qemu/softmmu/physmem.c
<<
>>
Prefs
   1/*
   2 * RAM allocation and memory access
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "exec/page-vary.h"
  22#include "qapi/error.h"
  23
  24#include "qemu/cutils.h"
  25#include "qemu/cacheflush.h"
  26#include "qemu/hbitmap.h"
  27#include "qemu/madvise.h"
  28
  29#ifdef CONFIG_TCG
  30#include "hw/core/tcg-cpu-ops.h"
  31#endif /* CONFIG_TCG */
  32
  33#include "exec/exec-all.h"
  34#include "exec/target_page.h"
  35#include "hw/qdev-core.h"
  36#include "hw/qdev-properties.h"
  37#include "hw/boards.h"
  38#include "hw/xen/xen.h"
  39#include "sysemu/kvm.h"
  40#include "sysemu/tcg.h"
  41#include "sysemu/qtest.h"
  42#include "qemu/timer.h"
  43#include "qemu/config-file.h"
  44#include "qemu/error-report.h"
  45#include "qemu/qemu-print.h"
  46#include "qemu/log.h"
  47#include "qemu/memalign.h"
  48#include "exec/memory.h"
  49#include "exec/ioport.h"
  50#include "sysemu/dma.h"
  51#include "sysemu/hostmem.h"
  52#include "sysemu/hw_accel.h"
  53#include "sysemu/xen-mapcache.h"
  54#include "trace/trace-root.h"
  55
  56#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
  57#include <linux/falloc.h>
  58#endif
  59
  60#include "qemu/rcu_queue.h"
  61#include "qemu/main-loop.h"
  62#include "exec/translate-all.h"
  63#include "sysemu/replay.h"
  64
  65#include "exec/memory-internal.h"
  66#include "exec/ram_addr.h"
  67
  68#include "qemu/pmem.h"
  69
  70#include "migration/vmstate.h"
  71
  72#include "qemu/range.h"
  73#ifndef _WIN32
  74#include "qemu/mmap-alloc.h"
  75#endif
  76
  77#include "monitor/monitor.h"
  78
  79#ifdef CONFIG_LIBDAXCTL
  80#include <daxctl/libdaxctl.h>
  81#endif
  82
  83//#define DEBUG_SUBPAGE
  84
  85/* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
  86 * are protected by the ramlist lock.
  87 */
  88RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
  89
  90static MemoryRegion *system_memory;
  91static MemoryRegion *system_io;
  92
  93AddressSpace address_space_io;
  94AddressSpace address_space_memory;
  95
  96static MemoryRegion io_mem_unassigned;
  97
  98typedef struct PhysPageEntry PhysPageEntry;
  99
 100struct PhysPageEntry {
 101    /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
 102    uint32_t skip : 6;
 103     /* index into phys_sections (!skip) or phys_map_nodes (skip) */
 104    uint32_t ptr : 26;
 105};
 106
 107#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
 108
 109/* Size of the L2 (and L3, etc) page tables.  */
 110#define ADDR_SPACE_BITS 64
 111
 112#define P_L2_BITS 9
 113#define P_L2_SIZE (1 << P_L2_BITS)
 114
 115#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
 116
 117typedef PhysPageEntry Node[P_L2_SIZE];
 118
 119typedef struct PhysPageMap {
 120    struct rcu_head rcu;
 121
 122    unsigned sections_nb;
 123    unsigned sections_nb_alloc;
 124    unsigned nodes_nb;
 125    unsigned nodes_nb_alloc;
 126    Node *nodes;
 127    MemoryRegionSection *sections;
 128} PhysPageMap;
 129
 130struct AddressSpaceDispatch {
 131    MemoryRegionSection *mru_section;
 132    /* This is a multi-level map on the physical address space.
 133     * The bottom level has pointers to MemoryRegionSections.
 134     */
 135    PhysPageEntry phys_map;
 136    PhysPageMap map;
 137};
 138
 139#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
 140typedef struct subpage_t {
 141    MemoryRegion iomem;
 142    FlatView *fv;
 143    hwaddr base;
 144    uint16_t sub_section[];
 145} subpage_t;
 146
 147#define PHYS_SECTION_UNASSIGNED 0
 148
 149static void io_mem_init(void);
 150static void memory_map_init(void);
 151static void tcg_log_global_after_sync(MemoryListener *listener);
 152static void tcg_commit(MemoryListener *listener);
 153
 154/**
 155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
 156 * @cpu: the CPU whose AddressSpace this is
 157 * @as: the AddressSpace itself
 158 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
 159 * @tcg_as_listener: listener for tracking changes to the AddressSpace
 160 */
 161struct CPUAddressSpace {
 162    CPUState *cpu;
 163    AddressSpace *as;
 164    struct AddressSpaceDispatch *memory_dispatch;
 165    MemoryListener tcg_as_listener;
 166};
 167
 168struct DirtyBitmapSnapshot {
 169    ram_addr_t start;
 170    ram_addr_t end;
 171    unsigned long dirty[];
 172};
 173
 174static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
 175{
 176    static unsigned alloc_hint = 16;
 177    if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
 178        map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
 179        map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
 180        alloc_hint = map->nodes_nb_alloc;
 181    }
 182}
 183
 184static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
 185{
 186    unsigned i;
 187    uint32_t ret;
 188    PhysPageEntry e;
 189    PhysPageEntry *p;
 190
 191    ret = map->nodes_nb++;
 192    p = map->nodes[ret];
 193    assert(ret != PHYS_MAP_NODE_NIL);
 194    assert(ret != map->nodes_nb_alloc);
 195
 196    e.skip = leaf ? 0 : 1;
 197    e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
 198    for (i = 0; i < P_L2_SIZE; ++i) {
 199        memcpy(&p[i], &e, sizeof(e));
 200    }
 201    return ret;
 202}
 203
 204static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
 205                                hwaddr *index, uint64_t *nb, uint16_t leaf,
 206                                int level)
 207{
 208    PhysPageEntry *p;
 209    hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
 210
 211    if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
 212        lp->ptr = phys_map_node_alloc(map, level == 0);
 213    }
 214    p = map->nodes[lp->ptr];
 215    lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
 216
 217    while (*nb && lp < &p[P_L2_SIZE]) {
 218        if ((*index & (step - 1)) == 0 && *nb >= step) {
 219            lp->skip = 0;
 220            lp->ptr = leaf;
 221            *index += step;
 222            *nb -= step;
 223        } else {
 224            phys_page_set_level(map, lp, index, nb, leaf, level - 1);
 225        }
 226        ++lp;
 227    }
 228}
 229
 230static void phys_page_set(AddressSpaceDispatch *d,
 231                          hwaddr index, uint64_t nb,
 232                          uint16_t leaf)
 233{
 234    /* Wildly overreserve - it doesn't matter much. */
 235    phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
 236
 237    phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
 238}
 239
 240/* Compact a non leaf page entry. Simply detect that the entry has a single child,
 241 * and update our entry so we can skip it and go directly to the destination.
 242 */
 243static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
 244{
 245    unsigned valid_ptr = P_L2_SIZE;
 246    int valid = 0;
 247    PhysPageEntry *p;
 248    int i;
 249
 250    if (lp->ptr == PHYS_MAP_NODE_NIL) {
 251        return;
 252    }
 253
 254    p = nodes[lp->ptr];
 255    for (i = 0; i < P_L2_SIZE; i++) {
 256        if (p[i].ptr == PHYS_MAP_NODE_NIL) {
 257            continue;
 258        }
 259
 260        valid_ptr = i;
 261        valid++;
 262        if (p[i].skip) {
 263            phys_page_compact(&p[i], nodes);
 264        }
 265    }
 266
 267    /* We can only compress if there's only one child. */
 268    if (valid != 1) {
 269        return;
 270    }
 271
 272    assert(valid_ptr < P_L2_SIZE);
 273
 274    /* Don't compress if it won't fit in the # of bits we have. */
 275    if (P_L2_LEVELS >= (1 << 6) &&
 276        lp->skip + p[valid_ptr].skip >= (1 << 6)) {
 277        return;
 278    }
 279
 280    lp->ptr = p[valid_ptr].ptr;
 281    if (!p[valid_ptr].skip) {
 282        /* If our only child is a leaf, make this a leaf. */
 283        /* By design, we should have made this node a leaf to begin with so we
 284         * should never reach here.
 285         * But since it's so simple to handle this, let's do it just in case we
 286         * change this rule.
 287         */
 288        lp->skip = 0;
 289    } else {
 290        lp->skip += p[valid_ptr].skip;
 291    }
 292}
 293
 294void address_space_dispatch_compact(AddressSpaceDispatch *d)
 295{
 296    if (d->phys_map.skip) {
 297        phys_page_compact(&d->phys_map, d->map.nodes);
 298    }
 299}
 300
 301static inline bool section_covers_addr(const MemoryRegionSection *section,
 302                                       hwaddr addr)
 303{
 304    /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
 305     * the section must cover the entire address space.
 306     */
 307    return int128_gethi(section->size) ||
 308           range_covers_byte(section->offset_within_address_space,
 309                             int128_getlo(section->size), addr);
 310}
 311
 312static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
 313{
 314    PhysPageEntry lp = d->phys_map, *p;
 315    Node *nodes = d->map.nodes;
 316    MemoryRegionSection *sections = d->map.sections;
 317    hwaddr index = addr >> TARGET_PAGE_BITS;
 318    int i;
 319
 320    for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
 321        if (lp.ptr == PHYS_MAP_NODE_NIL) {
 322            return &sections[PHYS_SECTION_UNASSIGNED];
 323        }
 324        p = nodes[lp.ptr];
 325        lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
 326    }
 327
 328    if (section_covers_addr(&sections[lp.ptr], addr)) {
 329        return &sections[lp.ptr];
 330    } else {
 331        return &sections[PHYS_SECTION_UNASSIGNED];
 332    }
 333}
 334
 335/* Called from RCU critical section */
 336static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
 337                                                        hwaddr addr,
 338                                                        bool resolve_subpage)
 339{
 340    MemoryRegionSection *section = qatomic_read(&d->mru_section);
 341    subpage_t *subpage;
 342
 343    if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
 344        !section_covers_addr(section, addr)) {
 345        section = phys_page_find(d, addr);
 346        qatomic_set(&d->mru_section, section);
 347    }
 348    if (resolve_subpage && section->mr->subpage) {
 349        subpage = container_of(section->mr, subpage_t, iomem);
 350        section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
 351    }
 352    return section;
 353}
 354
 355/* Called from RCU critical section */
 356static MemoryRegionSection *
 357address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
 358                                 hwaddr *plen, bool resolve_subpage)
 359{
 360    MemoryRegionSection *section;
 361    MemoryRegion *mr;
 362    Int128 diff;
 363
 364    section = address_space_lookup_region(d, addr, resolve_subpage);
 365    /* Compute offset within MemoryRegionSection */
 366    addr -= section->offset_within_address_space;
 367
 368    /* Compute offset within MemoryRegion */
 369    *xlat = addr + section->offset_within_region;
 370
 371    mr = section->mr;
 372
 373    /* MMIO registers can be expected to perform full-width accesses based only
 374     * on their address, without considering adjacent registers that could
 375     * decode to completely different MemoryRegions.  When such registers
 376     * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
 377     * regions overlap wildly.  For this reason we cannot clamp the accesses
 378     * here.
 379     *
 380     * If the length is small (as is the case for address_space_ldl/stl),
 381     * everything works fine.  If the incoming length is large, however,
 382     * the caller really has to do the clamping through memory_access_size.
 383     */
 384    if (memory_region_is_ram(mr)) {
 385        diff = int128_sub(section->size, int128_make64(addr));
 386        *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
 387    }
 388    return section;
 389}
 390
 391/**
 392 * address_space_translate_iommu - translate an address through an IOMMU
 393 * memory region and then through the target address space.
 394 *
 395 * @iommu_mr: the IOMMU memory region that we start the translation from
 396 * @addr: the address to be translated through the MMU
 397 * @xlat: the translated address offset within the destination memory region.
 398 *        It cannot be %NULL.
 399 * @plen_out: valid read/write length of the translated address. It
 400 *            cannot be %NULL.
 401 * @page_mask_out: page mask for the translated address. This
 402 *            should only be meaningful for IOMMU translated
 403 *            addresses, since there may be huge pages that this bit
 404 *            would tell. It can be %NULL if we don't care about it.
 405 * @is_write: whether the translation operation is for write
 406 * @is_mmio: whether this can be MMIO, set true if it can
 407 * @target_as: the address space targeted by the IOMMU
 408 * @attrs: transaction attributes
 409 *
 410 * This function is called from RCU critical section.  It is the common
 411 * part of flatview_do_translate and address_space_translate_cached.
 412 */
 413static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
 414                                                         hwaddr *xlat,
 415                                                         hwaddr *plen_out,
 416                                                         hwaddr *page_mask_out,
 417                                                         bool is_write,
 418                                                         bool is_mmio,
 419                                                         AddressSpace **target_as,
 420                                                         MemTxAttrs attrs)
 421{
 422    MemoryRegionSection *section;
 423    hwaddr page_mask = (hwaddr)-1;
 424
 425    do {
 426        hwaddr addr = *xlat;
 427        IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 428        int iommu_idx = 0;
 429        IOMMUTLBEntry iotlb;
 430
 431        if (imrc->attrs_to_index) {
 432            iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 433        }
 434
 435        iotlb = imrc->translate(iommu_mr, addr, is_write ?
 436                                IOMMU_WO : IOMMU_RO, iommu_idx);
 437
 438        if (!(iotlb.perm & (1 << is_write))) {
 439            goto unassigned;
 440        }
 441
 442        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 443                | (addr & iotlb.addr_mask));
 444        page_mask &= iotlb.addr_mask;
 445        *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
 446        *target_as = iotlb.target_as;
 447
 448        section = address_space_translate_internal(
 449                address_space_to_dispatch(iotlb.target_as), addr, xlat,
 450                plen_out, is_mmio);
 451
 452        iommu_mr = memory_region_get_iommu(section->mr);
 453    } while (unlikely(iommu_mr));
 454
 455    if (page_mask_out) {
 456        *page_mask_out = page_mask;
 457    }
 458    return *section;
 459
 460unassigned:
 461    return (MemoryRegionSection) { .mr = &io_mem_unassigned };
 462}
 463
 464/**
 465 * flatview_do_translate - translate an address in FlatView
 466 *
 467 * @fv: the flat view that we want to translate on
 468 * @addr: the address to be translated in above address space
 469 * @xlat: the translated address offset within memory region. It
 470 *        cannot be @NULL.
 471 * @plen_out: valid read/write length of the translated address. It
 472 *            can be @NULL when we don't care about it.
 473 * @page_mask_out: page mask for the translated address. This
 474 *            should only be meaningful for IOMMU translated
 475 *            addresses, since there may be huge pages that this bit
 476 *            would tell. It can be @NULL if we don't care about it.
 477 * @is_write: whether the translation operation is for write
 478 * @is_mmio: whether this can be MMIO, set true if it can
 479 * @target_as: the address space targeted by the IOMMU
 480 * @attrs: memory transaction attributes
 481 *
 482 * This function is called from RCU critical section
 483 */
 484static MemoryRegionSection flatview_do_translate(FlatView *fv,
 485                                                 hwaddr addr,
 486                                                 hwaddr *xlat,
 487                                                 hwaddr *plen_out,
 488                                                 hwaddr *page_mask_out,
 489                                                 bool is_write,
 490                                                 bool is_mmio,
 491                                                 AddressSpace **target_as,
 492                                                 MemTxAttrs attrs)
 493{
 494    MemoryRegionSection *section;
 495    IOMMUMemoryRegion *iommu_mr;
 496    hwaddr plen = (hwaddr)(-1);
 497
 498    if (!plen_out) {
 499        plen_out = &plen;
 500    }
 501
 502    section = address_space_translate_internal(
 503            flatview_to_dispatch(fv), addr, xlat,
 504            plen_out, is_mmio);
 505
 506    iommu_mr = memory_region_get_iommu(section->mr);
 507    if (unlikely(iommu_mr)) {
 508        return address_space_translate_iommu(iommu_mr, xlat,
 509                                             plen_out, page_mask_out,
 510                                             is_write, is_mmio,
 511                                             target_as, attrs);
 512    }
 513    if (page_mask_out) {
 514        /* Not behind an IOMMU, use default page size. */
 515        *page_mask_out = ~TARGET_PAGE_MASK;
 516    }
 517
 518    return *section;
 519}
 520
 521/* Called from RCU critical section */
 522IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
 523                                            bool is_write, MemTxAttrs attrs)
 524{
 525    MemoryRegionSection section;
 526    hwaddr xlat, page_mask;
 527
 528    /*
 529     * This can never be MMIO, and we don't really care about plen,
 530     * but page mask.
 531     */
 532    section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
 533                                    NULL, &page_mask, is_write, false, &as,
 534                                    attrs);
 535
 536    /* Illegal translation */
 537    if (section.mr == &io_mem_unassigned) {
 538        goto iotlb_fail;
 539    }
 540
 541    /* Convert memory region offset into address space offset */
 542    xlat += section.offset_within_address_space -
 543        section.offset_within_region;
 544
 545    return (IOMMUTLBEntry) {
 546        .target_as = as,
 547        .iova = addr & ~page_mask,
 548        .translated_addr = xlat & ~page_mask,
 549        .addr_mask = page_mask,
 550        /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
 551        .perm = IOMMU_RW,
 552    };
 553
 554iotlb_fail:
 555    return (IOMMUTLBEntry) {0};
 556}
 557
 558/* Called from RCU critical section */
 559MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
 560                                 hwaddr *plen, bool is_write,
 561                                 MemTxAttrs attrs)
 562{
 563    MemoryRegion *mr;
 564    MemoryRegionSection section;
 565    AddressSpace *as = NULL;
 566
 567    /* This can be MMIO, so setup MMIO bit. */
 568    section = flatview_do_translate(fv, addr, xlat, plen, NULL,
 569                                    is_write, true, &as, attrs);
 570    mr = section.mr;
 571
 572    if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
 573        hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
 574        *plen = MIN(page, *plen);
 575    }
 576
 577    return mr;
 578}
 579
 580typedef struct TCGIOMMUNotifier {
 581    IOMMUNotifier n;
 582    MemoryRegion *mr;
 583    CPUState *cpu;
 584    int iommu_idx;
 585    bool active;
 586} TCGIOMMUNotifier;
 587
 588static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
 589{
 590    TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
 591
 592    if (!notifier->active) {
 593        return;
 594    }
 595    tlb_flush(notifier->cpu);
 596    notifier->active = false;
 597    /* We leave the notifier struct on the list to avoid reallocating it later.
 598     * Generally the number of IOMMUs a CPU deals with will be small.
 599     * In any case we can't unregister the iommu notifier from a notify
 600     * callback.
 601     */
 602}
 603
 604static void tcg_register_iommu_notifier(CPUState *cpu,
 605                                        IOMMUMemoryRegion *iommu_mr,
 606                                        int iommu_idx)
 607{
 608    /* Make sure this CPU has an IOMMU notifier registered for this
 609     * IOMMU/IOMMU index combination, so that we can flush its TLB
 610     * when the IOMMU tells us the mappings we've cached have changed.
 611     */
 612    MemoryRegion *mr = MEMORY_REGION(iommu_mr);
 613    TCGIOMMUNotifier *notifier = NULL;
 614    int i;
 615
 616    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 617        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
 618        if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
 619            break;
 620        }
 621    }
 622    if (i == cpu->iommu_notifiers->len) {
 623        /* Not found, add a new entry at the end of the array */
 624        cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
 625        notifier = g_new0(TCGIOMMUNotifier, 1);
 626        g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
 627
 628        notifier->mr = mr;
 629        notifier->iommu_idx = iommu_idx;
 630        notifier->cpu = cpu;
 631        /* Rather than trying to register interest in the specific part
 632         * of the iommu's address space that we've accessed and then
 633         * expand it later as subsequent accesses touch more of it, we
 634         * just register interest in the whole thing, on the assumption
 635         * that iommu reconfiguration will be rare.
 636         */
 637        iommu_notifier_init(&notifier->n,
 638                            tcg_iommu_unmap_notify,
 639                            IOMMU_NOTIFIER_UNMAP,
 640                            0,
 641                            HWADDR_MAX,
 642                            iommu_idx);
 643        memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
 644                                              &error_fatal);
 645    }
 646
 647    if (!notifier->active) {
 648        notifier->active = true;
 649    }
 650}
 651
 652void tcg_iommu_free_notifier_list(CPUState *cpu)
 653{
 654    /* Destroy the CPU's notifier list */
 655    int i;
 656    TCGIOMMUNotifier *notifier;
 657
 658    for (i = 0; i < cpu->iommu_notifiers->len; i++) {
 659        notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
 660        memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
 661        g_free(notifier);
 662    }
 663    g_array_free(cpu->iommu_notifiers, true);
 664}
 665
 666void tcg_iommu_init_notifier_list(CPUState *cpu)
 667{
 668    cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
 669}
 670
 671/* Called from RCU critical section */
 672MemoryRegionSection *
 673address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
 674                                  hwaddr *xlat, hwaddr *plen,
 675                                  MemTxAttrs attrs, int *prot)
 676{
 677    MemoryRegionSection *section;
 678    IOMMUMemoryRegion *iommu_mr;
 679    IOMMUMemoryRegionClass *imrc;
 680    IOMMUTLBEntry iotlb;
 681    int iommu_idx;
 682    hwaddr addr = orig_addr;
 683    AddressSpaceDispatch *d =
 684        qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
 685
 686    for (;;) {
 687        section = address_space_translate_internal(d, addr, &addr, plen, false);
 688
 689        iommu_mr = memory_region_get_iommu(section->mr);
 690        if (!iommu_mr) {
 691            break;
 692        }
 693
 694        imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
 695
 696        iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
 697        tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
 698        /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
 699         * doesn't short-cut its translation table walk.
 700         */
 701        iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
 702        addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
 703                | (addr & iotlb.addr_mask));
 704        /* Update the caller's prot bits to remove permissions the IOMMU
 705         * is giving us a failure response for. If we get down to no
 706         * permissions left at all we can give up now.
 707         */
 708        if (!(iotlb.perm & IOMMU_RO)) {
 709            *prot &= ~(PAGE_READ | PAGE_EXEC);
 710        }
 711        if (!(iotlb.perm & IOMMU_WO)) {
 712            *prot &= ~PAGE_WRITE;
 713        }
 714
 715        if (!*prot) {
 716            goto translate_fail;
 717        }
 718
 719        d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
 720    }
 721
 722    assert(!memory_region_is_iommu(section->mr));
 723    *xlat = addr;
 724    return section;
 725
 726translate_fail:
 727    /*
 728     * We should be given a page-aligned address -- certainly
 729     * tlb_set_page_with_attrs() does so.  The page offset of xlat
 730     * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
 731     * The page portion of xlat will be logged by memory_region_access_valid()
 732     * when this memory access is rejected, so use the original untranslated
 733     * physical address.
 734     */
 735    assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
 736    *xlat = orig_addr;
 737    return &d->map.sections[PHYS_SECTION_UNASSIGNED];
 738}
 739
 740void cpu_address_space_init(CPUState *cpu, int asidx,
 741                            const char *prefix, MemoryRegion *mr)
 742{
 743    CPUAddressSpace *newas;
 744    AddressSpace *as = g_new0(AddressSpace, 1);
 745    char *as_name;
 746
 747    assert(mr);
 748    as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
 749    address_space_init(as, mr, as_name);
 750    g_free(as_name);
 751
 752    /* Target code should have set num_ases before calling us */
 753    assert(asidx < cpu->num_ases);
 754
 755    if (asidx == 0) {
 756        /* address space 0 gets the convenience alias */
 757        cpu->as = as;
 758    }
 759
 760    /* KVM cannot currently support multiple address spaces. */
 761    assert(asidx == 0 || !kvm_enabled());
 762
 763    if (!cpu->cpu_ases) {
 764        cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
 765    }
 766
 767    newas = &cpu->cpu_ases[asidx];
 768    newas->cpu = cpu;
 769    newas->as = as;
 770    if (tcg_enabled()) {
 771        newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
 772        newas->tcg_as_listener.commit = tcg_commit;
 773        newas->tcg_as_listener.name = "tcg";
 774        memory_listener_register(&newas->tcg_as_listener, as);
 775    }
 776}
 777
 778AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
 779{
 780    /* Return the AddressSpace corresponding to the specified index */
 781    return cpu->cpu_ases[asidx].as;
 782}
 783
 784/* Called from RCU critical section */
 785static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
 786{
 787    RAMBlock *block;
 788
 789    block = qatomic_rcu_read(&ram_list.mru_block);
 790    if (block && addr - block->offset < block->max_length) {
 791        return block;
 792    }
 793    RAMBLOCK_FOREACH(block) {
 794        if (addr - block->offset < block->max_length) {
 795            goto found;
 796        }
 797    }
 798
 799    fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
 800    abort();
 801
 802found:
 803    /* It is safe to write mru_block outside the iothread lock.  This
 804     * is what happens:
 805     *
 806     *     mru_block = xxx
 807     *     rcu_read_unlock()
 808     *                                        xxx removed from list
 809     *                  rcu_read_lock()
 810     *                  read mru_block
 811     *                                        mru_block = NULL;
 812     *                                        call_rcu(reclaim_ramblock, xxx);
 813     *                  rcu_read_unlock()
 814     *
 815     * qatomic_rcu_set is not needed here.  The block was already published
 816     * when it was placed into the list.  Here we're just making an extra
 817     * copy of the pointer.
 818     */
 819    ram_list.mru_block = block;
 820    return block;
 821}
 822
 823static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
 824{
 825    CPUState *cpu;
 826    ram_addr_t start1;
 827    RAMBlock *block;
 828    ram_addr_t end;
 829
 830    assert(tcg_enabled());
 831    end = TARGET_PAGE_ALIGN(start + length);
 832    start &= TARGET_PAGE_MASK;
 833
 834    RCU_READ_LOCK_GUARD();
 835    block = qemu_get_ram_block(start);
 836    assert(block == qemu_get_ram_block(end - 1));
 837    start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
 838    CPU_FOREACH(cpu) {
 839        tlb_reset_dirty(cpu, start1, length);
 840    }
 841}
 842
 843/* Note: start and end must be within the same ram block.  */
 844bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
 845                                              ram_addr_t length,
 846                                              unsigned client)
 847{
 848    DirtyMemoryBlocks *blocks;
 849    unsigned long end, page, start_page;
 850    bool dirty = false;
 851    RAMBlock *ramblock;
 852    uint64_t mr_offset, mr_size;
 853
 854    if (length == 0) {
 855        return false;
 856    }
 857
 858    end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
 859    start_page = start >> TARGET_PAGE_BITS;
 860    page = start_page;
 861
 862    WITH_RCU_READ_LOCK_GUARD() {
 863        blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
 864        ramblock = qemu_get_ram_block(start);
 865        /* Range sanity check on the ramblock */
 866        assert(start >= ramblock->offset &&
 867               start + length <= ramblock->offset + ramblock->used_length);
 868
 869        while (page < end) {
 870            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
 871            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
 872            unsigned long num = MIN(end - page,
 873                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
 874
 875            dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
 876                                                  offset, num);
 877            page += num;
 878        }
 879
 880        mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
 881        mr_size = (end - start_page) << TARGET_PAGE_BITS;
 882        memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
 883    }
 884
 885    if (dirty && tcg_enabled()) {
 886        tlb_reset_dirty_range_all(start, length);
 887    }
 888
 889    return dirty;
 890}
 891
 892DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
 893    (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
 894{
 895    DirtyMemoryBlocks *blocks;
 896    ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
 897    unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
 898    ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
 899    ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
 900    DirtyBitmapSnapshot *snap;
 901    unsigned long page, end, dest;
 902
 903    snap = g_malloc0(sizeof(*snap) +
 904                     ((last - first) >> (TARGET_PAGE_BITS + 3)));
 905    snap->start = first;
 906    snap->end   = last;
 907
 908    page = first >> TARGET_PAGE_BITS;
 909    end  = last  >> TARGET_PAGE_BITS;
 910    dest = 0;
 911
 912    WITH_RCU_READ_LOCK_GUARD() {
 913        blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
 914
 915        while (page < end) {
 916            unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
 917            unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
 918            unsigned long num = MIN(end - page,
 919                                    DIRTY_MEMORY_BLOCK_SIZE - offset);
 920
 921            assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
 922            assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
 923            offset >>= BITS_PER_LEVEL;
 924
 925            bitmap_copy_and_clear_atomic(snap->dirty + dest,
 926                                         blocks->blocks[idx] + offset,
 927                                         num);
 928            page += num;
 929            dest += num >> BITS_PER_LEVEL;
 930        }
 931    }
 932
 933    if (tcg_enabled()) {
 934        tlb_reset_dirty_range_all(start, length);
 935    }
 936
 937    memory_region_clear_dirty_bitmap(mr, offset, length);
 938
 939    return snap;
 940}
 941
 942bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
 943                                            ram_addr_t start,
 944                                            ram_addr_t length)
 945{
 946    unsigned long page, end;
 947
 948    assert(start >= snap->start);
 949    assert(start + length <= snap->end);
 950
 951    end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
 952    page = (start - snap->start) >> TARGET_PAGE_BITS;
 953
 954    while (page < end) {
 955        if (test_bit(page, snap->dirty)) {
 956            return true;
 957        }
 958        page++;
 959    }
 960    return false;
 961}
 962
 963/* Called from RCU critical section */
 964hwaddr memory_region_section_get_iotlb(CPUState *cpu,
 965                                       MemoryRegionSection *section)
 966{
 967    AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
 968    return section - d->map.sections;
 969}
 970
 971static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
 972                            uint16_t section);
 973static subpage_t *subpage_init(FlatView *fv, hwaddr base);
 974
 975static uint16_t phys_section_add(PhysPageMap *map,
 976                                 MemoryRegionSection *section)
 977{
 978    /* The physical section number is ORed with a page-aligned
 979     * pointer to produce the iotlb entries.  Thus it should
 980     * never overflow into the page-aligned value.
 981     */
 982    assert(map->sections_nb < TARGET_PAGE_SIZE);
 983
 984    if (map->sections_nb == map->sections_nb_alloc) {
 985        map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
 986        map->sections = g_renew(MemoryRegionSection, map->sections,
 987                                map->sections_nb_alloc);
 988    }
 989    map->sections[map->sections_nb] = *section;
 990    memory_region_ref(section->mr);
 991    return map->sections_nb++;
 992}
 993
 994static void phys_section_destroy(MemoryRegion *mr)
 995{
 996    bool have_sub_page = mr->subpage;
 997
 998    memory_region_unref(mr);
 999
1000    if (have_sub_page) {
1001        subpage_t *subpage = container_of(mr, subpage_t, iomem);
1002        object_unref(OBJECT(&subpage->iomem));
1003        g_free(subpage);
1004    }
1005}
1006
1007static void phys_sections_free(PhysPageMap *map)
1008{
1009    while (map->sections_nb > 0) {
1010        MemoryRegionSection *section = &map->sections[--map->sections_nb];
1011        phys_section_destroy(section->mr);
1012    }
1013    g_free(map->sections);
1014    g_free(map->nodes);
1015}
1016
1017static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1018{
1019    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1020    subpage_t *subpage;
1021    hwaddr base = section->offset_within_address_space
1022        & TARGET_PAGE_MASK;
1023    MemoryRegionSection *existing = phys_page_find(d, base);
1024    MemoryRegionSection subsection = {
1025        .offset_within_address_space = base,
1026        .size = int128_make64(TARGET_PAGE_SIZE),
1027    };
1028    hwaddr start, end;
1029
1030    assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1031
1032    if (!(existing->mr->subpage)) {
1033        subpage = subpage_init(fv, base);
1034        subsection.fv = fv;
1035        subsection.mr = &subpage->iomem;
1036        phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1037                      phys_section_add(&d->map, &subsection));
1038    } else {
1039        subpage = container_of(existing->mr, subpage_t, iomem);
1040    }
1041    start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1042    end = start + int128_get64(section->size) - 1;
1043    subpage_register(subpage, start, end,
1044                     phys_section_add(&d->map, section));
1045}
1046
1047
1048static void register_multipage(FlatView *fv,
1049                               MemoryRegionSection *section)
1050{
1051    AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1052    hwaddr start_addr = section->offset_within_address_space;
1053    uint16_t section_index = phys_section_add(&d->map, section);
1054    uint64_t num_pages = int128_get64(int128_rshift(section->size,
1055                                                    TARGET_PAGE_BITS));
1056
1057    assert(num_pages);
1058    phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1059}
1060
1061/*
1062 * The range in *section* may look like this:
1063 *
1064 *      |s|PPPPPPP|s|
1065 *
1066 * where s stands for subpage and P for page.
1067 */
1068void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1069{
1070    MemoryRegionSection remain = *section;
1071    Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1072
1073    /* register first subpage */
1074    if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1075        uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1076                        - remain.offset_within_address_space;
1077
1078        MemoryRegionSection now = remain;
1079        now.size = int128_min(int128_make64(left), now.size);
1080        register_subpage(fv, &now);
1081        if (int128_eq(remain.size, now.size)) {
1082            return;
1083        }
1084        remain.size = int128_sub(remain.size, now.size);
1085        remain.offset_within_address_space += int128_get64(now.size);
1086        remain.offset_within_region += int128_get64(now.size);
1087    }
1088
1089    /* register whole pages */
1090    if (int128_ge(remain.size, page_size)) {
1091        MemoryRegionSection now = remain;
1092        now.size = int128_and(now.size, int128_neg(page_size));
1093        register_multipage(fv, &now);
1094        if (int128_eq(remain.size, now.size)) {
1095            return;
1096        }
1097        remain.size = int128_sub(remain.size, now.size);
1098        remain.offset_within_address_space += int128_get64(now.size);
1099        remain.offset_within_region += int128_get64(now.size);
1100    }
1101
1102    /* register last subpage */
1103    register_subpage(fv, &remain);
1104}
1105
1106void qemu_flush_coalesced_mmio_buffer(void)
1107{
1108    if (kvm_enabled())
1109        kvm_flush_coalesced_mmio_buffer();
1110}
1111
1112void qemu_mutex_lock_ramlist(void)
1113{
1114    qemu_mutex_lock(&ram_list.mutex);
1115}
1116
1117void qemu_mutex_unlock_ramlist(void)
1118{
1119    qemu_mutex_unlock(&ram_list.mutex);
1120}
1121
1122GString *ram_block_format(void)
1123{
1124    RAMBlock *block;
1125    char *psize;
1126    GString *buf = g_string_new("");
1127
1128    RCU_READ_LOCK_GUARD();
1129    g_string_append_printf(buf, "%24s %8s  %18s %18s %18s %18s %3s\n",
1130                           "Block Name", "PSize", "Offset", "Used", "Total",
1131                           "HVA", "RO");
1132
1133    RAMBLOCK_FOREACH(block) {
1134        psize = size_to_str(block->page_size);
1135        g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1136                               " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1137                               block->idstr, psize,
1138                               (uint64_t)block->offset,
1139                               (uint64_t)block->used_length,
1140                               (uint64_t)block->max_length,
1141                               (uint64_t)(uintptr_t)block->host,
1142                               block->mr->readonly ? "ro" : "rw");
1143
1144        g_free(psize);
1145    }
1146
1147    return buf;
1148}
1149
1150static int find_min_backend_pagesize(Object *obj, void *opaque)
1151{
1152    long *hpsize_min = opaque;
1153
1154    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1155        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1156        long hpsize = host_memory_backend_pagesize(backend);
1157
1158        if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1159            *hpsize_min = hpsize;
1160        }
1161    }
1162
1163    return 0;
1164}
1165
1166static int find_max_backend_pagesize(Object *obj, void *opaque)
1167{
1168    long *hpsize_max = opaque;
1169
1170    if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1171        HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1172        long hpsize = host_memory_backend_pagesize(backend);
1173
1174        if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1175            *hpsize_max = hpsize;
1176        }
1177    }
1178
1179    return 0;
1180}
1181
1182/*
1183 * TODO: We assume right now that all mapped host memory backends are
1184 * used as RAM, however some might be used for different purposes.
1185 */
1186long qemu_minrampagesize(void)
1187{
1188    long hpsize = LONG_MAX;
1189    Object *memdev_root = object_resolve_path("/objects", NULL);
1190
1191    object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1192    return hpsize;
1193}
1194
1195long qemu_maxrampagesize(void)
1196{
1197    long pagesize = 0;
1198    Object *memdev_root = object_resolve_path("/objects", NULL);
1199
1200    object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1201    return pagesize;
1202}
1203
1204#ifdef CONFIG_POSIX
1205static int64_t get_file_size(int fd)
1206{
1207    int64_t size;
1208#if defined(__linux__)
1209    struct stat st;
1210
1211    if (fstat(fd, &st) < 0) {
1212        return -errno;
1213    }
1214
1215    /* Special handling for devdax character devices */
1216    if (S_ISCHR(st.st_mode)) {
1217        g_autofree char *subsystem_path = NULL;
1218        g_autofree char *subsystem = NULL;
1219
1220        subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1221                                         major(st.st_rdev), minor(st.st_rdev));
1222        subsystem = g_file_read_link(subsystem_path, NULL);
1223
1224        if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1225            g_autofree char *size_path = NULL;
1226            g_autofree char *size_str = NULL;
1227
1228            size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1229                                    major(st.st_rdev), minor(st.st_rdev));
1230
1231            if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1232                return g_ascii_strtoll(size_str, NULL, 0);
1233            }
1234        }
1235    }
1236#endif /* defined(__linux__) */
1237
1238    /* st.st_size may be zero for special files yet lseek(2) works */
1239    size = lseek(fd, 0, SEEK_END);
1240    if (size < 0) {
1241        return -errno;
1242    }
1243    return size;
1244}
1245
1246static int64_t get_file_align(int fd)
1247{
1248    int64_t align = -1;
1249#if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1250    struct stat st;
1251
1252    if (fstat(fd, &st) < 0) {
1253        return -errno;
1254    }
1255
1256    /* Special handling for devdax character devices */
1257    if (S_ISCHR(st.st_mode)) {
1258        g_autofree char *path = NULL;
1259        g_autofree char *rpath = NULL;
1260        struct daxctl_ctx *ctx;
1261        struct daxctl_region *region;
1262        int rc = 0;
1263
1264        path = g_strdup_printf("/sys/dev/char/%d:%d",
1265                    major(st.st_rdev), minor(st.st_rdev));
1266        rpath = realpath(path, NULL);
1267        if (!rpath) {
1268            return -errno;
1269        }
1270
1271        rc = daxctl_new(&ctx);
1272        if (rc) {
1273            return -1;
1274        }
1275
1276        daxctl_region_foreach(ctx, region) {
1277            if (strstr(rpath, daxctl_region_get_path(region))) {
1278                align = daxctl_region_get_align(region);
1279                break;
1280            }
1281        }
1282        daxctl_unref(ctx);
1283    }
1284#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1285
1286    return align;
1287}
1288
1289static int file_ram_open(const char *path,
1290                         const char *region_name,
1291                         bool readonly,
1292                         bool *created,
1293                         Error **errp)
1294{
1295    char *filename;
1296    char *sanitized_name;
1297    char *c;
1298    int fd = -1;
1299
1300    *created = false;
1301    for (;;) {
1302        fd = open(path, readonly ? O_RDONLY : O_RDWR);
1303        if (fd >= 0) {
1304            /* @path names an existing file, use it */
1305            break;
1306        }
1307        if (errno == ENOENT) {
1308            /* @path names a file that doesn't exist, create it */
1309            fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1310            if (fd >= 0) {
1311                *created = true;
1312                break;
1313            }
1314        } else if (errno == EISDIR) {
1315            /* @path names a directory, create a file there */
1316            /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1317            sanitized_name = g_strdup(region_name);
1318            for (c = sanitized_name; *c != '\0'; c++) {
1319                if (*c == '/') {
1320                    *c = '_';
1321                }
1322            }
1323
1324            filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1325                                       sanitized_name);
1326            g_free(sanitized_name);
1327
1328            fd = mkstemp(filename);
1329            if (fd >= 0) {
1330                unlink(filename);
1331                g_free(filename);
1332                break;
1333            }
1334            g_free(filename);
1335        }
1336        if (errno != EEXIST && errno != EINTR) {
1337            error_setg_errno(errp, errno,
1338                             "can't open backing store %s for guest RAM",
1339                             path);
1340            return -1;
1341        }
1342        /*
1343         * Try again on EINTR and EEXIST.  The latter happens when
1344         * something else creates the file between our two open().
1345         */
1346    }
1347
1348    return fd;
1349}
1350
1351static void *file_ram_alloc(RAMBlock *block,
1352                            ram_addr_t memory,
1353                            int fd,
1354                            bool readonly,
1355                            bool truncate,
1356                            off_t offset,
1357                            Error **errp)
1358{
1359    uint32_t qemu_map_flags;
1360    void *area;
1361
1362    block->page_size = qemu_fd_getpagesize(fd);
1363    if (block->mr->align % block->page_size) {
1364        error_setg(errp, "alignment 0x%" PRIx64
1365                   " must be multiples of page size 0x%zx",
1366                   block->mr->align, block->page_size);
1367        return NULL;
1368    } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1369        error_setg(errp, "alignment 0x%" PRIx64
1370                   " must be a power of two", block->mr->align);
1371        return NULL;
1372    } else if (offset % block->page_size) {
1373        error_setg(errp, "offset 0x%" PRIx64
1374                   " must be multiples of page size 0x%zx",
1375                   offset, block->page_size);
1376        return NULL;
1377    }
1378    block->mr->align = MAX(block->page_size, block->mr->align);
1379#if defined(__s390x__)
1380    if (kvm_enabled()) {
1381        block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1382    }
1383#endif
1384
1385    if (memory < block->page_size) {
1386        error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1387                   "or larger than page size 0x%zx",
1388                   memory, block->page_size);
1389        return NULL;
1390    }
1391
1392    memory = ROUND_UP(memory, block->page_size);
1393
1394    /*
1395     * ftruncate is not supported by hugetlbfs in older
1396     * hosts, so don't bother bailing out on errors.
1397     * If anything goes wrong with it under other filesystems,
1398     * mmap will fail.
1399     *
1400     * Do not truncate the non-empty backend file to avoid corrupting
1401     * the existing data in the file. Disabling shrinking is not
1402     * enough. For example, the current vNVDIMM implementation stores
1403     * the guest NVDIMM labels at the end of the backend file. If the
1404     * backend file is later extended, QEMU will not be able to find
1405     * those labels. Therefore, extending the non-empty backend file
1406     * is disabled as well.
1407     */
1408    if (truncate && ftruncate(fd, offset + memory)) {
1409        perror("ftruncate");
1410    }
1411
1412    qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1413    qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1414    qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1415    qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1416    area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1417    if (area == MAP_FAILED) {
1418        error_setg_errno(errp, errno,
1419                         "unable to map backing store for guest RAM");
1420        return NULL;
1421    }
1422
1423    block->fd = fd;
1424    block->fd_offset = offset;
1425    return area;
1426}
1427#endif
1428
1429/* Allocate space within the ram_addr_t space that governs the
1430 * dirty bitmaps.
1431 * Called with the ramlist lock held.
1432 */
1433static ram_addr_t find_ram_offset(ram_addr_t size)
1434{
1435    RAMBlock *block, *next_block;
1436    ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1437
1438    assert(size != 0); /* it would hand out same offset multiple times */
1439
1440    if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1441        return 0;
1442    }
1443
1444    RAMBLOCK_FOREACH(block) {
1445        ram_addr_t candidate, next = RAM_ADDR_MAX;
1446
1447        /* Align blocks to start on a 'long' in the bitmap
1448         * which makes the bitmap sync'ing take the fast path.
1449         */
1450        candidate = block->offset + block->max_length;
1451        candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1452
1453        /* Search for the closest following block
1454         * and find the gap.
1455         */
1456        RAMBLOCK_FOREACH(next_block) {
1457            if (next_block->offset >= candidate) {
1458                next = MIN(next, next_block->offset);
1459            }
1460        }
1461
1462        /* If it fits remember our place and remember the size
1463         * of gap, but keep going so that we might find a smaller
1464         * gap to fill so avoiding fragmentation.
1465         */
1466        if (next - candidate >= size && next - candidate < mingap) {
1467            offset = candidate;
1468            mingap = next - candidate;
1469        }
1470
1471        trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1472    }
1473
1474    if (offset == RAM_ADDR_MAX) {
1475        fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1476                (uint64_t)size);
1477        abort();
1478    }
1479
1480    trace_find_ram_offset(size, offset);
1481
1482    return offset;
1483}
1484
1485static unsigned long last_ram_page(void)
1486{
1487    RAMBlock *block;
1488    ram_addr_t last = 0;
1489
1490    RCU_READ_LOCK_GUARD();
1491    RAMBLOCK_FOREACH(block) {
1492        last = MAX(last, block->offset + block->max_length);
1493    }
1494    return last >> TARGET_PAGE_BITS;
1495}
1496
1497static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1498{
1499    int ret;
1500
1501    /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1502    if (!machine_dump_guest_core(current_machine)) {
1503        ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1504        if (ret) {
1505            perror("qemu_madvise");
1506            fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1507                            "but dump_guest_core=off specified\n");
1508        }
1509    }
1510}
1511
1512const char *qemu_ram_get_idstr(RAMBlock *rb)
1513{
1514    return rb->idstr;
1515}
1516
1517void *qemu_ram_get_host_addr(RAMBlock *rb)
1518{
1519    return rb->host;
1520}
1521
1522ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1523{
1524    return rb->offset;
1525}
1526
1527ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1528{
1529    return rb->used_length;
1530}
1531
1532ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1533{
1534    return rb->max_length;
1535}
1536
1537bool qemu_ram_is_shared(RAMBlock *rb)
1538{
1539    return rb->flags & RAM_SHARED;
1540}
1541
1542bool qemu_ram_is_noreserve(RAMBlock *rb)
1543{
1544    return rb->flags & RAM_NORESERVE;
1545}
1546
1547/* Note: Only set at the start of postcopy */
1548bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1549{
1550    return rb->flags & RAM_UF_ZEROPAGE;
1551}
1552
1553void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1554{
1555    rb->flags |= RAM_UF_ZEROPAGE;
1556}
1557
1558bool qemu_ram_is_migratable(RAMBlock *rb)
1559{
1560    return rb->flags & RAM_MIGRATABLE;
1561}
1562
1563void qemu_ram_set_migratable(RAMBlock *rb)
1564{
1565    rb->flags |= RAM_MIGRATABLE;
1566}
1567
1568void qemu_ram_unset_migratable(RAMBlock *rb)
1569{
1570    rb->flags &= ~RAM_MIGRATABLE;
1571}
1572
1573bool qemu_ram_is_named_file(RAMBlock *rb)
1574{
1575    return rb->flags & RAM_NAMED_FILE;
1576}
1577
1578int qemu_ram_get_fd(RAMBlock *rb)
1579{
1580    return rb->fd;
1581}
1582
1583/* Called with iothread lock held.  */
1584void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1585{
1586    RAMBlock *block;
1587
1588    assert(new_block);
1589    assert(!new_block->idstr[0]);
1590
1591    if (dev) {
1592        char *id = qdev_get_dev_path(dev);
1593        if (id) {
1594            snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1595            g_free(id);
1596        }
1597    }
1598    pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1599
1600    RCU_READ_LOCK_GUARD();
1601    RAMBLOCK_FOREACH(block) {
1602        if (block != new_block &&
1603            !strcmp(block->idstr, new_block->idstr)) {
1604            fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1605                    new_block->idstr);
1606            abort();
1607        }
1608    }
1609}
1610
1611/* Called with iothread lock held.  */
1612void qemu_ram_unset_idstr(RAMBlock *block)
1613{
1614    /* FIXME: arch_init.c assumes that this is not called throughout
1615     * migration.  Ignore the problem since hot-unplug during migration
1616     * does not work anyway.
1617     */
1618    if (block) {
1619        memset(block->idstr, 0, sizeof(block->idstr));
1620    }
1621}
1622
1623size_t qemu_ram_pagesize(RAMBlock *rb)
1624{
1625    return rb->page_size;
1626}
1627
1628/* Returns the largest size of page in use */
1629size_t qemu_ram_pagesize_largest(void)
1630{
1631    RAMBlock *block;
1632    size_t largest = 0;
1633
1634    RAMBLOCK_FOREACH(block) {
1635        largest = MAX(largest, qemu_ram_pagesize(block));
1636    }
1637
1638    return largest;
1639}
1640
1641static int memory_try_enable_merging(void *addr, size_t len)
1642{
1643    if (!machine_mem_merge(current_machine)) {
1644        /* disabled by the user */
1645        return 0;
1646    }
1647
1648    return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1649}
1650
1651/*
1652 * Resizing RAM while migrating can result in the migration being canceled.
1653 * Care has to be taken if the guest might have already detected the memory.
1654 *
1655 * As memory core doesn't know how is memory accessed, it is up to
1656 * resize callback to update device state and/or add assertions to detect
1657 * misuse, if necessary.
1658 */
1659int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1660{
1661    const ram_addr_t oldsize = block->used_length;
1662    const ram_addr_t unaligned_size = newsize;
1663
1664    assert(block);
1665
1666    newsize = HOST_PAGE_ALIGN(newsize);
1667
1668    if (block->used_length == newsize) {
1669        /*
1670         * We don't have to resize the ram block (which only knows aligned
1671         * sizes), however, we have to notify if the unaligned size changed.
1672         */
1673        if (unaligned_size != memory_region_size(block->mr)) {
1674            memory_region_set_size(block->mr, unaligned_size);
1675            if (block->resized) {
1676                block->resized(block->idstr, unaligned_size, block->host);
1677            }
1678        }
1679        return 0;
1680    }
1681
1682    if (!(block->flags & RAM_RESIZEABLE)) {
1683        error_setg_errno(errp, EINVAL,
1684                         "Size mismatch: %s: 0x" RAM_ADDR_FMT
1685                         " != 0x" RAM_ADDR_FMT, block->idstr,
1686                         newsize, block->used_length);
1687        return -EINVAL;
1688    }
1689
1690    if (block->max_length < newsize) {
1691        error_setg_errno(errp, EINVAL,
1692                         "Size too large: %s: 0x" RAM_ADDR_FMT
1693                         " > 0x" RAM_ADDR_FMT, block->idstr,
1694                         newsize, block->max_length);
1695        return -EINVAL;
1696    }
1697
1698    /* Notify before modifying the ram block and touching the bitmaps. */
1699    if (block->host) {
1700        ram_block_notify_resize(block->host, oldsize, newsize);
1701    }
1702
1703    cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1704    block->used_length = newsize;
1705    cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1706                                        DIRTY_CLIENTS_ALL);
1707    memory_region_set_size(block->mr, unaligned_size);
1708    if (block->resized) {
1709        block->resized(block->idstr, unaligned_size, block->host);
1710    }
1711    return 0;
1712}
1713
1714/*
1715 * Trigger sync on the given ram block for range [start, start + length]
1716 * with the backing store if one is available.
1717 * Otherwise no-op.
1718 * @Note: this is supposed to be a synchronous op.
1719 */
1720void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1721{
1722    /* The requested range should fit in within the block range */
1723    g_assert((start + length) <= block->used_length);
1724
1725#ifdef CONFIG_LIBPMEM
1726    /* The lack of support for pmem should not block the sync */
1727    if (ramblock_is_pmem(block)) {
1728        void *addr = ramblock_ptr(block, start);
1729        pmem_persist(addr, length);
1730        return;
1731    }
1732#endif
1733    if (block->fd >= 0) {
1734        /**
1735         * Case there is no support for PMEM or the memory has not been
1736         * specified as persistent (or is not one) - use the msync.
1737         * Less optimal but still achieves the same goal
1738         */
1739        void *addr = ramblock_ptr(block, start);
1740        if (qemu_msync(addr, length, block->fd)) {
1741            warn_report("%s: failed to sync memory range: start: "
1742                    RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1743                    __func__, start, length);
1744        }
1745    }
1746}
1747
1748/* Called with ram_list.mutex held */
1749static void dirty_memory_extend(ram_addr_t old_ram_size,
1750                                ram_addr_t new_ram_size)
1751{
1752    ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1753                                             DIRTY_MEMORY_BLOCK_SIZE);
1754    ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1755                                             DIRTY_MEMORY_BLOCK_SIZE);
1756    int i;
1757
1758    /* Only need to extend if block count increased */
1759    if (new_num_blocks <= old_num_blocks) {
1760        return;
1761    }
1762
1763    for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1764        DirtyMemoryBlocks *old_blocks;
1765        DirtyMemoryBlocks *new_blocks;
1766        int j;
1767
1768        old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1769        new_blocks = g_malloc(sizeof(*new_blocks) +
1770                              sizeof(new_blocks->blocks[0]) * new_num_blocks);
1771
1772        if (old_num_blocks) {
1773            memcpy(new_blocks->blocks, old_blocks->blocks,
1774                   old_num_blocks * sizeof(old_blocks->blocks[0]));
1775        }
1776
1777        for (j = old_num_blocks; j < new_num_blocks; j++) {
1778            new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1779        }
1780
1781        qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1782
1783        if (old_blocks) {
1784            g_free_rcu(old_blocks, rcu);
1785        }
1786    }
1787}
1788
1789static void ram_block_add(RAMBlock *new_block, Error **errp)
1790{
1791    const bool noreserve = qemu_ram_is_noreserve(new_block);
1792    const bool shared = qemu_ram_is_shared(new_block);
1793    RAMBlock *block;
1794    RAMBlock *last_block = NULL;
1795    ram_addr_t old_ram_size, new_ram_size;
1796    Error *err = NULL;
1797
1798    old_ram_size = last_ram_page();
1799
1800    qemu_mutex_lock_ramlist();
1801    new_block->offset = find_ram_offset(new_block->max_length);
1802
1803    if (!new_block->host) {
1804        if (xen_enabled()) {
1805            xen_ram_alloc(new_block->offset, new_block->max_length,
1806                          new_block->mr, &err);
1807            if (err) {
1808                error_propagate(errp, err);
1809                qemu_mutex_unlock_ramlist();
1810                return;
1811            }
1812        } else {
1813            new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1814                                                  &new_block->mr->align,
1815                                                  shared, noreserve);
1816            if (!new_block->host) {
1817                error_setg_errno(errp, errno,
1818                                 "cannot set up guest memory '%s'",
1819                                 memory_region_name(new_block->mr));
1820                qemu_mutex_unlock_ramlist();
1821                return;
1822            }
1823            memory_try_enable_merging(new_block->host, new_block->max_length);
1824        }
1825    }
1826
1827    new_ram_size = MAX(old_ram_size,
1828              (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1829    if (new_ram_size > old_ram_size) {
1830        dirty_memory_extend(old_ram_size, new_ram_size);
1831    }
1832    /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
1833     * QLIST (which has an RCU-friendly variant) does not have insertion at
1834     * tail, so save the last element in last_block.
1835     */
1836    RAMBLOCK_FOREACH(block) {
1837        last_block = block;
1838        if (block->max_length < new_block->max_length) {
1839            break;
1840        }
1841    }
1842    if (block) {
1843        QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1844    } else if (last_block) {
1845        QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1846    } else { /* list is empty */
1847        QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1848    }
1849    ram_list.mru_block = NULL;
1850
1851    /* Write list before version */
1852    smp_wmb();
1853    ram_list.version++;
1854    qemu_mutex_unlock_ramlist();
1855
1856    cpu_physical_memory_set_dirty_range(new_block->offset,
1857                                        new_block->used_length,
1858                                        DIRTY_CLIENTS_ALL);
1859
1860    if (new_block->host) {
1861        qemu_ram_setup_dump(new_block->host, new_block->max_length);
1862        qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1863        /*
1864         * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1865         * Configure it unless the machine is a qtest server, in which case
1866         * KVM is not used and it may be forked (eg for fuzzing purposes).
1867         */
1868        if (!qtest_enabled()) {
1869            qemu_madvise(new_block->host, new_block->max_length,
1870                         QEMU_MADV_DONTFORK);
1871        }
1872        ram_block_notify_add(new_block->host, new_block->used_length,
1873                             new_block->max_length);
1874    }
1875}
1876
1877#ifdef CONFIG_POSIX
1878RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1879                                 uint32_t ram_flags, int fd, off_t offset,
1880                                 bool readonly, Error **errp)
1881{
1882    RAMBlock *new_block;
1883    Error *local_err = NULL;
1884    int64_t file_size, file_align;
1885
1886    /* Just support these ram flags by now. */
1887    assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1888                          RAM_PROTECTED | RAM_NAMED_FILE)) == 0);
1889
1890    if (xen_enabled()) {
1891        error_setg(errp, "-mem-path not supported with Xen");
1892        return NULL;
1893    }
1894
1895    if (kvm_enabled() && !kvm_has_sync_mmu()) {
1896        error_setg(errp,
1897                   "host lacks kvm mmu notifiers, -mem-path unsupported");
1898        return NULL;
1899    }
1900
1901    size = HOST_PAGE_ALIGN(size);
1902    file_size = get_file_size(fd);
1903    if (file_size > offset && file_size < (offset + size)) {
1904        error_setg(errp, "backing store size 0x%" PRIx64
1905                   " does not match 'size' option 0x" RAM_ADDR_FMT,
1906                   file_size, size);
1907        return NULL;
1908    }
1909
1910    file_align = get_file_align(fd);
1911    if (file_align > 0 && file_align > mr->align) {
1912        error_setg(errp, "backing store align 0x%" PRIx64
1913                   " is larger than 'align' option 0x%" PRIx64,
1914                   file_align, mr->align);
1915        return NULL;
1916    }
1917
1918    new_block = g_malloc0(sizeof(*new_block));
1919    new_block->mr = mr;
1920    new_block->used_length = size;
1921    new_block->max_length = size;
1922    new_block->flags = ram_flags;
1923    new_block->host = file_ram_alloc(new_block, size, fd, readonly,
1924                                     !file_size, offset, errp);
1925    if (!new_block->host) {
1926        g_free(new_block);
1927        return NULL;
1928    }
1929
1930    ram_block_add(new_block, &local_err);
1931    if (local_err) {
1932        g_free(new_block);
1933        error_propagate(errp, local_err);
1934        return NULL;
1935    }
1936    return new_block;
1937
1938}
1939
1940
1941RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1942                                   uint32_t ram_flags, const char *mem_path,
1943                                   off_t offset, bool readonly, Error **errp)
1944{
1945    int fd;
1946    bool created;
1947    RAMBlock *block;
1948
1949    fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
1950                       errp);
1951    if (fd < 0) {
1952        return NULL;
1953    }
1954
1955    block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, readonly,
1956                                   errp);
1957    if (!block) {
1958        if (created) {
1959            unlink(mem_path);
1960        }
1961        close(fd);
1962        return NULL;
1963    }
1964
1965    return block;
1966}
1967#endif
1968
1969static
1970RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1971                                  void (*resized)(const char*,
1972                                                  uint64_t length,
1973                                                  void *host),
1974                                  void *host, uint32_t ram_flags,
1975                                  MemoryRegion *mr, Error **errp)
1976{
1977    RAMBlock *new_block;
1978    Error *local_err = NULL;
1979
1980    assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
1981                          RAM_NORESERVE)) == 0);
1982    assert(!host ^ (ram_flags & RAM_PREALLOC));
1983
1984    size = HOST_PAGE_ALIGN(size);
1985    max_size = HOST_PAGE_ALIGN(max_size);
1986    new_block = g_malloc0(sizeof(*new_block));
1987    new_block->mr = mr;
1988    new_block->resized = resized;
1989    new_block->used_length = size;
1990    new_block->max_length = max_size;
1991    assert(max_size >= size);
1992    new_block->fd = -1;
1993    new_block->page_size = qemu_real_host_page_size();
1994    new_block->host = host;
1995    new_block->flags = ram_flags;
1996    ram_block_add(new_block, &local_err);
1997    if (local_err) {
1998        g_free(new_block);
1999        error_propagate(errp, local_err);
2000        return NULL;
2001    }
2002    return new_block;
2003}
2004
2005RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2006                                   MemoryRegion *mr, Error **errp)
2007{
2008    return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2009                                   errp);
2010}
2011
2012RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2013                         MemoryRegion *mr, Error **errp)
2014{
2015    assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2016    return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2017}
2018
2019RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2020                                     void (*resized)(const char*,
2021                                                     uint64_t length,
2022                                                     void *host),
2023                                     MemoryRegion *mr, Error **errp)
2024{
2025    return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2026                                   RAM_RESIZEABLE, mr, errp);
2027}
2028
2029static void reclaim_ramblock(RAMBlock *block)
2030{
2031    if (block->flags & RAM_PREALLOC) {
2032        ;
2033    } else if (xen_enabled()) {
2034        xen_invalidate_map_cache_entry(block->host);
2035#ifndef _WIN32
2036    } else if (block->fd >= 0) {
2037        qemu_ram_munmap(block->fd, block->host, block->max_length);
2038        close(block->fd);
2039#endif
2040    } else {
2041        qemu_anon_ram_free(block->host, block->max_length);
2042    }
2043    g_free(block);
2044}
2045
2046void qemu_ram_free(RAMBlock *block)
2047{
2048    if (!block) {
2049        return;
2050    }
2051
2052    if (block->host) {
2053        ram_block_notify_remove(block->host, block->used_length,
2054                                block->max_length);
2055    }
2056
2057    qemu_mutex_lock_ramlist();
2058    QLIST_REMOVE_RCU(block, next);
2059    ram_list.mru_block = NULL;
2060    /* Write list before version */
2061    smp_wmb();
2062    ram_list.version++;
2063    call_rcu(block, reclaim_ramblock, rcu);
2064    qemu_mutex_unlock_ramlist();
2065}
2066
2067#ifndef _WIN32
2068void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2069{
2070    RAMBlock *block;
2071    ram_addr_t offset;
2072    int flags;
2073    void *area, *vaddr;
2074
2075    RAMBLOCK_FOREACH(block) {
2076        offset = addr - block->offset;
2077        if (offset < block->max_length) {
2078            vaddr = ramblock_ptr(block, offset);
2079            if (block->flags & RAM_PREALLOC) {
2080                ;
2081            } else if (xen_enabled()) {
2082                abort();
2083            } else {
2084                flags = MAP_FIXED;
2085                flags |= block->flags & RAM_SHARED ?
2086                         MAP_SHARED : MAP_PRIVATE;
2087                flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2088                if (block->fd >= 0) {
2089                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2090                                flags, block->fd, offset + block->fd_offset);
2091                } else {
2092                    flags |= MAP_ANONYMOUS;
2093                    area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2094                                flags, -1, 0);
2095                }
2096                if (area != vaddr) {
2097                    error_report("Could not remap addr: "
2098                                 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2099                                 length, addr);
2100                    exit(1);
2101                }
2102                memory_try_enable_merging(vaddr, length);
2103                qemu_ram_setup_dump(vaddr, length);
2104            }
2105        }
2106    }
2107}
2108#endif /* !_WIN32 */
2109
2110/* Return a host pointer to ram allocated with qemu_ram_alloc.
2111 * This should not be used for general purpose DMA.  Use address_space_map
2112 * or address_space_rw instead. For local memory (e.g. video ram) that the
2113 * device owns, use memory_region_get_ram_ptr.
2114 *
2115 * Called within RCU critical section.
2116 */
2117void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2118{
2119    RAMBlock *block = ram_block;
2120
2121    if (block == NULL) {
2122        block = qemu_get_ram_block(addr);
2123        addr -= block->offset;
2124    }
2125
2126    if (xen_enabled() && block->host == NULL) {
2127        /* We need to check if the requested address is in the RAM
2128         * because we don't want to map the entire memory in QEMU.
2129         * In that case just map until the end of the page.
2130         */
2131        if (block->offset == 0) {
2132            return xen_map_cache(addr, 0, 0, false);
2133        }
2134
2135        block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2136    }
2137    return ramblock_ptr(block, addr);
2138}
2139
2140/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2141 * but takes a size argument.
2142 *
2143 * Called within RCU critical section.
2144 */
2145static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2146                                 hwaddr *size, bool lock)
2147{
2148    RAMBlock *block = ram_block;
2149    if (*size == 0) {
2150        return NULL;
2151    }
2152
2153    if (block == NULL) {
2154        block = qemu_get_ram_block(addr);
2155        addr -= block->offset;
2156    }
2157    *size = MIN(*size, block->max_length - addr);
2158
2159    if (xen_enabled() && block->host == NULL) {
2160        /* We need to check if the requested address is in the RAM
2161         * because we don't want to map the entire memory in QEMU.
2162         * In that case just map the requested area.
2163         */
2164        if (block->offset == 0) {
2165            return xen_map_cache(addr, *size, lock, lock);
2166        }
2167
2168        block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2169    }
2170
2171    return ramblock_ptr(block, addr);
2172}
2173
2174/* Return the offset of a hostpointer within a ramblock */
2175ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2176{
2177    ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2178    assert((uintptr_t)host >= (uintptr_t)rb->host);
2179    assert(res < rb->max_length);
2180
2181    return res;
2182}
2183
2184/*
2185 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2186 * in that RAMBlock.
2187 *
2188 * ptr: Host pointer to look up
2189 * round_offset: If true round the result offset down to a page boundary
2190 * *ram_addr: set to result ram_addr
2191 * *offset: set to result offset within the RAMBlock
2192 *
2193 * Returns: RAMBlock (or NULL if not found)
2194 *
2195 * By the time this function returns, the returned pointer is not protected
2196 * by RCU anymore.  If the caller is not within an RCU critical section and
2197 * does not hold the iothread lock, it must have other means of protecting the
2198 * pointer, such as a reference to the region that includes the incoming
2199 * ram_addr_t.
2200 */
2201RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2202                                   ram_addr_t *offset)
2203{
2204    RAMBlock *block;
2205    uint8_t *host = ptr;
2206
2207    if (xen_enabled()) {
2208        ram_addr_t ram_addr;
2209        RCU_READ_LOCK_GUARD();
2210        ram_addr = xen_ram_addr_from_mapcache(ptr);
2211        block = qemu_get_ram_block(ram_addr);
2212        if (block) {
2213            *offset = ram_addr - block->offset;
2214        }
2215        return block;
2216    }
2217
2218    RCU_READ_LOCK_GUARD();
2219    block = qatomic_rcu_read(&ram_list.mru_block);
2220    if (block && block->host && host - block->host < block->max_length) {
2221        goto found;
2222    }
2223
2224    RAMBLOCK_FOREACH(block) {
2225        /* This case append when the block is not mapped. */
2226        if (block->host == NULL) {
2227            continue;
2228        }
2229        if (host - block->host < block->max_length) {
2230            goto found;
2231        }
2232    }
2233
2234    return NULL;
2235
2236found:
2237    *offset = (host - block->host);
2238    if (round_offset) {
2239        *offset &= TARGET_PAGE_MASK;
2240    }
2241    return block;
2242}
2243
2244/*
2245 * Finds the named RAMBlock
2246 *
2247 * name: The name of RAMBlock to find
2248 *
2249 * Returns: RAMBlock (or NULL if not found)
2250 */
2251RAMBlock *qemu_ram_block_by_name(const char *name)
2252{
2253    RAMBlock *block;
2254
2255    RAMBLOCK_FOREACH(block) {
2256        if (!strcmp(name, block->idstr)) {
2257            return block;
2258        }
2259    }
2260
2261    return NULL;
2262}
2263
2264/* Some of the softmmu routines need to translate from a host pointer
2265   (typically a TLB entry) back to a ram offset.  */
2266ram_addr_t qemu_ram_addr_from_host(void *ptr)
2267{
2268    RAMBlock *block;
2269    ram_addr_t offset;
2270
2271    block = qemu_ram_block_from_host(ptr, false, &offset);
2272    if (!block) {
2273        return RAM_ADDR_INVALID;
2274    }
2275
2276    return block->offset + offset;
2277}
2278
2279ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2280{
2281    ram_addr_t ram_addr;
2282
2283    ram_addr = qemu_ram_addr_from_host(ptr);
2284    if (ram_addr == RAM_ADDR_INVALID) {
2285        error_report("Bad ram pointer %p", ptr);
2286        abort();
2287    }
2288    return ram_addr;
2289}
2290
2291static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2292                                 MemTxAttrs attrs, void *buf, hwaddr len);
2293static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2294                                  const void *buf, hwaddr len);
2295static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2296                                  bool is_write, MemTxAttrs attrs);
2297
2298static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2299                                unsigned len, MemTxAttrs attrs)
2300{
2301    subpage_t *subpage = opaque;
2302    uint8_t buf[8];
2303    MemTxResult res;
2304
2305#if defined(DEBUG_SUBPAGE)
2306    printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2307           subpage, len, addr);
2308#endif
2309    res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2310    if (res) {
2311        return res;
2312    }
2313    *data = ldn_p(buf, len);
2314    return MEMTX_OK;
2315}
2316
2317static MemTxResult subpage_write(void *opaque, hwaddr addr,
2318                                 uint64_t value, unsigned len, MemTxAttrs attrs)
2319{
2320    subpage_t *subpage = opaque;
2321    uint8_t buf[8];
2322
2323#if defined(DEBUG_SUBPAGE)
2324    printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2325           " value %"PRIx64"\n",
2326           __func__, subpage, len, addr, value);
2327#endif
2328    stn_p(buf, len, value);
2329    return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2330}
2331
2332static bool subpage_accepts(void *opaque, hwaddr addr,
2333                            unsigned len, bool is_write,
2334                            MemTxAttrs attrs)
2335{
2336    subpage_t *subpage = opaque;
2337#if defined(DEBUG_SUBPAGE)
2338    printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2339           __func__, subpage, is_write ? 'w' : 'r', len, addr);
2340#endif
2341
2342    return flatview_access_valid(subpage->fv, addr + subpage->base,
2343                                 len, is_write, attrs);
2344}
2345
2346static const MemoryRegionOps subpage_ops = {
2347    .read_with_attrs = subpage_read,
2348    .write_with_attrs = subpage_write,
2349    .impl.min_access_size = 1,
2350    .impl.max_access_size = 8,
2351    .valid.min_access_size = 1,
2352    .valid.max_access_size = 8,
2353    .valid.accepts = subpage_accepts,
2354    .endianness = DEVICE_NATIVE_ENDIAN,
2355};
2356
2357static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2358                            uint16_t section)
2359{
2360    int idx, eidx;
2361
2362    if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2363        return -1;
2364    idx = SUBPAGE_IDX(start);
2365    eidx = SUBPAGE_IDX(end);
2366#if defined(DEBUG_SUBPAGE)
2367    printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2368           __func__, mmio, start, end, idx, eidx, section);
2369#endif
2370    for (; idx <= eidx; idx++) {
2371        mmio->sub_section[idx] = section;
2372    }
2373
2374    return 0;
2375}
2376
2377static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2378{
2379    subpage_t *mmio;
2380
2381    /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2382    mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2383    mmio->fv = fv;
2384    mmio->base = base;
2385    memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2386                          NULL, TARGET_PAGE_SIZE);
2387    mmio->iomem.subpage = true;
2388#if defined(DEBUG_SUBPAGE)
2389    printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2390           mmio, base, TARGET_PAGE_SIZE);
2391#endif
2392
2393    return mmio;
2394}
2395
2396static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2397{
2398    assert(fv);
2399    MemoryRegionSection section = {
2400        .fv = fv,
2401        .mr = mr,
2402        .offset_within_address_space = 0,
2403        .offset_within_region = 0,
2404        .size = int128_2_64(),
2405    };
2406
2407    return phys_section_add(map, &section);
2408}
2409
2410MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2411                                      hwaddr index, MemTxAttrs attrs)
2412{
2413    int asidx = cpu_asidx_from_attrs(cpu, attrs);
2414    CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2415    AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2416    int section_index = index & ~TARGET_PAGE_MASK;
2417    MemoryRegionSection *ret;
2418
2419    assert(section_index < d->map.sections_nb);
2420    ret = d->map.sections + section_index;
2421    assert(ret->mr);
2422    assert(ret->mr->ops);
2423
2424    return ret;
2425}
2426
2427static void io_mem_init(void)
2428{
2429    memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2430                          NULL, UINT64_MAX);
2431}
2432
2433AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2434{
2435    AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2436    uint16_t n;
2437
2438    n = dummy_section(&d->map, fv, &io_mem_unassigned);
2439    assert(n == PHYS_SECTION_UNASSIGNED);
2440
2441    d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2442
2443    return d;
2444}
2445
2446void address_space_dispatch_free(AddressSpaceDispatch *d)
2447{
2448    phys_sections_free(&d->map);
2449    g_free(d);
2450}
2451
2452static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2453{
2454}
2455
2456static void tcg_log_global_after_sync(MemoryListener *listener)
2457{
2458    CPUAddressSpace *cpuas;
2459
2460    /* Wait for the CPU to end the current TB.  This avoids the following
2461     * incorrect race:
2462     *
2463     *      vCPU                         migration
2464     *      ----------------------       -------------------------
2465     *      TLB check -> slow path
2466     *        notdirty_mem_write
2467     *          write to RAM
2468     *          mark dirty
2469     *                                   clear dirty flag
2470     *      TLB check -> fast path
2471     *                                   read memory
2472     *        write to RAM
2473     *
2474     * by pushing the migration thread's memory read after the vCPU thread has
2475     * written the memory.
2476     */
2477    if (replay_mode == REPLAY_MODE_NONE) {
2478        /*
2479         * VGA can make calls to this function while updating the screen.
2480         * In record/replay mode this causes a deadlock, because
2481         * run_on_cpu waits for rr mutex. Therefore no races are possible
2482         * in this case and no need for making run_on_cpu when
2483         * record/replay is enabled.
2484         */
2485        cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2486        run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2487    }
2488}
2489
2490static void tcg_commit(MemoryListener *listener)
2491{
2492    CPUAddressSpace *cpuas;
2493    AddressSpaceDispatch *d;
2494
2495    assert(tcg_enabled());
2496    /* since each CPU stores ram addresses in its TLB cache, we must
2497       reset the modified entries */
2498    cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2499    cpu_reloading_memory_map();
2500    /* The CPU and TLB are protected by the iothread lock.
2501     * We reload the dispatch pointer now because cpu_reloading_memory_map()
2502     * may have split the RCU critical section.
2503     */
2504    d = address_space_to_dispatch(cpuas->as);
2505    qatomic_rcu_set(&cpuas->memory_dispatch, d);
2506    tlb_flush(cpuas->cpu);
2507}
2508
2509static void memory_map_init(void)
2510{
2511    system_memory = g_malloc(sizeof(*system_memory));
2512
2513    memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2514    address_space_init(&address_space_memory, system_memory, "memory");
2515
2516    system_io = g_malloc(sizeof(*system_io));
2517    memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2518                          65536);
2519    address_space_init(&address_space_io, system_io, "I/O");
2520}
2521
2522MemoryRegion *get_system_memory(void)
2523{
2524    return system_memory;
2525}
2526
2527MemoryRegion *get_system_io(void)
2528{
2529    return system_io;
2530}
2531
2532static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2533                                     hwaddr length)
2534{
2535    uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2536    addr += memory_region_get_ram_addr(mr);
2537
2538    /* No early return if dirty_log_mask is or becomes 0, because
2539     * cpu_physical_memory_set_dirty_range will still call
2540     * xen_modified_memory.
2541     */
2542    if (dirty_log_mask) {
2543        dirty_log_mask =
2544            cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2545    }
2546    if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2547        assert(tcg_enabled());
2548        tb_invalidate_phys_range(addr, addr + length - 1);
2549        dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2550    }
2551    cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2552}
2553
2554void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2555{
2556    /*
2557     * In principle this function would work on other memory region types too,
2558     * but the ROM device use case is the only one where this operation is
2559     * necessary.  Other memory regions should use the
2560     * address_space_read/write() APIs.
2561     */
2562    assert(memory_region_is_romd(mr));
2563
2564    invalidate_and_set_dirty(mr, addr, size);
2565}
2566
2567int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2568{
2569    unsigned access_size_max = mr->ops->valid.max_access_size;
2570
2571    /* Regions are assumed to support 1-4 byte accesses unless
2572       otherwise specified.  */
2573    if (access_size_max == 0) {
2574        access_size_max = 4;
2575    }
2576
2577    /* Bound the maximum access by the alignment of the address.  */
2578    if (!mr->ops->impl.unaligned) {
2579        unsigned align_size_max = addr & -addr;
2580        if (align_size_max != 0 && align_size_max < access_size_max) {
2581            access_size_max = align_size_max;
2582        }
2583    }
2584
2585    /* Don't attempt accesses larger than the maximum.  */
2586    if (l > access_size_max) {
2587        l = access_size_max;
2588    }
2589    l = pow2floor(l);
2590
2591    return l;
2592}
2593
2594bool prepare_mmio_access(MemoryRegion *mr)
2595{
2596    bool release_lock = false;
2597
2598    if (!qemu_mutex_iothread_locked()) {
2599        qemu_mutex_lock_iothread();
2600        release_lock = true;
2601    }
2602    if (mr->flush_coalesced_mmio) {
2603        qemu_flush_coalesced_mmio_buffer();
2604    }
2605
2606    return release_lock;
2607}
2608
2609/**
2610 * flatview_access_allowed
2611 * @mr: #MemoryRegion to be accessed
2612 * @attrs: memory transaction attributes
2613 * @addr: address within that memory region
2614 * @len: the number of bytes to access
2615 *
2616 * Check if a memory transaction is allowed.
2617 *
2618 * Returns: true if transaction is allowed, false if denied.
2619 */
2620static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2621                                    hwaddr addr, hwaddr len)
2622{
2623    if (likely(!attrs.memory)) {
2624        return true;
2625    }
2626    if (memory_region_is_ram(mr)) {
2627        return true;
2628    }
2629    qemu_log_mask(LOG_GUEST_ERROR,
2630                  "Invalid access to non-RAM device at "
2631                  "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2632                  "region '%s'\n", addr, len, memory_region_name(mr));
2633    return false;
2634}
2635
2636/* Called within RCU critical section.  */
2637static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2638                                           MemTxAttrs attrs,
2639                                           const void *ptr,
2640                                           hwaddr len, hwaddr addr1,
2641                                           hwaddr l, MemoryRegion *mr)
2642{
2643    uint8_t *ram_ptr;
2644    uint64_t val;
2645    MemTxResult result = MEMTX_OK;
2646    bool release_lock = false;
2647    const uint8_t *buf = ptr;
2648
2649    for (;;) {
2650        if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2651            result |= MEMTX_ACCESS_ERROR;
2652            /* Keep going. */
2653        } else if (!memory_access_is_direct(mr, true)) {
2654            release_lock |= prepare_mmio_access(mr);
2655            l = memory_access_size(mr, l, addr1);
2656            /* XXX: could force current_cpu to NULL to avoid
2657               potential bugs */
2658            val = ldn_he_p(buf, l);
2659            result |= memory_region_dispatch_write(mr, addr1, val,
2660                                                   size_memop(l), attrs);
2661        } else {
2662            /* RAM case */
2663            ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2664            memmove(ram_ptr, buf, l);
2665            invalidate_and_set_dirty(mr, addr1, l);
2666        }
2667
2668        if (release_lock) {
2669            qemu_mutex_unlock_iothread();
2670            release_lock = false;
2671        }
2672
2673        len -= l;
2674        buf += l;
2675        addr += l;
2676
2677        if (!len) {
2678            break;
2679        }
2680
2681        l = len;
2682        mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2683    }
2684
2685    return result;
2686}
2687
2688/* Called from RCU critical section.  */
2689static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2690                                  const void *buf, hwaddr len)
2691{
2692    hwaddr l;
2693    hwaddr addr1;
2694    MemoryRegion *mr;
2695
2696    l = len;
2697    mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2698    if (!flatview_access_allowed(mr, attrs, addr, len)) {
2699        return MEMTX_ACCESS_ERROR;
2700    }
2701    return flatview_write_continue(fv, addr, attrs, buf, len,
2702                                   addr1, l, mr);
2703}
2704
2705/* Called within RCU critical section.  */
2706MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2707                                   MemTxAttrs attrs, void *ptr,
2708                                   hwaddr len, hwaddr addr1, hwaddr l,
2709                                   MemoryRegion *mr)
2710{
2711    uint8_t *ram_ptr;
2712    uint64_t val;
2713    MemTxResult result = MEMTX_OK;
2714    bool release_lock = false;
2715    uint8_t *buf = ptr;
2716
2717    fuzz_dma_read_cb(addr, len, mr);
2718    for (;;) {
2719        if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2720            result |= MEMTX_ACCESS_ERROR;
2721            /* Keep going. */
2722        } else if (!memory_access_is_direct(mr, false)) {
2723            /* I/O case */
2724            release_lock |= prepare_mmio_access(mr);
2725            l = memory_access_size(mr, l, addr1);
2726            result |= memory_region_dispatch_read(mr, addr1, &val,
2727                                                  size_memop(l), attrs);
2728            stn_he_p(buf, l, val);
2729        } else {
2730            /* RAM case */
2731            ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2732            memcpy(buf, ram_ptr, l);
2733        }
2734
2735        if (release_lock) {
2736            qemu_mutex_unlock_iothread();
2737            release_lock = false;
2738        }
2739
2740        len -= l;
2741        buf += l;
2742        addr += l;
2743
2744        if (!len) {
2745            break;
2746        }
2747
2748        l = len;
2749        mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2750    }
2751
2752    return result;
2753}
2754
2755/* Called from RCU critical section.  */
2756static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2757                                 MemTxAttrs attrs, void *buf, hwaddr len)
2758{
2759    hwaddr l;
2760    hwaddr addr1;
2761    MemoryRegion *mr;
2762
2763    l = len;
2764    mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2765    if (!flatview_access_allowed(mr, attrs, addr, len)) {
2766        return MEMTX_ACCESS_ERROR;
2767    }
2768    return flatview_read_continue(fv, addr, attrs, buf, len,
2769                                  addr1, l, mr);
2770}
2771
2772MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2773                                    MemTxAttrs attrs, void *buf, hwaddr len)
2774{
2775    MemTxResult result = MEMTX_OK;
2776    FlatView *fv;
2777
2778    if (len > 0) {
2779        RCU_READ_LOCK_GUARD();
2780        fv = address_space_to_flatview(as);
2781        result = flatview_read(fv, addr, attrs, buf, len);
2782    }
2783
2784    return result;
2785}
2786
2787MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2788                                MemTxAttrs attrs,
2789                                const void *buf, hwaddr len)
2790{
2791    MemTxResult result = MEMTX_OK;
2792    FlatView *fv;
2793
2794    if (len > 0) {
2795        RCU_READ_LOCK_GUARD();
2796        fv = address_space_to_flatview(as);
2797        result = flatview_write(fv, addr, attrs, buf, len);
2798    }
2799
2800    return result;
2801}
2802
2803MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2804                             void *buf, hwaddr len, bool is_write)
2805{
2806    if (is_write) {
2807        return address_space_write(as, addr, attrs, buf, len);
2808    } else {
2809        return address_space_read_full(as, addr, attrs, buf, len);
2810    }
2811}
2812
2813MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2814                              uint8_t c, hwaddr len, MemTxAttrs attrs)
2815{
2816#define FILLBUF_SIZE 512
2817    uint8_t fillbuf[FILLBUF_SIZE];
2818    int l;
2819    MemTxResult error = MEMTX_OK;
2820
2821    memset(fillbuf, c, FILLBUF_SIZE);
2822    while (len > 0) {
2823        l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2824        error |= address_space_write(as, addr, attrs, fillbuf, l);
2825        len -= l;
2826        addr += l;
2827    }
2828
2829    return error;
2830}
2831
2832void cpu_physical_memory_rw(hwaddr addr, void *buf,
2833                            hwaddr len, bool is_write)
2834{
2835    address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2836                     buf, len, is_write);
2837}
2838
2839enum write_rom_type {
2840    WRITE_DATA,
2841    FLUSH_CACHE,
2842};
2843
2844static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2845                                                           hwaddr addr,
2846                                                           MemTxAttrs attrs,
2847                                                           const void *ptr,
2848                                                           hwaddr len,
2849                                                           enum write_rom_type type)
2850{
2851    hwaddr l;
2852    uint8_t *ram_ptr;
2853    hwaddr addr1;
2854    MemoryRegion *mr;
2855    const uint8_t *buf = ptr;
2856
2857    RCU_READ_LOCK_GUARD();
2858    while (len > 0) {
2859        l = len;
2860        mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2861
2862        if (!(memory_region_is_ram(mr) ||
2863              memory_region_is_romd(mr))) {
2864            l = memory_access_size(mr, l, addr1);
2865        } else {
2866            /* ROM/RAM case */
2867            ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2868            switch (type) {
2869            case WRITE_DATA:
2870                memcpy(ram_ptr, buf, l);
2871                invalidate_and_set_dirty(mr, addr1, l);
2872                break;
2873            case FLUSH_CACHE:
2874                flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2875                break;
2876            }
2877        }
2878        len -= l;
2879        buf += l;
2880        addr += l;
2881    }
2882    return MEMTX_OK;
2883}
2884
2885/* used for ROM loading : can write in RAM and ROM */
2886MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2887                                    MemTxAttrs attrs,
2888                                    const void *buf, hwaddr len)
2889{
2890    return address_space_write_rom_internal(as, addr, attrs,
2891                                            buf, len, WRITE_DATA);
2892}
2893
2894void cpu_flush_icache_range(hwaddr start, hwaddr len)
2895{
2896    /*
2897     * This function should do the same thing as an icache flush that was
2898     * triggered from within the guest. For TCG we are always cache coherent,
2899     * so there is no need to flush anything. For KVM / Xen we need to flush
2900     * the host's instruction cache at least.
2901     */
2902    if (tcg_enabled()) {
2903        return;
2904    }
2905
2906    address_space_write_rom_internal(&address_space_memory,
2907                                     start, MEMTXATTRS_UNSPECIFIED,
2908                                     NULL, len, FLUSH_CACHE);
2909}
2910
2911typedef struct {
2912    MemoryRegion *mr;
2913    void *buffer;
2914    hwaddr addr;
2915    hwaddr len;
2916    bool in_use;
2917} BounceBuffer;
2918
2919static BounceBuffer bounce;
2920
2921typedef struct MapClient {
2922    QEMUBH *bh;
2923    QLIST_ENTRY(MapClient) link;
2924} MapClient;
2925
2926QemuMutex map_client_list_lock;
2927static QLIST_HEAD(, MapClient) map_client_list
2928    = QLIST_HEAD_INITIALIZER(map_client_list);
2929
2930static void cpu_unregister_map_client_do(MapClient *client)
2931{
2932    QLIST_REMOVE(client, link);
2933    g_free(client);
2934}
2935
2936static void cpu_notify_map_clients_locked(void)
2937{
2938    MapClient *client;
2939
2940    while (!QLIST_EMPTY(&map_client_list)) {
2941        client = QLIST_FIRST(&map_client_list);
2942        qemu_bh_schedule(client->bh);
2943        cpu_unregister_map_client_do(client);
2944    }
2945}
2946
2947void cpu_register_map_client(QEMUBH *bh)
2948{
2949    MapClient *client = g_malloc(sizeof(*client));
2950
2951    qemu_mutex_lock(&map_client_list_lock);
2952    client->bh = bh;
2953    QLIST_INSERT_HEAD(&map_client_list, client, link);
2954    /* Write map_client_list before reading in_use.  */
2955    smp_mb();
2956    if (!qatomic_read(&bounce.in_use)) {
2957        cpu_notify_map_clients_locked();
2958    }
2959    qemu_mutex_unlock(&map_client_list_lock);
2960}
2961
2962void cpu_exec_init_all(void)
2963{
2964    qemu_mutex_init(&ram_list.mutex);
2965    /* The data structures we set up here depend on knowing the page size,
2966     * so no more changes can be made after this point.
2967     * In an ideal world, nothing we did before we had finished the
2968     * machine setup would care about the target page size, and we could
2969     * do this much later, rather than requiring board models to state
2970     * up front what their requirements are.
2971     */
2972    finalize_target_page_bits();
2973    io_mem_init();
2974    memory_map_init();
2975    qemu_mutex_init(&map_client_list_lock);
2976}
2977
2978void cpu_unregister_map_client(QEMUBH *bh)
2979{
2980    MapClient *client;
2981
2982    qemu_mutex_lock(&map_client_list_lock);
2983    QLIST_FOREACH(client, &map_client_list, link) {
2984        if (client->bh == bh) {
2985            cpu_unregister_map_client_do(client);
2986            break;
2987        }
2988    }
2989    qemu_mutex_unlock(&map_client_list_lock);
2990}
2991
2992static void cpu_notify_map_clients(void)
2993{
2994    qemu_mutex_lock(&map_client_list_lock);
2995    cpu_notify_map_clients_locked();
2996    qemu_mutex_unlock(&map_client_list_lock);
2997}
2998
2999static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3000                                  bool is_write, MemTxAttrs attrs)
3001{
3002    MemoryRegion *mr;
3003    hwaddr l, xlat;
3004
3005    while (len > 0) {
3006        l = len;
3007        mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3008        if (!memory_access_is_direct(mr, is_write)) {
3009            l = memory_access_size(mr, l, addr);
3010            if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3011                return false;
3012            }
3013        }
3014
3015        len -= l;
3016        addr += l;
3017    }
3018    return true;
3019}
3020
3021bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3022                                hwaddr len, bool is_write,
3023                                MemTxAttrs attrs)
3024{
3025    FlatView *fv;
3026
3027    RCU_READ_LOCK_GUARD();
3028    fv = address_space_to_flatview(as);
3029    return flatview_access_valid(fv, addr, len, is_write, attrs);
3030}
3031
3032static hwaddr
3033flatview_extend_translation(FlatView *fv, hwaddr addr,
3034                            hwaddr target_len,
3035                            MemoryRegion *mr, hwaddr base, hwaddr len,
3036                            bool is_write, MemTxAttrs attrs)
3037{
3038    hwaddr done = 0;
3039    hwaddr xlat;
3040    MemoryRegion *this_mr;
3041
3042    for (;;) {
3043        target_len -= len;
3044        addr += len;
3045        done += len;
3046        if (target_len == 0) {
3047            return done;
3048        }
3049
3050        len = target_len;
3051        this_mr = flatview_translate(fv, addr, &xlat,
3052                                     &len, is_write, attrs);
3053        if (this_mr != mr || xlat != base + done) {
3054            return done;
3055        }
3056    }
3057}
3058
3059/* Map a physical memory region into a host virtual address.
3060 * May map a subset of the requested range, given by and returned in *plen.
3061 * May return NULL if resources needed to perform the mapping are exhausted.
3062 * Use only for reads OR writes - not for read-modify-write operations.
3063 * Use cpu_register_map_client() to know when retrying the map operation is
3064 * likely to succeed.
3065 */
3066void *address_space_map(AddressSpace *as,
3067                        hwaddr addr,
3068                        hwaddr *plen,
3069                        bool is_write,
3070                        MemTxAttrs attrs)
3071{
3072    hwaddr len = *plen;
3073    hwaddr l, xlat;
3074    MemoryRegion *mr;
3075    FlatView *fv;
3076
3077    if (len == 0) {
3078        return NULL;
3079    }
3080
3081    l = len;
3082    RCU_READ_LOCK_GUARD();
3083    fv = address_space_to_flatview(as);
3084    mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3085
3086    if (!memory_access_is_direct(mr, is_write)) {
3087        if (qatomic_xchg(&bounce.in_use, true)) {
3088            *plen = 0;
3089            return NULL;
3090        }
3091        /* Avoid unbounded allocations */
3092        l = MIN(l, TARGET_PAGE_SIZE);
3093        bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3094        bounce.addr = addr;
3095        bounce.len = l;
3096
3097        memory_region_ref(mr);
3098        bounce.mr = mr;
3099        if (!is_write) {
3100            flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3101                               bounce.buffer, l);
3102        }
3103
3104        *plen = l;
3105        return bounce.buffer;
3106    }
3107
3108
3109    memory_region_ref(mr);
3110    *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3111                                        l, is_write, attrs);
3112    fuzz_dma_read_cb(addr, *plen, mr);
3113    return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3114}
3115
3116/* Unmaps a memory region previously mapped by address_space_map().
3117 * Will also mark the memory as dirty if is_write is true.  access_len gives
3118 * the amount of memory that was actually read or written by the caller.
3119 */
3120void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3121                         bool is_write, hwaddr access_len)
3122{
3123    if (buffer != bounce.buffer) {
3124        MemoryRegion *mr;
3125        ram_addr_t addr1;
3126
3127        mr = memory_region_from_host(buffer, &addr1);
3128        assert(mr != NULL);
3129        if (is_write) {
3130            invalidate_and_set_dirty(mr, addr1, access_len);
3131        }
3132        if (xen_enabled()) {
3133            xen_invalidate_map_cache_entry(buffer);
3134        }
3135        memory_region_unref(mr);
3136        return;
3137    }
3138    if (is_write) {
3139        address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3140                            bounce.buffer, access_len);
3141    }
3142    qemu_vfree(bounce.buffer);
3143    bounce.buffer = NULL;
3144    memory_region_unref(bounce.mr);
3145    /* Clear in_use before reading map_client_list.  */
3146    qatomic_set_mb(&bounce.in_use, false);
3147    cpu_notify_map_clients();
3148}
3149
3150void *cpu_physical_memory_map(hwaddr addr,
3151                              hwaddr *plen,
3152                              bool is_write)
3153{
3154    return address_space_map(&address_space_memory, addr, plen, is_write,
3155                             MEMTXATTRS_UNSPECIFIED);
3156}
3157
3158void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3159                               bool is_write, hwaddr access_len)
3160{
3161    return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3162}
3163
3164#define ARG1_DECL                AddressSpace *as
3165#define ARG1                     as
3166#define SUFFIX
3167#define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3168#define RCU_READ_LOCK(...)       rcu_read_lock()
3169#define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3170#include "memory_ldst.c.inc"
3171
3172int64_t address_space_cache_init(MemoryRegionCache *cache,
3173                                 AddressSpace *as,
3174                                 hwaddr addr,
3175                                 hwaddr len,
3176                                 bool is_write)
3177{
3178    AddressSpaceDispatch *d;
3179    hwaddr l;
3180    MemoryRegion *mr;
3181    Int128 diff;
3182
3183    assert(len > 0);
3184
3185    l = len;
3186    cache->fv = address_space_get_flatview(as);
3187    d = flatview_to_dispatch(cache->fv);
3188    cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3189
3190    /*
3191     * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3192     * Take that into account to compute how many bytes are there between
3193     * cache->xlat and the end of the section.
3194     */
3195    diff = int128_sub(cache->mrs.size,
3196                      int128_make64(cache->xlat - cache->mrs.offset_within_region));
3197    l = int128_get64(int128_min(diff, int128_make64(l)));
3198
3199    mr = cache->mrs.mr;
3200    memory_region_ref(mr);
3201    if (memory_access_is_direct(mr, is_write)) {
3202        /* We don't care about the memory attributes here as we're only
3203         * doing this if we found actual RAM, which behaves the same
3204         * regardless of attributes; so UNSPECIFIED is fine.
3205         */
3206        l = flatview_extend_translation(cache->fv, addr, len, mr,
3207                                        cache->xlat, l, is_write,
3208                                        MEMTXATTRS_UNSPECIFIED);
3209        cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3210    } else {
3211        cache->ptr = NULL;
3212    }
3213
3214    cache->len = l;
3215    cache->is_write = is_write;
3216    return l;
3217}
3218
3219void address_space_cache_invalidate(MemoryRegionCache *cache,
3220                                    hwaddr addr,
3221                                    hwaddr access_len)
3222{
3223    assert(cache->is_write);
3224    if (likely(cache->ptr)) {
3225        invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3226    }
3227}
3228
3229void address_space_cache_destroy(MemoryRegionCache *cache)
3230{
3231    if (!cache->mrs.mr) {
3232        return;
3233    }
3234
3235    if (xen_enabled()) {
3236        xen_invalidate_map_cache_entry(cache->ptr);
3237    }
3238    memory_region_unref(cache->mrs.mr);
3239    flatview_unref(cache->fv);
3240    cache->mrs.mr = NULL;
3241    cache->fv = NULL;
3242}
3243
3244/* Called from RCU critical section.  This function has the same
3245 * semantics as address_space_translate, but it only works on a
3246 * predefined range of a MemoryRegion that was mapped with
3247 * address_space_cache_init.
3248 */
3249static inline MemoryRegion *address_space_translate_cached(
3250    MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3251    hwaddr *plen, bool is_write, MemTxAttrs attrs)
3252{
3253    MemoryRegionSection section;
3254    MemoryRegion *mr;
3255    IOMMUMemoryRegion *iommu_mr;
3256    AddressSpace *target_as;
3257
3258    assert(!cache->ptr);
3259    *xlat = addr + cache->xlat;
3260
3261    mr = cache->mrs.mr;
3262    iommu_mr = memory_region_get_iommu(mr);
3263    if (!iommu_mr) {
3264        /* MMIO region.  */
3265        return mr;
3266    }
3267
3268    section = address_space_translate_iommu(iommu_mr, xlat, plen,
3269                                            NULL, is_write, true,
3270                                            &target_as, attrs);
3271    return section.mr;
3272}
3273
3274/* Called from RCU critical section. address_space_read_cached uses this
3275 * out of line function when the target is an MMIO or IOMMU region.
3276 */
3277MemTxResult
3278address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3279                                   void *buf, hwaddr len)
3280{
3281    hwaddr addr1, l;
3282    MemoryRegion *mr;
3283
3284    l = len;
3285    mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3286                                        MEMTXATTRS_UNSPECIFIED);
3287    return flatview_read_continue(cache->fv,
3288                                  addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3289                                  addr1, l, mr);
3290}
3291
3292/* Called from RCU critical section. address_space_write_cached uses this
3293 * out of line function when the target is an MMIO or IOMMU region.
3294 */
3295MemTxResult
3296address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3297                                    const void *buf, hwaddr len)
3298{
3299    hwaddr addr1, l;
3300    MemoryRegion *mr;
3301
3302    l = len;
3303    mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3304                                        MEMTXATTRS_UNSPECIFIED);
3305    return flatview_write_continue(cache->fv,
3306                                   addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3307                                   addr1, l, mr);
3308}
3309
3310#define ARG1_DECL                MemoryRegionCache *cache
3311#define ARG1                     cache
3312#define SUFFIX                   _cached_slow
3313#define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3314#define RCU_READ_LOCK()          ((void)0)
3315#define RCU_READ_UNLOCK()        ((void)0)
3316#include "memory_ldst.c.inc"
3317
3318/* virtual memory access for debug (includes writing to ROM) */
3319int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3320                        void *ptr, size_t len, bool is_write)
3321{
3322    hwaddr phys_addr;
3323    vaddr l, page;
3324    uint8_t *buf = ptr;
3325
3326    cpu_synchronize_state(cpu);
3327    while (len > 0) {
3328        int asidx;
3329        MemTxAttrs attrs;
3330        MemTxResult res;
3331
3332        page = addr & TARGET_PAGE_MASK;
3333        phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3334        asidx = cpu_asidx_from_attrs(cpu, attrs);
3335        /* if no physical page mapped, return an error */
3336        if (phys_addr == -1)
3337            return -1;
3338        l = (page + TARGET_PAGE_SIZE) - addr;
3339        if (l > len)
3340            l = len;
3341        phys_addr += (addr & ~TARGET_PAGE_MASK);
3342        if (is_write) {
3343            res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3344                                          attrs, buf, l);
3345        } else {
3346            res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3347                                     attrs, buf, l);
3348        }
3349        if (res != MEMTX_OK) {
3350            return -1;
3351        }
3352        len -= l;
3353        buf += l;
3354        addr += l;
3355    }
3356    return 0;
3357}
3358
3359/*
3360 * Allows code that needs to deal with migration bitmaps etc to still be built
3361 * target independent.
3362 */
3363size_t qemu_target_page_size(void)
3364{
3365    return TARGET_PAGE_SIZE;
3366}
3367
3368int qemu_target_page_mask(void)
3369{
3370    return TARGET_PAGE_MASK;
3371}
3372
3373int qemu_target_page_bits(void)
3374{
3375    return TARGET_PAGE_BITS;
3376}
3377
3378int qemu_target_page_bits_min(void)
3379{
3380    return TARGET_PAGE_BITS_MIN;
3381}
3382
3383/* Convert target pages to MiB (2**20). */
3384size_t qemu_target_pages_to_MiB(size_t pages)
3385{
3386    int page_bits = TARGET_PAGE_BITS;
3387
3388    /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */
3389    g_assert(page_bits < 20);
3390
3391    return pages >> (20 - page_bits);
3392}
3393
3394bool cpu_physical_memory_is_io(hwaddr phys_addr)
3395{
3396    MemoryRegion*mr;
3397    hwaddr l = 1;
3398
3399    RCU_READ_LOCK_GUARD();
3400    mr = address_space_translate(&address_space_memory,
3401                                 phys_addr, &phys_addr, &l, false,
3402                                 MEMTXATTRS_UNSPECIFIED);
3403
3404    return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3405}
3406
3407int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3408{
3409    RAMBlock *block;
3410    int ret = 0;
3411
3412    RCU_READ_LOCK_GUARD();
3413    RAMBLOCK_FOREACH(block) {
3414        ret = func(block, opaque);
3415        if (ret) {
3416            break;
3417        }
3418    }
3419    return ret;
3420}
3421
3422/*
3423 * Unmap pages of memory from start to start+length such that
3424 * they a) read as 0, b) Trigger whatever fault mechanism
3425 * the OS provides for postcopy.
3426 * The pages must be unmapped by the end of the function.
3427 * Returns: 0 on success, none-0 on failure
3428 *
3429 */
3430int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3431{
3432    int ret = -1;
3433
3434    uint8_t *host_startaddr = rb->host + start;
3435
3436    if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3437        error_report("ram_block_discard_range: Unaligned start address: %p",
3438                     host_startaddr);
3439        goto err;
3440    }
3441
3442    if ((start + length) <= rb->max_length) {
3443        bool need_madvise, need_fallocate;
3444        if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3445            error_report("ram_block_discard_range: Unaligned length: %zx",
3446                         length);
3447            goto err;
3448        }
3449
3450        errno = ENOTSUP; /* If we are missing MADVISE etc */
3451
3452        /* The logic here is messy;
3453         *    madvise DONTNEED fails for hugepages
3454         *    fallocate works on hugepages and shmem
3455         *    shared anonymous memory requires madvise REMOVE
3456         */
3457        need_madvise = (rb->page_size == qemu_host_page_size);
3458        need_fallocate = rb->fd != -1;
3459        if (need_fallocate) {
3460            /* For a file, this causes the area of the file to be zero'd
3461             * if read, and for hugetlbfs also causes it to be unmapped
3462             * so a userfault will trigger.
3463             */
3464#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3465            /*
3466             * We'll discard data from the actual file, even though we only
3467             * have a MAP_PRIVATE mapping, possibly messing with other
3468             * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3469             * change that behavior whithout violating the promised
3470             * semantics of ram_block_discard_range().
3471             *
3472             * Only warn, because it works as long as nobody else uses that
3473             * file.
3474             */
3475            if (!qemu_ram_is_shared(rb)) {
3476                warn_report_once("ram_block_discard_range: Discarding RAM"
3477                                 " in private file mappings is possibly"
3478                                 " dangerous, because it will modify the"
3479                                 " underlying file and will affect other"
3480                                 " users of the file");
3481            }
3482
3483            ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3484                            start, length);
3485            if (ret) {
3486                ret = -errno;
3487                error_report("ram_block_discard_range: Failed to fallocate "
3488                             "%s:%" PRIx64 " +%zx (%d)",
3489                             rb->idstr, start, length, ret);
3490                goto err;
3491            }
3492#else
3493            ret = -ENOSYS;
3494            error_report("ram_block_discard_range: fallocate not available/file"
3495                         "%s:%" PRIx64 " +%zx (%d)",
3496                         rb->idstr, start, length, ret);
3497            goto err;
3498#endif
3499        }
3500        if (need_madvise) {
3501            /* For normal RAM this causes it to be unmapped,
3502             * for shared memory it causes the local mapping to disappear
3503             * and to fall back on the file contents (which we just
3504             * fallocate'd away).
3505             */
3506#if defined(CONFIG_MADVISE)
3507            if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3508                ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3509            } else {
3510                ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3511            }
3512            if (ret) {
3513                ret = -errno;
3514                error_report("ram_block_discard_range: Failed to discard range "
3515                             "%s:%" PRIx64 " +%zx (%d)",
3516                             rb->idstr, start, length, ret);
3517                goto err;
3518            }
3519#else
3520            ret = -ENOSYS;
3521            error_report("ram_block_discard_range: MADVISE not available"
3522                         "%s:%" PRIx64 " +%zx (%d)",
3523                         rb->idstr, start, length, ret);
3524            goto err;
3525#endif
3526        }
3527        trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3528                                      need_madvise, need_fallocate, ret);
3529    } else {
3530        error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3531                     "/%zx/" RAM_ADDR_FMT")",
3532                     rb->idstr, start, length, rb->max_length);
3533    }
3534
3535err:
3536    return ret;
3537}
3538
3539bool ramblock_is_pmem(RAMBlock *rb)
3540{
3541    return rb->flags & RAM_PMEM;
3542}
3543
3544static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3545{
3546    if (start == end - 1) {
3547        qemu_printf("\t%3d      ", start);
3548    } else {
3549        qemu_printf("\t%3d..%-3d ", start, end - 1);
3550    }
3551    qemu_printf(" skip=%d ", skip);
3552    if (ptr == PHYS_MAP_NODE_NIL) {
3553        qemu_printf(" ptr=NIL");
3554    } else if (!skip) {
3555        qemu_printf(" ptr=#%d", ptr);
3556    } else {
3557        qemu_printf(" ptr=[%d]", ptr);
3558    }
3559    qemu_printf("\n");
3560}
3561
3562#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3563                           int128_sub((size), int128_one())) : 0)
3564
3565void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3566{
3567    int i;
3568
3569    qemu_printf("  Dispatch\n");
3570    qemu_printf("    Physical sections\n");
3571
3572    for (i = 0; i < d->map.sections_nb; ++i) {
3573        MemoryRegionSection *s = d->map.sections + i;
3574        const char *names[] = { " [unassigned]", " [not dirty]",
3575                                " [ROM]", " [watch]" };
3576
3577        qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3578                    " %s%s%s%s%s",
3579            i,
3580            s->offset_within_address_space,
3581            s->offset_within_address_space + MR_SIZE(s->size),
3582            s->mr->name ? s->mr->name : "(noname)",
3583            i < ARRAY_SIZE(names) ? names[i] : "",
3584            s->mr == root ? " [ROOT]" : "",
3585            s == d->mru_section ? " [MRU]" : "",
3586            s->mr->is_iommu ? " [iommu]" : "");
3587
3588        if (s->mr->alias) {
3589            qemu_printf(" alias=%s", s->mr->alias->name ?
3590                    s->mr->alias->name : "noname");
3591        }
3592        qemu_printf("\n");
3593    }
3594
3595    qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3596               P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3597    for (i = 0; i < d->map.nodes_nb; ++i) {
3598        int j, jprev;
3599        PhysPageEntry prev;
3600        Node *n = d->map.nodes + i;
3601
3602        qemu_printf("      [%d]\n", i);
3603
3604        for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3605            PhysPageEntry *pe = *n + j;
3606
3607            if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3608                continue;
3609            }
3610
3611            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3612
3613            jprev = j;
3614            prev = *pe;
3615        }
3616
3617        if (jprev != ARRAY_SIZE(*n)) {
3618            mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3619        }
3620    }
3621}
3622
3623/* Require any discards to work. */
3624static unsigned int ram_block_discard_required_cnt;
3625/* Require only coordinated discards to work. */
3626static unsigned int ram_block_coordinated_discard_required_cnt;
3627/* Disable any discards. */
3628static unsigned int ram_block_discard_disabled_cnt;
3629/* Disable only uncoordinated discards. */
3630static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3631static QemuMutex ram_block_discard_disable_mutex;
3632
3633static void ram_block_discard_disable_mutex_lock(void)
3634{
3635    static gsize initialized;
3636
3637    if (g_once_init_enter(&initialized)) {
3638        qemu_mutex_init(&ram_block_discard_disable_mutex);
3639        g_once_init_leave(&initialized, 1);
3640    }
3641    qemu_mutex_lock(&ram_block_discard_disable_mutex);
3642}
3643
3644static void ram_block_discard_disable_mutex_unlock(void)
3645{
3646    qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3647}
3648
3649int ram_block_discard_disable(bool state)
3650{
3651    int ret = 0;
3652
3653    ram_block_discard_disable_mutex_lock();
3654    if (!state) {
3655        ram_block_discard_disabled_cnt--;
3656    } else if (ram_block_discard_required_cnt ||
3657               ram_block_coordinated_discard_required_cnt) {
3658        ret = -EBUSY;
3659    } else {
3660        ram_block_discard_disabled_cnt++;
3661    }
3662    ram_block_discard_disable_mutex_unlock();
3663    return ret;
3664}
3665
3666int ram_block_uncoordinated_discard_disable(bool state)
3667{
3668    int ret = 0;
3669
3670    ram_block_discard_disable_mutex_lock();
3671    if (!state) {
3672        ram_block_uncoordinated_discard_disabled_cnt--;
3673    } else if (ram_block_discard_required_cnt) {
3674        ret = -EBUSY;
3675    } else {
3676        ram_block_uncoordinated_discard_disabled_cnt++;
3677    }
3678    ram_block_discard_disable_mutex_unlock();
3679    return ret;
3680}
3681
3682int ram_block_discard_require(bool state)
3683{
3684    int ret = 0;
3685
3686    ram_block_discard_disable_mutex_lock();
3687    if (!state) {
3688        ram_block_discard_required_cnt--;
3689    } else if (ram_block_discard_disabled_cnt ||
3690               ram_block_uncoordinated_discard_disabled_cnt) {
3691        ret = -EBUSY;
3692    } else {
3693        ram_block_discard_required_cnt++;
3694    }
3695    ram_block_discard_disable_mutex_unlock();
3696    return ret;
3697}
3698
3699int ram_block_coordinated_discard_require(bool state)
3700{
3701    int ret = 0;
3702
3703    ram_block_discard_disable_mutex_lock();
3704    if (!state) {
3705        ram_block_coordinated_discard_required_cnt--;
3706    } else if (ram_block_discard_disabled_cnt) {
3707        ret = -EBUSY;
3708    } else {
3709        ram_block_coordinated_discard_required_cnt++;
3710    }
3711    ram_block_discard_disable_mutex_unlock();
3712    return ret;
3713}
3714
3715bool ram_block_discard_is_disabled(void)
3716{
3717    return qatomic_read(&ram_block_discard_disabled_cnt) ||
3718           qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3719}
3720
3721bool ram_block_discard_is_required(void)
3722{
3723    return qatomic_read(&ram_block_discard_required_cnt) ||
3724           qatomic_read(&ram_block_coordinated_discard_required_cnt);
3725}
3726