qemu/target/arm/cpu.c
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "qemu/qemu-print.h"
  23#include "qemu/timer.h"
  24#include "qemu/log.h"
  25#include "exec/page-vary.h"
  26#include "target/arm/idau.h"
  27#include "qemu/module.h"
  28#include "qapi/error.h"
  29#include "cpu.h"
  30#ifdef CONFIG_TCG
  31#include "hw/core/tcg-cpu-ops.h"
  32#endif /* CONFIG_TCG */
  33#include "internals.h"
  34#include "exec/exec-all.h"
  35#include "hw/qdev-properties.h"
  36#if !defined(CONFIG_USER_ONLY)
  37#include "hw/loader.h"
  38#include "hw/boards.h"
  39#ifdef CONFIG_TCG
  40#include "hw/intc/armv7m_nvic.h"
  41#endif /* CONFIG_TCG */
  42#endif /* !CONFIG_USER_ONLY */
  43#include "sysemu/tcg.h"
  44#include "sysemu/qtest.h"
  45#include "sysemu/hw_accel.h"
  46#include "kvm_arm.h"
  47#include "disas/capstone.h"
  48#include "fpu/softfloat.h"
  49#include "cpregs.h"
  50
  51static void arm_cpu_set_pc(CPUState *cs, vaddr value)
  52{
  53    ARMCPU *cpu = ARM_CPU(cs);
  54    CPUARMState *env = &cpu->env;
  55
  56    if (is_a64(env)) {
  57        env->pc = value;
  58        env->thumb = false;
  59    } else {
  60        env->regs[15] = value & ~1;
  61        env->thumb = value & 1;
  62    }
  63}
  64
  65static vaddr arm_cpu_get_pc(CPUState *cs)
  66{
  67    ARMCPU *cpu = ARM_CPU(cs);
  68    CPUARMState *env = &cpu->env;
  69
  70    if (is_a64(env)) {
  71        return env->pc;
  72    } else {
  73        return env->regs[15];
  74    }
  75}
  76
  77#ifdef CONFIG_TCG
  78void arm_cpu_synchronize_from_tb(CPUState *cs,
  79                                 const TranslationBlock *tb)
  80{
  81    /* The program counter is always up to date with CF_PCREL. */
  82    if (!(tb_cflags(tb) & CF_PCREL)) {
  83        CPUARMState *env = cs->env_ptr;
  84        /*
  85         * It's OK to look at env for the current mode here, because it's
  86         * never possible for an AArch64 TB to chain to an AArch32 TB.
  87         */
  88        if (is_a64(env)) {
  89            env->pc = tb->pc;
  90        } else {
  91            env->regs[15] = tb->pc;
  92        }
  93    }
  94}
  95
  96void arm_restore_state_to_opc(CPUState *cs,
  97                              const TranslationBlock *tb,
  98                              const uint64_t *data)
  99{
 100    CPUARMState *env = cs->env_ptr;
 101
 102    if (is_a64(env)) {
 103        if (tb_cflags(tb) & CF_PCREL) {
 104            env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
 105        } else {
 106            env->pc = data[0];
 107        }
 108        env->condexec_bits = 0;
 109        env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
 110    } else {
 111        if (tb_cflags(tb) & CF_PCREL) {
 112            env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
 113        } else {
 114            env->regs[15] = data[0];
 115        }
 116        env->condexec_bits = data[1];
 117        env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
 118    }
 119}
 120#endif /* CONFIG_TCG */
 121
 122static bool arm_cpu_has_work(CPUState *cs)
 123{
 124    ARMCPU *cpu = ARM_CPU(cs);
 125
 126    return (cpu->power_state != PSCI_OFF)
 127        && cs->interrupt_request &
 128        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
 129         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
 130         | CPU_INTERRUPT_EXITTB);
 131}
 132
 133void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
 134                                 void *opaque)
 135{
 136    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
 137
 138    entry->hook = hook;
 139    entry->opaque = opaque;
 140
 141    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
 142}
 143
 144void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
 145                                 void *opaque)
 146{
 147    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
 148
 149    entry->hook = hook;
 150    entry->opaque = opaque;
 151
 152    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
 153}
 154
 155static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
 156{
 157    /* Reset a single ARMCPRegInfo register */
 158    ARMCPRegInfo *ri = value;
 159    ARMCPU *cpu = opaque;
 160
 161    if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
 162        return;
 163    }
 164
 165    if (ri->resetfn) {
 166        ri->resetfn(&cpu->env, ri);
 167        return;
 168    }
 169
 170    /* A zero offset is never possible as it would be regs[0]
 171     * so we use it to indicate that reset is being handled elsewhere.
 172     * This is basically only used for fields in non-core coprocessors
 173     * (like the pxa2xx ones).
 174     */
 175    if (!ri->fieldoffset) {
 176        return;
 177    }
 178
 179    if (cpreg_field_is_64bit(ri)) {
 180        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 181    } else {
 182        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 183    }
 184}
 185
 186static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 187{
 188    /* Purely an assertion check: we've already done reset once,
 189     * so now check that running the reset for the cpreg doesn't
 190     * change its value. This traps bugs where two different cpregs
 191     * both try to reset the same state field but to different values.
 192     */
 193    ARMCPRegInfo *ri = value;
 194    ARMCPU *cpu = opaque;
 195    uint64_t oldvalue, newvalue;
 196
 197    if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 198        return;
 199    }
 200
 201    oldvalue = read_raw_cp_reg(&cpu->env, ri);
 202    cp_reg_reset(key, value, opaque);
 203    newvalue = read_raw_cp_reg(&cpu->env, ri);
 204    assert(oldvalue == newvalue);
 205}
 206
 207static void arm_cpu_reset_hold(Object *obj)
 208{
 209    CPUState *s = CPU(obj);
 210    ARMCPU *cpu = ARM_CPU(s);
 211    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 212    CPUARMState *env = &cpu->env;
 213
 214    if (acc->parent_phases.hold) {
 215        acc->parent_phases.hold(obj);
 216    }
 217
 218    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 219
 220    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 221    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 222
 223    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 224    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
 225    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
 226    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
 227
 228    cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
 229
 230    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 231        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 232    }
 233
 234    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 235        /* 64 bit CPUs always start in 64 bit mode */
 236        env->aarch64 = true;
 237#if defined(CONFIG_USER_ONLY)
 238        env->pstate = PSTATE_MODE_EL0t;
 239        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 240        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 241        /* Enable all PAC keys.  */
 242        env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
 243                                  SCTLR_EnDA | SCTLR_EnDB);
 244        /* Trap on btype=3 for PACIxSP. */
 245        env->cp15.sctlr_el[1] |= SCTLR_BT0;
 246        /* and to the FP/Neon instructions */
 247        env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 248                                         CPACR_EL1, FPEN, 3);
 249        /* and to the SVE instructions, with default vector length */
 250        if (cpu_isar_feature(aa64_sve, cpu)) {
 251            env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 252                                             CPACR_EL1, ZEN, 3);
 253            env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
 254        }
 255        /* and for SME instructions, with default vector length, and TPIDR2 */
 256        if (cpu_isar_feature(aa64_sme, cpu)) {
 257            env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
 258            env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 259                                             CPACR_EL1, SMEN, 3);
 260            env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
 261            if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
 262                env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
 263                                                 SMCR, FA64, 1);
 264            }
 265        }
 266        /*
 267         * Enable 48-bit address space (TODO: take reserved_va into account).
 268         * Enable TBI0 but not TBI1.
 269         * Note that this must match useronly_clean_ptr.
 270         */
 271        env->cp15.tcr_el[1] = 5 | (1ULL << 37);
 272
 273        /* Enable MTE */
 274        if (cpu_isar_feature(aa64_mte, cpu)) {
 275            /* Enable tag access, but leave TCF0 as No Effect (0). */
 276            env->cp15.sctlr_el[1] |= SCTLR_ATA0;
 277            /*
 278             * Exclude all tags, so that tag 0 is always used.
 279             * This corresponds to Linux current->thread.gcr_incl = 0.
 280             *
 281             * Set RRND, so that helper_irg() will generate a seed later.
 282             * Here in cpu_reset(), the crypto subsystem has not yet been
 283             * initialized.
 284             */
 285            env->cp15.gcr_el1 = 0x1ffff;
 286        }
 287        /*
 288         * Disable access to SCXTNUM_EL0 from CSV2_1p2.
 289         * This is not yet exposed from the Linux kernel in any way.
 290         */
 291        env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
 292        /* Disable access to Debug Communication Channel (DCC). */
 293        env->cp15.mdscr_el1 |= 1 << 12;
 294#else
 295        /* Reset into the highest available EL */
 296        if (arm_feature(env, ARM_FEATURE_EL3)) {
 297            env->pstate = PSTATE_MODE_EL3h;
 298        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 299            env->pstate = PSTATE_MODE_EL2h;
 300        } else {
 301            env->pstate = PSTATE_MODE_EL1h;
 302        }
 303
 304        /* Sample rvbar at reset.  */
 305        env->cp15.rvbar = cpu->rvbar_prop;
 306        env->pc = env->cp15.rvbar;
 307#endif
 308    } else {
 309#if defined(CONFIG_USER_ONLY)
 310        /* Userspace expects access to cp10 and cp11 for FP/Neon */
 311        env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 312                                         CPACR, CP10, 3);
 313        env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
 314                                         CPACR, CP11, 3);
 315#endif
 316        if (arm_feature(env, ARM_FEATURE_V8)) {
 317            env->cp15.rvbar = cpu->rvbar_prop;
 318            env->regs[15] = cpu->rvbar_prop;
 319        }
 320    }
 321
 322#if defined(CONFIG_USER_ONLY)
 323    env->uncached_cpsr = ARM_CPU_MODE_USR;
 324    /* For user mode we must enable access to coprocessors */
 325    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 326    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 327        env->cp15.c15_cpar = 3;
 328    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 329        env->cp15.c15_cpar = 1;
 330    }
 331#else
 332
 333    /*
 334     * If the highest available EL is EL2, AArch32 will start in Hyp
 335     * mode; otherwise it starts in SVC. Note that if we start in
 336     * AArch64 then these values in the uncached_cpsr will be ignored.
 337     */
 338    if (arm_feature(env, ARM_FEATURE_EL2) &&
 339        !arm_feature(env, ARM_FEATURE_EL3)) {
 340        env->uncached_cpsr = ARM_CPU_MODE_HYP;
 341    } else {
 342        env->uncached_cpsr = ARM_CPU_MODE_SVC;
 343    }
 344    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 345
 346    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 347     * executing as AArch32 then check if highvecs are enabled and
 348     * adjust the PC accordingly.
 349     */
 350    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 351        env->regs[15] = 0xFFFF0000;
 352    }
 353
 354    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 355#endif
 356
 357    if (arm_feature(env, ARM_FEATURE_M)) {
 358#ifndef CONFIG_USER_ONLY
 359        uint32_t initial_msp; /* Loaded from 0x0 */
 360        uint32_t initial_pc; /* Loaded from 0x4 */
 361        uint8_t *rom;
 362        uint32_t vecbase;
 363#endif
 364
 365        if (cpu_isar_feature(aa32_lob, cpu)) {
 366            /*
 367             * LTPSIZE is constant 4 if MVE not implemented, and resets
 368             * to an UNKNOWN value if MVE is implemented. We choose to
 369             * always reset to 4.
 370             */
 371            env->v7m.ltpsize = 4;
 372            /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
 373            env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
 374            env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
 375        }
 376
 377        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 378            env->v7m.secure = true;
 379        } else {
 380            /* This bit resets to 0 if security is supported, but 1 if
 381             * it is not. The bit is not present in v7M, but we set it
 382             * here so we can avoid having to make checks on it conditional
 383             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 384             */
 385            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 386            /*
 387             * Set NSACR to indicate "NS access permitted to everything";
 388             * this avoids having to have all the tests of it being
 389             * conditional on ARM_FEATURE_M_SECURITY. Note also that from
 390             * v8.1M the guest-visible value of NSACR in a CPU without the
 391             * Security Extension is 0xcff.
 392             */
 393            env->v7m.nsacr = 0xcff;
 394        }
 395
 396        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 397         * that it resets to 1, so QEMU always does that rather than making
 398         * it dependent on CPU model. In v8M it is RES1.
 399         */
 400        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 401        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 402        if (arm_feature(env, ARM_FEATURE_V8)) {
 403            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 404            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 405            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 406        }
 407        if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
 408            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 409            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 410        }
 411
 412        if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
 413            env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
 414            env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
 415                R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
 416        }
 417
 418#ifndef CONFIG_USER_ONLY
 419        /* Unlike A/R profile, M profile defines the reset LR value */
 420        env->regs[14] = 0xffffffff;
 421
 422        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 423        env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
 424
 425        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 426        vecbase = env->v7m.vecbase[env->v7m.secure];
 427        rom = rom_ptr_for_as(s->as, vecbase, 8);
 428        if (rom) {
 429            /* Address zero is covered by ROM which hasn't yet been
 430             * copied into physical memory.
 431             */
 432            initial_msp = ldl_p(rom);
 433            initial_pc = ldl_p(rom + 4);
 434        } else {
 435            /* Address zero not covered by a ROM blob, or the ROM blob
 436             * is in non-modifiable memory and this is a second reset after
 437             * it got copied into memory. In the latter case, rom_ptr
 438             * will return a NULL pointer and we should use ldl_phys instead.
 439             */
 440            initial_msp = ldl_phys(s->as, vecbase);
 441            initial_pc = ldl_phys(s->as, vecbase + 4);
 442        }
 443
 444        qemu_log_mask(CPU_LOG_INT,
 445                      "Loaded reset SP 0x%x PC 0x%x from vector table\n",
 446                      initial_msp, initial_pc);
 447
 448        env->regs[13] = initial_msp & 0xFFFFFFFC;
 449        env->regs[15] = initial_pc & ~1;
 450        env->thumb = initial_pc & 1;
 451#else
 452        /*
 453         * For user mode we run non-secure and with access to the FPU.
 454         * The FPU context is active (ie does not need further setup)
 455         * and is owned by non-secure.
 456         */
 457        env->v7m.secure = false;
 458        env->v7m.nsacr = 0xcff;
 459        env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
 460        env->v7m.fpccr[M_REG_S] &=
 461            ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
 462        env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
 463#endif
 464    }
 465
 466    /* M profile requires that reset clears the exclusive monitor;
 467     * A profile does not, but clearing it makes more sense than having it
 468     * set with an exclusive access on address zero.
 469     */
 470    arm_clear_exclusive(env);
 471
 472    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 473        if (cpu->pmsav7_dregion > 0) {
 474            if (arm_feature(env, ARM_FEATURE_V8)) {
 475                memset(env->pmsav8.rbar[M_REG_NS], 0,
 476                       sizeof(*env->pmsav8.rbar[M_REG_NS])
 477                       * cpu->pmsav7_dregion);
 478                memset(env->pmsav8.rlar[M_REG_NS], 0,
 479                       sizeof(*env->pmsav8.rlar[M_REG_NS])
 480                       * cpu->pmsav7_dregion);
 481                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 482                    memset(env->pmsav8.rbar[M_REG_S], 0,
 483                           sizeof(*env->pmsav8.rbar[M_REG_S])
 484                           * cpu->pmsav7_dregion);
 485                    memset(env->pmsav8.rlar[M_REG_S], 0,
 486                           sizeof(*env->pmsav8.rlar[M_REG_S])
 487                           * cpu->pmsav7_dregion);
 488                }
 489            } else if (arm_feature(env, ARM_FEATURE_V7)) {
 490                memset(env->pmsav7.drbar, 0,
 491                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 492                memset(env->pmsav7.drsr, 0,
 493                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 494                memset(env->pmsav7.dracr, 0,
 495                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 496            }
 497        }
 498
 499        if (cpu->pmsav8r_hdregion > 0) {
 500            memset(env->pmsav8.hprbar, 0,
 501                   sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
 502            memset(env->pmsav8.hprlar, 0,
 503                   sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
 504        }
 505
 506        env->pmsav7.rnr[M_REG_NS] = 0;
 507        env->pmsav7.rnr[M_REG_S] = 0;
 508        env->pmsav8.mair0[M_REG_NS] = 0;
 509        env->pmsav8.mair0[M_REG_S] = 0;
 510        env->pmsav8.mair1[M_REG_NS] = 0;
 511        env->pmsav8.mair1[M_REG_S] = 0;
 512    }
 513
 514    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 515        if (cpu->sau_sregion > 0) {
 516            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 517            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 518        }
 519        env->sau.rnr = 0;
 520        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 521         * the Cortex-M33 does.
 522         */
 523        env->sau.ctrl = 0;
 524    }
 525
 526    set_flush_to_zero(1, &env->vfp.standard_fp_status);
 527    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 528    set_default_nan_mode(1, &env->vfp.standard_fp_status);
 529    set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
 530    set_float_detect_tininess(float_tininess_before_rounding,
 531                              &env->vfp.fp_status);
 532    set_float_detect_tininess(float_tininess_before_rounding,
 533                              &env->vfp.standard_fp_status);
 534    set_float_detect_tininess(float_tininess_before_rounding,
 535                              &env->vfp.fp_status_f16);
 536    set_float_detect_tininess(float_tininess_before_rounding,
 537                              &env->vfp.standard_fp_status_f16);
 538#ifndef CONFIG_USER_ONLY
 539    if (kvm_enabled()) {
 540        kvm_arm_reset_vcpu(cpu);
 541    }
 542#endif
 543
 544    if (tcg_enabled()) {
 545        hw_breakpoint_update_all(cpu);
 546        hw_watchpoint_update_all(cpu);
 547
 548        arm_rebuild_hflags(env);
 549    }
 550}
 551
 552#if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
 553
 554static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
 555                                     unsigned int target_el,
 556                                     unsigned int cur_el, bool secure,
 557                                     uint64_t hcr_el2)
 558{
 559    CPUARMState *env = cs->env_ptr;
 560    bool pstate_unmasked;
 561    bool unmasked = false;
 562
 563    /*
 564     * Don't take exceptions if they target a lower EL.
 565     * This check should catch any exceptions that would not be taken
 566     * but left pending.
 567     */
 568    if (cur_el > target_el) {
 569        return false;
 570    }
 571
 572    switch (excp_idx) {
 573    case EXCP_FIQ:
 574        pstate_unmasked = !(env->daif & PSTATE_F);
 575        break;
 576
 577    case EXCP_IRQ:
 578        pstate_unmasked = !(env->daif & PSTATE_I);
 579        break;
 580
 581    case EXCP_VFIQ:
 582        if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
 583            /* VFIQs are only taken when hypervized.  */
 584            return false;
 585        }
 586        return !(env->daif & PSTATE_F);
 587    case EXCP_VIRQ:
 588        if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
 589            /* VIRQs are only taken when hypervized.  */
 590            return false;
 591        }
 592        return !(env->daif & PSTATE_I);
 593    case EXCP_VSERR:
 594        if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
 595            /* VIRQs are only taken when hypervized.  */
 596            return false;
 597        }
 598        return !(env->daif & PSTATE_A);
 599    default:
 600        g_assert_not_reached();
 601    }
 602
 603    /*
 604     * Use the target EL, current execution state and SCR/HCR settings to
 605     * determine whether the corresponding CPSR bit is used to mask the
 606     * interrupt.
 607     */
 608    if ((target_el > cur_el) && (target_el != 1)) {
 609        /* Exceptions targeting a higher EL may not be maskable */
 610        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 611            switch (target_el) {
 612            case 2:
 613                /*
 614                 * According to ARM DDI 0487H.a, an interrupt can be masked
 615                 * when HCR_E2H and HCR_TGE are both set regardless of the
 616                 * current Security state. Note that we need to revisit this
 617                 * part again once we need to support NMI.
 618                 */
 619                if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
 620                        unmasked = true;
 621                }
 622                break;
 623            case 3:
 624                /* Interrupt cannot be masked when the target EL is 3 */
 625                unmasked = true;
 626                break;
 627            default:
 628                g_assert_not_reached();
 629            }
 630        } else {
 631            /*
 632             * The old 32-bit-only environment has a more complicated
 633             * masking setup. HCR and SCR bits not only affect interrupt
 634             * routing but also change the behaviour of masking.
 635             */
 636            bool hcr, scr;
 637
 638            switch (excp_idx) {
 639            case EXCP_FIQ:
 640                /*
 641                 * If FIQs are routed to EL3 or EL2 then there are cases where
 642                 * we override the CPSR.F in determining if the exception is
 643                 * masked or not. If neither of these are set then we fall back
 644                 * to the CPSR.F setting otherwise we further assess the state
 645                 * below.
 646                 */
 647                hcr = hcr_el2 & HCR_FMO;
 648                scr = (env->cp15.scr_el3 & SCR_FIQ);
 649
 650                /*
 651                 * When EL3 is 32-bit, the SCR.FW bit controls whether the
 652                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
 653                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
 654                 * when non-secure but only when FIQs are only routed to EL3.
 655                 */
 656                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
 657                break;
 658            case EXCP_IRQ:
 659                /*
 660                 * When EL3 execution state is 32-bit, if HCR.IMO is set then
 661                 * we may override the CPSR.I masking when in non-secure state.
 662                 * The SCR.IRQ setting has already been taken into consideration
 663                 * when setting the target EL, so it does not have a further
 664                 * affect here.
 665                 */
 666                hcr = hcr_el2 & HCR_IMO;
 667                scr = false;
 668                break;
 669            default:
 670                g_assert_not_reached();
 671            }
 672
 673            if ((scr || hcr) && !secure) {
 674                unmasked = true;
 675            }
 676        }
 677    }
 678
 679    /*
 680     * The PSTATE bits only mask the interrupt if we have not overridden the
 681     * ability above.
 682     */
 683    return unmasked || pstate_unmasked;
 684}
 685
 686static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 687{
 688    CPUClass *cc = CPU_GET_CLASS(cs);
 689    CPUARMState *env = cs->env_ptr;
 690    uint32_t cur_el = arm_current_el(env);
 691    bool secure = arm_is_secure(env);
 692    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
 693    uint32_t target_el;
 694    uint32_t excp_idx;
 695
 696    /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
 697
 698    if (interrupt_request & CPU_INTERRUPT_FIQ) {
 699        excp_idx = EXCP_FIQ;
 700        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 701        if (arm_excp_unmasked(cs, excp_idx, target_el,
 702                              cur_el, secure, hcr_el2)) {
 703            goto found;
 704        }
 705    }
 706    if (interrupt_request & CPU_INTERRUPT_HARD) {
 707        excp_idx = EXCP_IRQ;
 708        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 709        if (arm_excp_unmasked(cs, excp_idx, target_el,
 710                              cur_el, secure, hcr_el2)) {
 711            goto found;
 712        }
 713    }
 714    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 715        excp_idx = EXCP_VIRQ;
 716        target_el = 1;
 717        if (arm_excp_unmasked(cs, excp_idx, target_el,
 718                              cur_el, secure, hcr_el2)) {
 719            goto found;
 720        }
 721    }
 722    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 723        excp_idx = EXCP_VFIQ;
 724        target_el = 1;
 725        if (arm_excp_unmasked(cs, excp_idx, target_el,
 726                              cur_el, secure, hcr_el2)) {
 727            goto found;
 728        }
 729    }
 730    if (interrupt_request & CPU_INTERRUPT_VSERR) {
 731        excp_idx = EXCP_VSERR;
 732        target_el = 1;
 733        if (arm_excp_unmasked(cs, excp_idx, target_el,
 734                              cur_el, secure, hcr_el2)) {
 735            /* Taking a virtual abort clears HCR_EL2.VSE */
 736            env->cp15.hcr_el2 &= ~HCR_VSE;
 737            cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
 738            goto found;
 739        }
 740    }
 741    return false;
 742
 743 found:
 744    cs->exception_index = excp_idx;
 745    env->exception.target_el = target_el;
 746    cc->tcg_ops->do_interrupt(cs);
 747    return true;
 748}
 749
 750#endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
 751
 752void arm_cpu_update_virq(ARMCPU *cpu)
 753{
 754    /*
 755     * Update the interrupt level for VIRQ, which is the logical OR of
 756     * the HCR_EL2.VI bit and the input line level from the GIC.
 757     */
 758    CPUARMState *env = &cpu->env;
 759    CPUState *cs = CPU(cpu);
 760
 761    bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
 762        (env->irq_line_state & CPU_INTERRUPT_VIRQ);
 763
 764    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
 765        if (new_state) {
 766            cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
 767        } else {
 768            cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
 769        }
 770    }
 771}
 772
 773void arm_cpu_update_vfiq(ARMCPU *cpu)
 774{
 775    /*
 776     * Update the interrupt level for VFIQ, which is the logical OR of
 777     * the HCR_EL2.VF bit and the input line level from the GIC.
 778     */
 779    CPUARMState *env = &cpu->env;
 780    CPUState *cs = CPU(cpu);
 781
 782    bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
 783        (env->irq_line_state & CPU_INTERRUPT_VFIQ);
 784
 785    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
 786        if (new_state) {
 787            cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
 788        } else {
 789            cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
 790        }
 791    }
 792}
 793
 794void arm_cpu_update_vserr(ARMCPU *cpu)
 795{
 796    /*
 797     * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
 798     */
 799    CPUARMState *env = &cpu->env;
 800    CPUState *cs = CPU(cpu);
 801
 802    bool new_state = env->cp15.hcr_el2 & HCR_VSE;
 803
 804    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
 805        if (new_state) {
 806            cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
 807        } else {
 808            cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
 809        }
 810    }
 811}
 812
 813#ifndef CONFIG_USER_ONLY
 814static void arm_cpu_set_irq(void *opaque, int irq, int level)
 815{
 816    ARMCPU *cpu = opaque;
 817    CPUARMState *env = &cpu->env;
 818    CPUState *cs = CPU(cpu);
 819    static const int mask[] = {
 820        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 821        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 822        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 823        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 824    };
 825
 826    if (!arm_feature(env, ARM_FEATURE_EL2) &&
 827        (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
 828        /*
 829         * The GIC might tell us about VIRQ and VFIQ state, but if we don't
 830         * have EL2 support we don't care. (Unless the guest is doing something
 831         * silly this will only be calls saying "level is still 0".)
 832         */
 833        return;
 834    }
 835
 836    if (level) {
 837        env->irq_line_state |= mask[irq];
 838    } else {
 839        env->irq_line_state &= ~mask[irq];
 840    }
 841
 842    switch (irq) {
 843    case ARM_CPU_VIRQ:
 844        arm_cpu_update_virq(cpu);
 845        break;
 846    case ARM_CPU_VFIQ:
 847        arm_cpu_update_vfiq(cpu);
 848        break;
 849    case ARM_CPU_IRQ:
 850    case ARM_CPU_FIQ:
 851        if (level) {
 852            cpu_interrupt(cs, mask[irq]);
 853        } else {
 854            cpu_reset_interrupt(cs, mask[irq]);
 855        }
 856        break;
 857    default:
 858        g_assert_not_reached();
 859    }
 860}
 861
 862static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 863{
 864#ifdef CONFIG_KVM
 865    ARMCPU *cpu = opaque;
 866    CPUARMState *env = &cpu->env;
 867    CPUState *cs = CPU(cpu);
 868    uint32_t linestate_bit;
 869    int irq_id;
 870
 871    switch (irq) {
 872    case ARM_CPU_IRQ:
 873        irq_id = KVM_ARM_IRQ_CPU_IRQ;
 874        linestate_bit = CPU_INTERRUPT_HARD;
 875        break;
 876    case ARM_CPU_FIQ:
 877        irq_id = KVM_ARM_IRQ_CPU_FIQ;
 878        linestate_bit = CPU_INTERRUPT_FIQ;
 879        break;
 880    default:
 881        g_assert_not_reached();
 882    }
 883
 884    if (level) {
 885        env->irq_line_state |= linestate_bit;
 886    } else {
 887        env->irq_line_state &= ~linestate_bit;
 888    }
 889    kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
 890#endif
 891}
 892
 893static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 894{
 895    ARMCPU *cpu = ARM_CPU(cs);
 896    CPUARMState *env = &cpu->env;
 897
 898    cpu_synchronize_state(cs);
 899    return arm_cpu_data_is_big_endian(env);
 900}
 901
 902#endif
 903
 904static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 905{
 906    ARMCPU *ac = ARM_CPU(cpu);
 907    CPUARMState *env = &ac->env;
 908    bool sctlr_b;
 909
 910    if (is_a64(env)) {
 911        info->cap_arch = CS_ARCH_ARM64;
 912        info->cap_insn_unit = 4;
 913        info->cap_insn_split = 4;
 914    } else {
 915        int cap_mode;
 916        if (env->thumb) {
 917            info->cap_insn_unit = 2;
 918            info->cap_insn_split = 4;
 919            cap_mode = CS_MODE_THUMB;
 920        } else {
 921            info->cap_insn_unit = 4;
 922            info->cap_insn_split = 4;
 923            cap_mode = CS_MODE_ARM;
 924        }
 925        if (arm_feature(env, ARM_FEATURE_V8)) {
 926            cap_mode |= CS_MODE_V8;
 927        }
 928        if (arm_feature(env, ARM_FEATURE_M)) {
 929            cap_mode |= CS_MODE_MCLASS;
 930        }
 931        info->cap_arch = CS_ARCH_ARM;
 932        info->cap_mode = cap_mode;
 933    }
 934
 935    sctlr_b = arm_sctlr_b(env);
 936    if (bswap_code(sctlr_b)) {
 937#if TARGET_BIG_ENDIAN
 938        info->endian = BFD_ENDIAN_LITTLE;
 939#else
 940        info->endian = BFD_ENDIAN_BIG;
 941#endif
 942    }
 943    info->flags &= ~INSN_ARM_BE32;
 944#ifndef CONFIG_USER_ONLY
 945    if (sctlr_b) {
 946        info->flags |= INSN_ARM_BE32;
 947    }
 948#endif
 949}
 950
 951#ifdef TARGET_AARCH64
 952
 953static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
 954{
 955    ARMCPU *cpu = ARM_CPU(cs);
 956    CPUARMState *env = &cpu->env;
 957    uint32_t psr = pstate_read(env);
 958    int i, j;
 959    int el = arm_current_el(env);
 960    const char *ns_status;
 961    bool sve;
 962
 963    qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
 964    for (i = 0; i < 32; i++) {
 965        if (i == 31) {
 966            qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
 967        } else {
 968            qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
 969                         (i + 2) % 3 ? " " : "\n");
 970        }
 971    }
 972
 973    if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
 974        ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
 975    } else {
 976        ns_status = "";
 977    }
 978    qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
 979                 psr,
 980                 psr & PSTATE_N ? 'N' : '-',
 981                 psr & PSTATE_Z ? 'Z' : '-',
 982                 psr & PSTATE_C ? 'C' : '-',
 983                 psr & PSTATE_V ? 'V' : '-',
 984                 ns_status,
 985                 el,
 986                 psr & PSTATE_SP ? 'h' : 't');
 987
 988    if (cpu_isar_feature(aa64_sme, cpu)) {
 989        qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
 990                     env->svcr,
 991                     (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
 992                     (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
 993    }
 994    if (cpu_isar_feature(aa64_bti, cpu)) {
 995        qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
 996    }
 997    if (!(flags & CPU_DUMP_FPU)) {
 998        qemu_fprintf(f, "\n");
 999        return;
1000    }
1001    if (fp_exception_el(env, el) != 0) {
1002        qemu_fprintf(f, "    FPU disabled\n");
1003        return;
1004    }
1005    qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1006                 vfp_get_fpcr(env), vfp_get_fpsr(env));
1007
1008    if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1009        sve = sme_exception_el(env, el) == 0;
1010    } else if (cpu_isar_feature(aa64_sve, cpu)) {
1011        sve = sve_exception_el(env, el) == 0;
1012    } else {
1013        sve = false;
1014    }
1015
1016    if (sve) {
1017        int zcr_len = sve_vqm1_for_el(env, el);
1018
1019        for (i = 0; i <= FFR_PRED_NUM; i++) {
1020            bool eol;
1021            if (i == FFR_PRED_NUM) {
1022                qemu_fprintf(f, "FFR=");
1023                /* It's last, so end the line.  */
1024                eol = true;
1025            } else {
1026                qemu_fprintf(f, "P%02d=", i);
1027                switch (zcr_len) {
1028                case 0:
1029                    eol = i % 8 == 7;
1030                    break;
1031                case 1:
1032                    eol = i % 6 == 5;
1033                    break;
1034                case 2:
1035                case 3:
1036                    eol = i % 3 == 2;
1037                    break;
1038                default:
1039                    /* More than one quadword per predicate.  */
1040                    eol = true;
1041                    break;
1042                }
1043            }
1044            for (j = zcr_len / 4; j >= 0; j--) {
1045                int digits;
1046                if (j * 4 + 4 <= zcr_len + 1) {
1047                    digits = 16;
1048                } else {
1049                    digits = (zcr_len % 4 + 1) * 4;
1050                }
1051                qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1052                             env->vfp.pregs[i].p[j],
1053                             j ? ":" : eol ? "\n" : " ");
1054            }
1055        }
1056
1057        if (zcr_len == 0) {
1058            /*
1059             * With vl=16, there are only 37 columns per register,
1060             * so output two registers per line.
1061             */
1062            for (i = 0; i < 32; i++) {
1063                qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1064                             i, env->vfp.zregs[i].d[1],
1065                             env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1066            }
1067        } else {
1068            for (i = 0; i < 32; i++) {
1069                qemu_fprintf(f, "Z%02d=", i);
1070                for (j = zcr_len; j >= 0; j--) {
1071                    qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1072                                 env->vfp.zregs[i].d[j * 2 + 1],
1073                                 env->vfp.zregs[i].d[j * 2 + 0],
1074                                 j ? ":" : "\n");
1075                }
1076            }
1077        }
1078    } else {
1079        for (i = 0; i < 32; i++) {
1080            uint64_t *q = aa64_vfp_qreg(env, i);
1081            qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1082                         i, q[1], q[0], (i & 1 ? "\n" : " "));
1083        }
1084    }
1085
1086    if (cpu_isar_feature(aa64_sme, cpu) &&
1087        FIELD_EX64(env->svcr, SVCR, ZA) &&
1088        sme_exception_el(env, el) == 0) {
1089        int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1090        int svl = (zcr_len + 1) * 16;
1091        int svl_lg10 = svl < 100 ? 2 : 3;
1092
1093        for (i = 0; i < svl; i++) {
1094            qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1095            for (j = zcr_len; j >= 0; --j) {
1096                qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1097                             env->zarray[i].d[2 * j + 1],
1098                             env->zarray[i].d[2 * j],
1099                             j ? ':' : '\n');
1100            }
1101        }
1102    }
1103}
1104
1105#else
1106
1107static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1108{
1109    g_assert_not_reached();
1110}
1111
1112#endif
1113
1114static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1115{
1116    ARMCPU *cpu = ARM_CPU(cs);
1117    CPUARMState *env = &cpu->env;
1118    int i;
1119
1120    if (is_a64(env)) {
1121        aarch64_cpu_dump_state(cs, f, flags);
1122        return;
1123    }
1124
1125    for (i = 0; i < 16; i++) {
1126        qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1127        if ((i % 4) == 3) {
1128            qemu_fprintf(f, "\n");
1129        } else {
1130            qemu_fprintf(f, " ");
1131        }
1132    }
1133
1134    if (arm_feature(env, ARM_FEATURE_M)) {
1135        uint32_t xpsr = xpsr_read(env);
1136        const char *mode;
1137        const char *ns_status = "";
1138
1139        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1140            ns_status = env->v7m.secure ? "S " : "NS ";
1141        }
1142
1143        if (xpsr & XPSR_EXCP) {
1144            mode = "handler";
1145        } else {
1146            if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1147                mode = "unpriv-thread";
1148            } else {
1149                mode = "priv-thread";
1150            }
1151        }
1152
1153        qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1154                     xpsr,
1155                     xpsr & XPSR_N ? 'N' : '-',
1156                     xpsr & XPSR_Z ? 'Z' : '-',
1157                     xpsr & XPSR_C ? 'C' : '-',
1158                     xpsr & XPSR_V ? 'V' : '-',
1159                     xpsr & XPSR_T ? 'T' : 'A',
1160                     ns_status,
1161                     mode);
1162    } else {
1163        uint32_t psr = cpsr_read(env);
1164        const char *ns_status = "";
1165
1166        if (arm_feature(env, ARM_FEATURE_EL3) &&
1167            (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1168            ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1169        }
1170
1171        qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1172                     psr,
1173                     psr & CPSR_N ? 'N' : '-',
1174                     psr & CPSR_Z ? 'Z' : '-',
1175                     psr & CPSR_C ? 'C' : '-',
1176                     psr & CPSR_V ? 'V' : '-',
1177                     psr & CPSR_T ? 'T' : 'A',
1178                     ns_status,
1179                     aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1180    }
1181
1182    if (flags & CPU_DUMP_FPU) {
1183        int numvfpregs = 0;
1184        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1185            numvfpregs = 32;
1186        } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1187            numvfpregs = 16;
1188        }
1189        for (i = 0; i < numvfpregs; i++) {
1190            uint64_t v = *aa32_vfp_dreg(env, i);
1191            qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1192                         i * 2, (uint32_t)v,
1193                         i * 2 + 1, (uint32_t)(v >> 32),
1194                         i, v);
1195        }
1196        qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1197        if (cpu_isar_feature(aa32_mve, cpu)) {
1198            qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1199        }
1200    }
1201}
1202
1203uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1204{
1205    uint32_t Aff1 = idx / clustersz;
1206    uint32_t Aff0 = idx % clustersz;
1207    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1208}
1209
1210static void arm_cpu_initfn(Object *obj)
1211{
1212    ARMCPU *cpu = ARM_CPU(obj);
1213
1214    cpu_set_cpustate_pointers(cpu);
1215    cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1216                                         NULL, g_free);
1217
1218    QLIST_INIT(&cpu->pre_el_change_hooks);
1219    QLIST_INIT(&cpu->el_change_hooks);
1220
1221#ifdef CONFIG_USER_ONLY
1222# ifdef TARGET_AARCH64
1223    /*
1224     * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1225     * These values were chosen to fit within the default signal frame.
1226     * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1227     * and our corresponding cpu property.
1228     */
1229    cpu->sve_default_vq = 4;
1230    cpu->sme_default_vq = 2;
1231# endif
1232#else
1233    /* Our inbound IRQ and FIQ lines */
1234    if (kvm_enabled()) {
1235        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1236         * the same interface as non-KVM CPUs.
1237         */
1238        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1239    } else {
1240        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1241    }
1242
1243    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1244                       ARRAY_SIZE(cpu->gt_timer_outputs));
1245
1246    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1247                             "gicv3-maintenance-interrupt", 1);
1248    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1249                             "pmu-interrupt", 1);
1250#endif
1251
1252    /* DTB consumers generally don't in fact care what the 'compatible'
1253     * string is, so always provide some string and trust that a hypothetical
1254     * picky DTB consumer will also provide a helpful error message.
1255     */
1256    cpu->dtb_compatible = "qemu,unknown";
1257    cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1258    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1259
1260    if (tcg_enabled() || hvf_enabled()) {
1261        /* TCG and HVF implement PSCI 1.1 */
1262        cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1263    }
1264}
1265
1266static Property arm_cpu_gt_cntfrq_property =
1267            DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1268                               NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1269
1270static Property arm_cpu_reset_cbar_property =
1271            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1272
1273static Property arm_cpu_reset_hivecs_property =
1274            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1275
1276#ifndef CONFIG_USER_ONLY
1277static Property arm_cpu_has_el2_property =
1278            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1279
1280static Property arm_cpu_has_el3_property =
1281            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1282#endif
1283
1284static Property arm_cpu_cfgend_property =
1285            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1286
1287static Property arm_cpu_has_vfp_property =
1288            DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1289
1290static Property arm_cpu_has_vfp_d32_property =
1291            DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1292
1293static Property arm_cpu_has_neon_property =
1294            DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1295
1296static Property arm_cpu_has_dsp_property =
1297            DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1298
1299static Property arm_cpu_has_mpu_property =
1300            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1301
1302/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1303 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1304 * the right value for that particular CPU type, and we don't want
1305 * to override that with an incorrect constant value.
1306 */
1307static Property arm_cpu_pmsav7_dregion_property =
1308            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1309                                           pmsav7_dregion,
1310                                           qdev_prop_uint32, uint32_t);
1311
1312static bool arm_get_pmu(Object *obj, Error **errp)
1313{
1314    ARMCPU *cpu = ARM_CPU(obj);
1315
1316    return cpu->has_pmu;
1317}
1318
1319static void arm_set_pmu(Object *obj, bool value, Error **errp)
1320{
1321    ARMCPU *cpu = ARM_CPU(obj);
1322
1323    if (value) {
1324        if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1325            error_setg(errp, "'pmu' feature not supported by KVM on this host");
1326            return;
1327        }
1328        set_feature(&cpu->env, ARM_FEATURE_PMU);
1329    } else {
1330        unset_feature(&cpu->env, ARM_FEATURE_PMU);
1331    }
1332    cpu->has_pmu = value;
1333}
1334
1335unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1336{
1337    /*
1338     * The exact approach to calculating guest ticks is:
1339     *
1340     *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1341     *              NANOSECONDS_PER_SECOND);
1342     *
1343     * We don't do that. Rather we intentionally use integer division
1344     * truncation below and in the caller for the conversion of host monotonic
1345     * time to guest ticks to provide the exact inverse for the semantics of
1346     * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1347     * it loses precision when representing frequencies where
1348     * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1349     * provide an exact inverse leads to scheduling timers with negative
1350     * periods, which in turn leads to sticky behaviour in the guest.
1351     *
1352     * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1353     * cannot become zero.
1354     */
1355    return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1356      NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1357}
1358
1359void arm_cpu_post_init(Object *obj)
1360{
1361    ARMCPU *cpu = ARM_CPU(obj);
1362
1363    /* M profile implies PMSA. We have to do this here rather than
1364     * in realize with the other feature-implication checks because
1365     * we look at the PMSA bit to see if we should add some properties.
1366     */
1367    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1368        set_feature(&cpu->env, ARM_FEATURE_PMSA);
1369    }
1370
1371    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1372        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1373        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1374    }
1375
1376    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1377        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1378    }
1379
1380    if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1381        object_property_add_uint64_ptr(obj, "rvbar",
1382                                       &cpu->rvbar_prop,
1383                                       OBJ_PROP_FLAG_READWRITE);
1384    }
1385
1386#ifndef CONFIG_USER_ONLY
1387    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1388        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1389         * prevent "has_el3" from existing on CPUs which cannot support EL3.
1390         */
1391        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1392
1393        object_property_add_link(obj, "secure-memory",
1394                                 TYPE_MEMORY_REGION,
1395                                 (Object **)&cpu->secure_memory,
1396                                 qdev_prop_allow_set_link_before_realize,
1397                                 OBJ_PROP_LINK_STRONG);
1398    }
1399
1400    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1401        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1402    }
1403#endif
1404
1405    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1406        cpu->has_pmu = true;
1407        object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1408    }
1409
1410    /*
1411     * Allow user to turn off VFP and Neon support, but only for TCG --
1412     * KVM does not currently allow us to lie to the guest about its
1413     * ID/feature registers, so the guest always sees what the host has.
1414     */
1415    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1416        if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1417            cpu->has_vfp = true;
1418            cpu->has_vfp_d32 = true;
1419            if (tcg_enabled() || qtest_enabled()) {
1420                qdev_property_add_static(DEVICE(obj),
1421                                         &arm_cpu_has_vfp_property);
1422            }
1423        }
1424    } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1425        cpu->has_vfp = true;
1426        if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1427            cpu->has_vfp_d32 = true;
1428            /*
1429             * The permitted values of the SIMDReg bits [3:0] on
1430             * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1431             * make sure that has_vfp_d32 can not be set to false.
1432             */
1433            if ((tcg_enabled() || qtest_enabled())
1434                && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1435                     && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1436                qdev_property_add_static(DEVICE(obj),
1437                                         &arm_cpu_has_vfp_d32_property);
1438            }
1439        }
1440    }
1441
1442    if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1443        cpu->has_neon = true;
1444        if (!kvm_enabled()) {
1445            qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1446        }
1447    }
1448
1449    if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1450        arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1451        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1452    }
1453
1454    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1455        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1456        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1457            qdev_property_add_static(DEVICE(obj),
1458                                     &arm_cpu_pmsav7_dregion_property);
1459        }
1460    }
1461
1462    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1463        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1464                                 qdev_prop_allow_set_link_before_realize,
1465                                 OBJ_PROP_LINK_STRONG);
1466        /*
1467         * M profile: initial value of the Secure VTOR. We can't just use
1468         * a simple DEFINE_PROP_UINT32 for this because we want to permit
1469         * the property to be set after realize.
1470         */
1471        object_property_add_uint32_ptr(obj, "init-svtor",
1472                                       &cpu->init_svtor,
1473                                       OBJ_PROP_FLAG_READWRITE);
1474    }
1475    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1476        /*
1477         * Initial value of the NS VTOR (for cores without the Security
1478         * extension, this is the only VTOR)
1479         */
1480        object_property_add_uint32_ptr(obj, "init-nsvtor",
1481                                       &cpu->init_nsvtor,
1482                                       OBJ_PROP_FLAG_READWRITE);
1483    }
1484
1485    /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1486    object_property_add_uint32_ptr(obj, "psci-conduit",
1487                                   &cpu->psci_conduit,
1488                                   OBJ_PROP_FLAG_READWRITE);
1489
1490    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1491
1492    if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1493        qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1494    }
1495
1496    if (kvm_enabled()) {
1497        kvm_arm_add_vcpu_properties(obj);
1498    }
1499
1500#ifndef CONFIG_USER_ONLY
1501    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1502        cpu_isar_feature(aa64_mte, cpu)) {
1503        object_property_add_link(obj, "tag-memory",
1504                                 TYPE_MEMORY_REGION,
1505                                 (Object **)&cpu->tag_memory,
1506                                 qdev_prop_allow_set_link_before_realize,
1507                                 OBJ_PROP_LINK_STRONG);
1508
1509        if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1510            object_property_add_link(obj, "secure-tag-memory",
1511                                     TYPE_MEMORY_REGION,
1512                                     (Object **)&cpu->secure_tag_memory,
1513                                     qdev_prop_allow_set_link_before_realize,
1514                                     OBJ_PROP_LINK_STRONG);
1515        }
1516    }
1517#endif
1518}
1519
1520static void arm_cpu_finalizefn(Object *obj)
1521{
1522    ARMCPU *cpu = ARM_CPU(obj);
1523    ARMELChangeHook *hook, *next;
1524
1525    g_hash_table_destroy(cpu->cp_regs);
1526
1527    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1528        QLIST_REMOVE(hook, node);
1529        g_free(hook);
1530    }
1531    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1532        QLIST_REMOVE(hook, node);
1533        g_free(hook);
1534    }
1535#ifndef CONFIG_USER_ONLY
1536    if (cpu->pmu_timer) {
1537        timer_free(cpu->pmu_timer);
1538    }
1539#endif
1540}
1541
1542void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1543{
1544    Error *local_err = NULL;
1545
1546#ifdef TARGET_AARCH64
1547    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1548        arm_cpu_sve_finalize(cpu, &local_err);
1549        if (local_err != NULL) {
1550            error_propagate(errp, local_err);
1551            return;
1552        }
1553
1554        arm_cpu_sme_finalize(cpu, &local_err);
1555        if (local_err != NULL) {
1556            error_propagate(errp, local_err);
1557            return;
1558        }
1559
1560        arm_cpu_pauth_finalize(cpu, &local_err);
1561        if (local_err != NULL) {
1562            error_propagate(errp, local_err);
1563            return;
1564        }
1565
1566        arm_cpu_lpa2_finalize(cpu, &local_err);
1567        if (local_err != NULL) {
1568            error_propagate(errp, local_err);
1569            return;
1570        }
1571    }
1572#endif
1573
1574    if (kvm_enabled()) {
1575        kvm_arm_steal_time_finalize(cpu, &local_err);
1576        if (local_err != NULL) {
1577            error_propagate(errp, local_err);
1578            return;
1579        }
1580    }
1581}
1582
1583static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1584{
1585    CPUState *cs = CPU(dev);
1586    ARMCPU *cpu = ARM_CPU(dev);
1587    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1588    CPUARMState *env = &cpu->env;
1589    int pagebits;
1590    Error *local_err = NULL;
1591    bool no_aa32 = false;
1592
1593    /* Use pc-relative instructions in system-mode */
1594#ifndef CONFIG_USER_ONLY
1595    cs->tcg_cflags |= CF_PCREL;
1596#endif
1597
1598    /* If we needed to query the host kernel for the CPU features
1599     * then it's possible that might have failed in the initfn, but
1600     * this is the first point where we can report it.
1601     */
1602    if (cpu->host_cpu_probe_failed) {
1603        if (!kvm_enabled() && !hvf_enabled()) {
1604            error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1605        } else {
1606            error_setg(errp, "Failed to retrieve host CPU features");
1607        }
1608        return;
1609    }
1610
1611#ifndef CONFIG_USER_ONLY
1612    /* The NVIC and M-profile CPU are two halves of a single piece of
1613     * hardware; trying to use one without the other is a command line
1614     * error and will result in segfaults if not caught here.
1615     */
1616    if (arm_feature(env, ARM_FEATURE_M)) {
1617        if (!env->nvic) {
1618            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1619            return;
1620        }
1621    } else {
1622        if (env->nvic) {
1623            error_setg(errp, "This board can only be used with Cortex-M CPUs");
1624            return;
1625        }
1626    }
1627
1628    if (!tcg_enabled() && !qtest_enabled()) {
1629        /*
1630         * We assume that no accelerator except TCG (and the "not really an
1631         * accelerator" qtest) can handle these features, because Arm hardware
1632         * virtualization can't virtualize them.
1633         *
1634         * Catch all the cases which might cause us to create more than one
1635         * address space for the CPU (otherwise we will assert() later in
1636         * cpu_address_space_init()).
1637         */
1638        if (arm_feature(env, ARM_FEATURE_M)) {
1639            error_setg(errp,
1640                       "Cannot enable %s when using an M-profile guest CPU",
1641                       current_accel_name());
1642            return;
1643        }
1644        if (cpu->has_el3) {
1645            error_setg(errp,
1646                       "Cannot enable %s when guest CPU has EL3 enabled",
1647                       current_accel_name());
1648            return;
1649        }
1650        if (cpu->tag_memory) {
1651            error_setg(errp,
1652                       "Cannot enable %s when guest CPUs has MTE enabled",
1653                       current_accel_name());
1654            return;
1655        }
1656    }
1657
1658    {
1659        uint64_t scale;
1660
1661        if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1662            if (!cpu->gt_cntfrq_hz) {
1663                error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1664                           cpu->gt_cntfrq_hz);
1665                return;
1666            }
1667            scale = gt_cntfrq_period_ns(cpu);
1668        } else {
1669            scale = GTIMER_SCALE;
1670        }
1671
1672        cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1673                                               arm_gt_ptimer_cb, cpu);
1674        cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1675                                               arm_gt_vtimer_cb, cpu);
1676        cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1677                                              arm_gt_htimer_cb, cpu);
1678        cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1679                                              arm_gt_stimer_cb, cpu);
1680        cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1681                                                  arm_gt_hvtimer_cb, cpu);
1682    }
1683#endif
1684
1685    cpu_exec_realizefn(cs, &local_err);
1686    if (local_err != NULL) {
1687        error_propagate(errp, local_err);
1688        return;
1689    }
1690
1691    arm_cpu_finalize_features(cpu, &local_err);
1692    if (local_err != NULL) {
1693        error_propagate(errp, local_err);
1694        return;
1695    }
1696
1697#ifdef CONFIG_USER_ONLY
1698    /*
1699     * User mode relies on IC IVAU instructions to catch modification of
1700     * dual-mapped code.
1701     *
1702     * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1703     * IC IVAU even if the emulated processor does not normally require it.
1704     */
1705    cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1706#endif
1707
1708    if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1709        cpu->has_vfp != cpu->has_neon) {
1710        /*
1711         * This is an architectural requirement for AArch64; AArch32 is
1712         * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1713         */
1714        error_setg(errp,
1715                   "AArch64 CPUs must have both VFP and Neon or neither");
1716        return;
1717    }
1718
1719    if (cpu->has_vfp_d32 != cpu->has_neon) {
1720        error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1721        return;
1722    }
1723
1724   if (!cpu->has_vfp_d32) {
1725        uint32_t u;
1726
1727        u = cpu->isar.mvfr0;
1728        u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1729        cpu->isar.mvfr0 = u;
1730    }
1731
1732    if (!cpu->has_vfp) {
1733        uint64_t t;
1734        uint32_t u;
1735
1736        t = cpu->isar.id_aa64isar1;
1737        t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1738        cpu->isar.id_aa64isar1 = t;
1739
1740        t = cpu->isar.id_aa64pfr0;
1741        t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1742        cpu->isar.id_aa64pfr0 = t;
1743
1744        u = cpu->isar.id_isar6;
1745        u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1746        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1747        cpu->isar.id_isar6 = u;
1748
1749        u = cpu->isar.mvfr0;
1750        u = FIELD_DP32(u, MVFR0, FPSP, 0);
1751        u = FIELD_DP32(u, MVFR0, FPDP, 0);
1752        u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1753        u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1754        u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1755        if (!arm_feature(env, ARM_FEATURE_M)) {
1756            u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1757            u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1758        }
1759        cpu->isar.mvfr0 = u;
1760
1761        u = cpu->isar.mvfr1;
1762        u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1763        u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1764        u = FIELD_DP32(u, MVFR1, FPHP, 0);
1765        if (arm_feature(env, ARM_FEATURE_M)) {
1766            u = FIELD_DP32(u, MVFR1, FP16, 0);
1767        }
1768        cpu->isar.mvfr1 = u;
1769
1770        u = cpu->isar.mvfr2;
1771        u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1772        cpu->isar.mvfr2 = u;
1773    }
1774
1775    if (!cpu->has_neon) {
1776        uint64_t t;
1777        uint32_t u;
1778
1779        unset_feature(env, ARM_FEATURE_NEON);
1780
1781        t = cpu->isar.id_aa64isar0;
1782        t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1783        t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1784        t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1785        t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1786        t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1787        t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1788        t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1789        cpu->isar.id_aa64isar0 = t;
1790
1791        t = cpu->isar.id_aa64isar1;
1792        t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1793        t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1794        t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1795        cpu->isar.id_aa64isar1 = t;
1796
1797        t = cpu->isar.id_aa64pfr0;
1798        t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1799        cpu->isar.id_aa64pfr0 = t;
1800
1801        u = cpu->isar.id_isar5;
1802        u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1803        u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1804        u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1805        u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1806        u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1807        cpu->isar.id_isar5 = u;
1808
1809        u = cpu->isar.id_isar6;
1810        u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1811        u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1812        u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1813        u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1814        cpu->isar.id_isar6 = u;
1815
1816        if (!arm_feature(env, ARM_FEATURE_M)) {
1817            u = cpu->isar.mvfr1;
1818            u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1819            u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1820            u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1821            u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1822            cpu->isar.mvfr1 = u;
1823
1824            u = cpu->isar.mvfr2;
1825            u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1826            cpu->isar.mvfr2 = u;
1827        }
1828    }
1829
1830    if (!cpu->has_neon && !cpu->has_vfp) {
1831        uint64_t t;
1832        uint32_t u;
1833
1834        t = cpu->isar.id_aa64isar0;
1835        t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1836        cpu->isar.id_aa64isar0 = t;
1837
1838        t = cpu->isar.id_aa64isar1;
1839        t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1840        cpu->isar.id_aa64isar1 = t;
1841
1842        u = cpu->isar.mvfr0;
1843        u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1844        cpu->isar.mvfr0 = u;
1845
1846        /* Despite the name, this field covers both VFP and Neon */
1847        u = cpu->isar.mvfr1;
1848        u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1849        cpu->isar.mvfr1 = u;
1850    }
1851
1852    if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1853        uint32_t u;
1854
1855        unset_feature(env, ARM_FEATURE_THUMB_DSP);
1856
1857        u = cpu->isar.id_isar1;
1858        u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1859        cpu->isar.id_isar1 = u;
1860
1861        u = cpu->isar.id_isar2;
1862        u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1863        u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1864        cpu->isar.id_isar2 = u;
1865
1866        u = cpu->isar.id_isar3;
1867        u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1868        u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1869        cpu->isar.id_isar3 = u;
1870    }
1871
1872    /* Some features automatically imply others: */
1873    if (arm_feature(env, ARM_FEATURE_V8)) {
1874        if (arm_feature(env, ARM_FEATURE_M)) {
1875            set_feature(env, ARM_FEATURE_V7);
1876        } else {
1877            set_feature(env, ARM_FEATURE_V7VE);
1878        }
1879    }
1880
1881    /*
1882     * There exist AArch64 cpus without AArch32 support.  When KVM
1883     * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1884     * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1885     * As a general principle, we also do not make ID register
1886     * consistency checks anywhere unless using TCG, because only
1887     * for TCG would a consistency-check failure be a QEMU bug.
1888     */
1889    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1890        no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1891    }
1892
1893    if (arm_feature(env, ARM_FEATURE_V7VE)) {
1894        /* v7 Virtualization Extensions. In real hardware this implies
1895         * EL2 and also the presence of the Security Extensions.
1896         * For QEMU, for backwards-compatibility we implement some
1897         * CPUs or CPU configs which have no actual EL2 or EL3 but do
1898         * include the various other features that V7VE implies.
1899         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1900         * Security Extensions is ARM_FEATURE_EL3.
1901         */
1902        assert(!tcg_enabled() || no_aa32 ||
1903               cpu_isar_feature(aa32_arm_div, cpu));
1904        set_feature(env, ARM_FEATURE_LPAE);
1905        set_feature(env, ARM_FEATURE_V7);
1906    }
1907    if (arm_feature(env, ARM_FEATURE_V7)) {
1908        set_feature(env, ARM_FEATURE_VAPA);
1909        set_feature(env, ARM_FEATURE_THUMB2);
1910        set_feature(env, ARM_FEATURE_MPIDR);
1911        if (!arm_feature(env, ARM_FEATURE_M)) {
1912            set_feature(env, ARM_FEATURE_V6K);
1913        } else {
1914            set_feature(env, ARM_FEATURE_V6);
1915        }
1916
1917        /* Always define VBAR for V7 CPUs even if it doesn't exist in
1918         * non-EL3 configs. This is needed by some legacy boards.
1919         */
1920        set_feature(env, ARM_FEATURE_VBAR);
1921    }
1922    if (arm_feature(env, ARM_FEATURE_V6K)) {
1923        set_feature(env, ARM_FEATURE_V6);
1924        set_feature(env, ARM_FEATURE_MVFR);
1925    }
1926    if (arm_feature(env, ARM_FEATURE_V6)) {
1927        set_feature(env, ARM_FEATURE_V5);
1928        if (!arm_feature(env, ARM_FEATURE_M)) {
1929            assert(!tcg_enabled() || no_aa32 ||
1930                   cpu_isar_feature(aa32_jazelle, cpu));
1931            set_feature(env, ARM_FEATURE_AUXCR);
1932        }
1933    }
1934    if (arm_feature(env, ARM_FEATURE_V5)) {
1935        set_feature(env, ARM_FEATURE_V4T);
1936    }
1937    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1938        set_feature(env, ARM_FEATURE_V7MP);
1939    }
1940    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1941        set_feature(env, ARM_FEATURE_CBAR);
1942    }
1943    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1944        !arm_feature(env, ARM_FEATURE_M)) {
1945        set_feature(env, ARM_FEATURE_THUMB_DSP);
1946    }
1947
1948    /*
1949     * We rely on no XScale CPU having VFP so we can use the same bits in the
1950     * TB flags field for VECSTRIDE and XSCALE_CPAR.
1951     */
1952    assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1953           !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1954           !arm_feature(env, ARM_FEATURE_XSCALE));
1955
1956    if (arm_feature(env, ARM_FEATURE_V7) &&
1957        !arm_feature(env, ARM_FEATURE_M) &&
1958        !arm_feature(env, ARM_FEATURE_PMSA)) {
1959        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1960         * can use 4K pages.
1961         */
1962        pagebits = 12;
1963    } else {
1964        /* For CPUs which might have tiny 1K pages, or which have an
1965         * MPU and might have small region sizes, stick with 1K pages.
1966         */
1967        pagebits = 10;
1968    }
1969    if (!set_preferred_target_page_bits(pagebits)) {
1970        /* This can only ever happen for hotplugging a CPU, or if
1971         * the board code incorrectly creates a CPU which it has
1972         * promised via minimum_page_size that it will not.
1973         */
1974        error_setg(errp, "This CPU requires a smaller page size than the "
1975                   "system is using");
1976        return;
1977    }
1978
1979    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1980     * We don't support setting cluster ID ([16..23]) (known as Aff2
1981     * in later ARM ARM versions), or any of the higher affinity level fields,
1982     * so these bits always RAZ.
1983     */
1984    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1985        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1986                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
1987    }
1988
1989    if (cpu->reset_hivecs) {
1990            cpu->reset_sctlr |= (1 << 13);
1991    }
1992
1993    if (cpu->cfgend) {
1994        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1995            cpu->reset_sctlr |= SCTLR_EE;
1996        } else {
1997            cpu->reset_sctlr |= SCTLR_B;
1998        }
1999    }
2000
2001    if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2002        /* If the has_el3 CPU property is disabled then we need to disable the
2003         * feature.
2004         */
2005        unset_feature(env, ARM_FEATURE_EL3);
2006
2007        /*
2008         * Disable the security extension feature bits in the processor
2009         * feature registers as well.
2010         */
2011        cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2012        cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2013        cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2014                                           ID_AA64PFR0, EL3, 0);
2015
2016        /* Disable the realm management extension, which requires EL3. */
2017        cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2018                                           ID_AA64PFR0, RME, 0);
2019    }
2020
2021    if (!cpu->has_el2) {
2022        unset_feature(env, ARM_FEATURE_EL2);
2023    }
2024
2025    if (!cpu->has_pmu) {
2026        unset_feature(env, ARM_FEATURE_PMU);
2027    }
2028    if (arm_feature(env, ARM_FEATURE_PMU)) {
2029        pmu_init(cpu);
2030
2031        if (!kvm_enabled()) {
2032            arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2033            arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2034        }
2035
2036#ifndef CONFIG_USER_ONLY
2037        cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2038                cpu);
2039#endif
2040    } else {
2041        cpu->isar.id_aa64dfr0 =
2042            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2043        cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2044        cpu->pmceid0 = 0;
2045        cpu->pmceid1 = 0;
2046    }
2047
2048    if (!arm_feature(env, ARM_FEATURE_EL2)) {
2049        /*
2050         * Disable the hypervisor feature bits in the processor feature
2051         * registers if we don't have EL2.
2052         */
2053        cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2054                                           ID_AA64PFR0, EL2, 0);
2055        cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2056                                       ID_PFR1, VIRTUALIZATION, 0);
2057    }
2058
2059#ifndef CONFIG_USER_ONLY
2060    if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
2061        /*
2062         * Disable the MTE feature bits if we do not have tag-memory
2063         * provided by the machine.
2064         */
2065        cpu->isar.id_aa64pfr1 =
2066            FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
2067    }
2068#endif
2069
2070    if (tcg_enabled()) {
2071        /*
2072         * Don't report some architectural features in the ID registers
2073         * where TCG does not yet implement it (not even a minimal
2074         * stub version). This avoids guests falling over when they
2075         * try to access the non-existent system registers for them.
2076         */
2077        /* FEAT_SPE (Statistical Profiling Extension) */
2078        cpu->isar.id_aa64dfr0 =
2079            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2080        /* FEAT_TRF (Self-hosted Trace Extension) */
2081        cpu->isar.id_aa64dfr0 =
2082            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2083        cpu->isar.id_dfr0 =
2084            FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2085        /* Trace Macrocell system register access */
2086        cpu->isar.id_aa64dfr0 =
2087            FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2088        cpu->isar.id_dfr0 =
2089            FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2090        /* Memory mapped trace */
2091        cpu->isar.id_dfr0 =
2092            FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2093        /* FEAT_AMU (Activity Monitors Extension) */
2094        cpu->isar.id_aa64pfr0 =
2095            FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2096        cpu->isar.id_pfr0 =
2097            FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2098        /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2099        cpu->isar.id_aa64pfr0 =
2100            FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2101        /* FEAT_NV (Nested Virtualization) */
2102        cpu->isar.id_aa64mmfr2 =
2103            FIELD_DP64(cpu->isar.id_aa64mmfr2, ID_AA64MMFR2, NV, 0);
2104    }
2105
2106    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2107     * to false or by setting pmsav7-dregion to 0.
2108     */
2109    if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2110        cpu->has_mpu = false;
2111        cpu->pmsav7_dregion = 0;
2112        cpu->pmsav8r_hdregion = 0;
2113    }
2114
2115    if (arm_feature(env, ARM_FEATURE_PMSA) &&
2116        arm_feature(env, ARM_FEATURE_V7)) {
2117        uint32_t nr = cpu->pmsav7_dregion;
2118
2119        if (nr > 0xff) {
2120            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2121            return;
2122        }
2123
2124        if (nr) {
2125            if (arm_feature(env, ARM_FEATURE_V8)) {
2126                /* PMSAv8 */
2127                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2128                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2129                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2130                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2131                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2132                }
2133            } else {
2134                env->pmsav7.drbar = g_new0(uint32_t, nr);
2135                env->pmsav7.drsr = g_new0(uint32_t, nr);
2136                env->pmsav7.dracr = g_new0(uint32_t, nr);
2137            }
2138        }
2139
2140        if (cpu->pmsav8r_hdregion > 0xff) {
2141            error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2142                              cpu->pmsav8r_hdregion);
2143            return;
2144        }
2145
2146        if (cpu->pmsav8r_hdregion) {
2147            env->pmsav8.hprbar = g_new0(uint32_t,
2148                                        cpu->pmsav8r_hdregion);
2149            env->pmsav8.hprlar = g_new0(uint32_t,
2150                                        cpu->pmsav8r_hdregion);
2151        }
2152    }
2153
2154    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2155        uint32_t nr = cpu->sau_sregion;
2156
2157        if (nr > 0xff) {
2158            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2159            return;
2160        }
2161
2162        if (nr) {
2163            env->sau.rbar = g_new0(uint32_t, nr);
2164            env->sau.rlar = g_new0(uint32_t, nr);
2165        }
2166    }
2167
2168    if (arm_feature(env, ARM_FEATURE_EL3)) {
2169        set_feature(env, ARM_FEATURE_VBAR);
2170    }
2171
2172    register_cp_regs_for_features(cpu);
2173    arm_cpu_register_gdb_regs_for_features(cpu);
2174
2175    init_cpreg_list(cpu);
2176
2177#ifndef CONFIG_USER_ONLY
2178    MachineState *ms = MACHINE(qdev_get_machine());
2179    unsigned int smp_cpus = ms->smp.cpus;
2180    bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2181
2182    /*
2183     * We must set cs->num_ases to the final value before
2184     * the first call to cpu_address_space_init.
2185     */
2186    if (cpu->tag_memory != NULL) {
2187        cs->num_ases = 3 + has_secure;
2188    } else {
2189        cs->num_ases = 1 + has_secure;
2190    }
2191
2192    if (has_secure) {
2193        if (!cpu->secure_memory) {
2194            cpu->secure_memory = cs->memory;
2195        }
2196        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2197                               cpu->secure_memory);
2198    }
2199
2200    if (cpu->tag_memory != NULL) {
2201        cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2202                               cpu->tag_memory);
2203        if (has_secure) {
2204            cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2205                                   cpu->secure_tag_memory);
2206        }
2207    }
2208
2209    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2210
2211    /* No core_count specified, default to smp_cpus. */
2212    if (cpu->core_count == -1) {
2213        cpu->core_count = smp_cpus;
2214    }
2215#endif
2216
2217    if (tcg_enabled()) {
2218        int dcz_blocklen = 4 << cpu->dcz_blocksize;
2219
2220        /*
2221         * We only support DCZ blocklen that fits on one page.
2222         *
2223         * Architectually this is always true.  However TARGET_PAGE_SIZE
2224         * is variable and, for compatibility with -machine virt-2.7,
2225         * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2226         * But even then, while the largest architectural DCZ blocklen
2227         * is 2KiB, no cpu actually uses such a large blocklen.
2228         */
2229        assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2230
2231        /*
2232         * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2233         * both nibbles of each byte storing tag data may be written at once.
2234         * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2235         */
2236        if (cpu_isar_feature(aa64_mte, cpu)) {
2237            assert(dcz_blocklen >= 2 * TAG_GRANULE);
2238        }
2239    }
2240
2241    qemu_init_vcpu(cs);
2242    cpu_reset(cs);
2243
2244    acc->parent_realize(dev, errp);
2245}
2246
2247static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2248{
2249    ObjectClass *oc;
2250    char *typename;
2251    char **cpuname;
2252    const char *cpunamestr;
2253
2254    cpuname = g_strsplit(cpu_model, ",", 1);
2255    cpunamestr = cpuname[0];
2256#ifdef CONFIG_USER_ONLY
2257    /* For backwards compatibility usermode emulation allows "-cpu any",
2258     * which has the same semantics as "-cpu max".
2259     */
2260    if (!strcmp(cpunamestr, "any")) {
2261        cpunamestr = "max";
2262    }
2263#endif
2264    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2265    oc = object_class_by_name(typename);
2266    g_strfreev(cpuname);
2267    g_free(typename);
2268    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2269        object_class_is_abstract(oc)) {
2270        return NULL;
2271    }
2272    return oc;
2273}
2274
2275static Property arm_cpu_properties[] = {
2276    DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2277    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2278                        mp_affinity, ARM64_AFFINITY_INVALID),
2279    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2280    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2281    DEFINE_PROP_END_OF_LIST()
2282};
2283
2284static gchar *arm_gdb_arch_name(CPUState *cs)
2285{
2286    ARMCPU *cpu = ARM_CPU(cs);
2287    CPUARMState *env = &cpu->env;
2288
2289    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2290        return g_strdup("iwmmxt");
2291    }
2292    return g_strdup("arm");
2293}
2294
2295#ifndef CONFIG_USER_ONLY
2296#include "hw/core/sysemu-cpu-ops.h"
2297
2298static const struct SysemuCPUOps arm_sysemu_ops = {
2299    .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2300    .asidx_from_attrs = arm_asidx_from_attrs,
2301    .write_elf32_note = arm_cpu_write_elf32_note,
2302    .write_elf64_note = arm_cpu_write_elf64_note,
2303    .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2304    .legacy_vmsd = &vmstate_arm_cpu,
2305};
2306#endif
2307
2308#ifdef CONFIG_TCG
2309static const struct TCGCPUOps arm_tcg_ops = {
2310    .initialize = arm_translate_init,
2311    .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2312    .debug_excp_handler = arm_debug_excp_handler,
2313    .restore_state_to_opc = arm_restore_state_to_opc,
2314
2315#ifdef CONFIG_USER_ONLY
2316    .record_sigsegv = arm_cpu_record_sigsegv,
2317    .record_sigbus = arm_cpu_record_sigbus,
2318#else
2319    .tlb_fill = arm_cpu_tlb_fill,
2320    .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2321    .do_interrupt = arm_cpu_do_interrupt,
2322    .do_transaction_failed = arm_cpu_do_transaction_failed,
2323    .do_unaligned_access = arm_cpu_do_unaligned_access,
2324    .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2325    .debug_check_watchpoint = arm_debug_check_watchpoint,
2326    .debug_check_breakpoint = arm_debug_check_breakpoint,
2327#endif /* !CONFIG_USER_ONLY */
2328};
2329#endif /* CONFIG_TCG */
2330
2331static void arm_cpu_class_init(ObjectClass *oc, void *data)
2332{
2333    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2334    CPUClass *cc = CPU_CLASS(acc);
2335    DeviceClass *dc = DEVICE_CLASS(oc);
2336    ResettableClass *rc = RESETTABLE_CLASS(oc);
2337
2338    device_class_set_parent_realize(dc, arm_cpu_realizefn,
2339                                    &acc->parent_realize);
2340
2341    device_class_set_props(dc, arm_cpu_properties);
2342
2343    resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2344                                       &acc->parent_phases);
2345
2346    cc->class_by_name = arm_cpu_class_by_name;
2347    cc->has_work = arm_cpu_has_work;
2348    cc->dump_state = arm_cpu_dump_state;
2349    cc->set_pc = arm_cpu_set_pc;
2350    cc->get_pc = arm_cpu_get_pc;
2351    cc->gdb_read_register = arm_cpu_gdb_read_register;
2352    cc->gdb_write_register = arm_cpu_gdb_write_register;
2353#ifndef CONFIG_USER_ONLY
2354    cc->sysemu_ops = &arm_sysemu_ops;
2355#endif
2356    cc->gdb_num_core_regs = 26;
2357    cc->gdb_core_xml_file = "arm-core.xml";
2358    cc->gdb_arch_name = arm_gdb_arch_name;
2359    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2360    cc->gdb_stop_before_watchpoint = true;
2361    cc->disas_set_info = arm_disas_set_info;
2362
2363#ifdef CONFIG_TCG
2364    cc->tcg_ops = &arm_tcg_ops;
2365#endif /* CONFIG_TCG */
2366}
2367
2368static void arm_cpu_instance_init(Object *obj)
2369{
2370    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2371
2372    acc->info->initfn(obj);
2373    arm_cpu_post_init(obj);
2374}
2375
2376static void cpu_register_class_init(ObjectClass *oc, void *data)
2377{
2378    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2379
2380    acc->info = data;
2381}
2382
2383void arm_cpu_register(const ARMCPUInfo *info)
2384{
2385    TypeInfo type_info = {
2386        .parent = TYPE_ARM_CPU,
2387        .instance_size = sizeof(ARMCPU),
2388        .instance_align = __alignof__(ARMCPU),
2389        .instance_init = arm_cpu_instance_init,
2390        .class_size = sizeof(ARMCPUClass),
2391        .class_init = info->class_init ?: cpu_register_class_init,
2392        .class_data = (void *)info,
2393    };
2394
2395    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2396    type_register(&type_info);
2397    g_free((void *)type_info.name);
2398}
2399
2400static const TypeInfo arm_cpu_type_info = {
2401    .name = TYPE_ARM_CPU,
2402    .parent = TYPE_CPU,
2403    .instance_size = sizeof(ARMCPU),
2404    .instance_align = __alignof__(ARMCPU),
2405    .instance_init = arm_cpu_initfn,
2406    .instance_finalize = arm_cpu_finalizefn,
2407    .abstract = true,
2408    .class_size = sizeof(ARMCPUClass),
2409    .class_init = arm_cpu_class_init,
2410};
2411
2412static void arm_cpu_register_types(void)
2413{
2414    type_register_static(&arm_cpu_type_info);
2415}
2416
2417type_init(arm_cpu_register_types)
2418