohl(cap->version);
 204    cap->flags = ntohl(cap->flags);
 205}
 206
 207/*
 208 * Representation of a RAMBlock from an RDMA perspective.
 209 * This is not transmitted, only local.
 210 * This and subsequent structures cannot be linked lists
 211 * because we're using a single IB message to transmit
 212 * the information. It's small anyway, so a list is overkill.
 213 */
 214typedef struct RDMALocalBlock {
 215    char          *block_name;
 216    uint8_t       *local_host_addr; /* local virtual address */
 217    uint64_t       remote_host_addr; /* remote virtual address */
 218    uint64_t       offset;
 219    uint64_t       length;
 220    struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
 221    struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
 222    uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
 223    uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
 224    int            index;           /* which block are we */
 225    unsigned int   src_index;       /* (Only used on dest) */
 226    bool           is_ram_block;
 227    int            nb_chunks;
 228    unsigned long *transit_bitmap;
 229    unsigned long *unregister_bitmap;
 230} RDMALocalBlock;
 231
 232/*
 233 * Also represents a RAMblock, but only on the dest.
 234 * This gets transmitted by the dest during connection-time
 235 * to the source VM and then is used to populate the
 236 * corresponding RDMALocalBlock with
 237 * the information needed to perform the actual RDMA.
 238 */
 239typedef struct QEMU_PACKED RDMADestBlock {
 240    uint64_t remote_host_addr;
 241    uint64_t offset;
 242    uint64_t length;
 243    uint32_t remote_rkey;
 244    uint32_t padding;
 245} RDMADestBlock;
 246
 247static const char *control_desc(unsigned int rdma_control)
 248{
 249    static const char *strs[] = {
 250        [RDMA_CONTROL_NONE] = "NONE",
 251        [RDMA_CONTROL_ERROR] = "ERROR",
 252        [RDMA_CONTROL_READY] = "READY",
 253        [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
 254        [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
 255        [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
 256        [RDMA_CONTROL_COMPRESS] = "COMPRESS",
 257        [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
 258        [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
 259        [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
 260        [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
 261        [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
 262    };
 263
 264    if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
 265        return "??BAD CONTROL VALUE??";
 266    }
 267
 268    return strs[rdma_control];
 269}
 270
 271static uint64_t htonll(uint64_t v)
 272{
 273    union { uint32_t lv[2]; uint64_t llv; } u;
 274    u.lv[0] = htonl(v >> 32);
 275    u.lv[1] = htonl(v & 0xFFFFFFFFULL);
 276    return u.llv;
 277}
 278
 279static uint64_t ntohll(uint64_t v)
 280{
 281    union { uint32_t lv[2]; uint64_t llv; } u;
 282    u.llv = v;
 283    return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
 284}
 285
 286static void dest_block_to_network(RDMADestBlock *db)
 287{
 288    db->remote_host_addr = htonll(db->remote_host_addr);
 289    db->offset = htonll(db->offset);
 290    db->length = htonll(db->length);
 291    db->remote_rkey = htonl(db->remote_rkey);
 292}
 293
 294static void network_to_dest_block(RDMADestBlock *db)
 295{
 296    db->remote_host_addr = ntohll(db->remote_host_addr);
 297    db->offset = ntohll(db->offset);
 298    db->length = ntohll(db->length);
 299    db->remote_rkey = ntohl(db->remote_rkey);
 300}
 301
 302/*
 303 * Virtual address of the above structures used for transmitting
 304 * the RAMBlock descriptions at connection-time.
 305 * This structure is *not* transmitted.
 306 */
 307typedef struct RDMALocalBlocks {
 308    int nb_blocks;
 309    bool     init;             /* main memory init complete */
 310    RDMALocalBlock *block;
 311} RDMALocalBlocks;
 312
 313/*
 314 * Main data structure for RDMA state.
 315 * While there is only one copy of this structure being allocated right now,
 316 * this is the place where one would start if you wanted to consider
 317 * having more than one RDMA connection open at the same time.
 318 */
 319typedef struct RDMAContext {
 320    char *host;
 321    int port;
 322    char *host_port;
 323
 324    RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
 325
 326    /*
 327     * This is used by *_exchange_send() to figure out whether or not
 328     * the initial "READY" message has already been received or not.
 329     * This is because other functions may potentially poll() and detect
 330     * the READY message before send() does, in which case we need to
 331     * know if it completed.
 332     */
 333    int control_ready_expected;
 334
 335    /* number of outstanding writes */
 336    int nb_sent;
 337
 338    /* store info about current buffer so that we can
 339       merge it with future sends */
 340    uint64_t current_addr;
 341    uint64_t current_length;
 342    /* index of ram block the current buffer belongs to */
 343    int current_index;
 344    /* index of the chunk in the current ram block */
 345    int current_chunk;
 346
 347    bool pin_all;
 348
 349    /*
 350     * infiniband-specific variables for opening the device
 351     * and maintaining connection state and so forth.
 352     *
 353     * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
 354     * cm_id->verbs, cm_id->channel, and cm_id->qp.
 355     */
 356    struct rdma_cm_id *cm_id;               /* connection manager ID */
 357    struct rdma_cm_id *listen_id;
 358    bool connected;
 359
 360    struct ibv_context          *verbs;
 361    struct rdma_event_channel   *channel;
 362    struct ibv_qp *qp;                      /* queue pair */
 363    struct ibv_comp_channel *recv_comp_channel;  /* recv completion channel */
 364    struct ibv_comp_channel *send_comp_channel;  /* send completion channel */
 365    struct ibv_pd *pd;                      /* protection domain */
 366    struct ibv_cq *recv_cq;                 /* recvieve completion queue */
 367    struct ibv_cq *send_cq;                 /* send completion queue */
 368
 369    /*
 370     * If a previous write failed (perhaps because of a failed
 371     * memory registration, then do not attempt any future work
 372     * and remember the error state.
 373     */
 374    int error_state;
 375    int error_reported;
 376    int received_error;
 377
 378    /*
 379     * Description of ram blocks used throughout the code.
 380     */
 381    RDMALocalBlocks local_ram_blocks;
 382    RDMADestBlock  *dest_blocks;
 383
 384    /* Index of the next RAMBlock received during block registration */
 385    unsigned int    next_src_index;
 386
 387    /*
 388     * Migration on *destination* started.
 389     * Then use coroutine yield function.
 390     * Source runs in a thread, so we don't care.
 391     */
 392    int migration_started_on_destination;
 393
 394    int total_registrations;
 395    int total_writes;
 396
 397    int unregister_current, unregister_next;
 398    uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
 399
 400    GHashTable *blockmap;
 401
 402    /* the RDMAContext for return path */
 403    struct RDMAContext *return_path;
 404    bool is_return_path;
 405} RDMAContext;
 406
 407#define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
 408OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
 409
 410
 411
 412struct QIOChannelRDMA {
 413    QIOChannel parent;
 414    RDMAContext *rdmain;
 415    RDMAContext *rdmaout;
 416    QEMUFile *file;
 417    bool blocking; /* XXX we don't actually honour this yet */
 418};
 419
 420/*
 421 * Main structure for IB Send/Recv control messages.
 422 * This gets prepended at the beginning of every Send/Recv.
 423 */
 424typedef struct QEMU_PACKED {
 425    uint32_t len;     /* Total length of data portion */
 426    uint32_t type;    /* which control command to perform */
 427    uint32_t repeat;  /* number of commands in data portion of same type */
 428    uint32_t padding;
 429} RDMAControlHeader;
 430
 431static void control_to_network(RDMAControlHeader *control)
 432{
 433    control->type = htonl(control->type);
 434    control->len = htonl(control->len);
 435    control->repeat = htonl(control->repeat);
 436}
 437
 438static void network_to_control(RDMAControlHeader *control)
 439{
 440    control->type = ntohl(control->type);
 441    control->len = ntohl(control->len);
 442    control->repeat = ntohl(control->repeat);
 443}
 444
 445/*
 446 * Register a single Chunk.
 447 * Information sent by the source VM to inform the dest
 448 * to register an single chunk of memory before we can perform
 449 * the actual RDMA operation.
 450 */
 451typedef struct QEMU_PACKED {
 452    union QEMU_PACKED {
 453        uint64_t current_addr;  /* offset into the ram_addr_t space */
 454        uint64_t chunk;         /* chunk to lookup if unregistering */
 455    } key;
 456    uint32_t current_index; /* which ramblock the chunk belongs to */
 457    uint32_t padding;
 458    uint64_t chunks;            /* how many sequential chunks to register */
 459} RDMARegister;
 460
 461static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
 462{
 463    RDMALocalBlock *local_block;
 464    local_block  = &rdma->local_ram_blocks.block[reg->current_index];
 465
 466    if (local_block->is_ram_block) {
 467        /*
 468         * current_addr as passed in is an address in the local ram_addr_t
 469         * space, we need to translate this for the destination
 470         */
 471        reg->key.current_addr -= local_block->offset;
 472        reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
 473    }
 474    reg->key.current_addr = htonll(reg->key.current_addr);
 475    reg->current_index = htonl(reg->current_index);
 476    reg->chunks = htonll(reg->chunks);
 477}
 478
 479static void network_to_register(RDMARegister *reg)
 480{
 481    reg->key.current_addr = ntohll(reg->key.current_addr);
 482    reg->current_index = ntohl(reg->current_index);
 483    reg->chunks = ntohll(reg->chunks);
 484}
 485
 486typedef struct QEMU_PACKED {
 487    uint32_t value;     /* if zero, we will madvise() */
 488    uint32_t block_idx; /* which ram block index */
 489    uint64_t offset;    /* Address in remote ram_addr_t space */
 490    uint64_t length;    /* length of the chunk */
 491} RDMACompress;
 492
 493static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
 494{
 495    comp->value = htonl(comp->value);
 496    /*
 497     * comp->offset as passed in is an address in the local ram_addr_t
 498     * space, we need to translate this for the destination
 499     */
 500    comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
 501    comp->offset += rdma->dest_blocks[comp->block_idx].offset;
 502    comp->block_idx = htonl(comp->block_idx);
 503    comp->offset = htonll(comp->offset);
 504    comp->length = htonll(comp->length);
 505}
 506
 507static void network_to_compress(RDMACompress *comp)
 508{
 509    comp->value = ntohl(comp->value);
 510    comp->block_idx = ntohl(comp->block_idx);
 511    comp->offset = ntohll(comp->offset);
 512    comp->length = ntohll(comp->length);
 513}
 514
 515/*
 516 * The result of the dest's memory registration produces an "rkey"
 517 * which the source VM must reference in order to perform
 518 * the RDMA operation.
 519 */
 520typedef struct QEMU_PACKED {
 521    uint32_t rkey;
 522    uint32_t padding;
 523    uint64_t host_addr;
 524} RDMARegisterResult;
 525
 526static void result_to_network(RDMARegisterResult *result)
 527{
 528    result->rkey = htonl(result->rkey);
 529    result->host_addr = htonll(result->host_addr);
 530};
 531
 532static void network_to_result(RDMARegisterResult *result)
 533{
 534    result->rkey = ntohl(result->rkey);
 535    result->host_addr = ntohll(result->host_addr);
 536};
 537
 538const char *print_wrid(int wrid);
 539static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
 540                                   uint8_t *data, RDMAControlHeader *resp,
 541                                   int *resp_idx,
 542                                   int (*callback)(RDMAContext *rdma));
 543
 544static inline uint64_t ram_chunk_index(const uint8_t *start,
 545                                       const uint8_t *host)
 546{
 547    return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
 548}
 549
 550static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
 551                                       uint64_t i)
 552{
 553    return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
 554                                  (i << RDMA_REG_CHUNK_SHIFT));
 555}
 556
 557static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
 558                                     uint64_t i)
 559{
 560    uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
 561                                         (1UL << RDMA_REG_CHUNK_SHIFT);
 562
 563    if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
 564        result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
 565    }
 566
 567    return result;
 568}
 569
 570static int rdma_add_block(RDMAContext *rdma, const char *block_name,
 571                         void *host_addr,
 572                         ram_addr_t block_offset, uint64_t length)
 573{
 574    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 575    RDMALocalBlock *block;
 576    RDMALocalBlock *old = local->block;
 577
 578    local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
 579
 580    if (local->nb_blocks) {
 581        int x;
 582
 583        if (rdma->blockmap) {
 584            for (x = 0; x < local->nb_blocks; x++) {
 585                g_hash_table_remove(rdma->blockmap,
 586                                    (void *)(uintptr_t)old[x].offset);
 587                g_hash_table_insert(rdma->blockmap,
 588                                    (void *)(uintptr_t)old[x].offset,
 589                                    &local->block[x]);
 590            }
 591        }
 592        memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
 593        g_free(old);
 594    }
 595
 596    block = &local->block[local->nb_blocks];
 597
 598    block->block_name = g_strdup(block_name);
 599    block->local_host_addr = host_addr;
 600    block->offset = block_offset;
 601    block->length = length;
 602    block->index = local->nb_blocks;
 603    block->src_index = ~0U; /* Filled in by the receipt of the block list */
 604    block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
 605    block->transit_bitmap = bitmap_new(block->nb_chunks);
 606    bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
 607    block->unregister_bitmap = bitmap_new(block->nb_chunks);
 608    bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
 609    block->remote_keys = g_new0(uint32_t, block->nb_chunks);
 610
 611    block->is_ram_block = local->init ? false : true;
 612
 613    if (rdma->blockmap) {
 614        g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
 615    }
 616
 617    trace_rdma_add_block(block_name, local->nb_blocks,
 618                         (uintptr_t) block->local_host_addr,
 619                         block->offset, block->length,
 620                         (uintptr_t) (block->local_host_addr + block->length),
 621                         BITS_TO_LONGS(block->nb_chunks) *
 622                             sizeof(unsigned long) * 8,
 623                         block->nb_chunks);
 624
 625    local->nb_blocks++;
 626
 627    return 0;
 628}
 629
 630/*
 631 * Memory regions need to be registered with the device and queue pairs setup
 632 * in advanced before the migration starts. This tells us where the RAM blocks
 633 * are so that we can register them individually.
 634 */
 635static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
 636{
 637    const char *block_name = qemu_ram_get_idstr(rb);
 638    void *host_addr = qemu_ram_get_host_addr(rb);
 639    ram_addr_t block_offset = qemu_ram_get_offset(rb);
 640    ram_addr_t length = qemu_ram_get_used_length(rb);
 641    return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
 642}
 643
 644/*
 645 * Identify the RAMBlocks and their quantity. They will be references to
 646 * identify chunk boundaries inside each RAMBlock and also be referenced
 647 * during dynamic page registration.
 648 */
 649static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
 650{
 651    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 652    int ret;
 653
 654    assert(rdma->blockmap == NULL);
 655    memset(local, 0, sizeof *local);
 656    ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
 657    if (ret) {
 658        return ret;
 659    }
 660    trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
 661    rdma->dest_blocks = g_new0(RDMADestBlock,
 662                               rdma->local_ram_blocks.nb_blocks);
 663    local->init = true;
 664    return 0;
 665}
 666
 667/*
 668 * Note: If used outside of cleanup, the caller must ensure that the destination
 669 * block structures are also updated
 670 */
 671static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
 672{
 673    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 674    RDMALocalBlock *old = local->block;
 675    int x;
 676
 677    if (rdma->blockmap) {
 678        g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
 679    }
 680    if (block->pmr) {
 681        int j;
 682
 683        for (j = 0; j < block->nb_chunks; j++) {
 684            if (!block->pmr[j]) {
 685                continue;
 686            }
 687            ibv_dereg_mr(block->pmr[j]);
 688            rdma->total_registrations--;
 689        }
 690        g_free(block->pmr);
 691        block->pmr = NULL;
 692    }
 693
 694    if (block->mr) {
 695        ibv_dereg_mr(block->mr);
 696        rdma->total_registrations--;
 697        block->mr = NULL;
 698    }
 699
 700    g_free(block->transit_bitmap);
 701    block->transit_bitmap = NULL;
 702
 703    g_free(block->unregister_bitmap);
 704    block->unregister_bitmap = NULL;
 705
 706    g_free(block->remote_keys);
 707    block->remote_keys = NULL;
 708
 709    g_free(block->block_name);
 710    block->block_name = NULL;
 711
 712    if (rdma->blockmap) {
 713        for (x = 0; x < local->nb_blocks; x++) {
 714            g_hash_table_remove(rdma->blockmap,
 715                                (void *)(uintptr_t)old[x].offset);
 716        }
 717    }
 718
 719    if (local->nb_blocks > 1) {
 720
 721        local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
 722
 723        if (block->index) {
 724            memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
 725        }
 726
 727        if (block->index < (local->nb_blocks - 1)) {
 728            memcpy(local->block + block->index, old + (block->index + 1),
 729                sizeof(RDMALocalBlock) *
 730                    (local->nb_blocks - (block->index + 1)));
 731            for (x = block->index; x < local->nb_blocks - 1; x++) {
 732                local->block[x].index--;
 733            }
 734        }
 735    } else {
 736        assert(block == local->block);
 737        local->block = NULL;
 738    }
 739
 740    trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
 741                           block->offset, block->length,
 742                            (uintptr_t)(block->local_host_addr + block->length),
 743                           BITS_TO_LONGS(block->nb_chunks) *
 744                               sizeof(unsigned long) * 8, block->nb_chunks);
 745
 746    g_free(old);
 747
 748    local->nb_blocks--;
 749
 750    if (local->nb_blocks && rdma->blockmap) {
 751        for (x = 0; x < local->nb_blocks; x++) {
 752            g_hash_table_insert(rdma->blockmap,
 753                                (void *)(uintptr_t)local->block[x].offset,
 754                                &local->block[x]);
 755        }
 756    }
 757
 758    return 0;
 759}
 760
 761/*
 762 * Put in the log file which RDMA device was opened and the details
 763 * associated with that device.
 764 */
 765static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
 766{
 767    struct ibv_port_attr port;
 768
 769    if (ibv_query_port(verbs, 1, &port)) {
 770        error_report("Failed to query port information");
 771        return;
 772    }
 773
 774    printf("%s RDMA Device opened: kernel name %s "
 775           "uverbs device name %s, "
 776           "infiniband_verbs class device path %s, "
 777           "infiniband class device path %s, "
 778           "transport: (%d) %s\n",
 779                who,
 780                verbs->device->name,
 781                verbs->device->dev_name,
 782                verbs->device->dev_path,
 783                verbs->device->ibdev_path,
 784                port.link_layer,
 785                (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
 786                 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
 787                    ? "Ethernet" : "Unknown"));
 788}
 789
 790/*
 791 * Put in the log file the RDMA gid addressing information,
 792 * useful for folks who have trouble understanding the
 793 * RDMA device hierarchy in the kernel.
 794 */
 795static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
 796{
 797    char sgid[33];
 798    char dgid[33];
 799    inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
 800    inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
 801    trace_qemu_rdma_dump_gid(who, sgid, dgid);
 802}
 803
 804/*
 805 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
 806 * We will try the next addrinfo struct, and fail if there are
 807 * no other valid addresses to bind against.
 808 *
 809 * If user is listening on '[::]', then we will not have a opened a device
 810 * yet and have no way of verifying if the device is RoCE or not.
 811 *
 812 * In this case, the source VM will throw an error for ALL types of
 813 * connections (both IPv4 and IPv6) if the destination machine does not have
 814 * a regular infiniband network available for use.
 815 *
 816 * The only way to guarantee that an error is thrown for broken kernels is
 817 * for the management software to choose a *specific* interface at bind time
 818 * and validate what time of hardware it is.
 819 *
 820 * Unfortunately, this puts the user in a fix:
 821 *
 822 *  If the source VM connects with an IPv4 address without knowing that the
 823 *  destination has bound to '[::]' the migration will unconditionally fail
 824 *  unless the management software is explicitly listening on the IPv4
 825 *  address while using a RoCE-based device.
 826 *
 827 *  If the source VM connects with an IPv6 address, then we're OK because we can
 828 *  throw an error on the source (and similarly on the destination).
 829 *
 830 *  But in mixed environments, this will be broken for a while until it is fixed
 831 *  inside linux.
 832 *
 833 * We do provide a *tiny* bit of help in this function: We can list all of the
 834 * devices in the system and check to see if all the devices are RoCE or
 835 * Infiniband.
 836 *
 837 * If we detect that we have a *pure* RoCE environment, then we can safely
 838 * thrown an error even if the management software has specified '[::]' as the
 839 * bind address.
 840 *
 841 * However, if there is are multiple hetergeneous devices, then we cannot make
 842 * this assumption and the user just has to be sure they know what they are
 843 * doing.
 844 *
 845 * Patches are being reviewed on linux-rdma.
 846 */
 847static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
 848{
 849    /* This bug only exists in linux, to our knowledge. */
 850#ifdef CONFIG_LINUX
 851    struct ibv_port_attr port_attr;
 852
 853    /*
 854     * Verbs are only NULL if management has bound to '[::]'.
 855     *
 856     * Let's iterate through all the devices and see if there any pure IB
 857     * devices (non-ethernet).
 858     *
 859     * If not, then we can safely proceed with the migration.
 860     * Otherwise, there are no guarantees until the bug is fixed in linux.
 861     */
 862    if (!verbs) {
 863        int num_devices, x;
 864        struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
 865        bool roce_found = false;
 866        bool ib_found = false;
 867
 868        for (x = 0; x < num_devices; x++) {
 869            verbs = ibv_open_device(dev_list[x]);
 870            if (!verbs) {
 871                if (errno == EPERM) {
 872                    continue;
 873                } else {
 874                    return -EINVAL;
 875                }
 876            }
 877
 878            if (ibv_query_port(verbs, 1, &port_attr)) {
 879                ibv_close_device(verbs);
 880                ERROR(errp, "Could not query initial IB port");
 881                return -EINVAL;
 882            }
 883
 884            if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
 885                ib_found = true;
 886            } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
 887                roce_found = true;
 888            }
 889
 890            ibv_close_device(verbs);
 891
 892        }
 893
 894        if (roce_found) {
 895            if (ib_found) {
 896                fprintf(stderr, "WARN: migrations may fail:"
 897                                " IPv6 over RoCE / iWARP in linux"
 898                                " is broken. But since you appear to have a"
 899                                " mixed RoCE / IB environment, be sure to only"
 900                                " migrate over the IB fabric until the kernel "
 901                                " fixes the bug.\n");
 902            } else {
 903                ERROR(errp, "You only have RoCE / iWARP devices in your systems"
 904                            " and your management software has specified '[::]'"
 905                            ", but IPv6 over RoCE / iWARP is not supported in Linux.");
 906                return -ENONET;
 907            }
 908        }
 909
 910        return 0;
 911    }
 912
 913    /*
 914     * If we have a verbs context, that means that some other than '[::]' was
 915     * used by the management software for binding. In which case we can
 916     * actually warn the user about a potentially broken kernel.
 917     */
 918
 919    /* IB ports start with 1, not 0 */
 920    if (ibv_query_port(verbs, 1, &port_attr)) {
 921        ERROR(errp, "Could not query initial IB port");
 922        return -EINVAL;
 923    }
 924
 925    if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
 926        ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
 927                    "(but patches on linux-rdma in progress)");
 928        return -ENONET;
 929    }
 930
 931#endif
 932
 933    return 0;
 934}
 935
 936/*
 937 * Figure out which RDMA device corresponds to the requested IP hostname
 938 * Also create the initial connection manager identifiers for opening
 939 * the connection.
 940 */
 941static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
 942{
 943    int ret;
 944    struct rdma_addrinfo *res;
 945    char port_str[16];
 946    struct rdma_cm_event *cm_event;
 947    char ip[40] = "unknown";
 948    struct rdma_addrinfo *e;
 949
 950    if (rdma->host == NULL || !strcmp(rdma->host, "")) {
 951        ERROR(errp, "RDMA hostname has not been set");
 952        return -EINVAL;
 953    }
 954
 955    /* create CM channel */
 956    rdma->channel = rdma_create_event_channel();
 957    if (!rdma->channel) {
 958        ERROR(errp, "could not create CM channel");
 959        return -EINVAL;
 960    }
 961
 962    /* create CM id */
 963    ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
 964    if (ret) {
 965        ERROR(errp, "could not create channel id");
 966        goto err_resolve_create_id;
 967    }
 968
 969    snprintf(port_str, 16, "%d", rdma->port);
 970    port_str[15] = '\0';
 971
 972    ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
 973    if (ret < 0) {
 974        ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
 975        goto err_resolve_get_addr;
 976    }
 977
 978    for (e = res; e != NULL; e = e->ai_next) {
 979        inet_ntop(e->ai_family,
 980            &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
 981        trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
 982
 983        ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
 984                RDMA_RESOLVE_TIMEOUT_MS);
 985        if (!ret) {
 986            if (e->ai_family == AF_INET6) {
 987                ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
 988                if (ret) {
 989                    continue;
 990                }
 991            }
 992            goto route;
 993        }
 994    }
 995
 996    rdma_freeaddrinfo(res);
 997    ERROR(errp, "could not resolve address %s", rdma->host);
 998    goto err_resolve_get_addr;
 999
1000route:
1001    rdma_freeaddrinfo(res);
1002    qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
1003
1004    ret = rdma_get_cm_event(rdma->channel, &cm_event);
1005    if (ret) {
1006        ERROR(errp, "could not perform event_addr_resolved");
1007        goto err_resolve_get_addr;
1008    }
1009
1010    if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1011        ERROR(errp, "result not equal to event_addr_resolved %s",
1012                rdma_event_str(cm_event->event));
1013        error_report("rdma_resolve_addr");
1014        rdma_ack_cm_event(cm_event);
1015        ret = -EINVAL;
1016        goto err_resolve_get_addr;
1017    }
1018    rdma_ack_cm_event(cm_event);
1019
1020    /* resolve route */
1021    ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1022    if (ret) {
1023        ERROR(errp, "could not resolve rdma route");
1024        goto err_resolve_get_addr;
1025    }
1026
1027    ret = rdma_get_cm_event(rdma->channel, &cm_event);
1028    if (ret) {
1029        ERROR(errp, "could not perform event_route_resolved");
1030        goto err_resolve_get_addr;
1031    }
1032    if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1033        ERROR(errp, "result not equal to event_route_resolved: %s",
1034                        rdma_event_str(cm_event->event));
1035        rdma_ack_cm_event(cm_event);
1036        ret = -EINVAL;
1037        goto err_resolve_get_addr;
1038    }
1039    rdma_ack_cm_event(cm_event);
1040    rdma->verbs = rdma->cm_id->verbs;
1041    qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1042    qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1043    return 0;
1044
1045err_resolve_get_addr:
1046    rdma_destroy_id(rdma->cm_id);
1047    rdma->cm_id = NULL;
1048err_resolve_create_id:
1049    rdma_destroy_event_channel(rdma->channel);
1050    rdma->channel = NULL;
1051    return ret;
1052}
1053
1054/*
1055 * Create protection domain and completion queues
1056 */
1057static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1058{
1059    /* allocate pd */
1060    rdma->pd = ibv_alloc_pd(rdma->verbs);
1061    if (!rdma->pd) {
1062        error_report("failed to allocate protection domain");
1063        return -1;
1064    }
1065
1066    /* create receive completion channel */
1067    rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1068    if (!rdma->recv_comp_channel) {
1069        error_report("failed to allocate receive completion channel");
1070        goto err_alloc_pd_cq;
1071    }
1072
1073    /*
1074     * Completion queue can be filled by read work requests.
1075     */
1076    rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1077                                  NULL, rdma->recv_comp_channel, 0);
1078    if (!rdma->recv_cq) {
1079        error_report("failed to allocate receive completion queue");
1080        goto err_alloc_pd_cq;
1081    }
1082
1083    /* create send completion channel */
1084    rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1085    if (!rdma->send_comp_channel) {
1086        error_report("failed to allocate send completion channel");
1087        goto err_alloc_pd_cq;
1088    }
1089
1090    rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1091                                  NULL, rdma->send_comp_channel, 0);
1092    if (!rdma->send_cq) {
1093        error_report("failed to allocate send completion queue");
1094        goto err_alloc_pd_cq;
1095    }
1096
1097    return 0;
1098
1099err_alloc_pd_cq:
1100    if (rdma->pd) {
1101        ibv_dealloc_pd(rdma->pd);
1102    }
1103    if (rdma->recv_comp_channel) {
1104        ibv_destroy_comp_channel(rdma->recv_comp_channel);
1105    }
1106    if (rdma->send_comp_channel) {
1107        ibv_destroy_comp_channel(rdma->send_comp_channel);
1108    }
1109    if (rdma->recv_cq) {
1110        ibv_destroy_cq(rdma->recv_cq);
1111        rdma->recv_cq = NULL;
1112    }
1113    rdma->pd = NULL;
1114    rdma->recv_comp_channel = NULL;
1115    rdma->send_comp_channel = NULL;
1116    return -1;
1117
1118}
1119
1120/*
1121 * Create queue pairs.
1122 */
1123static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1124{
1125    struct ibv_qp_init_attr attr = { 0 };
1126    int ret;
1127
1128    attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1129    attr.cap.max_recv_wr = 3;
1130    attr.cap.max_send_sge = 1;
1131    attr.cap.max_recv_sge = 1;
1132    attr.send_cq = rdma->send_cq;
1133    attr.recv_cq = rdma->recv_cq;
1134    attr.qp_type = IBV_QPT_RC;
1135
1136    ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1137    if (ret) {
1138        return -1;
1139    }
1140
1141    rdma->qp = rdma->cm_id->qp;
1142    return 0;
1143}
1144
1145/* Check whether On-Demand Paging is supported by RDAM device */
1146static bool rdma_support_odp(struct ibv_context *dev)
1147{
1148    struct ibv_device_attr_ex attr = {0};
1149    int ret = ibv_query_device_ex(dev, NULL, &attr);
1150    if (ret) {
1151        return false;
1152    }
1153
1154    if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1155        return true;
1156    }
1157
1158    return false;
1159}
1160
1161/*
1162 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1163 * The responder mr registering with ODP will sent RNR NAK back to
1164 * the requester in the face of the page fault.
1165 */
1166static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1167                                         uint32_t len,  uint32_t lkey,
1168                                         const char *name, bool wr)
1169{
1170#ifdef HAVE_IBV_ADVISE_MR
1171    int ret;
1172    int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1173                 IBV_ADVISE_MR_ADVICE_PREFETCH;
1174    struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1175
1176    ret = ibv_advise_mr(pd, advice,
1177                        IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1178    /* ignore the error */
1179    if (ret) {
1180        trace_qemu_rdma_advise_mr(name, len, addr, strerror(errno));
1181    } else {
1182        trace_qemu_rdma_advise_mr(name, len, addr, "successed");
1183    }
1184#endif
1185}
1186
1187static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1188{
1189    int i;
1190    RDMALocalBlocks *local = &rdma->local_ram_blocks;
1191
1192    for (i = 0; i < local->nb_blocks; i++) {
1193        int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1194
1195        local->block[i].mr =
1196            ibv_reg_mr(rdma->pd,
1197                    local->block[i].local_host_addr,
1198                    local->block[i].length, access
1199                    );
1200
1201        if (!local->block[i].mr &&
1202            errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1203                access |= IBV_ACCESS_ON_DEMAND;
1204                /* register ODP mr */
1205                local->block[i].mr =
1206                    ibv_reg_mr(rdma->pd,
1207                               local->block[i].local_host_addr,
1208                               local->block[i].length, access);
1209                trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1210
1211                if (local->block[i].mr) {
1212                    qemu_rdma_advise_prefetch_mr(rdma->pd,
1213                                    (uintptr_t)local->block[i].local_host_addr,
1214                                    local->block[i].length,
1215                                    local->block[i].mr->lkey,
1216                                    local->block[i].block_name,
1217                                    true);
1218                }
1219        }
1220
1221        if (!local->block[i].mr) {
1222            perror("Failed to register local dest ram block!");
1223            break;
1224        }
1225        rdma->total_registrations++;
1226    }
1227
1228    if (i >= local->nb_blocks) {
1229        return 0;
1230    }
1231
1232    for (i--; i >= 0; i--) {
1233        ibv_dereg_mr(local->block[i].mr);
1234        local->block[i].mr = NULL;
1235        rdma->total_registrations--;
1236    }
1237
1238    return -1;
1239
1240}
1241
1242/*
1243 * Find the ram block that corresponds to the page requested to be
1244 * transmitted by QEMU.
1245 *
1246 * Once the block is found, also identify which 'chunk' within that
1247 * block that the page belongs to.
1248 *
1249 * This search cannot fail or the migration will fail.
1250 */
1251static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1252                                      uintptr_t block_offset,
1253                                      uint64_t offset,
1254                                      uint64_t length,
1255                                      uint64_t *block_index,
1256                                      uint64_t *chunk_index)
1257{
1258    uint64_t current_addr = block_offset + offset;
1259    RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1260                                                (void *) block_offset);
1261    assert(block);
1262    assert(current_addr >= block->offset);
1263    assert((current_addr + length) <= (block->offset + block->length));
1264
1265    *block_index = block->index;
1266    *chunk_index = ram_chunk_index(block->local_host_addr,
1267                block->local_host_addr + (current_addr - block->offset));
1268
1269    return 0;
1270}
1271
1272/*
1273 * Register a chunk with IB. If the chunk was already registered
1274 * previously, then skip.
1275 *
1276 * Also return the keys associated with the registration needed
1277 * to perform the actual RDMA operation.
1278 */
1279static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1280        RDMALocalBlock *block, uintptr_t host_addr,
1281        uint32_t *lkey, uint32_t *rkey, int chunk,
1282        uint8_t *chunk_start, uint8_t *chunk_end)
1283{
1284    if (block->mr) {
1285        if (lkey) {
1286            *lkey = block->mr->lkey;
1287        }
1288        if (rkey) {
1289            *rkey = block->mr->rkey;
1290        }
1291        return 0;
1292    }
1293
1294    /* allocate memory to store chunk MRs */
1295    if (!block->pmr) {
1296        block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1297    }
1298
1299    /*
1300     * If 'rkey', then we're the destination, so grant access to the source.
1301     *
1302     * If 'lkey', then we're the source VM, so grant access only to ourselves.
1303     */
1304    if (!block->pmr[chunk]) {
1305        uint64_t len = chunk_end - chunk_start;
1306        int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1307                     0;
1308
1309        trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1310
1311        block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1312        if (!block->pmr[chunk] &&
1313            errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1314            access |= IBV_ACCESS_ON_DEMAND;
1315            /* register ODP mr */
1316            block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1317            trace_qemu_rdma_register_odp_mr(block->block_name);
1318
1319            if (block->pmr[chunk]) {
1320                qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1321                                            len, block->pmr[chunk]->lkey,
1322                                            block->block_name, rkey);
1323
1324            }
1325        }
1326    }
1327    if (!block->pmr[chunk]) {
1328        perror("Failed to register chunk!");
1329        fprintf(stderr, "Chunk details: block: %d chunk index %d"
1330                        " start %" PRIuPTR " end %" PRIuPTR
1331                        " host %" PRIuPTR
1332                        " local %" PRIuPTR " registrations: %d\n",
1333                        block->index, chunk, (uintptr_t)chunk_start,
1334                        (uintptr_t)chunk_end, host_addr,
1335                        (uintptr_t)block->local_host_addr,
1336                        rdma->total_registrations);
1337        return -1;
1338    }
1339    rdma->total_registrations++;
1340
1341    if (lkey) {
1342        *lkey = block->pmr[chunk]->lkey;
1343    }
1344    if (rkey) {
1345        *rkey = block->pmr[chunk]->rkey;
1346    }
1347    return 0;
1348}
1349
1350/*
1351 * Register (at connection time) the memory used for control
1352 * channel messages.
1353 */
1354static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1355{
1356    rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1357            rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1358            IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1359    if (rdma->wr_data[idx].control_mr) {
1360        rdma->total_registrations++;
1361        return 0;
1362    }
1363    error_report("qemu_rdma_reg_control failed");
1364    return -1;
1365}
1366
1367const char *print_wrid(int wrid)
1368{
1369    if (wrid >= RDMA_WRID_RECV_CONTROL) {
1370        return wrid_desc[RDMA_WRID_RECV_CONTROL];
1371    }
1372    return wrid_desc[wrid];
1373}
1374
1375/*
1376 * Perform a non-optimized memory unregistration after every transfer
1377 * for demonstration purposes, only if pin-all is not requested.
1378 *
1379 * Potential optimizations:
1380 * 1. Start a new thread to run this function continuously
1381        - for bit clearing
1382        - and for receipt of unregister messages
1383 * 2. Use an LRU.
1384 * 3. Use workload hints.
1385 */
1386static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1387{
1388    while (rdma->unregistrations[rdma->unregister_current]) {
1389        int ret;
1390        uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1391        uint64_t chunk =
1392            (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1393        uint64_t index =
1394            (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1395        RDMALocalBlock *block =
1396            &(rdma->local_ram_blocks.block[index]);
1397        RDMARegister reg = { .current_index = index };
1398        RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1399                                 };
1400        RDMAControlHeader head = { .len = sizeof(RDMARegister),
1401                                   .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1402                                   .repeat = 1,
1403                                 };
1404
1405        trace_qemu_rdma_unregister_waiting_proc(chunk,
1406                                                rdma->unregister_current);
1407
1408        rdma->unregistrations[rdma->unregister_current] = 0;
1409        rdma->unregister_current++;
1410
1411        if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1412            rdma->unregister_current = 0;
1413        }
1414
1415
1416        /*
1417         * Unregistration is speculative (because migration is single-threaded
1418         * and we cannot break the protocol's inifinband message ordering).
1419         * Thus, if the memory is currently being used for transmission,
1420         * then abort the attempt to unregister and try again
1421         * later the next time a completion is received for this memory.
1422         */
1423        clear_bit(chunk, block->unregister_bitmap);
1424
1425        if (test_bit(chunk, block->transit_bitmap)) {
1426            trace_qemu_rdma_unregister_waiting_inflight(chunk);
1427            continue;
1428        }
1429
1430        trace_qemu_rdma_unregister_waiting_send(chunk);
1431
1432        ret = ibv_dereg_mr(block->pmr[chunk]);
1433        block->pmr[chunk] = NULL;
1434        block->remote_keys[chunk] = 0;
1435
1436        if (ret != 0) {
1437            perror("unregistration chunk failed");
1438            return -ret;
1439        }
1440        rdma->total_registrations--;
1441
1442        reg.key.chunk = chunk;
1443        register_to_network(rdma, &reg);
1444        ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1445                                &resp, NULL, NULL);
1446        if (ret < 0) {
1447            return ret;
1448        }
1449
1450        trace_qemu_rdma_unregister_waiting_complete(chunk);
1451    }
1452
1453    return 0;
1454}
1455
1456static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1457                                         uint64_t chunk)
1458{
1459    uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1460
1461    result |= (index << RDMA_WRID_BLOCK_SHIFT);
1462    result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1463
1464    return result;
1465}
1466
1467/*
1468 * Consult the connection manager to see a work request
1469 * (of any kind) has completed.
1470 * Return the work request ID that completed.
1471 */
1472static uint64_t qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1473                               uint64_t *wr_id_out, uint32_t *byte_len)
1474{
1475    int ret;
1476    struct ibv_wc wc;
1477    uint64_t wr_id;
1478
1479    ret = ibv_poll_cq(cq, 1, &wc);
1480
1481    if (!ret) {
1482        *wr_id_out = RDMA_WRID_NONE;
1483        return 0;
1484    }
1485
1486    if (ret < 0) {
1487        error_report("ibv_poll_cq return %d", ret);
1488        return ret;
1489    }
1490
1491    wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1492
1493    if (wc.status != IBV_WC_SUCCESS) {
1494        fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1495                        wc.status, ibv_wc_status_str(wc.status));
1496        fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1497
1498        return -1;
1499    }
1500
1501    if (rdma->control_ready_expected &&
1502        (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1503        trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1504                  wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1505        rdma->control_ready_expected = 0;
1506    }
1507
1508    if (wr_id == RDMA_WRID_RDMA_WRITE) {
1509        uint64_t chunk =
1510            (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1511        uint64_t index =
1512            (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1513        RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1514
1515        trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1516                                   index, chunk, block->local_host_addr,
1517                                   (void *)(uintptr_t)block->remote_host_addr);
1518
1519        clear_bit(chunk, block->transit_bitmap);
1520
1521        if (rdma->nb_sent > 0) {
1522            rdma->nb_sent--;
1523        }
1524    } else {
1525        trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1526    }
1527
1528    *wr_id_out = wc.wr_id;
1529    if (byte_len) {
1530        *byte_len = wc.byte_len;
1531    }
1532
1533    return  0;
1534}
1535
1536/* Wait for activity on the completion channel.
1537 * Returns 0 on success, none-0 on error.
1538 */
1539static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1540                                       struct ibv_comp_channel *comp_channel)
1541{
1542    struct rdma_cm_event *cm_event;
1543    int ret = -1;
1544
1545    /*
1546     * Coroutine doesn't start until migration_fd_process_incoming()
1547     * so don't yield unless we know we're running inside of a coroutine.
1548     */
1549    if (rdma->migration_started_on_destination &&
1550        migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1551        yield_until_fd_readable(comp_channel->fd);
1552    } else {
1553        /* This is the source side, we're in a separate thread
1554         * or destination prior to migration_fd_process_incoming()
1555         * after postcopy, the destination also in a separate thread.
1556         * we can't yield; so we have to poll the fd.
1557         * But we need to be able to handle 'cancel' or an error
1558         * without hanging forever.
1559         */
1560        while (!rdma->error_state  && !rdma->received_error) {
1561            GPollFD pfds[2];
1562            pfds[0].fd = comp_channel->fd;
1563            pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1564            pfds[0].revents = 0;
1565
1566            pfds[1].fd = rdma->channel->fd;
1567            pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1568            pfds[1].revents = 0;
1569
1570            /* 0.1s timeout, should be fine for a 'cancel' */
1571            switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1572            case 2:
1573            case 1: /* fd active */
1574                if (pfds[0].revents) {
1575                    return 0;
1576                }
1577
1578                if (pfds[1].revents) {
1579                    ret = rdma_get_cm_event(rdma->channel, &cm_event);
1580                    if (ret) {
1581                        error_report("failed to get cm event while wait "
1582                                     "completion channel");
1583                        return -EPIPE;
1584                    }
1585
1586                    error_report("receive cm event while wait comp channel,"
1587                                 "cm event is %d", cm_event->event);
1588                    if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1589                        cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1590                        rdma_ack_cm_event(cm_event);
1591                        return -EPIPE;
1592                    }
1593                    rdma_ack_cm_event(cm_event);
1594                }
1595                break;
1596
1597            case 0: /* Timeout, go around again */
1598                break;
1599
1600            default: /* Error of some type -
1601                      * I don't trust errno from qemu_poll_ns
1602                     */
1603                error_report("%s: poll failed", __func__);
1604                return -EPIPE;
1605            }
1606
1607            if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1608                /* Bail out and let the cancellation happen */
1609                return -EPIPE;
1610            }
1611        }
1612    }
1613
1614    if (rdma->received_error) {
1615        return -EPIPE;
1616    }
1617    return rdma->error_state;
1618}
1619
1620static struct ibv_comp_channel *to_channel(RDMAContext *rdma, int wrid)
1621{
1622    return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1623           rdma->recv_comp_channel;
1624}
1625
1626static struct ibv_cq *to_cq(RDMAContext *rdma, int wrid)
1627{
1628    return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1629}
1630
1631/*
1632 * Block until the next work request has completed.
1633 *
1634 * First poll to see if a work request has already completed,
1635 * otherwise block.
1636 *
1637 * If we encounter completed work requests for IDs other than
1638 * the one we're interested in, then that's generally an error.
1639 *
1640 * The only exception is actual RDMA Write completions. These
1641 * completions only need to be recorded, but do not actually
1642 * need further processing.
1643 */
1644static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1645                                    uint32_t *byte_len)
1646{
1647    int num_cq_events = 0, ret = 0;
1648    struct ibv_cq *cq;
1649    void *cq_ctx;
1650    uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1651    struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1652    struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1653
1654    if (ibv_req_notify_cq(poll_cq, 0)) {
1655        return -1;
1656    }
1657    /* poll cq first */
1658    while (wr_id != wrid_requested) {
1659        ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1660        if (ret < 0) {
1661            return ret;
1662        }
1663
1664        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1665
1666        if (wr_id == RDMA_WRID_NONE) {
1667            break;
1668        }
1669        if (wr_id != wrid_requested) {
1670            trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1671                       wrid_requested, print_wrid(wr_id), wr_id);
1672        }
1673    }
1674
1675    if (wr_id == wrid_requested) {
1676        return 0;
1677    }
1678
1679    while (1) {
1680        ret = qemu_rdma_wait_comp_channel(rdma, ch);
1681        if (ret) {
1682            goto err_block_for_wrid;
1683        }
1684
1685        ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1686        if (ret) {
1687            perror("ibv_get_cq_event");
1688            goto err_block_for_wrid;
1689        }
1690
1691        num_cq_events++;
1692
1693        ret = -ibv_req_notify_cq(cq, 0);
1694        if (ret) {
1695            goto err_block_for_wrid;
1696        }
1697
1698        while (wr_id != wrid_requested) {
1699            ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1700            if (ret < 0) {
1701                goto err_block_for_wrid;
1702            }
1703
1704            wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1705
1706            if (wr_id == RDMA_WRID_NONE) {
1707                break;
1708            }
1709            if (wr_id != wrid_requested) {
1710                trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1711                                   wrid_requested, print_wrid(wr_id), wr_id);
1712            }
1713        }
1714
1715        if (wr_id == wrid_requested) {
1716            goto success_block_for_wrid;
1717        }
1718    }
1719
1720success_block_for_wrid:
1721    if (num_cq_events) {
1722        ibv_ack_cq_events(cq, num_cq_events);
1723    }
1724    return 0;
1725
1726err_block_for_wrid:
1727    if (num_cq_events) {
1728        ibv_ack_cq_events(cq, num_cq_events);
1729    }
1730
1731    rdma->error_state = ret;
1732    return ret;
1733}
1734
1735/*
1736 * Post a SEND message work request for the control channel
1737 * containing some data and block until the post completes.
1738 */
1739static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1740                                       RDMAControlHeader *head)
1741{
1742    int ret = 0;
1743    RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1744    struct ibv_send_wr *bad_wr;
1745    struct ibv_sge sge = {
1746                           .addr = (uintptr_t)(wr->control),
1747                           .length = head->len + sizeof(RDMAControlHeader),
1748                           .lkey = wr->control_mr->lkey,
1749                         };
1750    struct ibv_send_wr send_wr = {
1751                                   .wr_id = RDMA_WRID_SEND_CONTROL,
1752                                   .opcode = IBV_WR_SEND,
1753                                   .send_flags = IBV_SEND_SIGNALED,
1754                                   .sg_list = &sge,
1755                                   .num_sge = 1,
1756                                };
1757
1758    trace_qemu_rdma_post_send_control(control_desc(head->type));
1759
1760    /*
1761     * We don't actually need to do a memcpy() in here if we used
1762     * the "sge" properly, but since we're only sending control messages
1763     * (not RAM in a performance-critical path), then its OK for now.
1764     *
1765     * The copy makes the RDMAControlHeader simpler to manipulate
1766     * for the time being.
1767     */
1768    assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1769    memcpy(wr->control, head, sizeof(RDMAControlHeader));
1770    control_to_network((void *) wr->control);
1771
1772    if (buf) {
1773        memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1774    }
1775
1776
1777    ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1778
1779    if (ret > 0) {
1780        error_report("Failed to use post IB SEND for control");
1781        return -ret;
1782    }
1783
1784    ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1785    if (ret < 0) {
1786        error_report("rdma migration: send polling control error");
1787    }
1788
1789    return ret;
1790}
1791
1792/*
1793 * Post a RECV work request in anticipation of some future receipt
1794 * of data on the control channel.
1795 */
1796static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1797{
1798    struct ibv_recv_wr *bad_wr;
1799    struct ibv_sge sge = {
1800                            .addr = (uintptr_t)(rdma->wr_data[idx].control),
1801                            .length = RDMA_CONTROL_MAX_BUFFER,
1802                            .lkey = rdma->wr_data[idx].control_mr->lkey,
1803                         };
1804
1805    struct ibv_recv_wr recv_wr = {
1806                                    .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1807                                    .sg_list = &sge,
1808                                    .num_sge = 1,
1809                                 };
1810
1811
1812    if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1813        return -1;
1814    }
1815
1816    return 0;
1817}
1818
1819/*
1820 * Block and wait for a RECV control channel message to arrive.
1821 */
1822static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1823                RDMAControlHeader *head, int expecting, int idx)
1824{
1825    uint32_t byte_len;
1826    int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1827                                       &byte_len);
1828
1829    if (ret < 0) {
1830        error_report("rdma migration: recv polling control error!");
1831        return ret;
1832    }
1833
1834    network_to_control((void *) rdma->wr_data[idx].control);
1835    memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1836
1837    trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1838
1839    if (expecting == RDMA_CONTROL_NONE) {
1840        trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1841                                             head->type);
1842    } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1843        error_report("Was expecting a %s (%d) control message"
1844                ", but got: %s (%d), length: %d",
1845                control_desc(expecting), expecting,
1846                control_desc(head->type), head->type, head->len);
1847        if (head->type == RDMA_CONTROL_ERROR) {
1848            rdma->received_error = true;
1849        }
1850        return -EIO;
1851    }
1852    if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1853        error_report("too long length: %d", head->len);
1854        return -EINVAL;
1855    }
1856    if (sizeof(*head) + head->len != byte_len) {
1857        error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1858        return -EINVAL;
1859    }
1860
1861    return 0;
1862}
1863
1864/*
1865 * When a RECV work request has completed, the work request's
1866 * buffer is pointed at the header.
1867 *
1868 * This will advance the pointer to the data portion
1869 * of the control message of the work request's buffer that
1870 * was populated after the work request finished.
1871 */
1872static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1873                                  RDMAControlHeader *head)
1874{
1875    rdma->wr_data[idx].control_len = head->len;
1876    rdma->wr_data[idx].control_curr =
1877        rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1878}
1879
1880/*
1881 * This is an 'atomic' high-level operation to deliver a single, unified
1882 * control-channel message.
1883 *
1884 * Additionally, if the user is expecting some kind of reply to this message,
1885 * they can request a 'resp' response message be filled in by posting an
1886 * additional work request on behalf of the user and waiting for an additional
1887 * completion.
1888 *
1889 * The extra (optional) response is used during registration to us from having
1890 * to perform an *additional* exchange of message just to provide a response by
1891 * instead piggy-backing on the acknowledgement.
1892 */
1893static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1894                                   uint8_t *data, RDMAControlHeader *resp,
1895                                   int *resp_idx,
1896                                   int (*callback)(RDMAContext *rdma))
1897{
1898    int ret = 0;
1899
1900    /*
1901     * Wait until the dest is ready before attempting to deliver the message
1902     * by waiting for a READY message.
1903     */
1904    if (rdma->control_ready_expected) {
1905        RDMAControlHeader resp;
1906        ret = qemu_rdma_exchange_get_response(rdma,
1907                                    &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1908        if (ret < 0) {
1909            return ret;
1910        }
1911    }
1912
1913    /*
1914     * If the user is expecting a response, post a WR in anticipation of it.
1915     */
1916    if (resp) {
1917        ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1918        if (ret) {
1919            error_report("rdma migration: error posting"
1920                    " extra control recv for anticipated result!");
1921            return ret;
1922        }
1923    }
1924
1925    /*
1926     * Post a WR to replace the one we just consumed for the READY message.
1927     */
1928    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1929    if (ret) {
1930        error_report("rdma migration: error posting first control recv!");
1931        return ret;
1932    }
1933
1934    /*
1935     * Deliver the control message that was requested.
1936     */
1937    ret = qemu_rdma_post_send_control(rdma, data, head);
1938
1939    if (ret < 0) {
1940        error_report("Failed to send control buffer!");
1941        return ret;
1942    }
1943
1944    /*
1945     * If we're expecting a response, block and wait for it.
1946     */
1947    if (resp) {
1948        if (callback) {
1949            trace_qemu_rdma_exchange_send_issue_callback();
1950            ret = callback(rdma);
1951            if (ret < 0) {
1952                return ret;
1953            }
1954        }
1955
1956        trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1957        ret = qemu_rdma_exchange_get_response(rdma, resp,
1958                                              resp->type, RDMA_WRID_DATA);
1959
1960        if (ret < 0) {
1961            return ret;
1962        }
1963
1964        qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1965        if (resp_idx) {
1966            *resp_idx = RDMA_WRID_DATA;
1967        }
1968        trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1969    }
1970
1971    rdma->control_ready_expected = 1;
1972
1973    return 0;
1974}
1975
1976/*
1977 * This is an 'atomic' high-level operation to receive a single, unified
1978 * control-channel message.
1979 */
1980static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1981                                int expecting)
1982{
1983    RDMAControlHeader ready = {
1984                                .len = 0,
1985                                .type = RDMA_CONTROL_READY,
1986                                .repeat = 1,
1987                              };
1988    int ret;
1989
1990    /*
1991     * Inform the source that we're ready to receive a message.
1992     */
1993    ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1994
1995    if (ret < 0) {
1996        error_report("Failed to send control buffer!");
1997        return ret;
1998    }
1999
2000    /*
2001     * Block and wait for the message.
2002     */
2003    ret = qemu_rdma_exchange_get_response(rdma, head,
2004                                          expecting, RDMA_WRID_READY);
2005
2006    if (ret < 0) {
2007        return ret;
2008    }
2009
2010    qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
2011
2012    /*
2013     * Post a new RECV work request to replace the one we just consumed.
2014     */
2015    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2016    if (ret) {
2017        error_report("rdma migration: error posting second control recv!");
2018        return ret;
2019    }
2020
2021    return 0;
2022}
2023
2024/*
2025 * Write an actual chunk of memory using RDMA.
2026 *
2027 * If we're using dynamic registration on the dest-side, we have to
2028 * send a registration command first.
2029 */
2030static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
2031                               int current_index, uint64_t current_addr,
2032                               uint64_t length)
2033{
2034    struct ibv_sge sge;
2035    struct ibv_send_wr send_wr = { 0 };
2036    struct ibv_send_wr *bad_wr;
2037    int reg_result_idx, ret, count = 0;
2038    uint64_t chunk, chunks;
2039    uint8_t *chunk_start, *chunk_end;
2040    RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2041    RDMARegister reg;
2042    RDMARegisterResult *reg_result;
2043    RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2044    RDMAControlHeader head = { .len = sizeof(RDMARegister),
2045                               .type = RDMA_CONTROL_REGISTER_REQUEST,
2046                               .repeat = 1,
2047                             };
2048
2049retry:
2050    sge.addr = (uintptr_t)(block->local_host_addr +
2051                            (current_addr - block->offset));
2052    sge.length = length;
2053
2054    chunk = ram_chunk_index(block->local_host_addr,
2055                            (uint8_t *)(uintptr_t)sge.addr);
2056    chunk_start = ram_chunk_start(block, chunk);
2057
2058    if (block->is_ram_block) {
2059        chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2060
2061        if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2062            chunks--;
2063        }
2064    } else {
2065        chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2066
2067        if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2068            chunks--;
2069        }
2070    }
2071
2072    trace_qemu_rdma_write_one_top(chunks + 1,
2073                                  (chunks + 1) *
2074                                  (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2075
2076    chunk_end = ram_chunk_end(block, chunk + chunks);
2077
2078
2079    while (test_bit(chunk, block->transit_bitmap)) {
2080        (void)count;
2081        trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2082                sge.addr, length, rdma->nb_sent, block->nb_chunks);
2083
2084        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2085
2086        if (ret < 0) {
2087            error_report("Failed to Wait for previous write to complete "
2088                    "block %d chunk %" PRIu64
2089                    " current %" PRIu64 " len %" PRIu64 " %d",
2090                    current_index, chunk, sge.addr, length, rdma->nb_sent);
2091            return ret;
2092        }
2093    }
2094
2095    if (!rdma->pin_all || !block->is_ram_block) {
2096        if (!block->remote_keys[chunk]) {
2097            /*
2098             * This chunk has not yet been registered, so first check to see
2099             * if the entire chunk is zero. If so, tell the other size to
2100             * memset() + madvise() the entire chunk without RDMA.
2101             */
2102
2103            if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2104                RDMACompress comp = {
2105                                        .offset = current_addr,
2106                                        .value = 0,
2107                                        .block_idx = current_index,
2108                                        .length = length,
2109                                    };
2110
2111                head.len = sizeof(comp);
2112                head.type = RDMA_CONTROL_COMPRESS;
2113
2114                trace_qemu_rdma_write_one_zero(chunk, sge.length,
2115                                               current_index, current_addr);
2116
2117                compress_to_network(rdma, &comp);
2118                ret = qemu_rdma_exchange_send(rdma, &head,
2119                                (uint8_t *) &comp, NULL, NULL, NULL);
2120
2121                if (ret < 0) {
2122                    return -EIO;
2123                }
2124
2125                stat64_add(&mig_stats.zero_pages,
2126                           sge.length / qemu_target_page_size());
2127
2128                return 1;
2129            }
2130
2131            /*
2132             * Otherwise, tell other side to register.
2133             */
2134            reg.current_index = current_index;
2135            if (block->is_ram_block) {
2136                reg.key.current_addr = current_addr;
2137            } else {
2138                reg.key.chunk = chunk;
2139            }
2140            reg.chunks = chunks;
2141
2142            trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2143                                              current_addr);
2144
2145            register_to_network(rdma, &reg);
2146            ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2147                                    &resp, &reg_result_idx, NULL);
2148            if (ret < 0) {
2149                return ret;
2150            }
2151
2152            /* try to overlap this single registration with the one we sent. */
2153            if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2154                                                &sge.lkey, NULL, chunk,
2155                                                chunk_start, chunk_end)) {
2156                error_report("cannot get lkey");
2157                return -EINVAL;
2158            }
2159
2160            reg_result = (RDMARegisterResult *)
2161                    rdma->wr_data[reg_result_idx].control_curr;
2162
2163            network_to_result(reg_result);
2164
2165            trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2166                                                 reg_result->rkey, chunk);
2167
2168            block->remote_keys[chunk] = reg_result->rkey;
2169            block->remote_host_addr = reg_result->host_addr;
2170        } else {
2171            /* already registered before */
2172            if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2173                                                &sge.lkey, NULL, chunk,
2174                                                chunk_start, chunk_end)) {
2175                error_report("cannot get lkey!");
2176                return -EINVAL;
2177            }
2178        }
2179
2180        send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2181    } else {
2182        send_wr.wr.rdma.rkey = block->remote_rkey;
2183
2184        if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2185                                                     &sge.lkey, NULL, chunk,
2186                                                     chunk_start, chunk_end)) {
2187            error_report("cannot get lkey!");
2188            return -EINVAL;
2189        }
2190    }
2191
2192    /*
2193     * Encode the ram block index and chunk within this wrid.
2194     * We will use this information at the time of completion
2195     * to figure out which bitmap to check against and then which
2196     * chunk in the bitmap to look for.
2197     */
2198    send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2199                                        current_index, chunk);
2200
2201    send_wr.opcode = IBV_WR_RDMA_WRITE;
2202    send_wr.send_flags = IBV_SEND_SIGNALED;
2203    send_wr.sg_list = &sge;
2204    send_wr.num_sge = 1;
2205    send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2206                                (current_addr - block->offset);
2207
2208    trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2209                                   sge.length);
2210
2211    /*
2212     * ibv_post_send() does not return negative error numbers,
2213     * per the specification they are positive - no idea why.
2214     */
2215    ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2216
2217    if (ret == ENOMEM) {
2218        trace_qemu_rdma_write_one_queue_full();
2219        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2220        if (ret < 0) {
2221            error_report("rdma migration: failed to make "
2222                         "room in full send queue! %d", ret);
2223            return ret;
2224        }
2225
2226        goto retry;
2227
2228    } else if (ret > 0) {
2229        perror("rdma migration: post rdma write failed");
2230        return -ret;
2231    }
2232
2233    set_bit(chunk, block->transit_bitmap);
2234    stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size());
2235    ram_transferred_add(sge.length);
2236    qemu_file_credit_transfer(f, sge.length);
2237    rdma->total_writes++;
2238
2239    return 0;
2240}
2241
2242/*
2243 * Push out any unwritten RDMA operations.
2244 *
2245 * We support sending out multiple chunks at the same time.
2246 * Not all of them need to get signaled in the completion queue.
2247 */
2248static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2249{
2250    int ret;
2251
2252    if (!rdma->current_length) {
2253        return 0;
2254    }
2255
2256    ret = qemu_rdma_write_one(f, rdma,
2257            rdma->current_index, rdma->current_addr, rdma->current_length);
2258
2259    if (ret < 0) {
2260        return ret;
2261    }
2262
2263    if (ret == 0) {
2264        rdma->nb_sent++;
2265        trace_qemu_rdma_write_flush(rdma->nb_sent);
2266    }
2267
2268    rdma->current_length = 0;
2269    rdma->current_addr = 0;
2270
2271    return 0;
2272}
2273
2274static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2275                    uint64_t offset, uint64_t len)
2276{
2277    RDMALocalBlock *block;
2278    uint8_t *host_addr;
2279    uint8_t *chunk_end;
2280
2281    if (rdma->current_index < 0) {
2282        return 0;
2283    }
2284
2285    if (rdma->current_chunk < 0) {
2286        return 0;
2287    }
2288
2289    block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2290    host_addr = block->local_host_addr + (offset - block->offset);
2291    chunk_end = ram_chunk_end(block, rdma->current_chunk);
2292
2293    if (rdma->current_length == 0) {
2294        return 0;
2295    }
2296
2297    /*
2298     * Only merge into chunk sequentially.
2299     */
2300    if (offset != (rdma->current_addr + rdma->current_length)) {
2301        return 0;
2302    }
2303
2304    if (offset < block->offset) {
2305        return 0;
2306    }
2307
2308    if ((offset + len) > (block->offset + block->length)) {
2309        return 0;
2310    }
2311
2312    if ((host_addr + len) > chunk_end) {
2313        return 0;
2314    }
2315
2316    return 1;
2317}
2318
2319/*
2320 * We're not actually writing here, but doing three things:
2321 *
2322 * 1. Identify the chunk the buffer belongs to.
2323 * 2. If the chunk is full or the buffer doesn't belong to the current
2324 *    chunk, then start a new chunk and flush() the old chunk.
2325 * 3. To keep the hardware busy, we also group chunks into batches
2326 *    and only require that a batch gets acknowledged in the completion
2327 *    queue instead of each individual chunk.
2328 */
2329static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2330                           uint64_t block_offset, uint64_t offset,
2331                           uint64_t len)
2332{
2333    uint64_t current_addr = block_offset + offset;
2334    uint64_t index = rdma->current_index;
2335    uint64_t chunk = rdma->current_chunk;
2336    int ret;
2337
2338    /* If we cannot merge it, we flush the current buffer first. */
2339    if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2340        ret = qemu_rdma_write_flush(f, rdma);
2341        if (ret) {
2342            return ret;
2343        }
2344        rdma->current_length = 0;
2345        rdma->current_addr = current_addr;
2346
2347        ret = qemu_rdma_search_ram_block(rdma, block_offset,
2348                                         offset, len, &index, &chunk);
2349        if (ret) {
2350            error_report("ram block search failed");
2351            return ret;
2352        }
2353        rdma->current_index = index;
2354        rdma->current_chunk = chunk;
2355    }
2356
2357    /* merge it */
2358    rdma->current_length += len;
2359
2360    /* flush it if buffer is too large */
2361    if (rdma->current_length >= RDMA_MERGE_MAX) {
2362        return qemu_rdma_write_flush(f, rdma);
2363    }
2364
2365    return 0;
2366}
2367
2368static void qemu_rdma_cleanup(RDMAContext *rdma)
2369{
2370    int idx;
2371
2372    if (rdma->cm_id && rdma->connected) {
2373        if ((rdma->error_state ||
2374             migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2375            !rdma->received_error) {
2376            RDMAControlHeader head = { .len = 0,
2377                                       .type = RDMA_CONTROL_ERROR,
2378                                       .repeat = 1,
2379                                     };
2380            error_report("Early error. Sending error.");
2381            qemu_rdma_post_send_control(rdma, NULL, &head);
2382        }
2383
2384        rdma_disconnect(rdma->cm_id);
2385        trace_qemu_rdma_cleanup_disconnect();
2386        rdma->connected = false;
2387    }
2388
2389    if (rdma->channel) {
2390        qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2391    }
2392    g_free(rdma->dest_blocks);
2393    rdma->dest_blocks = NULL;
2394
2395    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2396        if (rdma->wr_data[idx].control_mr) {
2397            rdma->total_registrations--;
2398            ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2399        }
2400        rdma->wr_data[idx].control_mr = NULL;
2401    }
2402
2403    if (rdma->local_ram_blocks.block) {
2404        while (rdma->local_ram_blocks.nb_blocks) {
2405            rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2406        }
2407    }
2408
2409    if (rdma->qp) {
2410        rdma_destroy_qp(rdma->cm_id);
2411        rdma->qp = NULL;
2412    }
2413    if (rdma->recv_cq) {
2414        ibv_destroy_cq(rdma->recv_cq);
2415        rdma->recv_cq = NULL;
2416    }
2417    if (rdma->send_cq) {
2418        ibv_destroy_cq(rdma->send_cq);
2419        rdma->send_cq = NULL;
2420    }
2421    if (rdma->recv_comp_channel) {
2422        ibv_destroy_comp_channel(rdma->recv_comp_channel);
2423        rdma->recv_comp_channel = NULL;
2424    }
2425    if (rdma->send_comp_channel) {
2426        ibv_destroy_comp_channel(rdma->send_comp_channel);
2427        rdma->send_comp_channel = NULL;
2428    }
2429    if (rdma->pd) {
2430        ibv_dealloc_pd(rdma->pd);
2431        rdma->pd = NULL;
2432    }
2433    if (rdma->cm_id) {
2434        rdma_destroy_id(rdma->cm_id);
2435        rdma->cm_id = NULL;
2436    }
2437
2438    /* the destination side, listen_id and channel is shared */
2439    if (rdma->listen_id) {
2440        if (!rdma->is_return_path) {
2441            rdma_destroy_id(rdma->listen_id);
2442        }
2443        rdma->listen_id = NULL;
2444
2445        if (rdma->channel) {
2446            if (!rdma->is_return_path) {
2447                rdma_destroy_event_channel(rdma->channel);
2448            }
2449            rdma->channel = NULL;
2450        }
2451    }
2452
2453    if (rdma->channel) {
2454        rdma_destroy_event_channel(rdma->channel);
2455        rdma->channel = NULL;
2456    }
2457    g_free(rdma->host);
2458    g_free(rdma->host_port);
2459    rdma->host = NULL;
2460    rdma->host_port = NULL;
2461}
2462
2463
2464static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2465{
2466    int ret, idx;
2467    Error *local_err = NULL, **temp = &local_err;
2468
2469    /*
2470     * Will be validated against destination's actual capabilities
2471     * after the connect() completes.
2472     */
2473    rdma->pin_all = pin_all;
2474
2475    ret = qemu_rdma_resolve_host(rdma, temp);
2476    if (ret) {
2477        goto err_rdma_source_init;
2478    }
2479
2480    ret = qemu_rdma_alloc_pd_cq(rdma);
2481    if (ret) {
2482        ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2483                    " limits may be too low. Please check $ ulimit -a # and "
2484                    "search for 'ulimit -l' in the output");
2485        goto err_rdma_source_init;
2486    }
2487
2488    ret = qemu_rdma_alloc_qp(rdma);
2489    if (ret) {
2490        ERROR(temp, "rdma migration: error allocating qp!");
2491        goto err_rdma_source_init;
2492    }
2493
2494    ret = qemu_rdma_init_ram_blocks(rdma);
2495    if (ret) {
2496        ERROR(temp, "rdma migration: error initializing ram blocks!");
2497        goto err_rdma_source_init;
2498    }
2499
2500    /* Build the hash that maps from offset to RAMBlock */
2501    rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2502    for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2503        g_hash_table_insert(rdma->blockmap,
2504                (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2505                &rdma->local_ram_blocks.block[idx]);
2506    }
2507
2508    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2509        ret = qemu_rdma_reg_control(rdma, idx);
2510        if (ret) {
2511            ERROR(temp, "rdma migration: error registering %d control!",
2512                                                            idx);
2513            goto err_rdma_source_init;
2514        }
2515    }
2516
2517    return 0;
2518
2519err_rdma_source_init:
2520    error_propagate(errp, local_err);
2521    qemu_rdma_cleanup(rdma);
2522    return -1;
2523}
2524
2525static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2526                                     struct rdma_cm_event **cm_event,
2527                                     long msec, Error **errp)
2528{
2529    int ret;
2530    struct pollfd poll_fd = {
2531                                .fd = rdma->channel->fd,
2532                                .events = POLLIN,
2533                                .revents = 0
2534                            };
2535
2536    do {
2537        ret = poll(&poll_fd, 1, msec);
2538    } while (ret < 0 && errno == EINTR);
2539
2540    if (ret == 0) {
2541        ERROR(errp, "poll cm event timeout");
2542        return -1;
2543    } else if (ret < 0) {
2544        ERROR(errp, "failed to poll cm event, errno=%i", errno);
2545        return -1;
2546    } else if (poll_fd.revents & POLLIN) {
2547        return rdma_get_cm_event(rdma->channel, cm_event);
2548    } else {
2549        ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2550        return -1;
2551    }
2552}
2553
2554static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2555{
2556    RDMACapabilities cap = {
2557                                .version = RDMA_CONTROL_VERSION_CURRENT,
2558                                .flags = 0,
2559                           };
2560    struct rdma_conn_param conn_param = { .initiator_depth = 2,
2561                                          .retry_count = 5,
2562                                          .private_data = &cap,
2563                                          .private_data_len = sizeof(cap),
2564                                        };
2565    struct rdma_cm_event *cm_event;
2566    int ret;
2567
2568    /*
2569     * Only negotiate the capability with destination if the user
2570     * on the source first requested the capability.
2571     */
2572    if (rdma->pin_all) {
2573        trace_qemu_rdma_connect_pin_all_requested();
2574        cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2575    }
2576
2577    caps_to_network(&cap);
2578
2579    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2580    if (ret) {
2581        ERROR(errp, "posting second control recv");
2582        goto err_rdma_source_connect;
2583    }
2584
2585    ret = rdma_connect(rdma->cm_id, &conn_param);
2586    if (ret) {
2587        perror("rdma_connect");
2588        ERROR(errp, "connecting to destination!");
2589        goto err_rdma_source_connect;
2590    }
2591
2592    if (return_path) {
2593        ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2594    } else {
2595        ret = rdma_get_cm_event(rdma->channel, &cm_event);
2596    }
2597    if (ret) {
2598        perror("rdma_get_cm_event after rdma_connect");
2599        ERROR(errp, "connecting to destination!");
2600        goto err_rdma_source_connect;
2601    }
2602
2603    if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2604        error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2605        ERROR(errp, "connecting to destination!");
2606        rdma_ack_cm_event(cm_event);
2607        goto err_rdma_source_connect;
2608    }
2609    rdma->connected = true;
2610
2611    memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2612    network_to_caps(&cap);
2613
2614    /*
2615     * Verify that the *requested* capabilities are supported by the destination
2616     * and disable them otherwise.
2617     */
2618    if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2619        ERROR(errp, "Server cannot support pinning all memory. "
2620                        "Will register memory dynamically.");
2621        rdma->pin_all = false;
2622    }
2623
2624    trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2625
2626    rdma_ack_cm_event(cm_event);
2627
2628    rdma->control_ready_expected = 1;
2629    rdma->nb_sent = 0;
2630    return 0;
2631
2632err_rdma_source_connect:
2633    qemu_rdma_cleanup(rdma);
2634    return -1;
2635}
2636
2637static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2638{
2639    int ret, idx;
2640    struct rdma_cm_id *listen_id;
2641    char ip[40] = "unknown";
2642    struct rdma_addrinfo *res, *e;
2643    char port_str[16];
2644    int reuse = 1;
2645
2646    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2647        rdma->wr_data[idx].control_len = 0;
2648        rdma->wr_data[idx].control_curr = NULL;
2649    }
2650
2651    if (!rdma->host || !rdma->host[0]) {
2652        ERROR(errp, "RDMA host is not set!");
2653        rdma->error_state = -EINVAL;
2654        return -1;
2655    }
2656    /* create CM channel */
2657    rdma->channel = rdma_create_event_channel();
2658    if (!rdma->channel) {
2659        ERROR(errp, "could not create rdma event channel");
2660        rdma->error_state = -EINVAL;
2661        return -1;
2662    }
2663
2664    /* create CM id */
2665    ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2666    if (ret) {
2667        ERROR(errp, "could not create cm_id!");
2668        goto err_dest_init_create_listen_id;
2669    }
2670
2671    snprintf(port_str, 16, "%d", rdma->port);
2672    port_str[15] = '\0';
2673
2674    ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2675    if (ret < 0) {
2676        ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2677        goto err_dest_init_bind_addr;
2678    }
2679
2680    ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2681                          &reuse, sizeof reuse);
2682    if (ret) {
2683        ERROR(errp, "Error: could not set REUSEADDR option");
2684        goto err_dest_init_bind_addr;
2685    }
2686    for (e = res; e != NULL; e = e->ai_next) {
2687        inet_ntop(e->ai_family,
2688            &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2689        trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2690        ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2691        if (ret) {
2692            continue;
2693        }
2694        if (e->ai_family == AF_INET6) {
2695            ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2696            if (ret) {
2697                continue;
2698            }
2699        }
2700        break;
2701    }
2702
2703    rdma_freeaddrinfo(res);
2704    if (!e) {
2705        ERROR(errp, "Error: could not rdma_bind_addr!");
2706        goto err_dest_init_bind_addr;
2707    }
2708
2709    rdma->listen_id = listen_id;
2710    qemu_rdma_dump_gid("dest_init", listen_id);
2711    return 0;
2712
2713err_dest_init_bind_addr:
2714    rdma_destroy_id(listen_id);
2715err_dest_init_create_listen_id:
2716    rdma_destroy_event_channel(rdma->channel);
2717    rdma->channel = NULL;
2718    rdma->error_state = ret;
2719    return ret;
2720
2721}
2722
2723static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2724                                            RDMAContext *rdma)
2725{
2726    int idx;
2727
2728    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2729        rdma_return_path->wr_data[idx].control_len = 0;
2730        rdma_return_path->wr_data[idx].control_curr = NULL;
2731    }
2732
2733    /*the CM channel and CM id is shared*/
2734    rdma_return_path->channel = rdma->channel;
2735    rdma_return_path->listen_id = rdma->listen_id;
2736
2737    rdma->return_path = rdma_return_path;
2738    rdma_return_path->return_path = rdma;
2739    rdma_return_path->is_return_path = true;
2740}
2741
2742static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2743{
2744    RDMAContext *rdma = NULL;
2745    InetSocketAddress *addr;
2746
2747    if (host_port) {
2748        rdma = g_new0(RDMAContext, 1);
2749        rdma->current_index = -1;
2750        rdma->current_chunk = -1;
2751
2752        addr = g_new(InetSocketAddress, 1);
2753        if (!inet_parse(addr, host_port, NULL)) {
2754            rdma->port = atoi(addr->port);
2755            rdma->host = g_strdup(addr->host);
2756            rdma->host_port = g_strdup(host_port);
2757        } else {
2758            ERROR(errp, "bad RDMA migration address '%s'", host_port);
2759            g_free(rdma);
2760            rdma = NULL;
2761        }
2762
2763        qapi_free_InetSocketAddress(addr);
2764    }
2765
2766    return rdma;
2767}
2768
2769/*
2770 * QEMUFile interface to the control channel.
2771 * SEND messages for control only.
2772 * VM's ram is handled with regular RDMA messages.
2773 */
2774static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2775                                       const struct iovec *iov,
2776                                       size_t niov,
2777                                       int *fds,
2778                                       size_t nfds,
2779                                       int flags,
2780                                       Error **errp)
2781{
2782    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2783    QEMUFile *f = rioc->file;
2784    RDMAContext *rdma;
2785    int ret;
2786    ssize_t done = 0;
2787    size_t i;
2788    size_t len = 0;
2789
2790    RCU_READ_LOCK_GUARD();
2791    rdma = qatomic_rcu_read(&rioc->rdmaout);
2792
2793    if (!rdma) {
2794        error_setg(errp, "RDMA control channel output is not set");
2795        return -1;
2796    }
2797
2798    CHECK_ERROR_STATE();
2799
2800    /*
2801     * Push out any writes that
2802     * we're queued up for VM's ram.
2803     */
2804    ret = qemu_rdma_write_flush(f, rdma);
2805    if (ret < 0) {
2806        rdma->error_state = ret;
2807        error_setg(errp, "qemu_rdma_write_flush returned %d", ret);
2808        return -1;
2809    }
2810
2811    for (i = 0; i < niov; i++) {
2812        size_t remaining = iov[i].iov_len;
2813        uint8_t * data = (void *)iov[i].iov_base;
2814        while (remaining) {
2815            RDMAControlHeader head;
2816
2817            len = MIN(remaining, RDMA_SEND_INCREMENT);
2818            remaining -= len;
2819
2820            head.len = len;
2821            head.type = RDMA_CONTROL_QEMU_FILE;
2822
2823            ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2824
2825            if (ret < 0) {
2826                rdma->error_state = ret;
2827                error_setg(errp, "qemu_rdma_exchange_send returned %d", ret);
2828                return -1;
2829            }
2830
2831            data += len;
2832            done += len;
2833        }
2834    }
2835
2836    return done;
2837}
2838
2839static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2840                             size_t size, int idx)
2841{
2842    size_t len = 0;
2843
2844    if (rdma->wr_data[idx].control_len) {
2845        trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2846
2847        len = MIN(size, rdma->wr_data[idx].control_len);
2848        memcpy(buf, rdma->wr_data[idx].control_curr, len);
2849        rdma->wr_data[idx].control_curr += len;
2850        rdma->wr_data[idx].control_len -= len;
2851    }
2852
2853    return len;
2854}
2855
2856/*
2857 * QEMUFile interface to the control channel.
2858 * RDMA links don't use bytestreams, so we have to
2859 * return bytes to QEMUFile opportunistically.
2860 */
2861static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2862                                      const struct iovec *iov,
2863                                      size_t niov,
2864                                      int **fds,
2865                                      size_t *nfds,
2866                                      int flags,
2867                                      Error **errp)
2868{
2869    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2870    RDMAContext *rdma;
2871    RDMAControlHeader head;
2872    int ret = 0;
2873    ssize_t i;
2874    size_t done = 0;
2875
2876    RCU_READ_LOCK_GUARD();
2877    rdma = qatomic_rcu_read(&rioc->rdmain);
2878
2879    if (!rdma) {
2880        error_setg(errp, "RDMA control channel input is not set");
2881        return -1;
2882    }
2883
2884    CHECK_ERROR_STATE();
2885
2886    for (i = 0; i < niov; i++) {
2887        size_t want = iov[i].iov_len;
2888        uint8_t *data = (void *)iov[i].iov_base;
2889
2890        /*
2891         * First, we hold on to the last SEND message we
2892         * were given and dish out the bytes until we run
2893         * out of bytes.
2894         */
2895        ret = qemu_rdma_fill(rdma, data, want, 0);
2896        done += ret;
2897        want -= ret;
2898        /* Got what we needed, so go to next iovec */
2899        if (want == 0) {
2900            continue;
2901        }
2902
2903        /* If we got any data so far, then don't wait
2904         * for more, just return what we have */
2905        if (done > 0) {
2906            break;
2907        }
2908
2909
2910        /* We've got nothing at all, so lets wait for
2911         * more to arrive
2912         */
2913        ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2914
2915        if (ret < 0) {
2916            rdma->error_state = ret;
2917            error_setg(errp, "qemu_rdma_exchange_recv returned %d", ret);
2918            return -1;
2919        }
2920
2921        /*
2922         * SEND was received with new bytes, now try again.
2923         */
2924        ret = qemu_rdma_fill(rdma, data, want, 0);
2925        done += ret;
2926        want -= ret;
2927
2928        /* Still didn't get enough, so lets just return */
2929        if (want) {
2930            if (done == 0) {
2931                return QIO_CHANNEL_ERR_BLOCK;
2932            } else {
2933                break;
2934            }
2935        }
2936    }
2937    return done;
2938}
2939
2940/*
2941 * Block until all the outstanding chunks have been delivered by the hardware.
2942 */
2943static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2944{
2945    int ret;
2946
2947    if (qemu_rdma_write_flush(f, rdma) < 0) {
2948        return -EIO;
2949    }
2950
2951    while (rdma->nb_sent) {
2952        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2953        if (ret < 0) {
2954            error_report("rdma migration: complete polling error!");
2955            return -EIO;
2956        }
2957    }
2958
2959    qemu_rdma_unregister_waiting(rdma);
2960
2961    return 0;
2962}
2963
2964
2965static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2966                                         bool blocking,
2967                                         Error **errp)
2968{
2969    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2970    /* XXX we should make readv/writev actually honour this :-) */
2971    rioc->blocking = blocking;
2972    return 0;
2973}
2974
2975
2976typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2977struct QIOChannelRDMASource {
2978    GSource parent;
2979    QIOChannelRDMA *rioc;
2980    GIOCondition condition;
2981};
2982
2983static gboolean
2984qio_channel_rdma_source_prepare(GSource *source,
2985                                gint *timeout)
2986{
2987    QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2988    RDMAContext *rdma;
2989    GIOCondition cond = 0;
2990    *timeout = -1;
2991
2992    RCU_READ_LOCK_GUARD();
2993    if (rsource->condition == G_IO_IN) {
2994        rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2995    } else {
2996        rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2997    }
2998
2999    if (!rdma) {
3000        error_report("RDMAContext is NULL when prepare Gsource");
3001        return FALSE;
3002    }
3003
3004    if (rdma->wr_data[0].control_len) {
3005        cond |= G_IO_IN;
3006    }
3007    cond |= G_IO_OUT;
3008
3009    return cond & rsource->condition;
3010}
3011
3012static gboolean
3013qio_channel_rdma_source_check(GSource *source)
3014{
3015    QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3016    RDMAContext *rdma;
3017    GIOCondition cond = 0;
3018
3019    RCU_READ_LOCK_GUARD();
3020    if (rsource->condition == G_IO_IN) {
3021        rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3022    } else {
3023        rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3024    }
3025
3026    if (!rdma) {
3027        error_report("RDMAContext is NULL when check Gsource");
3028        return FALSE;
3029    }
3030
3031    if (rdma->wr_data[0].control_len) {
3032        cond |= G_IO_IN;
3033    }
3034    cond |= G_IO_OUT;
3035
3036    return cond & rsource->condition;
3037}
3038
3039static gboolean
3040qio_channel_rdma_source_dispatch(GSource *source,
3041                                 GSourceFunc callback,
3042                                 gpointer user_data)
3043{
3044    QIOChannelFunc func = (QIOChannelFunc)callback;
3045    QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3046    RDMAContext *rdma;
3047    GIOCondition cond = 0;
3048
3049    RCU_READ_LOCK_GUARD();
3050    if (rsource->condition == G_IO_IN) {
3051        rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3052    } else {
3053        rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3054    }
3055
3056    if (!rdma) {
3057        error_report("RDMAContext is NULL when dispatch Gsource");
3058        return FALSE;
3059    }
3060
3061    if (rdma->wr_data[0].control_len) {
3062        cond |= G_IO_IN;
3063    }
3064    cond |= G_IO_OUT;
3065
3066    return (*func)(QIO_CHANNEL(rsource->rioc),
3067                   (cond & rsource->condition),
3068                   user_data);
3069}
3070
3071static void
3072qio_channel_rdma_source_finalize(GSource *source)
3073{
3074    QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3075
3076    object_unref(OBJECT(ssource->rioc));
3077}
3078
3079GSourceFuncs qio_channel_rdma_source_funcs = {
3080    qio_channel_rdma_source_prepare,
3081    qio_channel_rdma_source_check,
3082    qio_channel_rdma_source_dispatch,
3083    qio_channel_rdma_source_finalize
3084};
3085
3086static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3087                                              GIOCondition condition)
3088{
3089    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3090    QIOChannelRDMASource *ssource;
3091    GSource *source;
3092
3093    source = g_source_new(&qio_channel_rdma_source_funcs,
3094                          sizeof(QIOChannelRDMASource));
3095    ssource = (QIOChannelRDMASource *)source;
3096
3097    ssource->rioc = rioc;
3098    object_ref(OBJECT(rioc));
3099
3100    ssource->condition = condition;
3101
3102    return source;
3103}
3104
3105static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3106                                                  AioContext *ctx,
3107                                                  IOHandler *io_read,
3108                                                  IOHandler *io_write,
3109                                                  void *opaque)
3110{
3111    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3112    if (io_read) {
3113        aio_set_fd_handler(ctx, rioc->rdmain->recv_comp_channel->fd, io_read,
3114                           io_write, NULL, NULL, opaque);
3115        aio_set_fd_handler(ctx, rioc->rdmain->send_comp_channel->fd, io_read,
3116                           io_write, NULL, NULL, opaque);
3117    } else {
3118        aio_set_fd_handler(ctx, rioc->rdmaout->recv_comp_channel->fd, io_read,
3119                           io_write, NULL, NULL, opaque);
3120        aio_set_fd_handler(ctx, rioc->rdmaout->send_comp_channel->fd, io_read,
3121                           io_write, NULL, NULL, opaque);
3122    }
3123}
3124
3125struct rdma_close_rcu {
3126    struct rcu_head rcu;
3127    RDMAContext *rdmain;
3128    RDMAContext *rdmaout;
3129};
3130
3131/* callback from qio_channel_rdma_close via call_rcu */
3132static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3133{
3134    if (rcu->rdmain) {
3135        qemu_rdma_cleanup(rcu->rdmain);
3136    }
3137
3138    if (rcu->rdmaout) {
3139        qemu_rdma_cleanup(rcu->rdmaout);
3140    }
3141
3142    g_free(rcu->rdmain);
3143    g_free(rcu->rdmaout);
3144    g_free(rcu);
3145}
3146
3147static int qio_channel_rdma_close(QIOChannel *ioc,
3148                                  Error **errp)
3149{
3150    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3151    RDMAContext *rdmain, *rdmaout;
3152    struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3153
3154    trace_qemu_rdma_close();
3155
3156    rdmain = rioc->rdmain;
3157    if (rdmain) {
3158        qatomic_rcu_set(&rioc->rdmain, NULL);
3159    }
3160
3161    rdmaout = rioc->rdmaout;
3162    if (rdmaout) {
3163        qatomic_rcu_set(&rioc->rdmaout, NULL);
3164    }
3165
3166    rcu->rdmain = rdmain;
3167    rcu->rdmaout = rdmaout;
3168    call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3169
3170    return 0;
3171}
3172
3173static int
3174qio_channel_rdma_shutdown(QIOChannel *ioc,
3175                            QIOChannelShutdown how,
3176                            Error **errp)
3177{
3178    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3179    RDMAContext *rdmain, *rdmaout;
3180
3181    RCU_READ_LOCK_GUARD();
3182
3183    rdmain = qatomic_rcu_read(&rioc->rdmain);
3184    rdmaout = qatomic_rcu_read(&rioc->rdmain);
3185
3186    switch (how) {
3187    case QIO_CHANNEL_SHUTDOWN_READ:
3188        if (rdmain) {
3189            rdmain->error_state = -1;
3190        }
3191        break;
3192    case QIO_CHANNEL_SHUTDOWN_WRITE:
3193        if (rdmaout) {
3194            rdmaout->error_state = -1;
3195        }
3196        break;
3197    case QIO_CHANNEL_SHUTDOWN_BOTH:
3198    default:
3199        if (rdmain) {
3200            rdmain->error_state = -1;
3201        }
3202        if (rdmaout) {
3203            rdmaout->error_state = -1;
3204        }
3205        break;
3206    }
3207
3208    return 0;
3209}
3210
3211/*
3212 * Parameters:
3213 *    @offset == 0 :
3214 *        This means that 'block_offset' is a full virtual address that does not
3215 *        belong to a RAMBlock of the virtual machine and instead
3216 *        represents a private malloc'd memory area that the caller wishes to
3217 *        transfer.
3218 *
3219 *    @offset != 0 :
3220 *        Offset is an offset to be added to block_offset and used
3221 *        to also lookup the corresponding RAMBlock.
3222 *
3223 *    @size : Number of bytes to transfer
3224 *
3225 *    @bytes_sent : User-specificed pointer to indicate how many bytes were
3226 *                  sent. Usually, this will not be more than a few bytes of
3227 *                  the protocol because most transfers are sent asynchronously.
3228 */
3229static size_t qemu_rdma_save_page(QEMUFile *f,
3230                                  ram_addr_t block_offset, ram_addr_t offset,
3231                                  size_t size, uint64_t *bytes_sent)
3232{
3233    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3234    RDMAContext *rdma;
3235    int ret;
3236
3237    if (migration_in_postcopy()) {
3238        return RAM_SAVE_CONTROL_NOT_SUPP;
3239    }
3240
3241    RCU_READ_LOCK_GUARD();
3242    rdma = qatomic_rcu_read(&rioc->rdmaout);
3243
3244    if (!rdma) {
3245        return -EIO;
3246    }
3247
3248    CHECK_ERROR_STATE();
3249
3250    qemu_fflush(f);
3251
3252    /*
3253     * Add this page to the current 'chunk'. If the chunk
3254     * is full, or the page doesn't belong to the current chunk,
3255     * an actual RDMA write will occur and a new chunk will be formed.
3256     */
3257    ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3258    if (ret < 0) {
3259        error_report("rdma migration: write error! %d", ret);
3260        goto err;
3261    }
3262
3263    /*
3264     * We always return 1 bytes because the RDMA
3265     * protocol is completely asynchronous. We do not yet know
3266     * whether an  identified chunk is zero or not because we're
3267     * waiting for other pages to potentially be merged with
3268     * the current chunk. So, we have to call qemu_update_position()
3269     * later on when the actual write occurs.
3270     */
3271    if (bytes_sent) {
3272        *bytes_sent = 1;
3273    }
3274
3275    /*
3276     * Drain the Completion Queue if possible, but do not block,
3277     * just poll.
3278     *
3279     * If nothing to poll, the end of the iteration will do this
3280     * again to make sure we don't overflow the request queue.
3281     */
3282    while (1) {
3283        uint64_t wr_id, wr_id_in;
3284        int ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3285        if (ret < 0) {
3286            error_report("rdma migration: polling error! %d", ret);
3287            goto err;
3288        }
3289
3290        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3291
3292        if (wr_id == RDMA_WRID_NONE) {
3293            break;
3294        }
3295    }
3296
3297    while (1) {
3298        uint64_t wr_id, wr_id_in;
3299        int ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3300        if (ret < 0) {
3301            error_report("rdma migration: polling error! %d", ret);
3302            goto err;
3303        }
3304
3305        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3306
3307        if (wr_id == RDMA_WRID_NONE) {
3308            break;
3309        }
3310    }
3311
3312    return RAM_SAVE_CONTROL_DELAYED;
3313err:
3314    rdma->error_state = ret;
3315    return ret;
3316}
3317
3318static void rdma_accept_incoming_migration(void *opaque);
3319
3320static void rdma_cm_poll_handler(void *opaque)
3321{
3322    RDMAContext *rdma = opaque;
3323    int ret;
3324    struct rdma_cm_event *cm_event;
3325    MigrationIncomingState *mis = migration_incoming_get_current();
3326
3327    ret = rdma_get_cm_event(rdma->channel, &cm_event);
3328    if (ret) {
3329        error_report("get_cm_event failed %d", errno);
3330        return;
3331    }
3332
3333    if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3334        cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3335        if (!rdma->error_state &&
3336            migration_incoming_get_current()->state !=
3337              MIGRATION_STATUS_COMPLETED) {
3338            error_report("receive cm event, cm event is %d", cm_event->event);
3339            rdma->error_state = -EPIPE;
3340            if (rdma->return_path) {
3341                rdma->return_path->error_state = -EPIPE;
3342            }
3343        }
3344        rdma_ack_cm_event(cm_event);
3345        if (mis->loadvm_co) {
3346            qemu_coroutine_enter(mis->loadvm_co);
3347        }
3348        return;
3349    }
3350    rdma_ack_cm_event(cm_event);
3351}
3352
3353static int qemu_rdma_accept(RDMAContext *rdma)
3354{
3355    RDMACapabilities cap;
3356    struct rdma_conn_param conn_param = {
3357                                            .responder_resources = 2,
3358                                            .private_data = &cap,
3359                                            .private_data_len = sizeof(cap),
3360                                         };
3361    RDMAContext *rdma_return_path = NULL;
3362    struct rdma_cm_event *cm_event;
3363    struct ibv_context *verbs;
3364    int ret = -EINVAL;
3365    int idx;
3366
3367    ret = rdma_get_cm_event(rdma->channel, &cm_event);
3368    if (ret) {
3369        goto err_rdma_dest_wait;
3370    }
3371
3372    if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3373        rdma_ack_cm_event(cm_event);
3374        goto err_rdma_dest_wait;
3375    }
3376
3377    /*
3378     * initialize the RDMAContext for return path for postcopy after first
3379     * connection request reached.
3380     */
3381    if ((migrate_postcopy() || migrate_return_path())
3382        && !rdma->is_return_path) {
3383        rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3384        if (rdma_return_path == NULL) {
3385            rdma_ack_cm_event(cm_event);
3386            goto err_rdma_dest_wait;
3387        }
3388
3389        qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3390    }
3391
3392    memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3393
3394    network_to_caps(&cap);
3395
3396    if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3397            error_report("Unknown source RDMA version: %d, bailing...",
3398                            cap.version);
3399            rdma_ack_cm_event(cm_event);
3400            goto err_rdma_dest_wait;
3401    }
3402
3403    /*
3404     * Respond with only the capabilities this version of QEMU knows about.
3405     */
3406    cap.flags &= known_capabilities;
3407
3408    /*
3409     * Enable the ones that we do know about.
3410     * Add other checks here as new ones are introduced.
3411     */
3412    if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3413        rdma->pin_all = true;
3414    }
3415
3416    rdma->cm_id = cm_event->id;
3417    verbs = cm_event->id->verbs;
3418
3419    rdma_ack_cm_event(cm_event);
3420
3421    trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3422
3423    caps_to_network(&cap);
3424
3425    trace_qemu_rdma_accept_pin_verbsc(verbs);
3426
3427    if (!rdma->verbs) {
3428        rdma->verbs = verbs;
3429    } else if (rdma->verbs != verbs) {
3430            error_report("ibv context not matching %p, %p!", rdma->verbs,
3431                         verbs);
3432            goto err_rdma_dest_wait;
3433    }
3434
3435    qemu_rdma_dump_id("dest_init", verbs);
3436
3437    ret = qemu_rdma_alloc_pd_cq(rdma);
3438    if (ret) {
3439        error_report("rdma migration: error allocating pd and cq!");
3440        goto err_rdma_dest_wait;
3441    }
3442
3443    ret = qemu_rdma_alloc_qp(rdma);
3444    if (ret) {
3445        error_report("rdma migration: error allocating qp!");
3446        goto err_rdma_dest_wait;
3447    }
3448
3449    ret = qemu_rdma_init_ram_blocks(rdma);
3450    if (ret) {
3451        error_report("rdma migration: error initializing ram blocks!");
3452        goto err_rdma_dest_wait;
3453    }
3454
3455    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3456        ret = qemu_rdma_reg_control(rdma, idx);
3457        if (ret) {
3458            error_report("rdma: error registering %d control", idx);
3459            goto err_rdma_dest_wait;
3460        }
3461    }
3462
3463    /* Accept the second connection request for return path */
3464    if ((migrate_postcopy() || migrate_return_path())
3465        && !rdma->is_return_path) {
3466        qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3467                            NULL,
3468                            (void *)(intptr_t)rdma->return_path);
3469    } else {
3470        qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3471                            NULL, rdma);
3472    }
3473
3474    ret = rdma_accept(rdma->cm_id, &conn_param);
3475    if (ret) {
3476        error_report("rdma_accept returns %d", ret);
3477        goto err_rdma_dest_wait;
3478    }
3479
3480    ret = rdma_get_cm_event(rdma->channel, &cm_event);
3481    if (ret) {
3482        error_report("rdma_accept get_cm_event failed %d", ret);
3483        goto err_rdma_dest_wait;
3484    }
3485
3486    if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3487        error_report("rdma_accept not event established");
3488        rdma_ack_cm_event(cm_event);
3489        goto err_rdma_dest_wait;
3490    }
3491
3492    rdma_ack_cm_event(cm_event);
3493    rdma->connected = true;
3494
3495    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3496    if (ret) {
3497        error_report("rdma migration: error posting second control recv");
3498        goto err_rdma_dest_wait;
3499    }
3500
3501    qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3502
3503    return 0;
3504
3505err_rdma_dest_wait:
3506    rdma->error_state = ret;
3507    qemu_rdma_cleanup(rdma);
3508    g_free(rdma_return_path);
3509    return ret;
3510}
3511
3512static int dest_ram_sort_func(const void *a, const void *b)
3513{
3514    unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3515    unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3516
3517    return (a_index < b_index) ? -1 : (a_index != b_index);
3518}
3519
3520/*
3521 * During each iteration of the migration, we listen for instructions
3522 * by the source VM to perform dynamic page registrations before they
3523 * can perform RDMA operations.
3524 *
3525 * We respond with the 'rkey'.
3526 *
3527 * Keep doing this until the source tells us to stop.
3528 */
3529static int qemu_rdma_registration_handle(QEMUFile *f)
3530{
3531    RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3532                               .type = RDMA_CONTROL_REGISTER_RESULT,
3533                               .repeat = 0,
3534                             };
3535    RDMAControlHeader unreg_resp = { .len = 0,
3536                               .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3537                               .repeat = 0,
3538                             };
3539    RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3540                                 .repeat = 1 };
3541    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3542    RDMAContext *rdma;
3543    RDMALocalBlocks *local;
3544    RDMAControlHeader head;
3545    RDMARegister *reg, *registers;
3546    RDMACompress *comp;
3547    RDMARegisterResult *reg_result;
3548    static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3549    RDMALocalBlock *block;
3550    void *host_addr;
3551    int ret = 0;
3552    int idx = 0;
3553    int count = 0;
3554    int i = 0;
3555
3556    RCU_READ_LOCK_GUARD();
3557    rdma = qatomic_rcu_read(&rioc->rdmain);
3558
3559    if (!rdma) {
3560        return -EIO;
3561    }
3562
3563    CHECK_ERROR_STATE();
3564
3565    local = &rdma->local_ram_blocks;
3566    do {
3567        trace_qemu_rdma_registration_handle_wait();
3568
3569        ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3570
3571        if (ret < 0) {
3572            break;
3573        }
3574
3575        if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3576            error_report("rdma: Too many requests in this message (%d)."
3577                            "Bailing.", head.repeat);
3578            ret = -EIO;
3579            break;
3580        }
3581
3582        switch (head.type) {
3583        case RDMA_CONTROL_COMPRESS:
3584            comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3585            network_to_compress(comp);
3586
3587            trace_qemu_rdma_registration_handle_compress(comp->length,
3588                                                         comp->block_idx,
3589                                                         comp->offset);
3590            if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3591                error_report("rdma: 'compress' bad block index %u (vs %d)",
3592                             (unsigned int)comp->block_idx,
3593                             rdma->local_ram_blocks.nb_blocks);
3594                ret = -EIO;
3595                goto out;
3596            }
3597            block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3598
3599            host_addr = block->local_host_addr +
3600                            (comp->offset - block->offset);
3601
3602            ram_handle_compressed(host_addr, comp->value, comp->length);
3603            break;
3604
3605        case RDMA_CONTROL_REGISTER_FINISHED:
3606            trace_qemu_rdma_registration_handle_finished();
3607            goto out;
3608
3609        case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3610            trace_qemu_rdma_registration_handle_ram_blocks();
3611
3612            /* Sort our local RAM Block list so it's the same as the source,
3613             * we can do this since we've filled in a src_index in the list
3614             * as we received the RAMBlock list earlier.
3615             */
3616            qsort(rdma->local_ram_blocks.block,
3617                  rdma->local_ram_blocks.nb_blocks,
3618                  sizeof(RDMALocalBlock), dest_ram_sort_func);
3619            for (i = 0; i < local->nb_blocks; i++) {
3620                local->block[i].index = i;
3621            }
3622
3623            if (rdma->pin_all) {
3624                ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3625                if (ret) {
3626                    error_report("rdma migration: error dest "
3627                                    "registering ram blocks");
3628                    goto out;
3629                }
3630            }
3631
3632            /*
3633             * Dest uses this to prepare to transmit the RAMBlock descriptions
3634             * to the source VM after connection setup.
3635             * Both sides use the "remote" structure to communicate and update
3636             * their "local" descriptions with what was sent.
3637             */
3638            for (i = 0; i < local->nb_blocks; i++) {
3639                rdma->dest_blocks[i].remote_host_addr =
3640                    (uintptr_t)(local->block[i].local_host_addr);
3641
3642                if (rdma->pin_all) {
3643                    rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3644                }
3645
3646                rdma->dest_blocks[i].offset = local->block[i].offset;
3647                rdma->dest_blocks[i].length = local->block[i].length;
3648
3649                dest_block_to_network(&rdma->dest_blocks[i]);
3650                trace_qemu_rdma_registration_handle_ram_blocks_loop(
3651                    local->block[i].block_name,
3652                    local->block[i].offset,
3653                    local->block[i].length,
3654                    local->block[i].local_host_addr,
3655                    local->block[i].src_index);
3656            }
3657
3658            blocks.len = rdma->local_ram_blocks.nb_blocks
3659                                                * sizeof(RDMADestBlock);
3660
3661
3662            ret = qemu_rdma_post_send_control(rdma,
3663                                        (uint8_t *) rdma->dest_blocks, &blocks);
3664
3665            if (ret < 0) {
3666                error_report("rdma migration: error sending remote info");
3667                goto out;
3668            }
3669
3670            break;
3671        case RDMA_CONTROL_REGISTER_REQUEST:
3672            trace_qemu_rdma_registration_handle_register(head.repeat);
3673
3674            reg_resp.repeat = head.repeat;
3675            registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3676
3677            for (count = 0; count < head.repeat; count++) {
3678                uint64_t chunk;
3679                uint8_t *chunk_start, *chunk_end;
3680
3681                reg = &registers[count];
3682                network_to_register(reg);
3683
3684                reg_result = &results[count];
3685
3686                trace_qemu_rdma_registration_handle_register_loop(count,
3687                         reg->current_index, reg->key.current_addr, reg->chunks);
3688
3689                if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3690                    error_report("rdma: 'register' bad block index %u (vs %d)",
3691                                 (unsigned int)reg->current_index,
3692                                 rdma->local_ram_blocks.nb_blocks);
3693                    ret = -ENOENT;
3694                    goto out;
3695                }
3696                block = &(rdma->local_ram_blocks.block[reg->current_index]);
3697                if (block->is_ram_block) {
3698                    if (block->offset > reg->key.current_addr) {
3699                        error_report("rdma: bad register address for block %s"
3700                            " offset: %" PRIx64 " current_addr: %" PRIx64,
3701                            block->block_name, block->offset,
3702                            reg->key.current_addr);
3703                        ret = -ERANGE;
3704                        goto out;
3705                    }
3706                    host_addr = (block->local_host_addr +
3707                                (reg->key.current_addr - block->offset));
3708                    chunk = ram_chunk_index(block->local_host_addr,
3709                                            (uint8_t *) host_addr);
3710                } else {
3711                    chunk = reg->key.chunk;
3712                    host_addr = block->local_host_addr +
3713                        (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3714                    /* Check for particularly bad chunk value */
3715                    if (host_addr < (void *)block->local_host_addr) {
3716                        error_report("rdma: bad chunk for block %s"
3717                            " chunk: %" PRIx64,
3718                            block->block_name, reg->key.chunk);
3719                        ret = -ERANGE;
3720                        goto out;
3721                    }
3722                }
3723                chunk_start = ram_chunk_start(block, chunk);
3724                chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3725                /* avoid "-Waddress-of-packed-member" warning */
3726                uint32_t tmp_rkey = 0;
3727                if (qemu_rdma_register_and_get_keys(rdma, block,
3728                            (uintptr_t)host_addr, NULL, &tmp_rkey,
3729                            chunk, chunk_start, chunk_end)) {
3730                    error_report("cannot get rkey");
3731                    ret = -EINVAL;
3732                    goto out;
3733                }
3734                reg_result->rkey = tmp_rkey;
3735
3736                reg_result->host_addr = (uintptr_t)block->local_host_addr;
3737
3738                trace_qemu_rdma_registration_handle_register_rkey(
3739                                                           reg_result->rkey);
3740
3741                result_to_network(reg_result);
3742            }
3743
3744            ret = qemu_rdma_post_send_control(rdma,
3745                            (uint8_t *) results, &reg_resp);
3746
3747            if (ret < 0) {
3748                error_report("Failed to send control buffer");
3749                goto out;
3750            }
3751            break;
3752        case RDMA_CONTROL_UNREGISTER_REQUEST:
3753            trace_qemu_rdma_registration_handle_unregister(head.repeat);
3754            unreg_resp.repeat = head.repeat;
3755            registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3756
3757            for (count = 0; count < head.repeat; count++) {
3758                reg = &registers[count];
3759                network_to_register(reg);
3760
3761                trace_qemu_rdma_registration_handle_unregister_loop(count,
3762                           reg->current_index, reg->key.chunk);
3763
3764                block = &(rdma->local_ram_blocks.block[reg->current_index]);
3765
3766                ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3767                block->pmr[reg->key.chunk] = NULL;
3768
3769                if (ret != 0) {
3770                    perror("rdma unregistration chunk failed");
3771                    ret = -ret;
3772                    goto out;
3773                }
3774
3775                rdma->total_registrations--;
3776
3777                trace_qemu_rdma_registration_handle_unregister_success(
3778                                                       reg->key.chunk);
3779            }
3780
3781            ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3782
3783            if (ret < 0) {
3784                error_report("Failed to send control buffer");
3785                goto out;
3786            }
3787            break;
3788        case RDMA_CONTROL_REGISTER_RESULT:
3789            error_report("Invalid RESULT message at dest.");
3790            ret = -EIO;
3791            goto out;
3792        default:
3793            error_report("Unknown control message %s", control_desc(head.type));
3794            ret = -EIO;
3795            goto out;
3796        }
3797    } while (1);
3798out:
3799    if (ret < 0) {
3800        rdma->error_state = ret;
3801    }
3802    return ret;
3803}
3804
3805/* Destination:
3806 * Called via a ram_control_load_hook during the initial RAM load section which
3807 * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3808 * on the source.
3809 * We've already built our local RAMBlock list, but not yet sent the list to
3810 * the source.
3811 */
3812static int
3813rdma_block_notification_handle(QEMUFile *f, const char *name)
3814{
3815    RDMAContext *rdma;
3816    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3817    int curr;
3818    int found = -1;
3819
3820    RCU_READ_LOCK_GUARD();
3821    rdma = qatomic_rcu_read(&rioc->rdmain);
3822
3823    if (!rdma) {
3824        return -EIO;
3825    }
3826
3827    /* Find the matching RAMBlock in our local list */
3828    for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3829        if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3830            found = curr;
3831            break;
3832        }
3833    }
3834
3835    if (found == -1) {
3836        error_report("RAMBlock '%s' not found on destination", name);
3837        return -ENOENT;
3838    }
3839
3840    rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3841    trace_rdma_block_notification_handle(name, rdma->next_src_index);
3842    rdma->next_src_index++;
3843
3844    return 0;
3845}
3846
3847static int rdma_load_hook(QEMUFile *f, uint64_t flags, void *data)
3848{
3849    switch (flags) {
3850    case RAM_CONTROL_BLOCK_REG:
3851        return rdma_block_notification_handle(f, data);
3852
3853    case RAM_CONTROL_HOOK:
3854        return qemu_rdma_registration_handle(f);
3855
3856    default:
3857        /* Shouldn't be called with any other values */
3858        abort();
3859    }
3860}
3861
3862static int qemu_rdma_registration_start(QEMUFile *f,
3863                                        uint64_t flags, void *data)
3864{
3865    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3866    RDMAContext *rdma;
3867
3868    if (migration_in_postcopy()) {
3869        return 0;
3870    }
3871
3872    RCU_READ_LOCK_GUARD();
3873    rdma = qatomic_rcu_read(&rioc->rdmaout);
3874    if (!rdma) {
3875        return -EIO;
3876    }
3877
3878    CHECK_ERROR_STATE();
3879
3880    trace_qemu_rdma_registration_start(flags);
3881    qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3882    qemu_fflush(f);
3883
3884    return 0;
3885}
3886
3887/*
3888 * Inform dest that dynamic registrations are done for now.
3889 * First, flush writes, if any.
3890 */
3891static int qemu_rdma_registration_stop(QEMUFile *f,
3892                                       uint64_t flags, void *data)
3893{
3894    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3895    RDMAContext *rdma;
3896    RDMAControlHeader head = { .len = 0, .repeat = 1 };
3897    int ret = 0;
3898
3899    if (migration_in_postcopy()) {
3900        return 0;
3901    }
3902
3903    RCU_READ_LOCK_GUARD();
3904    rdma = qatomic_rcu_read(&rioc->rdmaout);
3905    if (!rdma) {
3906        return -EIO;
3907    }
3908
3909    CHECK_ERROR_STATE();
3910
3911    qemu_fflush(f);
3912    ret = qemu_rdma_drain_cq(f, rdma);
3913
3914    if (ret < 0) {
3915        goto err;
3916    }
3917
3918    if (flags == RAM_CONTROL_SETUP) {
3919        RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3920        RDMALocalBlocks *local = &rdma->local_ram_blocks;
3921        int reg_result_idx, i, nb_dest_blocks;
3922
3923        head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3924        trace_qemu_rdma_registration_stop_ram();
3925
3926        /*
3927         * Make sure that we parallelize the pinning on both sides.
3928         * For very large guests, doing this serially takes a really
3929         * long time, so we have to 'interleave' the pinning locally
3930         * with the control messages by performing the pinning on this
3931         * side before we receive the control response from the other
3932         * side that the pinning has completed.
3933         */
3934        ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3935                    &reg_result_idx, rdma->pin_all ?
3936                    qemu_rdma_reg_whole_ram_blocks : NULL);
3937        if (ret < 0) {
3938            fprintf(stderr, "receiving remote info!");
3939            return ret;
3940        }
3941
3942        nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3943
3944        /*
3945         * The protocol uses two different sets of rkeys (mutually exclusive):
3946         * 1. One key to represent the virtual address of the entire ram block.
3947         *    (dynamic chunk registration disabled - pin everything with one rkey.)
3948         * 2. One to represent individual chunks within a ram block.
3949         *    (dynamic chunk registration enabled - pin individual chunks.)
3950         *
3951         * Once the capability is successfully negotiated, the destination transmits
3952         * the keys to use (or sends them later) including the virtual addresses
3953         * and then propagates the remote ram block descriptions to his local copy.
3954         */
3955
3956        if (local->nb_blocks != nb_dest_blocks) {
3957            fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3958                    "Your QEMU command line parameters are probably "
3959                    "not identical on both the source and destination.",
3960                    local->nb_blocks, nb_dest_blocks);
3961            rdma->error_state = -EINVAL;
3962            return -EINVAL;
3963        }
3964
3965        qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3966        memcpy(rdma->dest_blocks,
3967            rdma->wr_data[reg_result_idx].control_curr, resp.len);
3968        for (i = 0; i < nb_dest_blocks; i++) {
3969            network_to_dest_block(&rdma->dest_blocks[i]);
3970
3971            /* We require that the blocks are in the same order */
3972            if (rdma->dest_blocks[i].length != local->block[i].length) {
3973                fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3974                        "vs %" PRIu64, local->block[i].block_name, i,
3975                        local->block[i].length,
3976                        rdma->dest_blocks[i].length);
3977                rdma->error_state = -EINVAL;
3978                return -EINVAL;
3979            }
3980            local->block[i].remote_host_addr =
3981                    rdma->dest_blocks[i].remote_host_addr;
3982            local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3983        }
3984    }
3985
3986    trace_qemu_rdma_registration_stop(flags);
3987
3988    head.type = RDMA_CONTROL_REGISTER_FINISHED;
3989    ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3990
3991    if (ret < 0) {
3992        goto err;
3993    }
3994
3995    return 0;
3996err:
3997    rdma->error_state = ret;
3998    return ret;
3999}
4000
4001static const QEMUFileHooks rdma_read_hooks = {
4002    .hook_ram_load = rdma_load_hook,
4003};
4004
4005static const QEMUFileHooks rdma_write_hooks = {
4006    .before_ram_iterate = qemu_rdma_registration_start,
4007    .after_ram_iterate  = qemu_rdma_registration_stop,
4008    .save_page          = qemu_rdma_save_page,
4009};
4010
4011
4012static void qio_channel_rdma_finalize(Object *obj)
4013{
4014    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4015    if (rioc->rdmain) {
4016        qemu_rdma_cleanup(rioc->rdmain);
4017        g_free(rioc->rdmain);
4018        rioc->rdmain = NULL;
4019    }
4020    if (rioc->rdmaout) {
4021        qemu_rdma_cleanup(rioc->rdmaout);
4022        g_free(rioc->rdmaout);
4023        rioc->rdmaout = NULL;
4024    }
4025}
4026
4027static void qio_channel_rdma_class_init(ObjectClass *klass,
4028                                        void *class_data G_GNUC_UNUSED)
4029{
4030    QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4031
4032    ioc_klass->io_writev = qio_channel_rdma_writev;
4033    ioc_klass->io_readv = qio_channel_rdma_readv;
4034    ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4035    ioc_klass->io_close = qio_channel_rdma_close;
4036    ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4037    ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4038    ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4039}
4040
4041static const TypeInfo qio_channel_rdma_info = {
4042    .parent = TYPE_QIO_CHANNEL,
4043    .name = TYPE_QIO_CHANNEL_RDMA,
4044    .instance_size = sizeof(QIOChannelRDMA),
4045    .instance_finalize = qio_channel_rdma_finalize,
4046    .class_init = qio_channel_rdma_class_init,
4047};
4048
4049static void qio_channel_rdma_register_types(void)
4050{
4051    type_register_static(&qio_channel_rdma_info);
4052}
4053
4054type_init(qio_channel_rdma_register_types);
4055
4056static QEMUFile *rdma_new_input(RDMAContext *rdma)
4057{
4058    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4059
4060    rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4061    rioc->rdmain = rdma;
4062    rioc->rdmaout = rdma->return_path;
4063    qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4064
4065    return rioc->file;
4066}
4067
4068static QEMUFile *rdma_new_output(RDMAContext *rdma)
4069{
4070    QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4071
4072    rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4073    rioc->rdmaout = rdma;
4074    rioc->rdmain = rdma->return_path;
4075    qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4076
4077    return rioc->file;
4078}
4079
4080static void rdma_accept_incoming_migration(void *opaque)
4081{
4082    RDMAContext *rdma = opaque;
4083    int ret;
4084    QEMUFile *f;
4085    Error *local_err = NULL;
4086
4087    trace_qemu_rdma_accept_incoming_migration();
4088    ret = qemu_rdma_accept(rdma);
4089
4090    if (ret) {
4091        fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4092        return;
4093    }
4094
4095    trace_qemu_rdma_accept_incoming_migration_accepted();
4096
4097    if (rdma->is_return_path) {
4098        return;
4099    }
4100
4101    f = rdma_new_input(rdma);
4102    if (f == NULL) {
4103        fprintf(stderr, "RDMA ERROR: could not open RDMA for input\n");
4104        qemu_rdma_cleanup(rdma);
4105        return;
4106    }
4107
4108    rdma->migration_started_on_destination = 1;
4109    migration_fd_process_incoming(f, &local_err);
4110    if (local_err) {
4111        error_reportf_err(local_err, "RDMA ERROR:");
4112    }
4113}
4114
4115void rdma_start_incoming_migration(const char *host_port, Error **errp)
4116{
4117    int ret;
4118    RDMAContext *rdma;
4119    Error *local_err = NULL;
4120
4121    trace_rdma_start_incoming_migration();
4122
4123    /* Avoid ram_block_discard_disable(), cannot change during migration. */
4124    if (ram_block_discard_is_required()) {
4125        error_setg(errp, "RDMA: cannot disable RAM discard");
4126        return;
4127    }
4128
4129    rdma = qemu_rdma_data_init(host_port, &local_err);
4130    if (rdma == NULL) {
4131        goto err;
4132    }
4133
4134    ret = qemu_rdma_dest_init(rdma, &local_err);
4135
4136    if (ret) {
4137        goto err;
4138    }
4139
4140    trace_rdma_start_incoming_migration_after_dest_init();
4141
4142    ret = rdma_listen(rdma->listen_id, 5);
4143
4144    if (ret) {
4145        ERROR(errp, "listening on socket!");
4146        goto cleanup_rdma;
4147    }
4148
4149    trace_rdma_start_incoming_migration_after_rdma_listen();
4150
4151    qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4152                        NULL, (void *)(intptr_t)rdma);
4153    return;
4154
4155cleanup_rdma:
4156    qemu_rdma_cleanup(rdma);
4157err:
4158    error_propagate(errp, local_err);
4159    if (rdma) {
4160        g_free(rdma->host);
4161        g_free(rdma->host_port);
4162    }
4163    g_free(rdma);
4164}
4165
4166void rdma_start_outgoing_migration(void *opaque,
4167                            const char *host_port, Error **errp)
4168{
4169    MigrationState *s = opaque;
4170    RDMAContext *rdma_return_path = NULL;
4171    RDMAContext *rdma;
4172    int ret = 0;
4173
4174    /* Avoid ram_block_discard_disable(), cannot change during migration. */
4175    if (ram_block_discard_is_required()) {
4176        error_setg(errp, "RDMA: cannot disable RAM discard");
4177        return;
4178    }
4179
4180    rdma = qemu_rdma_data_init(host_port, errp);
4181    if (rdma == NULL) {
4182        goto err;
4183    }
4184
4185    ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp);
4186
4187    if (ret) {
4188        goto err;
4189    }
4190
4191    trace_rdma_start_outgoing_migration_after_rdma_source_init();
4192    ret = qemu_rdma_connect(rdma, errp, false);
4193
4194    if (ret) {
4195        goto err;
4196    }
4197
4198    /* RDMA postcopy need a separate queue pair for return path */
4199    if (migrate_postcopy() || migrate_return_path()) {
4200        rdma_return_path = qemu_rdma_data_init(host_port, errp);
4201
4202        if (rdma_return_path == NULL) {
4203            goto return_path_err;
4204        }
4205
4206        ret = qemu_rdma_source_init(rdma_return_path,
4207                                    migrate_rdma_pin_all(), errp);
4208
4209        if (ret) {
4210            goto return_path_err;
4211        }
4212
4213        ret = qemu_rdma_connect(rdma_return_path, errp, true);
4214
4215        if (ret) {
4216            goto return_path_err;
4217        }
4218
4219        rdma->return_path = rdma_return_path;
4220        rdma_return_path->return_path = rdma;
4221        rdma_return_path->is_return_path = true;
4222    }
4223
4224    trace_rdma_start_outgoing_migration_after_rdma_connect();
4225
4226    s->to_dst_file = rdma_new_output(rdma);
4227    migrate_fd_connect(s, NULL);
4228    return;
4229return_path_err:
4230    qemu_rdma_cleanup(rdma);
4231err:
4232    g_free(rdma);
4233    g_free(rdma_return_path);
4234}
4235