qemu/target/arm/cpu.h
<<
>>
Prefs
   1/*
   2 * ARM virtual CPU header
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef ARM_CPU_H
  21#define ARM_CPU_H
  22
  23#include "kvm-consts.h"
  24#include "qemu/cpu-float.h"
  25#include "hw/registerfields.h"
  26#include "cpu-qom.h"
  27#include "exec/cpu-defs.h"
  28#include "qapi/qapi-types-common.h"
  29
  30/* ARM processors have a weak memory model */
  31#define TCG_GUEST_DEFAULT_MO      (0)
  32
  33#ifdef TARGET_AARCH64
  34#define KVM_HAVE_MCE_INJECTION 1
  35#endif
  36
  37#define EXCP_UDEF            1   /* undefined instruction */
  38#define EXCP_SWI             2   /* software interrupt */
  39#define EXCP_PREFETCH_ABORT  3
  40#define EXCP_DATA_ABORT      4
  41#define EXCP_IRQ             5
  42#define EXCP_FIQ             6
  43#define EXCP_BKPT            7
  44#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
  45#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
  46#define EXCP_HVC            11   /* HyperVisor Call */
  47#define EXCP_HYP_TRAP       12
  48#define EXCP_SMC            13   /* Secure Monitor Call */
  49#define EXCP_VIRQ           14
  50#define EXCP_VFIQ           15
  51#define EXCP_SEMIHOST       16   /* semihosting call */
  52#define EXCP_NOCP           17   /* v7M NOCP UsageFault */
  53#define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
  54#define EXCP_STKOF          19   /* v8M STKOF UsageFault */
  55#define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
  56#define EXCP_LSERR          21   /* v8M LSERR SecureFault */
  57#define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
  58#define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
  59#define EXCP_VSERR          24
  60#define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
  61/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
  62
  63#define ARMV7M_EXCP_RESET   1
  64#define ARMV7M_EXCP_NMI     2
  65#define ARMV7M_EXCP_HARD    3
  66#define ARMV7M_EXCP_MEM     4
  67#define ARMV7M_EXCP_BUS     5
  68#define ARMV7M_EXCP_USAGE   6
  69#define ARMV7M_EXCP_SECURE  7
  70#define ARMV7M_EXCP_SVC     11
  71#define ARMV7M_EXCP_DEBUG   12
  72#define ARMV7M_EXCP_PENDSV  14
  73#define ARMV7M_EXCP_SYSTICK 15
  74
  75/* For M profile, some registers are banked secure vs non-secure;
  76 * these are represented as a 2-element array where the first element
  77 * is the non-secure copy and the second is the secure copy.
  78 * When the CPU does not have implement the security extension then
  79 * only the first element is used.
  80 * This means that the copy for the current security state can be
  81 * accessed via env->registerfield[env->v7m.secure] (whether the security
  82 * extension is implemented or not).
  83 */
  84enum {
  85    M_REG_NS = 0,
  86    M_REG_S = 1,
  87    M_REG_NUM_BANKS = 2,
  88};
  89
  90/* ARM-specific interrupt pending bits.  */
  91#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
  92#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
  93#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
  94#define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
  95
  96/* The usual mapping for an AArch64 system register to its AArch32
  97 * counterpart is for the 32 bit world to have access to the lower
  98 * half only (with writes leaving the upper half untouched). It's
  99 * therefore useful to be able to pass TCG the offset of the least
 100 * significant half of a uint64_t struct member.
 101 */
 102#if HOST_BIG_ENDIAN
 103#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 104#define offsetofhigh32(S, M) offsetof(S, M)
 105#else
 106#define offsetoflow32(S, M) offsetof(S, M)
 107#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 108#endif
 109
 110/* Meanings of the ARMCPU object's four inbound GPIO lines */
 111#define ARM_CPU_IRQ 0
 112#define ARM_CPU_FIQ 1
 113#define ARM_CPU_VIRQ 2
 114#define ARM_CPU_VFIQ 3
 115
 116/* ARM-specific extra insn start words:
 117 * 1: Conditional execution bits
 118 * 2: Partial exception syndrome for data aborts
 119 */
 120#define TARGET_INSN_START_EXTRA_WORDS 2
 121
 122/* The 2nd extra word holding syndrome info for data aborts does not use
 123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 124 * help the sleb128 encoder do a better job.
 125 * When restoring the CPU state, we shift it back up.
 126 */
 127#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
 128#define ARM_INSN_START_WORD2_SHIFT 14
 129
 130/* We currently assume float and double are IEEE single and double
 131   precision respectively.
 132   Doing runtime conversions is tricky because VFP registers may contain
 133   integer values (eg. as the result of a FTOSI instruction).
 134   s<2n> maps to the least significant half of d<n>
 135   s<2n+1> maps to the most significant half of d<n>
 136 */
 137
 138/**
 139 * DynamicGDBXMLInfo:
 140 * @desc: Contains the XML descriptions.
 141 * @num: Number of the registers in this XML seen by GDB.
 142 * @data: A union with data specific to the set of registers
 143 *    @cpregs_keys: Array that contains the corresponding Key of
 144 *                  a given cpreg with the same order of the cpreg
 145 *                  in the XML description.
 146 */
 147typedef struct DynamicGDBXMLInfo {
 148    char *desc;
 149    int num;
 150    union {
 151        struct {
 152            uint32_t *keys;
 153        } cpregs;
 154    } data;
 155} DynamicGDBXMLInfo;
 156
 157/* CPU state for each instance of a generic timer (in cp15 c14) */
 158typedef struct ARMGenericTimer {
 159    uint64_t cval; /* Timer CompareValue register */
 160    uint64_t ctl; /* Timer Control register */
 161} ARMGenericTimer;
 162
 163#define GTIMER_PHYS     0
 164#define GTIMER_VIRT     1
 165#define GTIMER_HYP      2
 166#define GTIMER_SEC      3
 167#define GTIMER_HYPVIRT  4
 168#define NUM_GTIMERS     5
 169
 170#define VTCR_NSW (1u << 29)
 171#define VTCR_NSA (1u << 30)
 172#define VSTCR_SW VTCR_NSW
 173#define VSTCR_SA VTCR_NSA
 174
 175/* Define a maximum sized vector register.
 176 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
 177 * For 64-bit, this is a 2048-bit SVE register.
 178 *
 179 * Note that the mapping between S, D, and Q views of the register bank
 180 * differs between AArch64 and AArch32.
 181 * In AArch32:
 182 *  Qn = regs[n].d[1]:regs[n].d[0]
 183 *  Dn = regs[n / 2].d[n & 1]
 184 *  Sn = regs[n / 4].d[n % 4 / 2],
 185 *       bits 31..0 for even n, and bits 63..32 for odd n
 186 *       (and regs[16] to regs[31] are inaccessible)
 187 * In AArch64:
 188 *  Zn = regs[n].d[*]
 189 *  Qn = regs[n].d[1]:regs[n].d[0]
 190 *  Dn = regs[n].d[0]
 191 *  Sn = regs[n].d[0] bits 31..0
 192 *  Hn = regs[n].d[0] bits 15..0
 193 *
 194 * This corresponds to the architecturally defined mapping between
 195 * the two execution states, and means we do not need to explicitly
 196 * map these registers when changing states.
 197 *
 198 * Align the data for use with TCG host vector operations.
 199 */
 200
 201#ifdef TARGET_AARCH64
 202# define ARM_MAX_VQ    16
 203#else
 204# define ARM_MAX_VQ    1
 205#endif
 206
 207typedef struct ARMVectorReg {
 208    uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
 209} ARMVectorReg;
 210
 211#ifdef TARGET_AARCH64
 212/* In AArch32 mode, predicate registers do not exist at all.  */
 213typedef struct ARMPredicateReg {
 214    uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
 215} ARMPredicateReg;
 216
 217/* In AArch32 mode, PAC keys do not exist at all.  */
 218typedef struct ARMPACKey {
 219    uint64_t lo, hi;
 220} ARMPACKey;
 221#endif
 222
 223/* See the commentary above the TBFLAG field definitions.  */
 224typedef struct CPUARMTBFlags {
 225    uint32_t flags;
 226    target_ulong flags2;
 227} CPUARMTBFlags;
 228
 229typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 230
 231typedef struct NVICState NVICState;
 232
 233typedef struct CPUArchState {
 234    /* Regs for current mode.  */
 235    uint32_t regs[16];
 236
 237    /* 32/64 switch only happens when taking and returning from
 238     * exceptions so the overlap semantics are taken care of then
 239     * instead of having a complicated union.
 240     */
 241    /* Regs for A64 mode.  */
 242    uint64_t xregs[32];
 243    uint64_t pc;
 244    /* PSTATE isn't an architectural register for ARMv8. However, it is
 245     * convenient for us to assemble the underlying state into a 32 bit format
 246     * identical to the architectural format used for the SPSR. (This is also
 247     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 248     * 'pstate' register are.) Of the PSTATE bits:
 249     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 250     *    semantics as for AArch32, as described in the comments on each field)
 251     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 252     *  DAIF (exception masks) are kept in env->daif
 253     *  BTYPE is kept in env->btype
 254     *  SM and ZA are kept in env->svcr
 255     *  all other bits are stored in their correct places in env->pstate
 256     */
 257    uint32_t pstate;
 258    bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
 259    bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
 260
 261    /* Cached TBFLAGS state.  See below for which bits are included.  */
 262    CPUARMTBFlags hflags;
 263
 264    /* Frequently accessed CPSR bits are stored separately for efficiency.
 265       This contains all the other bits.  Use cpsr_{read,write} to access
 266       the whole CPSR.  */
 267    uint32_t uncached_cpsr;
 268    uint32_t spsr;
 269
 270    /* Banked registers.  */
 271    uint64_t banked_spsr[8];
 272    uint32_t banked_r13[8];
 273    uint32_t banked_r14[8];
 274
 275    /* These hold r8-r12.  */
 276    uint32_t usr_regs[5];
 277    uint32_t fiq_regs[5];
 278
 279    /* cpsr flag cache for faster execution */
 280    uint32_t CF; /* 0 or 1 */
 281    uint32_t VF; /* V is the bit 31. All other bits are undefined */
 282    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 283    uint32_t ZF; /* Z set if zero.  */
 284    uint32_t QF; /* 0 or 1 */
 285    uint32_t GE; /* cpsr[19:16] */
 286    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 287    uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
 288    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 289    uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
 290
 291    uint64_t elr_el[4]; /* AArch64 exception link regs  */
 292    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 293
 294    /* System control coprocessor (cp15) */
 295    struct {
 296        uint32_t c0_cpuid;
 297        union { /* Cache size selection */
 298            struct {
 299                uint64_t _unused_csselr0;
 300                uint64_t csselr_ns;
 301                uint64_t _unused_csselr1;
 302                uint64_t csselr_s;
 303            };
 304            uint64_t csselr_el[4];
 305        };
 306        union { /* System control register. */
 307            struct {
 308                uint64_t _unused_sctlr;
 309                uint64_t sctlr_ns;
 310                uint64_t hsctlr;
 311                uint64_t sctlr_s;
 312            };
 313            uint64_t sctlr_el[4];
 314        };
 315        uint64_t vsctlr; /* Virtualization System control register. */
 316        uint64_t cpacr_el1; /* Architectural feature access control register */
 317        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 318        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 319        uint64_t sder; /* Secure debug enable register. */
 320        uint32_t nsacr; /* Non-secure access control register. */
 321        union { /* MMU translation table base 0. */
 322            struct {
 323                uint64_t _unused_ttbr0_0;
 324                uint64_t ttbr0_ns;
 325                uint64_t _unused_ttbr0_1;
 326                uint64_t ttbr0_s;
 327            };
 328            uint64_t ttbr0_el[4];
 329        };
 330        union { /* MMU translation table base 1. */
 331            struct {
 332                uint64_t _unused_ttbr1_0;
 333                uint64_t ttbr1_ns;
 334                uint64_t _unused_ttbr1_1;
 335                uint64_t ttbr1_s;
 336            };
 337            uint64_t ttbr1_el[4];
 338        };
 339        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 340        uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
 341        /* MMU translation table base control. */
 342        uint64_t tcr_el[4];
 343        uint64_t vtcr_el2; /* Virtualization Translation Control.  */
 344        uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
 345        uint32_t c2_data; /* MPU data cacheable bits.  */
 346        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 347        union { /* MMU domain access control register
 348                 * MPU write buffer control.
 349                 */
 350            struct {
 351                uint64_t dacr_ns;
 352                uint64_t dacr_s;
 353            };
 354            struct {
 355                uint64_t dacr32_el2;
 356            };
 357        };
 358        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 359        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 360        uint64_t hcr_el2; /* Hypervisor configuration register */
 361        uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
 362        uint64_t scr_el3; /* Secure configuration register.  */
 363        union { /* Fault status registers.  */
 364            struct {
 365                uint64_t ifsr_ns;
 366                uint64_t ifsr_s;
 367            };
 368            struct {
 369                uint64_t ifsr32_el2;
 370            };
 371        };
 372        union {
 373            struct {
 374                uint64_t _unused_dfsr;
 375                uint64_t dfsr_ns;
 376                uint64_t hsr;
 377                uint64_t dfsr_s;
 378            };
 379            uint64_t esr_el[4];
 380        };
 381        uint32_t c6_region[8]; /* MPU base/size registers.  */
 382        union { /* Fault address registers. */
 383            struct {
 384                uint64_t _unused_far0;
 385#if HOST_BIG_ENDIAN
 386                uint32_t ifar_ns;
 387                uint32_t dfar_ns;
 388                uint32_t ifar_s;
 389                uint32_t dfar_s;
 390#else
 391                uint32_t dfar_ns;
 392                uint32_t ifar_ns;
 393                uint32_t dfar_s;
 394                uint32_t ifar_s;
 395#endif
 396                uint64_t _unused_far3;
 397            };
 398            uint64_t far_el[4];
 399        };
 400        uint64_t hpfar_el2;
 401        uint64_t hstr_el2;
 402        union { /* Translation result. */
 403            struct {
 404                uint64_t _unused_par_0;
 405                uint64_t par_ns;
 406                uint64_t _unused_par_1;
 407                uint64_t par_s;
 408            };
 409            uint64_t par_el[4];
 410        };
 411
 412        uint32_t c9_insn; /* Cache lockdown registers.  */
 413        uint32_t c9_data;
 414        uint64_t c9_pmcr; /* performance monitor control register */
 415        uint64_t c9_pmcnten; /* perf monitor counter enables */
 416        uint64_t c9_pmovsr; /* perf monitor overflow status */
 417        uint64_t c9_pmuserenr; /* perf monitor user enable */
 418        uint64_t c9_pmselr; /* perf monitor counter selection register */
 419        uint64_t c9_pminten; /* perf monitor interrupt enables */
 420        union { /* Memory attribute redirection */
 421            struct {
 422#if HOST_BIG_ENDIAN
 423                uint64_t _unused_mair_0;
 424                uint32_t mair1_ns;
 425                uint32_t mair0_ns;
 426                uint64_t _unused_mair_1;
 427                uint32_t mair1_s;
 428                uint32_t mair0_s;
 429#else
 430                uint64_t _unused_mair_0;
 431                uint32_t mair0_ns;
 432                uint32_t mair1_ns;
 433                uint64_t _unused_mair_1;
 434                uint32_t mair0_s;
 435                uint32_t mair1_s;
 436#endif
 437            };
 438            uint64_t mair_el[4];
 439        };
 440        union { /* vector base address register */
 441            struct {
 442                uint64_t _unused_vbar;
 443                uint64_t vbar_ns;
 444                uint64_t hvbar;
 445                uint64_t vbar_s;
 446            };
 447            uint64_t vbar_el[4];
 448        };
 449        uint32_t mvbar; /* (monitor) vector base address register */
 450        uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
 451        struct { /* FCSE PID. */
 452            uint32_t fcseidr_ns;
 453            uint32_t fcseidr_s;
 454        };
 455        union { /* Context ID. */
 456            struct {
 457                uint64_t _unused_contextidr_0;
 458                uint64_t contextidr_ns;
 459                uint64_t _unused_contextidr_1;
 460                uint64_t contextidr_s;
 461            };
 462            uint64_t contextidr_el[4];
 463        };
 464        union { /* User RW Thread register. */
 465            struct {
 466                uint64_t tpidrurw_ns;
 467                uint64_t tpidrprw_ns;
 468                uint64_t htpidr;
 469                uint64_t _tpidr_el3;
 470            };
 471            uint64_t tpidr_el[4];
 472        };
 473        uint64_t tpidr2_el0;
 474        /* The secure banks of these registers don't map anywhere */
 475        uint64_t tpidrurw_s;
 476        uint64_t tpidrprw_s;
 477        uint64_t tpidruro_s;
 478
 479        union { /* User RO Thread register. */
 480            uint64_t tpidruro_ns;
 481            uint64_t tpidrro_el[1];
 482        };
 483        uint64_t c14_cntfrq; /* Counter Frequency register */
 484        uint64_t c14_cntkctl; /* Timer Control register */
 485        uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 486        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 487        ARMGenericTimer c14_timer[NUM_GTIMERS];
 488        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 489        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 490        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 491        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 492        uint32_t c15_threadid; /* TI debugger thread-ID.  */
 493        uint32_t c15_config_base_address; /* SCU base address.  */
 494        uint32_t c15_diagnostic; /* diagnostic register */
 495        uint32_t c15_power_diagnostic;
 496        uint32_t c15_power_control; /* power control */
 497        uint64_t dbgbvr[16]; /* breakpoint value registers */
 498        uint64_t dbgbcr[16]; /* breakpoint control registers */
 499        uint64_t dbgwvr[16]; /* watchpoint value registers */
 500        uint64_t dbgwcr[16]; /* watchpoint control registers */
 501        uint64_t dbgclaim;   /* DBGCLAIM bits */
 502        uint64_t mdscr_el1;
 503        uint64_t oslsr_el1; /* OS Lock Status */
 504        uint64_t osdlr_el1; /* OS DoubleLock status */
 505        uint64_t mdcr_el2;
 506        uint64_t mdcr_el3;
 507        /* Stores the architectural value of the counter *the last time it was
 508         * updated* by pmccntr_op_start. Accesses should always be surrounded
 509         * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
 510         * architecturally-correct value is being read/set.
 511         */
 512        uint64_t c15_ccnt;
 513        /* Stores the delta between the architectural value and the underlying
 514         * cycle count during normal operation. It is used to update c15_ccnt
 515         * to be the correct architectural value before accesses. During
 516         * accesses, c15_ccnt_delta contains the underlying count being used
 517         * for the access, after which it reverts to the delta value in
 518         * pmccntr_op_finish.
 519         */
 520        uint64_t c15_ccnt_delta;
 521        uint64_t c14_pmevcntr[31];
 522        uint64_t c14_pmevcntr_delta[31];
 523        uint64_t c14_pmevtyper[31];
 524        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 525        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 526        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 527        uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
 528        uint64_t gcr_el1;
 529        uint64_t rgsr_el1;
 530
 531        /* Minimal RAS registers */
 532        uint64_t disr_el1;
 533        uint64_t vdisr_el2;
 534        uint64_t vsesr_el2;
 535
 536        /*
 537         * Fine-Grained Trap registers. We store these as arrays so the
 538         * access checking code doesn't have to manually select
 539         * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
 540         * FEAT_FGT2 will add more elements to these arrays.
 541         */
 542        uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
 543        uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
 544        uint64_t fgt_exec[1]; /* HFGITR */
 545
 546        /* RME registers */
 547        uint64_t gpccr_el3;
 548        uint64_t gptbr_el3;
 549        uint64_t mfar_el3;
 550    } cp15;
 551
 552    struct {
 553        /* M profile has up to 4 stack pointers:
 554         * a Main Stack Pointer and a Process Stack Pointer for each
 555         * of the Secure and Non-Secure states. (If the CPU doesn't support
 556         * the security extension then it has only two SPs.)
 557         * In QEMU we always store the currently active SP in regs[13],
 558         * and the non-active SP for the current security state in
 559         * v7m.other_sp. The stack pointers for the inactive security state
 560         * are stored in other_ss_msp and other_ss_psp.
 561         * switch_v7m_security_state() is responsible for rearranging them
 562         * when we change security state.
 563         */
 564        uint32_t other_sp;
 565        uint32_t other_ss_msp;
 566        uint32_t other_ss_psp;
 567        uint32_t vecbase[M_REG_NUM_BANKS];
 568        uint32_t basepri[M_REG_NUM_BANKS];
 569        uint32_t control[M_REG_NUM_BANKS];
 570        uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
 571        uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
 572        uint32_t hfsr; /* HardFault Status */
 573        uint32_t dfsr; /* Debug Fault Status Register */
 574        uint32_t sfsr; /* Secure Fault Status Register */
 575        uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
 576        uint32_t bfar; /* BusFault Address */
 577        uint32_t sfar; /* Secure Fault Address Register */
 578        unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
 579        int exception;
 580        uint32_t primask[M_REG_NUM_BANKS];
 581        uint32_t faultmask[M_REG_NUM_BANKS];
 582        uint32_t aircr; /* only holds r/w state if security extn implemented */
 583        uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
 584        uint32_t csselr[M_REG_NUM_BANKS];
 585        uint32_t scr[M_REG_NUM_BANKS];
 586        uint32_t msplim[M_REG_NUM_BANKS];
 587        uint32_t psplim[M_REG_NUM_BANKS];
 588        uint32_t fpcar[M_REG_NUM_BANKS];
 589        uint32_t fpccr[M_REG_NUM_BANKS];
 590        uint32_t fpdscr[M_REG_NUM_BANKS];
 591        uint32_t cpacr[M_REG_NUM_BANKS];
 592        uint32_t nsacr;
 593        uint32_t ltpsize;
 594        uint32_t vpr;
 595    } v7m;
 596
 597    /* Information associated with an exception about to be taken:
 598     * code which raises an exception must set cs->exception_index and
 599     * the relevant parts of this structure; the cpu_do_interrupt function
 600     * will then set the guest-visible registers as part of the exception
 601     * entry process.
 602     */
 603    struct {
 604        uint32_t syndrome; /* AArch64 format syndrome register */
 605        uint32_t fsr; /* AArch32 format fault status register info */
 606        uint64_t vaddress; /* virtual addr associated with exception, if any */
 607        uint32_t target_el; /* EL the exception should be targeted for */
 608        /* If we implement EL2 we will also need to store information
 609         * about the intermediate physical address for stage 2 faults.
 610         */
 611    } exception;
 612
 613    /* Information associated with an SError */
 614    struct {
 615        uint8_t pending;
 616        uint8_t has_esr;
 617        uint64_t esr;
 618    } serror;
 619
 620    uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
 621
 622    /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
 623    uint32_t irq_line_state;
 624
 625    /* Thumb-2 EE state.  */
 626    uint32_t teecr;
 627    uint32_t teehbr;
 628
 629    /* VFP coprocessor state.  */
 630    struct {
 631        ARMVectorReg zregs[32];
 632
 633#ifdef TARGET_AARCH64
 634        /* Store FFR as pregs[16] to make it easier to treat as any other.  */
 635#define FFR_PRED_NUM 16
 636        ARMPredicateReg pregs[17];
 637        /* Scratch space for aa64 sve predicate temporary.  */
 638        ARMPredicateReg preg_tmp;
 639#endif
 640
 641        /* We store these fpcsr fields separately for convenience.  */
 642        uint32_t qc[4] QEMU_ALIGNED(16);
 643        int vec_len;
 644        int vec_stride;
 645
 646        uint32_t xregs[16];
 647
 648        /* Scratch space for aa32 neon expansion.  */
 649        uint32_t scratch[8];
 650
 651        /* There are a number of distinct float control structures:
 652         *
 653         *  fp_status: is the "normal" fp status.
 654         *  fp_status_fp16: used for half-precision calculations
 655         *  standard_fp_status : the ARM "Standard FPSCR Value"
 656         *  standard_fp_status_fp16 : used for half-precision
 657         *       calculations with the ARM "Standard FPSCR Value"
 658         *
 659         * Half-precision operations are governed by a separate
 660         * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
 661         * status structure to control this.
 662         *
 663         * The "Standard FPSCR", ie default-NaN, flush-to-zero,
 664         * round-to-nearest and is used by any operations (generally
 665         * Neon) which the architecture defines as controlled by the
 666         * standard FPSCR value rather than the FPSCR.
 667         *
 668         * The "standard FPSCR but for fp16 ops" is needed because
 669         * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
 670         * using a fixed value for it.
 671         *
 672         * To avoid having to transfer exception bits around, we simply
 673         * say that the FPSCR cumulative exception flags are the logical
 674         * OR of the flags in the four fp statuses. This relies on the
 675         * only thing which needs to read the exception flags being
 676         * an explicit FPSCR read.
 677         */
 678        float_status fp_status;
 679        float_status fp_status_f16;
 680        float_status standard_fp_status;
 681        float_status standard_fp_status_f16;
 682
 683        uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
 684        uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
 685    } vfp;
 686
 687    uint64_t exclusive_addr;
 688    uint64_t exclusive_val;
 689    /*
 690     * Contains the 'val' for the second 64-bit register of LDXP, which comes
 691     * from the higher address, not the high part of a complete 128-bit value.
 692     * In some ways it might be more convenient to record the exclusive value
 693     * as the low and high halves of a 128 bit data value, but the current
 694     * semantics of these fields are baked into the migration format.
 695     */
 696    uint64_t exclusive_high;
 697
 698    /* iwMMXt coprocessor state.  */
 699    struct {
 700        uint64_t regs[16];
 701        uint64_t val;
 702
 703        uint32_t cregs[16];
 704    } iwmmxt;
 705
 706#ifdef TARGET_AARCH64
 707    struct {
 708        ARMPACKey apia;
 709        ARMPACKey apib;
 710        ARMPACKey apda;
 711        ARMPACKey apdb;
 712        ARMPACKey apga;
 713    } keys;
 714
 715    uint64_t scxtnum_el[4];
 716
 717    /*
 718     * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
 719     * as we do with vfp.zregs[].  This corresponds to the architectural ZA
 720     * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
 721     * When SVL is less than the architectural maximum, the accessible
 722     * storage is restricted, such that if the SVL is X bytes the guest can
 723     * see only the bottom X elements of zarray[], and only the least
 724     * significant X bytes of each element of the array. (In other words,
 725     * the observable part is always square.)
 726     *
 727     * The ZA storage can also be considered as a set of square tiles of
 728     * elements of different sizes. The mapping from tiles to the ZA array
 729     * is architecturally defined, such that for tiles of elements of esz
 730     * bytes, the Nth row (or "horizontal slice") of tile T is in
 731     * ZA[T + N * esz]. Note that this means that each tile is not contiguous
 732     * in the ZA storage, because its rows are striped through the ZA array.
 733     *
 734     * Because this is so large, keep this toward the end of the reset area,
 735     * to keep the offsets into the rest of the structure smaller.
 736     */
 737    ARMVectorReg zarray[ARM_MAX_VQ * 16];
 738#endif
 739
 740    struct CPUBreakpoint *cpu_breakpoint[16];
 741    struct CPUWatchpoint *cpu_watchpoint[16];
 742
 743    /* Optional fault info across tlb lookup. */
 744    ARMMMUFaultInfo *tlb_fi;
 745
 746    /* Fields up to this point are cleared by a CPU reset */
 747    struct {} end_reset_fields;
 748
 749    /* Fields after this point are preserved across CPU reset. */
 750
 751    /* Internal CPU feature flags.  */
 752    uint64_t features;
 753
 754    /* PMSAv7 MPU */
 755    struct {
 756        uint32_t *drbar;
 757        uint32_t *drsr;
 758        uint32_t *dracr;
 759        uint32_t rnr[M_REG_NUM_BANKS];
 760    } pmsav7;
 761
 762    /* PMSAv8 MPU */
 763    struct {
 764        /* The PMSAv8 implementation also shares some PMSAv7 config
 765         * and state:
 766         *  pmsav7.rnr (region number register)
 767         *  pmsav7_dregion (number of configured regions)
 768         */
 769        uint32_t *rbar[M_REG_NUM_BANKS];
 770        uint32_t *rlar[M_REG_NUM_BANKS];
 771        uint32_t *hprbar;
 772        uint32_t *hprlar;
 773        uint32_t mair0[M_REG_NUM_BANKS];
 774        uint32_t mair1[M_REG_NUM_BANKS];
 775        uint32_t hprselr;
 776    } pmsav8;
 777
 778    /* v8M SAU */
 779    struct {
 780        uint32_t *rbar;
 781        uint32_t *rlar;
 782        uint32_t rnr;
 783        uint32_t ctrl;
 784    } sau;
 785
 786#if !defined(CONFIG_USER_ONLY)
 787    NVICState *nvic;
 788    const struct arm_boot_info *boot_info;
 789    /* Store GICv3CPUState to access from this struct */
 790    void *gicv3state;
 791#else /* CONFIG_USER_ONLY */
 792    /* For usermode syscall translation.  */
 793    bool eabi;
 794#endif /* CONFIG_USER_ONLY */
 795
 796#ifdef TARGET_TAGGED_ADDRESSES
 797    /* Linux syscall tagged address support */
 798    bool tagged_addr_enable;
 799#endif
 800} CPUARMState;
 801
 802static inline void set_feature(CPUARMState *env, int feature)
 803{
 804    env->features |= 1ULL << feature;
 805}
 806
 807static inline void unset_feature(CPUARMState *env, int feature)
 808{
 809    env->features &= ~(1ULL << feature);
 810}
 811
 812/**
 813 * ARMELChangeHookFn:
 814 * type of a function which can be registered via arm_register_el_change_hook()
 815 * to get callbacks when the CPU changes its exception level or mode.
 816 */
 817typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
 818typedef struct ARMELChangeHook ARMELChangeHook;
 819struct ARMELChangeHook {
 820    ARMELChangeHookFn *hook;
 821    void *opaque;
 822    QLIST_ENTRY(ARMELChangeHook) node;
 823};
 824
 825/* These values map onto the return values for
 826 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
 827typedef enum ARMPSCIState {
 828    PSCI_ON = 0,
 829    PSCI_OFF = 1,
 830    PSCI_ON_PENDING = 2
 831} ARMPSCIState;
 832
 833typedef struct ARMISARegisters ARMISARegisters;
 834
 835/*
 836 * In map, each set bit is a supported vector length of (bit-number + 1) * 16
 837 * bytes, i.e. each bit number + 1 is the vector length in quadwords.
 838 *
 839 * While processing properties during initialization, corresponding init bits
 840 * are set for bits in sve_vq_map that have been set by properties.
 841 *
 842 * Bits set in supported represent valid vector lengths for the CPU type.
 843 */
 844typedef struct {
 845    uint32_t map, init, supported;
 846} ARMVQMap;
 847
 848/**
 849 * ARMCPU:
 850 * @env: #CPUARMState
 851 *
 852 * An ARM CPU core.
 853 */
 854struct ArchCPU {
 855    /*< private >*/
 856    CPUState parent_obj;
 857    /*< public >*/
 858
 859    CPUNegativeOffsetState neg;
 860    CPUARMState env;
 861
 862    /* Coprocessor information */
 863    GHashTable *cp_regs;
 864    /* For marshalling (mostly coprocessor) register state between the
 865     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
 866     * we use these arrays.
 867     */
 868    /* List of register indexes managed via these arrays; (full KVM style
 869     * 64 bit indexes, not CPRegInfo 32 bit indexes)
 870     */
 871    uint64_t *cpreg_indexes;
 872    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
 873    uint64_t *cpreg_values;
 874    /* Length of the indexes, values, reset_values arrays */
 875    int32_t cpreg_array_len;
 876    /* These are used only for migration: incoming data arrives in
 877     * these fields and is sanity checked in post_load before copying
 878     * to the working data structures above.
 879     */
 880    uint64_t *cpreg_vmstate_indexes;
 881    uint64_t *cpreg_vmstate_values;
 882    int32_t cpreg_vmstate_array_len;
 883
 884    DynamicGDBXMLInfo dyn_sysreg_xml;
 885    DynamicGDBXMLInfo dyn_svereg_xml;
 886    DynamicGDBXMLInfo dyn_m_systemreg_xml;
 887    DynamicGDBXMLInfo dyn_m_secextreg_xml;
 888
 889    /* Timers used by the generic (architected) timer */
 890    QEMUTimer *gt_timer[NUM_GTIMERS];
 891    /*
 892     * Timer used by the PMU. Its state is restored after migration by
 893     * pmu_op_finish() - it does not need other handling during migration
 894     */
 895    QEMUTimer *pmu_timer;
 896    /* GPIO outputs for generic timer */
 897    qemu_irq gt_timer_outputs[NUM_GTIMERS];
 898    /* GPIO output for GICv3 maintenance interrupt signal */
 899    qemu_irq gicv3_maintenance_interrupt;
 900    /* GPIO output for the PMU interrupt */
 901    qemu_irq pmu_interrupt;
 902
 903    /* MemoryRegion to use for secure physical accesses */
 904    MemoryRegion *secure_memory;
 905
 906    /* MemoryRegion to use for allocation tag accesses */
 907    MemoryRegion *tag_memory;
 908    MemoryRegion *secure_tag_memory;
 909
 910    /* For v8M, pointer to the IDAU interface provided by board/SoC */
 911    Object *idau;
 912
 913    /* 'compatible' string for this CPU for Linux device trees */
 914    const char *dtb_compatible;
 915
 916    /* PSCI version for this CPU
 917     * Bits[31:16] = Major Version
 918     * Bits[15:0] = Minor Version
 919     */
 920    uint32_t psci_version;
 921
 922    /* Current power state, access guarded by BQL */
 923    ARMPSCIState power_state;
 924
 925    /* CPU has virtualization extension */
 926    bool has_el2;
 927    /* CPU has security extension */
 928    bool has_el3;
 929    /* CPU has PMU (Performance Monitor Unit) */
 930    bool has_pmu;
 931    /* CPU has VFP */
 932    bool has_vfp;
 933    /* CPU has 32 VFP registers */
 934    bool has_vfp_d32;
 935    /* CPU has Neon */
 936    bool has_neon;
 937    /* CPU has M-profile DSP extension */
 938    bool has_dsp;
 939
 940    /* CPU has memory protection unit */
 941    bool has_mpu;
 942    /* PMSAv7 MPU number of supported regions */
 943    uint32_t pmsav7_dregion;
 944    /* PMSAv8 MPU number of supported hyp regions */
 945    uint32_t pmsav8r_hdregion;
 946    /* v8M SAU number of supported regions */
 947    uint32_t sau_sregion;
 948
 949    /* PSCI conduit used to invoke PSCI methods
 950     * 0 - disabled, 1 - smc, 2 - hvc
 951     */
 952    uint32_t psci_conduit;
 953
 954    /* For v8M, initial value of the Secure VTOR */
 955    uint32_t init_svtor;
 956    /* For v8M, initial value of the Non-secure VTOR */
 957    uint32_t init_nsvtor;
 958
 959    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
 960     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
 961     */
 962    uint32_t kvm_target;
 963
 964#ifdef CONFIG_KVM
 965    /* KVM init features for this CPU */
 966    uint32_t kvm_init_features[7];
 967
 968    /* KVM CPU state */
 969
 970    /* KVM virtual time adjustment */
 971    bool kvm_adjvtime;
 972    bool kvm_vtime_dirty;
 973    uint64_t kvm_vtime;
 974
 975    /* KVM steal time */
 976    OnOffAuto kvm_steal_time;
 977#endif /* CONFIG_KVM */
 978
 979    /* Uniprocessor system with MP extensions */
 980    bool mp_is_up;
 981
 982    /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
 983     * and the probe failed (so we need to report the error in realize)
 984     */
 985    bool host_cpu_probe_failed;
 986
 987    /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
 988     * register.
 989     */
 990    int32_t core_count;
 991
 992    /* The instance init functions for implementation-specific subclasses
 993     * set these fields to specify the implementation-dependent values of
 994     * various constant registers and reset values of non-constant
 995     * registers.
 996     * Some of these might become QOM properties eventually.
 997     * Field names match the official register names as defined in the
 998     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
 999     * is used for reset values of non-constant registers; no reset_
1000     * prefix means a constant register.
1001     * Some of these registers are split out into a substructure that
1002     * is shared with the translators to control the ISA.
1003     *
1004     * Note that if you add an ID register to the ARMISARegisters struct
1005     * you need to also update the 32-bit and 64-bit versions of the
1006     * kvm_arm_get_host_cpu_features() function to correctly populate the
1007     * field by reading the value from the KVM vCPU.
1008     */
1009    struct ARMISARegisters {
1010        uint32_t id_isar0;
1011        uint32_t id_isar1;
1012        uint32_t id_isar2;
1013        uint32_t id_isar3;
1014        uint32_t id_isar4;
1015        uint32_t id_isar5;
1016        uint32_t id_isar6;
1017        uint32_t id_mmfr0;
1018        uint32_t id_mmfr1;
1019        uint32_t id_mmfr2;
1020        uint32_t id_mmfr3;
1021        uint32_t id_mmfr4;
1022        uint32_t id_mmfr5;
1023        uint32_t id_pfr0;
1024        uint32_t id_pfr1;
1025        uint32_t id_pfr2;
1026        uint32_t mvfr0;
1027        uint32_t mvfr1;
1028        uint32_t mvfr2;
1029        uint32_t id_dfr0;
1030        uint32_t id_dfr1;
1031        uint32_t dbgdidr;
1032        uint32_t dbgdevid;
1033        uint32_t dbgdevid1;
1034        uint64_t id_aa64isar0;
1035        uint64_t id_aa64isar1;
1036        uint64_t id_aa64pfr0;
1037        uint64_t id_aa64pfr1;
1038        uint64_t id_aa64mmfr0;
1039        uint64_t id_aa64mmfr1;
1040        uint64_t id_aa64mmfr2;
1041        uint64_t id_aa64dfr0;
1042        uint64_t id_aa64dfr1;
1043        uint64_t id_aa64zfr0;
1044        uint64_t id_aa64smfr0;
1045        uint64_t reset_pmcr_el0;
1046    } isar;
1047    uint64_t midr;
1048    uint32_t revidr;
1049    uint32_t reset_fpsid;
1050    uint64_t ctr;
1051    uint32_t reset_sctlr;
1052    uint64_t pmceid0;
1053    uint64_t pmceid1;
1054    uint32_t id_afr0;
1055    uint64_t id_aa64afr0;
1056    uint64_t id_aa64afr1;
1057    uint64_t clidr;
1058    uint64_t mp_affinity; /* MP ID without feature bits */
1059    /* The elements of this array are the CCSIDR values for each cache,
1060     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1061     */
1062    uint64_t ccsidr[16];
1063    uint64_t reset_cbar;
1064    uint32_t reset_auxcr;
1065    bool reset_hivecs;
1066    uint8_t reset_l0gptsz;
1067
1068    /*
1069     * Intermediate values used during property parsing.
1070     * Once finalized, the values should be read from ID_AA64*.
1071     */
1072    bool prop_pauth;
1073    bool prop_pauth_impdef;
1074    bool prop_lpa2;
1075
1076    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1077    uint32_t dcz_blocksize;
1078    uint64_t rvbar_prop; /* Property/input signals.  */
1079
1080    /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1081    int gic_num_lrs; /* number of list registers */
1082    int gic_vpribits; /* number of virtual priority bits */
1083    int gic_vprebits; /* number of virtual preemption bits */
1084    int gic_pribits; /* number of physical priority bits */
1085
1086    /* Whether the cfgend input is high (i.e. this CPU should reset into
1087     * big-endian mode).  This setting isn't used directly: instead it modifies
1088     * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1089     * architecture version.
1090     */
1091    bool cfgend;
1092
1093    QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1094    QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1095
1096    int32_t node_id; /* NUMA node this CPU belongs to */
1097
1098    /* Used to synchronize KVM and QEMU in-kernel device levels */
1099    uint8_t device_irq_level;
1100
1101    /* Used to set the maximum vector length the cpu will support.  */
1102    uint32_t sve_max_vq;
1103
1104#ifdef CONFIG_USER_ONLY
1105    /* Used to set the default vector length at process start. */
1106    uint32_t sve_default_vq;
1107    uint32_t sme_default_vq;
1108#endif
1109
1110    ARMVQMap sve_vq;
1111    ARMVQMap sme_vq;
1112
1113    /* Generic timer counter frequency, in Hz */
1114    uint64_t gt_cntfrq_hz;
1115};
1116
1117unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1118
1119void arm_cpu_post_init(Object *obj);
1120
1121uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1122
1123#ifndef CONFIG_USER_ONLY
1124extern const VMStateDescription vmstate_arm_cpu;
1125
1126void arm_cpu_do_interrupt(CPUState *cpu);
1127void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1128
1129hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1130                                         MemTxAttrs *attrs);
1131#endif /* !CONFIG_USER_ONLY */
1132
1133int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1134int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1135
1136/* Returns the dynamically generated XML for the gdb stub.
1137 * Returns a pointer to the XML contents for the specified XML file or NULL
1138 * if the XML name doesn't match the predefined one.
1139 */
1140const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1141
1142int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1143                             int cpuid, DumpState *s);
1144int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1145                             int cpuid, DumpState *s);
1146
1147#ifdef TARGET_AARCH64
1148int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1149int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1150void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1151void aarch64_sve_change_el(CPUARMState *env, int old_el,
1152                           int new_el, bool el0_a64);
1153void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1154
1155/*
1156 * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1157 * The byte at offset i from the start of the in-memory representation contains
1158 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1159 * lowest offsets are stored in the lowest memory addresses, then that nearly
1160 * matches QEMU's representation, which is to use an array of host-endian
1161 * uint64_t's, where the lower offsets are at the lower indices. To complete
1162 * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1163 */
1164static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1165{
1166#if HOST_BIG_ENDIAN
1167    int i;
1168
1169    for (i = 0; i < nr; ++i) {
1170        dst[i] = bswap64(src[i]);
1171    }
1172
1173    return dst;
1174#else
1175    return src;
1176#endif
1177}
1178
1179#else
1180static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1181static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1182                                         int n, bool a)
1183{ }
1184#endif
1185
1186void aarch64_sync_32_to_64(CPUARMState *env);
1187void aarch64_sync_64_to_32(CPUARMState *env);
1188
1189int fp_exception_el(CPUARMState *env, int cur_el);
1190int sve_exception_el(CPUARMState *env, int cur_el);
1191int sme_exception_el(CPUARMState *env, int cur_el);
1192
1193/**
1194 * sve_vqm1_for_el_sm:
1195 * @env: CPUARMState
1196 * @el: exception level
1197 * @sm: streaming mode
1198 *
1199 * Compute the current vector length for @el & @sm, in units of
1200 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1201 * If @sm, compute for SVL, otherwise NVL.
1202 */
1203uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1204
1205/* Likewise, but using @sm = PSTATE.SM. */
1206uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1207
1208static inline bool is_a64(CPUARMState *env)
1209{
1210    return env->aarch64;
1211}
1212
1213/**
1214 * pmu_op_start/finish
1215 * @env: CPUARMState
1216 *
1217 * Convert all PMU counters between their delta form (the typical mode when
1218 * they are enabled) and the guest-visible values. These two calls must
1219 * surround any action which might affect the counters.
1220 */
1221void pmu_op_start(CPUARMState *env);
1222void pmu_op_finish(CPUARMState *env);
1223
1224/*
1225 * Called when a PMU counter is due to overflow
1226 */
1227void arm_pmu_timer_cb(void *opaque);
1228
1229/**
1230 * Functions to register as EL change hooks for PMU mode filtering
1231 */
1232void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1233void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1234
1235/*
1236 * pmu_init
1237 * @cpu: ARMCPU
1238 *
1239 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1240 * for the current configuration
1241 */
1242void pmu_init(ARMCPU *cpu);
1243
1244/* SCTLR bit meanings. Several bits have been reused in newer
1245 * versions of the architecture; in that case we define constants
1246 * for both old and new bit meanings. Code which tests against those
1247 * bits should probably check or otherwise arrange that the CPU
1248 * is the architectural version it expects.
1249 */
1250#define SCTLR_M       (1U << 0)
1251#define SCTLR_A       (1U << 1)
1252#define SCTLR_C       (1U << 2)
1253#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1254#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1255#define SCTLR_SA      (1U << 3) /* AArch64 only */
1256#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1257#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1258#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1259#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1260#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1261#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1262#define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1263#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1264#define SCTLR_ITD     (1U << 7) /* v8 onward */
1265#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1266#define SCTLR_SED     (1U << 8) /* v8 onward */
1267#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1268#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1269#define SCTLR_F       (1U << 10) /* up to v6 */
1270#define SCTLR_SW      (1U << 10) /* v7 */
1271#define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1272#define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1273#define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1274#define SCTLR_I       (1U << 12)
1275#define SCTLR_V       (1U << 13) /* AArch32 only */
1276#define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1277#define SCTLR_RR      (1U << 14) /* up to v7 */
1278#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1279#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1280#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1281#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1282#define SCTLR_nTWI    (1U << 16) /* v8 onward */
1283#define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1284#define SCTLR_BR      (1U << 17) /* PMSA only */
1285#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1286#define SCTLR_nTWE    (1U << 18) /* v8 onward */
1287#define SCTLR_WXN     (1U << 19)
1288#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1289#define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1290#define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1291#define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1292#define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1293#define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1294#define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1295#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1296#define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1297#define SCTLR_VE      (1U << 24) /* up to v7 */
1298#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1299#define SCTLR_EE      (1U << 25)
1300#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1301#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1302#define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1303#define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1304#define SCTLR_TRE     (1U << 28) /* AArch32 only */
1305#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1306#define SCTLR_AFE     (1U << 29) /* AArch32 only */
1307#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1308#define SCTLR_TE      (1U << 30) /* AArch32 only */
1309#define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1310#define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1311#define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1312#define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1313#define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1314#define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1315#define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1316#define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1317#define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1318#define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1319#define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1320#define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1321#define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1322#define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1323#define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1324#define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1325#define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1326#define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1327#define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1328#define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1329#define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1330#define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1331#define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1332#define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1333#define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1334
1335/* Bit definitions for CPACR (AArch32 only) */
1336FIELD(CPACR, CP10, 20, 2)
1337FIELD(CPACR, CP11, 22, 2)
1338FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
1339FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
1340FIELD(CPACR, ASEDIS, 31, 1)
1341
1342/* Bit definitions for CPACR_EL1 (AArch64 only) */
1343FIELD(CPACR_EL1, ZEN, 16, 2)
1344FIELD(CPACR_EL1, FPEN, 20, 2)
1345FIELD(CPACR_EL1, SMEN, 24, 2)
1346FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
1347
1348/* Bit definitions for HCPTR (AArch32 only) */
1349FIELD(HCPTR, TCP10, 10, 1)
1350FIELD(HCPTR, TCP11, 11, 1)
1351FIELD(HCPTR, TASE, 15, 1)
1352FIELD(HCPTR, TTA, 20, 1)
1353FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
1354FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
1355
1356/* Bit definitions for CPTR_EL2 (AArch64 only) */
1357FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
1358FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
1359FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
1360FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
1361FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
1362FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
1363FIELD(CPTR_EL2, TTA, 28, 1)
1364FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
1365FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
1366
1367/* Bit definitions for CPTR_EL3 (AArch64 only) */
1368FIELD(CPTR_EL3, EZ, 8, 1)
1369FIELD(CPTR_EL3, TFP, 10, 1)
1370FIELD(CPTR_EL3, ESM, 12, 1)
1371FIELD(CPTR_EL3, TTA, 20, 1)
1372FIELD(CPTR_EL3, TAM, 30, 1)
1373FIELD(CPTR_EL3, TCPAC, 31, 1)
1374
1375#define MDCR_MTPME    (1U << 28)
1376#define MDCR_TDCC     (1U << 27)
1377#define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
1378#define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
1379#define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
1380#define MDCR_EPMAD    (1U << 21)
1381#define MDCR_EDAD     (1U << 20)
1382#define MDCR_TTRF     (1U << 19)
1383#define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
1384#define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1385#define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1386#define MDCR_SDD      (1U << 16)
1387#define MDCR_SPD      (3U << 14)
1388#define MDCR_TDRA     (1U << 11)
1389#define MDCR_TDOSA    (1U << 10)
1390#define MDCR_TDA      (1U << 9)
1391#define MDCR_TDE      (1U << 8)
1392#define MDCR_HPME     (1U << 7)
1393#define MDCR_TPM      (1U << 6)
1394#define MDCR_TPMCR    (1U << 5)
1395#define MDCR_HPMN     (0x1fU)
1396
1397/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1398#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1399                         MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1400                         MDCR_STE | MDCR_SPME | MDCR_SPD)
1401
1402#define CPSR_M (0x1fU)
1403#define CPSR_T (1U << 5)
1404#define CPSR_F (1U << 6)
1405#define CPSR_I (1U << 7)
1406#define CPSR_A (1U << 8)
1407#define CPSR_E (1U << 9)
1408#define CPSR_IT_2_7 (0xfc00U)
1409#define CPSR_GE (0xfU << 16)
1410#define CPSR_IL (1U << 20)
1411#define CPSR_DIT (1U << 21)
1412#define CPSR_PAN (1U << 22)
1413#define CPSR_SSBS (1U << 23)
1414#define CPSR_J (1U << 24)
1415#define CPSR_IT_0_1 (3U << 25)
1416#define CPSR_Q (1U << 27)
1417#define CPSR_V (1U << 28)
1418#define CPSR_C (1U << 29)
1419#define CPSR_Z (1U << 30)
1420#define CPSR_N (1U << 31)
1421#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1422#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1423
1424#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1425#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1426    | CPSR_NZCV)
1427/* Bits writable in user mode.  */
1428#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1429/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1430#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1431
1432/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1433#define XPSR_EXCP 0x1ffU
1434#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1435#define XPSR_IT_2_7 CPSR_IT_2_7
1436#define XPSR_GE CPSR_GE
1437#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1438#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1439#define XPSR_IT_0_1 CPSR_IT_0_1
1440#define XPSR_Q CPSR_Q
1441#define XPSR_V CPSR_V
1442#define XPSR_C CPSR_C
1443#define XPSR_Z CPSR_Z
1444#define XPSR_N CPSR_N
1445#define XPSR_NZCV CPSR_NZCV
1446#define XPSR_IT CPSR_IT
1447
1448#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1449#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1450#define TTBCR_PD0    (1U << 4)
1451#define TTBCR_PD1    (1U << 5)
1452#define TTBCR_EPD0   (1U << 7)
1453#define TTBCR_IRGN0  (3U << 8)
1454#define TTBCR_ORGN0  (3U << 10)
1455#define TTBCR_SH0    (3U << 12)
1456#define TTBCR_T1SZ   (3U << 16)
1457#define TTBCR_A1     (1U << 22)
1458#define TTBCR_EPD1   (1U << 23)
1459#define TTBCR_IRGN1  (3U << 24)
1460#define TTBCR_ORGN1  (3U << 26)
1461#define TTBCR_SH1    (1U << 28)
1462#define TTBCR_EAE    (1U << 31)
1463
1464FIELD(VTCR, T0SZ, 0, 6)
1465FIELD(VTCR, SL0, 6, 2)
1466FIELD(VTCR, IRGN0, 8, 2)
1467FIELD(VTCR, ORGN0, 10, 2)
1468FIELD(VTCR, SH0, 12, 2)
1469FIELD(VTCR, TG0, 14, 2)
1470FIELD(VTCR, PS, 16, 3)
1471FIELD(VTCR, VS, 19, 1)
1472FIELD(VTCR, HA, 21, 1)
1473FIELD(VTCR, HD, 22, 1)
1474FIELD(VTCR, HWU59, 25, 1)
1475FIELD(VTCR, HWU60, 26, 1)
1476FIELD(VTCR, HWU61, 27, 1)
1477FIELD(VTCR, HWU62, 28, 1)
1478FIELD(VTCR, NSW, 29, 1)
1479FIELD(VTCR, NSA, 30, 1)
1480FIELD(VTCR, DS, 32, 1)
1481FIELD(VTCR, SL2, 33, 1)
1482
1483/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1484 * Only these are valid when in AArch64 mode; in
1485 * AArch32 mode SPSRs are basically CPSR-format.
1486 */
1487#define PSTATE_SP (1U)
1488#define PSTATE_M (0xFU)
1489#define PSTATE_nRW (1U << 4)
1490#define PSTATE_F (1U << 6)
1491#define PSTATE_I (1U << 7)
1492#define PSTATE_A (1U << 8)
1493#define PSTATE_D (1U << 9)
1494#define PSTATE_BTYPE (3U << 10)
1495#define PSTATE_SSBS (1U << 12)
1496#define PSTATE_IL (1U << 20)
1497#define PSTATE_SS (1U << 21)
1498#define PSTATE_PAN (1U << 22)
1499#define PSTATE_UAO (1U << 23)
1500#define PSTATE_DIT (1U << 24)
1501#define PSTATE_TCO (1U << 25)
1502#define PSTATE_V (1U << 28)
1503#define PSTATE_C (1U << 29)
1504#define PSTATE_Z (1U << 30)
1505#define PSTATE_N (1U << 31)
1506#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1507#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1508#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1509/* Mode values for AArch64 */
1510#define PSTATE_MODE_EL3h 13
1511#define PSTATE_MODE_EL3t 12
1512#define PSTATE_MODE_EL2h 9
1513#define PSTATE_MODE_EL2t 8
1514#define PSTATE_MODE_EL1h 5
1515#define PSTATE_MODE_EL1t 4
1516#define PSTATE_MODE_EL0t 0
1517
1518/* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1519FIELD(SVCR, SM, 0, 1)
1520FIELD(SVCR, ZA, 1, 1)
1521
1522/* Fields for SMCR_ELx. */
1523FIELD(SMCR, LEN, 0, 4)
1524FIELD(SMCR, FA64, 31, 1)
1525
1526/* Write a new value to v7m.exception, thus transitioning into or out
1527 * of Handler mode; this may result in a change of active stack pointer.
1528 */
1529void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1530
1531/* Map EL and handler into a PSTATE_MODE.  */
1532static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1533{
1534    return (el << 2) | handler;
1535}
1536
1537/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1538 * interprocessing, so we don't attempt to sync with the cpsr state used by
1539 * the 32 bit decoder.
1540 */
1541static inline uint32_t pstate_read(CPUARMState *env)
1542{
1543    int ZF;
1544
1545    ZF = (env->ZF == 0);
1546    return (env->NF & 0x80000000) | (ZF << 30)
1547        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1548        | env->pstate | env->daif | (env->btype << 10);
1549}
1550
1551static inline void pstate_write(CPUARMState *env, uint32_t val)
1552{
1553    env->ZF = (~val) & PSTATE_Z;
1554    env->NF = val;
1555    env->CF = (val >> 29) & 1;
1556    env->VF = (val << 3) & 0x80000000;
1557    env->daif = val & PSTATE_DAIF;
1558    env->btype = (val >> 10) & 3;
1559    env->pstate = val & ~CACHED_PSTATE_BITS;
1560}
1561
1562/* Return the current CPSR value.  */
1563uint32_t cpsr_read(CPUARMState *env);
1564
1565typedef enum CPSRWriteType {
1566    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1567    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1568    CPSRWriteRaw = 2,
1569        /* trust values, no reg bank switch, no hflags rebuild */
1570    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1571} CPSRWriteType;
1572
1573/*
1574 * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1575 * This will do an arm_rebuild_hflags() if any of the bits in @mask
1576 * correspond to TB flags bits cached in the hflags, unless @write_type
1577 * is CPSRWriteRaw.
1578 */
1579void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1580                CPSRWriteType write_type);
1581
1582/* Return the current xPSR value.  */
1583static inline uint32_t xpsr_read(CPUARMState *env)
1584{
1585    int ZF;
1586    ZF = (env->ZF == 0);
1587    return (env->NF & 0x80000000) | (ZF << 30)
1588        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1589        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1590        | ((env->condexec_bits & 0xfc) << 8)
1591        | (env->GE << 16)
1592        | env->v7m.exception;
1593}
1594
1595/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1596static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1597{
1598    if (mask & XPSR_NZCV) {
1599        env->ZF = (~val) & XPSR_Z;
1600        env->NF = val;
1601        env->CF = (val >> 29) & 1;
1602        env->VF = (val << 3) & 0x80000000;
1603    }
1604    if (mask & XPSR_Q) {
1605        env->QF = ((val & XPSR_Q) != 0);
1606    }
1607    if (mask & XPSR_GE) {
1608        env->GE = (val & XPSR_GE) >> 16;
1609    }
1610#ifndef CONFIG_USER_ONLY
1611    if (mask & XPSR_T) {
1612        env->thumb = ((val & XPSR_T) != 0);
1613    }
1614    if (mask & XPSR_IT_0_1) {
1615        env->condexec_bits &= ~3;
1616        env->condexec_bits |= (val >> 25) & 3;
1617    }
1618    if (mask & XPSR_IT_2_7) {
1619        env->condexec_bits &= 3;
1620        env->condexec_bits |= (val >> 8) & 0xfc;
1621    }
1622    if (mask & XPSR_EXCP) {
1623        /* Note that this only happens on exception exit */
1624        write_v7m_exception(env, val & XPSR_EXCP);
1625    }
1626#endif
1627}
1628
1629#define HCR_VM        (1ULL << 0)
1630#define HCR_SWIO      (1ULL << 1)
1631#define HCR_PTW       (1ULL << 2)
1632#define HCR_FMO       (1ULL << 3)
1633#define HCR_IMO       (1ULL << 4)
1634#define HCR_AMO       (1ULL << 5)
1635#define HCR_VF        (1ULL << 6)
1636#define HCR_VI        (1ULL << 7)
1637#define HCR_VSE       (1ULL << 8)
1638#define HCR_FB        (1ULL << 9)
1639#define HCR_BSU_MASK  (3ULL << 10)
1640#define HCR_DC        (1ULL << 12)
1641#define HCR_TWI       (1ULL << 13)
1642#define HCR_TWE       (1ULL << 14)
1643#define HCR_TID0      (1ULL << 15)
1644#define HCR_TID1      (1ULL << 16)
1645#define HCR_TID2      (1ULL << 17)
1646#define HCR_TID3      (1ULL << 18)
1647#define HCR_TSC       (1ULL << 19)
1648#define HCR_TIDCP     (1ULL << 20)
1649#define HCR_TACR      (1ULL << 21)
1650#define HCR_TSW       (1ULL << 22)
1651#define HCR_TPCP      (1ULL << 23)
1652#define HCR_TPU       (1ULL << 24)
1653#define HCR_TTLB      (1ULL << 25)
1654#define HCR_TVM       (1ULL << 26)
1655#define HCR_TGE       (1ULL << 27)
1656#define HCR_TDZ       (1ULL << 28)
1657#define HCR_HCD       (1ULL << 29)
1658#define HCR_TRVM      (1ULL << 30)
1659#define HCR_RW        (1ULL << 31)
1660#define HCR_CD        (1ULL << 32)
1661#define HCR_ID        (1ULL << 33)
1662#define HCR_E2H       (1ULL << 34)
1663#define HCR_TLOR      (1ULL << 35)
1664#define HCR_TERR      (1ULL << 36)
1665#define HCR_TEA       (1ULL << 37)
1666#define HCR_MIOCNCE   (1ULL << 38)
1667#define HCR_TME       (1ULL << 39)
1668#define HCR_APK       (1ULL << 40)
1669#define HCR_API       (1ULL << 41)
1670#define HCR_NV        (1ULL << 42)
1671#define HCR_NV1       (1ULL << 43)
1672#define HCR_AT        (1ULL << 44)
1673#define HCR_NV2       (1ULL << 45)
1674#define HCR_FWB       (1ULL << 46)
1675#define HCR_FIEN      (1ULL << 47)
1676#define HCR_GPF       (1ULL << 48)
1677#define HCR_TID4      (1ULL << 49)
1678#define HCR_TICAB     (1ULL << 50)
1679#define HCR_AMVOFFEN  (1ULL << 51)
1680#define HCR_TOCU      (1ULL << 52)
1681#define HCR_ENSCXT    (1ULL << 53)
1682#define HCR_TTLBIS    (1ULL << 54)
1683#define HCR_TTLBOS    (1ULL << 55)
1684#define HCR_ATA       (1ULL << 56)
1685#define HCR_DCT       (1ULL << 57)
1686#define HCR_TID5      (1ULL << 58)
1687#define HCR_TWEDEN    (1ULL << 59)
1688#define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1689
1690#define HCRX_ENAS0    (1ULL << 0)
1691#define HCRX_ENALS    (1ULL << 1)
1692#define HCRX_ENASR    (1ULL << 2)
1693#define HCRX_FNXS     (1ULL << 3)
1694#define HCRX_FGTNXS   (1ULL << 4)
1695#define HCRX_SMPME    (1ULL << 5)
1696#define HCRX_TALLINT  (1ULL << 6)
1697#define HCRX_VINMI    (1ULL << 7)
1698#define HCRX_VFNMI    (1ULL << 8)
1699#define HCRX_CMOW     (1ULL << 9)
1700#define HCRX_MCE2     (1ULL << 10)
1701#define HCRX_MSCEN    (1ULL << 11)
1702
1703#define HPFAR_NS      (1ULL << 63)
1704
1705#define SCR_NS                (1ULL << 0)
1706#define SCR_IRQ               (1ULL << 1)
1707#define SCR_FIQ               (1ULL << 2)
1708#define SCR_EA                (1ULL << 3)
1709#define SCR_FW                (1ULL << 4)
1710#define SCR_AW                (1ULL << 5)
1711#define SCR_NET               (1ULL << 6)
1712#define SCR_SMD               (1ULL << 7)
1713#define SCR_HCE               (1ULL << 8)
1714#define SCR_SIF               (1ULL << 9)
1715#define SCR_RW                (1ULL << 10)
1716#define SCR_ST                (1ULL << 11)
1717#define SCR_TWI               (1ULL << 12)
1718#define SCR_TWE               (1ULL << 13)
1719#define SCR_TLOR              (1ULL << 14)
1720#define SCR_TERR              (1ULL << 15)
1721#define SCR_APK               (1ULL << 16)
1722#define SCR_API               (1ULL << 17)
1723#define SCR_EEL2              (1ULL << 18)
1724#define SCR_EASE              (1ULL << 19)
1725#define SCR_NMEA              (1ULL << 20)
1726#define SCR_FIEN              (1ULL << 21)
1727#define SCR_ENSCXT            (1ULL << 25)
1728#define SCR_ATA               (1ULL << 26)
1729#define SCR_FGTEN             (1ULL << 27)
1730#define SCR_ECVEN             (1ULL << 28)
1731#define SCR_TWEDEN            (1ULL << 29)
1732#define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1733#define SCR_TME               (1ULL << 34)
1734#define SCR_AMVOFFEN          (1ULL << 35)
1735#define SCR_ENAS0             (1ULL << 36)
1736#define SCR_ADEN              (1ULL << 37)
1737#define SCR_HXEN              (1ULL << 38)
1738#define SCR_TRNDR             (1ULL << 40)
1739#define SCR_ENTP2             (1ULL << 41)
1740#define SCR_GPF               (1ULL << 48)
1741#define SCR_NSE               (1ULL << 62)
1742
1743#define HSTR_TTEE (1 << 16)
1744#define HSTR_TJDBX (1 << 17)
1745
1746/* Return the current FPSCR value.  */
1747uint32_t vfp_get_fpscr(CPUARMState *env);
1748void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1749
1750/* FPCR, Floating Point Control Register
1751 * FPSR, Floating Poiht Status Register
1752 *
1753 * For A64 the FPSCR is split into two logically distinct registers,
1754 * FPCR and FPSR. However since they still use non-overlapping bits
1755 * we store the underlying state in fpscr and just mask on read/write.
1756 */
1757#define FPSR_MASK 0xf800009f
1758#define FPCR_MASK 0x07ff9f00
1759
1760#define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1761#define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1762#define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1763#define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1764#define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1765#define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1766#define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1767#define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1768#define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1769#define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1770#define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1771#define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1772#define FPCR_V      (1 << 28)   /* FP overflow flag */
1773#define FPCR_C      (1 << 29)   /* FP carry flag */
1774#define FPCR_Z      (1 << 30)   /* FP zero flag */
1775#define FPCR_N      (1 << 31)   /* FP negative flag */
1776
1777#define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1778#define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1779#define FPCR_LTPSIZE_LENGTH 3
1780
1781#define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1782#define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1783
1784static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1785{
1786    return vfp_get_fpscr(env) & FPSR_MASK;
1787}
1788
1789static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1790{
1791    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1792    vfp_set_fpscr(env, new_fpscr);
1793}
1794
1795static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1796{
1797    return vfp_get_fpscr(env) & FPCR_MASK;
1798}
1799
1800static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1801{
1802    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1803    vfp_set_fpscr(env, new_fpscr);
1804}
1805
1806enum arm_cpu_mode {
1807  ARM_CPU_MODE_USR = 0x10,
1808  ARM_CPU_MODE_FIQ = 0x11,
1809  ARM_CPU_MODE_IRQ = 0x12,
1810  ARM_CPU_MODE_SVC = 0x13,
1811  ARM_CPU_MODE_MON = 0x16,
1812  ARM_CPU_MODE_ABT = 0x17,
1813  ARM_CPU_MODE_HYP = 0x1a,
1814  ARM_CPU_MODE_UND = 0x1b,
1815  ARM_CPU_MODE_SYS = 0x1f
1816};
1817
1818/* VFP system registers.  */
1819#define ARM_VFP_FPSID   0
1820#define ARM_VFP_FPSCR   1
1821#define ARM_VFP_MVFR2   5
1822#define ARM_VFP_MVFR1   6
1823#define ARM_VFP_MVFR0   7
1824#define ARM_VFP_FPEXC   8
1825#define ARM_VFP_FPINST  9
1826#define ARM_VFP_FPINST2 10
1827/* These ones are M-profile only */
1828#define ARM_VFP_FPSCR_NZCVQC 2
1829#define ARM_VFP_VPR 12
1830#define ARM_VFP_P0 13
1831#define ARM_VFP_FPCXT_NS 14
1832#define ARM_VFP_FPCXT_S 15
1833
1834/* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1835#define QEMU_VFP_FPSCR_NZCV 0xffff
1836
1837/* iwMMXt coprocessor control registers.  */
1838#define ARM_IWMMXT_wCID  0
1839#define ARM_IWMMXT_wCon  1
1840#define ARM_IWMMXT_wCSSF 2
1841#define ARM_IWMMXT_wCASF 3
1842#define ARM_IWMMXT_wCGR0 8
1843#define ARM_IWMMXT_wCGR1 9
1844#define ARM_IWMMXT_wCGR2 10
1845#define ARM_IWMMXT_wCGR3 11
1846
1847/* V7M CCR bits */
1848FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1849FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1850FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1851FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1852FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1853FIELD(V7M_CCR, STKALIGN, 9, 1)
1854FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1855FIELD(V7M_CCR, DC, 16, 1)
1856FIELD(V7M_CCR, IC, 17, 1)
1857FIELD(V7M_CCR, BP, 18, 1)
1858FIELD(V7M_CCR, LOB, 19, 1)
1859FIELD(V7M_CCR, TRD, 20, 1)
1860
1861/* V7M SCR bits */
1862FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1863FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1864FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1865FIELD(V7M_SCR, SEVONPEND, 4, 1)
1866
1867/* V7M AIRCR bits */
1868FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1869FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1870FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1871FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1872FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1873FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1874FIELD(V7M_AIRCR, PRIS, 14, 1)
1875FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1876FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1877
1878/* V7M CFSR bits for MMFSR */
1879FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1880FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1881FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1882FIELD(V7M_CFSR, MSTKERR, 4, 1)
1883FIELD(V7M_CFSR, MLSPERR, 5, 1)
1884FIELD(V7M_CFSR, MMARVALID, 7, 1)
1885
1886/* V7M CFSR bits for BFSR */
1887FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1888FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1889FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1890FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1891FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1892FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1893FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1894
1895/* V7M CFSR bits for UFSR */
1896FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1897FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1898FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1899FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1900FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1901FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1902FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1903
1904/* V7M CFSR bit masks covering all of the subregister bits */
1905FIELD(V7M_CFSR, MMFSR, 0, 8)
1906FIELD(V7M_CFSR, BFSR, 8, 8)
1907FIELD(V7M_CFSR, UFSR, 16, 16)
1908
1909/* V7M HFSR bits */
1910FIELD(V7M_HFSR, VECTTBL, 1, 1)
1911FIELD(V7M_HFSR, FORCED, 30, 1)
1912FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1913
1914/* V7M DFSR bits */
1915FIELD(V7M_DFSR, HALTED, 0, 1)
1916FIELD(V7M_DFSR, BKPT, 1, 1)
1917FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1918FIELD(V7M_DFSR, VCATCH, 3, 1)
1919FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1920
1921/* V7M SFSR bits */
1922FIELD(V7M_SFSR, INVEP, 0, 1)
1923FIELD(V7M_SFSR, INVIS, 1, 1)
1924FIELD(V7M_SFSR, INVER, 2, 1)
1925FIELD(V7M_SFSR, AUVIOL, 3, 1)
1926FIELD(V7M_SFSR, INVTRAN, 4, 1)
1927FIELD(V7M_SFSR, LSPERR, 5, 1)
1928FIELD(V7M_SFSR, SFARVALID, 6, 1)
1929FIELD(V7M_SFSR, LSERR, 7, 1)
1930
1931/* v7M MPU_CTRL bits */
1932FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1933FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1934FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1935
1936/* v7M CLIDR bits */
1937FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1938FIELD(V7M_CLIDR, LOUIS, 21, 3)
1939FIELD(V7M_CLIDR, LOC, 24, 3)
1940FIELD(V7M_CLIDR, LOUU, 27, 3)
1941FIELD(V7M_CLIDR, ICB, 30, 2)
1942
1943FIELD(V7M_CSSELR, IND, 0, 1)
1944FIELD(V7M_CSSELR, LEVEL, 1, 3)
1945/* We use the combination of InD and Level to index into cpu->ccsidr[];
1946 * define a mask for this and check that it doesn't permit running off
1947 * the end of the array.
1948 */
1949FIELD(V7M_CSSELR, INDEX, 0, 4)
1950
1951/* v7M FPCCR bits */
1952FIELD(V7M_FPCCR, LSPACT, 0, 1)
1953FIELD(V7M_FPCCR, USER, 1, 1)
1954FIELD(V7M_FPCCR, S, 2, 1)
1955FIELD(V7M_FPCCR, THREAD, 3, 1)
1956FIELD(V7M_FPCCR, HFRDY, 4, 1)
1957FIELD(V7M_FPCCR, MMRDY, 5, 1)
1958FIELD(V7M_FPCCR, BFRDY, 6, 1)
1959FIELD(V7M_FPCCR, SFRDY, 7, 1)
1960FIELD(V7M_FPCCR, MONRDY, 8, 1)
1961FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1962FIELD(V7M_FPCCR, UFRDY, 10, 1)
1963FIELD(V7M_FPCCR, RES0, 11, 15)
1964FIELD(V7M_FPCCR, TS, 26, 1)
1965FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1966FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1967FIELD(V7M_FPCCR, LSPENS, 29, 1)
1968FIELD(V7M_FPCCR, LSPEN, 30, 1)
1969FIELD(V7M_FPCCR, ASPEN, 31, 1)
1970/* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1971#define R_V7M_FPCCR_BANKED_MASK                 \
1972    (R_V7M_FPCCR_LSPACT_MASK |                  \
1973     R_V7M_FPCCR_USER_MASK |                    \
1974     R_V7M_FPCCR_THREAD_MASK |                  \
1975     R_V7M_FPCCR_MMRDY_MASK |                   \
1976     R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1977     R_V7M_FPCCR_UFRDY_MASK |                   \
1978     R_V7M_FPCCR_ASPEN_MASK)
1979
1980/* v7M VPR bits */
1981FIELD(V7M_VPR, P0, 0, 16)
1982FIELD(V7M_VPR, MASK01, 16, 4)
1983FIELD(V7M_VPR, MASK23, 20, 4)
1984
1985/*
1986 * System register ID fields.
1987 */
1988FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1989FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1990FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1991FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1992FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1993FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1994FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1995FIELD(CLIDR_EL1, LOUIS, 21, 3)
1996FIELD(CLIDR_EL1, LOC, 24, 3)
1997FIELD(CLIDR_EL1, LOUU, 27, 3)
1998FIELD(CLIDR_EL1, ICB, 30, 3)
1999
2000/* When FEAT_CCIDX is implemented */
2001FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2002FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2003FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2004
2005/* When FEAT_CCIDX is not implemented */
2006FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2007FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2008FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2009
2010FIELD(CTR_EL0,  IMINLINE, 0, 4)
2011FIELD(CTR_EL0,  L1IP, 14, 2)
2012FIELD(CTR_EL0,  DMINLINE, 16, 4)
2013FIELD(CTR_EL0,  ERG, 20, 4)
2014FIELD(CTR_EL0,  CWG, 24, 4)
2015FIELD(CTR_EL0,  IDC, 28, 1)
2016FIELD(CTR_EL0,  DIC, 29, 1)
2017FIELD(CTR_EL0,  TMINLINE, 32, 6)
2018
2019FIELD(MIDR_EL1, REVISION, 0, 4)
2020FIELD(MIDR_EL1, PARTNUM, 4, 12)
2021FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2022FIELD(MIDR_EL1, VARIANT, 20, 4)
2023FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2024
2025FIELD(ID_ISAR0, SWAP, 0, 4)
2026FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2027FIELD(ID_ISAR0, BITFIELD, 8, 4)
2028FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2029FIELD(ID_ISAR0, COPROC, 16, 4)
2030FIELD(ID_ISAR0, DEBUG, 20, 4)
2031FIELD(ID_ISAR0, DIVIDE, 24, 4)
2032
2033FIELD(ID_ISAR1, ENDIAN, 0, 4)
2034FIELD(ID_ISAR1, EXCEPT, 4, 4)
2035FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2036FIELD(ID_ISAR1, EXTEND, 12, 4)
2037FIELD(ID_ISAR1, IFTHEN, 16, 4)
2038FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2039FIELD(ID_ISAR1, INTERWORK, 24, 4)
2040FIELD(ID_ISAR1, JAZELLE, 28, 4)
2041
2042FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2043FIELD(ID_ISAR2, MEMHINT, 4, 4)
2044FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2045FIELD(ID_ISAR2, MULT, 12, 4)
2046FIELD(ID_ISAR2, MULTS, 16, 4)
2047FIELD(ID_ISAR2, MULTU, 20, 4)
2048FIELD(ID_ISAR2, PSR_AR, 24, 4)
2049FIELD(ID_ISAR2, REVERSAL, 28, 4)
2050
2051FIELD(ID_ISAR3, SATURATE, 0, 4)
2052FIELD(ID_ISAR3, SIMD, 4, 4)
2053FIELD(ID_ISAR3, SVC, 8, 4)
2054FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2055FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2056FIELD(ID_ISAR3, T32COPY, 20, 4)
2057FIELD(ID_ISAR3, TRUENOP, 24, 4)
2058FIELD(ID_ISAR3, T32EE, 28, 4)
2059
2060FIELD(ID_ISAR4, UNPRIV, 0, 4)
2061FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2062FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2063FIELD(ID_ISAR4, SMC, 12, 4)
2064FIELD(ID_ISAR4, BARRIER, 16, 4)
2065FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2066FIELD(ID_ISAR4, PSR_M, 24, 4)
2067FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2068
2069FIELD(ID_ISAR5, SEVL, 0, 4)
2070FIELD(ID_ISAR5, AES, 4, 4)
2071FIELD(ID_ISAR5, SHA1, 8, 4)
2072FIELD(ID_ISAR5, SHA2, 12, 4)
2073FIELD(ID_ISAR5, CRC32, 16, 4)
2074FIELD(ID_ISAR5, RDM, 24, 4)
2075FIELD(ID_ISAR5, VCMA, 28, 4)
2076
2077FIELD(ID_ISAR6, JSCVT, 0, 4)
2078FIELD(ID_ISAR6, DP, 4, 4)
2079FIELD(ID_ISAR6, FHM, 8, 4)
2080FIELD(ID_ISAR6, SB, 12, 4)
2081FIELD(ID_ISAR6, SPECRES, 16, 4)
2082FIELD(ID_ISAR6, BF16, 20, 4)
2083FIELD(ID_ISAR6, I8MM, 24, 4)
2084
2085FIELD(ID_MMFR0, VMSA, 0, 4)
2086FIELD(ID_MMFR0, PMSA, 4, 4)
2087FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2088FIELD(ID_MMFR0, SHARELVL, 12, 4)
2089FIELD(ID_MMFR0, TCM, 16, 4)
2090FIELD(ID_MMFR0, AUXREG, 20, 4)
2091FIELD(ID_MMFR0, FCSE, 24, 4)
2092FIELD(ID_MMFR0, INNERSHR, 28, 4)
2093
2094FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2095FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2096FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2097FIELD(ID_MMFR1, L1UNISW, 12, 4)
2098FIELD(ID_MMFR1, L1HVD, 16, 4)
2099FIELD(ID_MMFR1, L1UNI, 20, 4)
2100FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2101FIELD(ID_MMFR1, BPRED, 28, 4)
2102
2103FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2104FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2105FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2106FIELD(ID_MMFR2, HVDTLB, 12, 4)
2107FIELD(ID_MMFR2, UNITLB, 16, 4)
2108FIELD(ID_MMFR2, MEMBARR, 20, 4)
2109FIELD(ID_MMFR2, WFISTALL, 24, 4)
2110FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2111
2112FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2113FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2114FIELD(ID_MMFR3, BPMAINT, 8, 4)
2115FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2116FIELD(ID_MMFR3, PAN, 16, 4)
2117FIELD(ID_MMFR3, COHWALK, 20, 4)
2118FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2119FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2120
2121FIELD(ID_MMFR4, SPECSEI, 0, 4)
2122FIELD(ID_MMFR4, AC2, 4, 4)
2123FIELD(ID_MMFR4, XNX, 8, 4)
2124FIELD(ID_MMFR4, CNP, 12, 4)
2125FIELD(ID_MMFR4, HPDS, 16, 4)
2126FIELD(ID_MMFR4, LSM, 20, 4)
2127FIELD(ID_MMFR4, CCIDX, 24, 4)
2128FIELD(ID_MMFR4, EVT, 28, 4)
2129
2130FIELD(ID_MMFR5, ETS, 0, 4)
2131FIELD(ID_MMFR5, NTLBPA, 4, 4)
2132
2133FIELD(ID_PFR0, STATE0, 0, 4)
2134FIELD(ID_PFR0, STATE1, 4, 4)
2135FIELD(ID_PFR0, STATE2, 8, 4)
2136FIELD(ID_PFR0, STATE3, 12, 4)
2137FIELD(ID_PFR0, CSV2, 16, 4)
2138FIELD(ID_PFR0, AMU, 20, 4)
2139FIELD(ID_PFR0, DIT, 24, 4)
2140FIELD(ID_PFR0, RAS, 28, 4)
2141
2142FIELD(ID_PFR1, PROGMOD, 0, 4)
2143FIELD(ID_PFR1, SECURITY, 4, 4)
2144FIELD(ID_PFR1, MPROGMOD, 8, 4)
2145FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2146FIELD(ID_PFR1, GENTIMER, 16, 4)
2147FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2148FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2149FIELD(ID_PFR1, GIC, 28, 4)
2150
2151FIELD(ID_PFR2, CSV3, 0, 4)
2152FIELD(ID_PFR2, SSBS, 4, 4)
2153FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2154
2155FIELD(ID_AA64ISAR0, AES, 4, 4)
2156FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2157FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2158FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2159FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2160FIELD(ID_AA64ISAR0, RDM, 28, 4)
2161FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2162FIELD(ID_AA64ISAR0, SM3, 36, 4)
2163FIELD(ID_AA64ISAR0, SM4, 40, 4)
2164FIELD(ID_AA64ISAR0, DP, 44, 4)
2165FIELD(ID_AA64ISAR0, FHM, 48, 4)
2166FIELD(ID_AA64ISAR0, TS, 52, 4)
2167FIELD(ID_AA64ISAR0, TLB, 56, 4)
2168FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2169
2170FIELD(ID_AA64ISAR1, DPB, 0, 4)
2171FIELD(ID_AA64ISAR1, APA, 4, 4)
2172FIELD(ID_AA64ISAR1, API, 8, 4)
2173FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2174FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2175FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2176FIELD(ID_AA64ISAR1, GPA, 24, 4)
2177FIELD(ID_AA64ISAR1, GPI, 28, 4)
2178FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2179FIELD(ID_AA64ISAR1, SB, 36, 4)
2180FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2181FIELD(ID_AA64ISAR1, BF16, 44, 4)
2182FIELD(ID_AA64ISAR1, DGH, 48, 4)
2183FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2184FIELD(ID_AA64ISAR1, XS, 56, 4)
2185FIELD(ID_AA64ISAR1, LS64, 60, 4)
2186
2187FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2188FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2189FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2190FIELD(ID_AA64ISAR2, APA3, 12, 4)
2191FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2192FIELD(ID_AA64ISAR2, BC, 20, 4)
2193FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2194
2195FIELD(ID_AA64PFR0, EL0, 0, 4)
2196FIELD(ID_AA64PFR0, EL1, 4, 4)
2197FIELD(ID_AA64PFR0, EL2, 8, 4)
2198FIELD(ID_AA64PFR0, EL3, 12, 4)
2199FIELD(ID_AA64PFR0, FP, 16, 4)
2200FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2201FIELD(ID_AA64PFR0, GIC, 24, 4)
2202FIELD(ID_AA64PFR0, RAS, 28, 4)
2203FIELD(ID_AA64PFR0, SVE, 32, 4)
2204FIELD(ID_AA64PFR0, SEL2, 36, 4)
2205FIELD(ID_AA64PFR0, MPAM, 40, 4)
2206FIELD(ID_AA64PFR0, AMU, 44, 4)
2207FIELD(ID_AA64PFR0, DIT, 48, 4)
2208FIELD(ID_AA64PFR0, RME, 52, 4)
2209FIELD(ID_AA64PFR0, CSV2, 56, 4)
2210FIELD(ID_AA64PFR0, CSV3, 60, 4)
2211
2212FIELD(ID_AA64PFR1, BT, 0, 4)
2213FIELD(ID_AA64PFR1, SSBS, 4, 4)
2214FIELD(ID_AA64PFR1, MTE, 8, 4)
2215FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2216FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2217FIELD(ID_AA64PFR1, SME, 24, 4)
2218FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2219FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2220FIELD(ID_AA64PFR1, NMI, 36, 4)
2221
2222FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2223FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2224FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2225FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2226FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2227FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2228FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2229FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2230FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2231FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2232FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2233FIELD(ID_AA64MMFR0, EXS, 44, 4)
2234FIELD(ID_AA64MMFR0, FGT, 56, 4)
2235FIELD(ID_AA64MMFR0, ECV, 60, 4)
2236
2237FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2238FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2239FIELD(ID_AA64MMFR1, VH, 8, 4)
2240FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2241FIELD(ID_AA64MMFR1, LO, 16, 4)
2242FIELD(ID_AA64MMFR1, PAN, 20, 4)
2243FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2244FIELD(ID_AA64MMFR1, XNX, 28, 4)
2245FIELD(ID_AA64MMFR1, TWED, 32, 4)
2246FIELD(ID_AA64MMFR1, ETS, 36, 4)
2247FIELD(ID_AA64MMFR1, HCX, 40, 4)
2248FIELD(ID_AA64MMFR1, AFP, 44, 4)
2249FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2250FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2251FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2252
2253FIELD(ID_AA64MMFR2, CNP, 0, 4)
2254FIELD(ID_AA64MMFR2, UAO, 4, 4)
2255FIELD(ID_AA64MMFR2, LSM, 8, 4)
2256FIELD(ID_AA64MMFR2, IESB, 12, 4)
2257FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2258FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2259FIELD(ID_AA64MMFR2, NV, 24, 4)
2260FIELD(ID_AA64MMFR2, ST, 28, 4)
2261FIELD(ID_AA64MMFR2, AT, 32, 4)
2262FIELD(ID_AA64MMFR2, IDS, 36, 4)
2263FIELD(ID_AA64MMFR2, FWB, 40, 4)
2264FIELD(ID_AA64MMFR2, TTL, 48, 4)
2265FIELD(ID_AA64MMFR2, BBM, 52, 4)
2266FIELD(ID_AA64MMFR2, EVT, 56, 4)
2267FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2268
2269FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2270FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2271FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2272FIELD(ID_AA64DFR0, BRPS, 12, 4)
2273FIELD(ID_AA64DFR0, WRPS, 20, 4)
2274FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2275FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2276FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2277FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2278FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2279FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2280FIELD(ID_AA64DFR0, BRBE, 52, 4)
2281FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2282
2283FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2284FIELD(ID_AA64ZFR0, AES, 4, 4)
2285FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2286FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2287FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2288FIELD(ID_AA64ZFR0, SM4, 40, 4)
2289FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2290FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2291FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2292
2293FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2294FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2295FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2296FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2297FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2298FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2299FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2300FIELD(ID_AA64SMFR0, FA64, 63, 1)
2301
2302FIELD(ID_DFR0, COPDBG, 0, 4)
2303FIELD(ID_DFR0, COPSDBG, 4, 4)
2304FIELD(ID_DFR0, MMAPDBG, 8, 4)
2305FIELD(ID_DFR0, COPTRC, 12, 4)
2306FIELD(ID_DFR0, MMAPTRC, 16, 4)
2307FIELD(ID_DFR0, MPROFDBG, 20, 4)
2308FIELD(ID_DFR0, PERFMON, 24, 4)
2309FIELD(ID_DFR0, TRACEFILT, 28, 4)
2310
2311FIELD(ID_DFR1, MTPMU, 0, 4)
2312FIELD(ID_DFR1, HPMN0, 4, 4)
2313
2314FIELD(DBGDIDR, SE_IMP, 12, 1)
2315FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2316FIELD(DBGDIDR, VERSION, 16, 4)
2317FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2318FIELD(DBGDIDR, BRPS, 24, 4)
2319FIELD(DBGDIDR, WRPS, 28, 4)
2320
2321FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2322FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2323FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2324FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2325FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2326FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2327FIELD(DBGDEVID, AUXREGS, 24, 4)
2328FIELD(DBGDEVID, CIDMASK, 28, 4)
2329
2330FIELD(MVFR0, SIMDREG, 0, 4)
2331FIELD(MVFR0, FPSP, 4, 4)
2332FIELD(MVFR0, FPDP, 8, 4)
2333FIELD(MVFR0, FPTRAP, 12, 4)
2334FIELD(MVFR0, FPDIVIDE, 16, 4)
2335FIELD(MVFR0, FPSQRT, 20, 4)
2336FIELD(MVFR0, FPSHVEC, 24, 4)
2337FIELD(MVFR0, FPROUND, 28, 4)
2338
2339FIELD(MVFR1, FPFTZ, 0, 4)
2340FIELD(MVFR1, FPDNAN, 4, 4)
2341FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2342FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2343FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2344FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2345FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2346FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2347FIELD(MVFR1, FPHP, 24, 4)
2348FIELD(MVFR1, SIMDFMAC, 28, 4)
2349
2350FIELD(MVFR2, SIMDMISC, 0, 4)
2351FIELD(MVFR2, FPMISC, 4, 4)
2352
2353FIELD(GPCCR, PPS, 0, 3)
2354FIELD(GPCCR, IRGN, 8, 2)
2355FIELD(GPCCR, ORGN, 10, 2)
2356FIELD(GPCCR, SH, 12, 2)
2357FIELD(GPCCR, PGS, 14, 2)
2358FIELD(GPCCR, GPC, 16, 1)
2359FIELD(GPCCR, GPCP, 17, 1)
2360FIELD(GPCCR, L0GPTSZ, 20, 4)
2361
2362FIELD(MFAR, FPA, 12, 40)
2363FIELD(MFAR, NSE, 62, 1)
2364FIELD(MFAR, NS, 63, 1)
2365
2366QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2367
2368/* If adding a feature bit which corresponds to a Linux ELF
2369 * HWCAP bit, remember to update the feature-bit-to-hwcap
2370 * mapping in linux-user/elfload.c:get_elf_hwcap().
2371 */
2372enum arm_features {
2373    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2374    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2375    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2376    ARM_FEATURE_V6,
2377    ARM_FEATURE_V6K,
2378    ARM_FEATURE_V7,
2379    ARM_FEATURE_THUMB2,
2380    ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2381    ARM_FEATURE_NEON,
2382    ARM_FEATURE_M, /* Microcontroller profile.  */
2383    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2384    ARM_FEATURE_THUMB2EE,
2385    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2386    ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2387    ARM_FEATURE_V4T,
2388    ARM_FEATURE_V5,
2389    ARM_FEATURE_STRONGARM,
2390    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2391    ARM_FEATURE_GENERIC_TIMER,
2392    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2393    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2394    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2395    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2396    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2397    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2398    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2399    ARM_FEATURE_V8,
2400    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2401    ARM_FEATURE_CBAR, /* has cp15 CBAR */
2402    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2403    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2404    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2405    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2406    ARM_FEATURE_PMU, /* has PMU support */
2407    ARM_FEATURE_VBAR, /* has cp15 VBAR */
2408    ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2409    ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2410    ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2411};
2412
2413static inline int arm_feature(CPUARMState *env, int feature)
2414{
2415    return (env->features & (1ULL << feature)) != 0;
2416}
2417
2418void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2419
2420/*
2421 * ARM v9 security states.
2422 * The ordering of the enumeration corresponds to the low 2 bits
2423 * of the GPI value, and (except for Root) the concat of NSE:NS.
2424 */
2425
2426typedef enum ARMSecuritySpace {
2427    ARMSS_Secure     = 0,
2428    ARMSS_NonSecure  = 1,
2429    ARMSS_Root       = 2,
2430    ARMSS_Realm      = 3,
2431} ARMSecuritySpace;
2432
2433/* Return true if @space is secure, in the pre-v9 sense. */
2434static inline bool arm_space_is_secure(ARMSecuritySpace space)
2435{
2436    return space == ARMSS_Secure || space == ARMSS_Root;
2437}
2438
2439/* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2440static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2441{
2442    return secure ? ARMSS_Secure : ARMSS_NonSecure;
2443}
2444
2445#if !defined(CONFIG_USER_ONLY)
2446/**
2447 * arm_security_space_below_el3:
2448 * @env: cpu context
2449 *
2450 * Return the security space of exception levels below EL3, following
2451 * an exception return to those levels.  Unlike arm_security_space,
2452 * this doesn't care about the current EL.
2453 */
2454ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2455
2456/**
2457 * arm_is_secure_below_el3:
2458 * @env: cpu context
2459 *
2460 * Return true if exception levels below EL3 are in secure state,
2461 * or would be following an exception return to those levels.
2462 */
2463static inline bool arm_is_secure_below_el3(CPUARMState *env)
2464{
2465    ARMSecuritySpace ss = arm_security_space_below_el3(env);
2466    return ss == ARMSS_Secure;
2467}
2468
2469/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2470static inline bool arm_is_el3_or_mon(CPUARMState *env)
2471{
2472    assert(!arm_feature(env, ARM_FEATURE_M));
2473    if (arm_feature(env, ARM_FEATURE_EL3)) {
2474        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2475            /* CPU currently in AArch64 state and EL3 */
2476            return true;
2477        } else if (!is_a64(env) &&
2478                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2479            /* CPU currently in AArch32 state and monitor mode */
2480            return true;
2481        }
2482    }
2483    return false;
2484}
2485
2486/**
2487 * arm_security_space:
2488 * @env: cpu context
2489 *
2490 * Return the current security space of the cpu.
2491 */
2492ARMSecuritySpace arm_security_space(CPUARMState *env);
2493
2494/**
2495 * arm_is_secure:
2496 * @env: cpu context
2497 *
2498 * Return true if the processor is in secure state.
2499 */
2500static inline bool arm_is_secure(CPUARMState *env)
2501{
2502    return arm_space_is_secure(arm_security_space(env));
2503}
2504
2505/*
2506 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2507 * This corresponds to the pseudocode EL2Enabled()
2508 */
2509static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2510{
2511    return arm_feature(env, ARM_FEATURE_EL2)
2512           && (!secure || (env->cp15.scr_el3 & SCR_EEL2));
2513}
2514
2515static inline bool arm_is_el2_enabled(CPUARMState *env)
2516{
2517    return arm_is_el2_enabled_secstate(env, arm_is_secure_below_el3(env));
2518}
2519
2520#else
2521static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2522{
2523    return ARMSS_NonSecure;
2524}
2525
2526static inline bool arm_is_secure_below_el3(CPUARMState *env)
2527{
2528    return false;
2529}
2530
2531static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2532{
2533    return ARMSS_NonSecure;
2534}
2535
2536static inline bool arm_is_secure(CPUARMState *env)
2537{
2538    return false;
2539}
2540
2541static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2542{
2543    return false;
2544}
2545
2546static inline bool arm_is_el2_enabled(CPUARMState *env)
2547{
2548    return false;
2549}
2550#endif
2551
2552/**
2553 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2554 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2555 * "for all purposes other than a direct read or write access of HCR_EL2."
2556 * Not included here is HCR_RW.
2557 */
2558uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure);
2559uint64_t arm_hcr_el2_eff(CPUARMState *env);
2560uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2561
2562/* Return true if the specified exception level is running in AArch64 state. */
2563static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2564{
2565    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2566     * and if we're not in EL0 then the state of EL0 isn't well defined.)
2567     */
2568    assert(el >= 1 && el <= 3);
2569    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2570
2571    /* The highest exception level is always at the maximum supported
2572     * register width, and then lower levels have a register width controlled
2573     * by bits in the SCR or HCR registers.
2574     */
2575    if (el == 3) {
2576        return aa64;
2577    }
2578
2579    if (arm_feature(env, ARM_FEATURE_EL3) &&
2580        ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2581        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2582    }
2583
2584    if (el == 2) {
2585        return aa64;
2586    }
2587
2588    if (arm_is_el2_enabled(env)) {
2589        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2590    }
2591
2592    return aa64;
2593}
2594
2595/* Function for determining whether guest cp register reads and writes should
2596 * access the secure or non-secure bank of a cp register.  When EL3 is
2597 * operating in AArch32 state, the NS-bit determines whether the secure
2598 * instance of a cp register should be used. When EL3 is AArch64 (or if
2599 * it doesn't exist at all) then there is no register banking, and all
2600 * accesses are to the non-secure version.
2601 */
2602static inline bool access_secure_reg(CPUARMState *env)
2603{
2604    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2605                !arm_el_is_aa64(env, 3) &&
2606                !(env->cp15.scr_el3 & SCR_NS));
2607
2608    return ret;
2609}
2610
2611/* Macros for accessing a specified CP register bank */
2612#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2613    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2614
2615#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2616    do {                                                \
2617        if (_secure) {                                   \
2618            (_env)->cp15._regname##_s = (_val);            \
2619        } else {                                        \
2620            (_env)->cp15._regname##_ns = (_val);           \
2621        }                                               \
2622    } while (0)
2623
2624/* Macros for automatically accessing a specific CP register bank depending on
2625 * the current secure state of the system.  These macros are not intended for
2626 * supporting instruction translation reads/writes as these are dependent
2627 * solely on the SCR.NS bit and not the mode.
2628 */
2629#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2630    A32_BANKED_REG_GET((_env), _regname,                \
2631                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2632
2633#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2634    A32_BANKED_REG_SET((_env), _regname,                                    \
2635                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2636                       (_val))
2637
2638void arm_cpu_list(void);
2639uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2640                                 uint32_t cur_el, bool secure);
2641
2642/* Return the highest implemented Exception Level */
2643static inline int arm_highest_el(CPUARMState *env)
2644{
2645    if (arm_feature(env, ARM_FEATURE_EL3)) {
2646        return 3;
2647    }
2648    if (arm_feature(env, ARM_FEATURE_EL2)) {
2649        return 2;
2650    }
2651    return 1;
2652}
2653
2654/* Return true if a v7M CPU is in Handler mode */
2655static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2656{
2657    return env->v7m.exception != 0;
2658}
2659
2660/* Return the current Exception Level (as per ARMv8; note that this differs
2661 * from the ARMv7 Privilege Level).
2662 */
2663static inline int arm_current_el(CPUARMState *env)
2664{
2665    if (arm_feature(env, ARM_FEATURE_M)) {
2666        return arm_v7m_is_handler_mode(env) ||
2667            !(env->v7m.control[env->v7m.secure] & 1);
2668    }
2669
2670    if (is_a64(env)) {
2671        return extract32(env->pstate, 2, 2);
2672    }
2673
2674    switch (env->uncached_cpsr & 0x1f) {
2675    case ARM_CPU_MODE_USR:
2676        return 0;
2677    case ARM_CPU_MODE_HYP:
2678        return 2;
2679    case ARM_CPU_MODE_MON:
2680        return 3;
2681    default:
2682        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2683            /* If EL3 is 32-bit then all secure privileged modes run in
2684             * EL3
2685             */
2686            return 3;
2687        }
2688
2689        return 1;
2690    }
2691}
2692
2693/**
2694 * write_list_to_cpustate
2695 * @cpu: ARMCPU
2696 *
2697 * For each register listed in the ARMCPU cpreg_indexes list, write
2698 * its value from the cpreg_values list into the ARMCPUState structure.
2699 * This updates TCG's working data structures from KVM data or
2700 * from incoming migration state.
2701 *
2702 * Returns: true if all register values were updated correctly,
2703 * false if some register was unknown or could not be written.
2704 * Note that we do not stop early on failure -- we will attempt
2705 * writing all registers in the list.
2706 */
2707bool write_list_to_cpustate(ARMCPU *cpu);
2708
2709/**
2710 * write_cpustate_to_list:
2711 * @cpu: ARMCPU
2712 * @kvm_sync: true if this is for syncing back to KVM
2713 *
2714 * For each register listed in the ARMCPU cpreg_indexes list, write
2715 * its value from the ARMCPUState structure into the cpreg_values list.
2716 * This is used to copy info from TCG's working data structures into
2717 * KVM or for outbound migration.
2718 *
2719 * @kvm_sync is true if we are doing this in order to sync the
2720 * register state back to KVM. In this case we will only update
2721 * values in the list if the previous list->cpustate sync actually
2722 * successfully wrote the CPU state. Otherwise we will keep the value
2723 * that is in the list.
2724 *
2725 * Returns: true if all register values were read correctly,
2726 * false if some register was unknown or could not be read.
2727 * Note that we do not stop early on failure -- we will attempt
2728 * reading all registers in the list.
2729 */
2730bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2731
2732#define ARM_CPUID_TI915T      0x54029152
2733#define ARM_CPUID_TI925T      0x54029252
2734
2735#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2736#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2737#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2738
2739#define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2740
2741#define cpu_list arm_cpu_list
2742
2743/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2744 *
2745 * If EL3 is 64-bit:
2746 *  + NonSecure EL1 & 0 stage 1
2747 *  + NonSecure EL1 & 0 stage 2
2748 *  + NonSecure EL2
2749 *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2750 *  + Secure EL1 & 0
2751 *  + Secure EL3
2752 * If EL3 is 32-bit:
2753 *  + NonSecure PL1 & 0 stage 1
2754 *  + NonSecure PL1 & 0 stage 2
2755 *  + NonSecure PL2
2756 *  + Secure PL0
2757 *  + Secure PL1
2758 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2759 *
2760 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2761 *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2762 *     because they may differ in access permissions even if the VA->PA map is
2763 *     the same
2764 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2765 *     translation, which means that we have one mmu_idx that deals with two
2766 *     concatenated translation regimes [this sort of combined s1+2 TLB is
2767 *     architecturally permitted]
2768 *  3. we don't need to allocate an mmu_idx to translations that we won't be
2769 *     handling via the TLB. The only way to do a stage 1 translation without
2770 *     the immediate stage 2 translation is via the ATS or AT system insns,
2771 *     which can be slow-pathed and always do a page table walk.
2772 *     The only use of stage 2 translations is either as part of an s1+2
2773 *     lookup or when loading the descriptors during a stage 1 page table walk,
2774 *     and in both those cases we don't use the TLB.
2775 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2776 *     translation regimes, because they map reasonably well to each other
2777 *     and they can't both be active at the same time.
2778 *  5. we want to be able to use the TLB for accesses done as part of a
2779 *     stage1 page table walk, rather than having to walk the stage2 page
2780 *     table over and over.
2781 *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2782 *     Never (PAN) bit within PSTATE.
2783 *  7. we fold together the secure and non-secure regimes for A-profile,
2784 *     because there are no banked system registers for aarch64, so the
2785 *     process of switching between secure and non-secure is
2786 *     already heavyweight.
2787 *
2788 * This gives us the following list of cases:
2789 *
2790 * EL0 EL1&0 stage 1+2 (aka NS PL0)
2791 * EL1 EL1&0 stage 1+2 (aka NS PL1)
2792 * EL1 EL1&0 stage 1+2 +PAN
2793 * EL0 EL2&0
2794 * EL2 EL2&0
2795 * EL2 EL2&0 +PAN
2796 * EL2 (aka NS PL2)
2797 * EL3 (aka S PL1)
2798 * Physical (NS & S)
2799 * Stage2 (NS & S)
2800 *
2801 * for a total of 12 different mmu_idx.
2802 *
2803 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2804 * as A profile. They only need to distinguish EL0 and EL1 (and
2805 * EL2 if we ever model a Cortex-R52).
2806 *
2807 * M profile CPUs are rather different as they do not have a true MMU.
2808 * They have the following different MMU indexes:
2809 *  User
2810 *  Privileged
2811 *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2812 *  Privileged, execution priority negative (ditto)
2813 * If the CPU supports the v8M Security Extension then there are also:
2814 *  Secure User
2815 *  Secure Privileged
2816 *  Secure User, execution priority negative
2817 *  Secure Privileged, execution priority negative
2818 *
2819 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2820 * are not quite the same -- different CPU types (most notably M profile
2821 * vs A/R profile) would like to use MMU indexes with different semantics,
2822 * but since we don't ever need to use all of those in a single CPU we
2823 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2824 * modes + total number of M profile MMU modes". The lower bits of
2825 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2826 * the same for any particular CPU.
2827 * Variables of type ARMMUIdx are always full values, and the core
2828 * index values are in variables of type 'int'.
2829 *
2830 * Our enumeration includes at the end some entries which are not "true"
2831 * mmu_idx values in that they don't have corresponding TLBs and are only
2832 * valid for doing slow path page table walks.
2833 *
2834 * The constant names here are patterned after the general style of the names
2835 * of the AT/ATS operations.
2836 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2837 * For M profile we arrange them to have a bit for priv, a bit for negpri
2838 * and a bit for secure.
2839 */
2840#define ARM_MMU_IDX_A     0x10  /* A profile */
2841#define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2842#define ARM_MMU_IDX_M     0x40  /* M profile */
2843
2844/* Meanings of the bits for M profile mmu idx values */
2845#define ARM_MMU_IDX_M_PRIV   0x1
2846#define ARM_MMU_IDX_M_NEGPRI 0x2
2847#define ARM_MMU_IDX_M_S      0x4  /* Secure */
2848
2849#define ARM_MMU_IDX_TYPE_MASK \
2850    (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2851#define ARM_MMU_IDX_COREIDX_MASK 0xf
2852
2853typedef enum ARMMMUIdx {
2854    /*
2855     * A-profile.
2856     */
2857    ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2858    ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2859    ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2860    ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2861    ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2862    ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2863    ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2864    ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2865
2866    /*
2867     * Used for second stage of an S12 page table walk, or for descriptor
2868     * loads during first stage of an S1 page table walk.  Note that both
2869     * are in use simultaneously for SecureEL2: the security state for
2870     * the S2 ptw is selected by the NS bit from the S1 ptw.
2871     */
2872    ARMMMUIdx_Stage2_S  = 8 | ARM_MMU_IDX_A,
2873    ARMMMUIdx_Stage2    = 9 | ARM_MMU_IDX_A,
2874
2875    /* TLBs with 1-1 mapping to the physical address spaces. */
2876    ARMMMUIdx_Phys_S     = 10 | ARM_MMU_IDX_A,
2877    ARMMMUIdx_Phys_NS    = 11 | ARM_MMU_IDX_A,
2878    ARMMMUIdx_Phys_Root  = 12 | ARM_MMU_IDX_A,
2879    ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
2880
2881    /*
2882     * These are not allocated TLBs and are used only for AT system
2883     * instructions or for the first stage of an S12 page table walk.
2884     */
2885    ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2886    ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2887    ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2888
2889    /*
2890     * M-profile.
2891     */
2892    ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2893    ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2894    ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2895    ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2896    ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2897    ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2898    ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2899    ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2900} ARMMMUIdx;
2901
2902/*
2903 * Bit macros for the core-mmu-index values for each index,
2904 * for use when calling tlb_flush_by_mmuidx() and friends.
2905 */
2906#define TO_CORE_BIT(NAME) \
2907    ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2908
2909typedef enum ARMMMUIdxBit {
2910    TO_CORE_BIT(E10_0),
2911    TO_CORE_BIT(E20_0),
2912    TO_CORE_BIT(E10_1),
2913    TO_CORE_BIT(E10_1_PAN),
2914    TO_CORE_BIT(E2),
2915    TO_CORE_BIT(E20_2),
2916    TO_CORE_BIT(E20_2_PAN),
2917    TO_CORE_BIT(E3),
2918    TO_CORE_BIT(Stage2),
2919    TO_CORE_BIT(Stage2_S),
2920
2921    TO_CORE_BIT(MUser),
2922    TO_CORE_BIT(MPriv),
2923    TO_CORE_BIT(MUserNegPri),
2924    TO_CORE_BIT(MPrivNegPri),
2925    TO_CORE_BIT(MSUser),
2926    TO_CORE_BIT(MSPriv),
2927    TO_CORE_BIT(MSUserNegPri),
2928    TO_CORE_BIT(MSPrivNegPri),
2929} ARMMMUIdxBit;
2930
2931#undef TO_CORE_BIT
2932
2933#define MMU_USER_IDX 0
2934
2935/* Indexes used when registering address spaces with cpu_address_space_init */
2936typedef enum ARMASIdx {
2937    ARMASIdx_NS = 0,
2938    ARMASIdx_S = 1,
2939    ARMASIdx_TagNS = 2,
2940    ARMASIdx_TagS = 3,
2941} ARMASIdx;
2942
2943static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2944{
2945    /* Assert the relative order of the physical mmu indexes. */
2946    QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2947    QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2948    QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2949    QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2950
2951    return ARMMMUIdx_Phys_S + space;
2952}
2953
2954static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2955{
2956    assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2957    return idx - ARMMMUIdx_Phys_S;
2958}
2959
2960static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2961{
2962    /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2963     * CSSELR is RAZ/WI.
2964     */
2965    return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2966}
2967
2968static inline bool arm_sctlr_b(CPUARMState *env)
2969{
2970    return
2971        /* We need not implement SCTLR.ITD in user-mode emulation, so
2972         * let linux-user ignore the fact that it conflicts with SCTLR_B.
2973         * This lets people run BE32 binaries with "-cpu any".
2974         */
2975#ifndef CONFIG_USER_ONLY
2976        !arm_feature(env, ARM_FEATURE_V7) &&
2977#endif
2978        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2979}
2980
2981uint64_t arm_sctlr(CPUARMState *env, int el);
2982
2983static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2984                                                  bool sctlr_b)
2985{
2986#ifdef CONFIG_USER_ONLY
2987    /*
2988     * In system mode, BE32 is modelled in line with the
2989     * architecture (as word-invariant big-endianness), where loads
2990     * and stores are done little endian but from addresses which
2991     * are adjusted by XORing with the appropriate constant. So the
2992     * endianness to use for the raw data access is not affected by
2993     * SCTLR.B.
2994     * In user mode, however, we model BE32 as byte-invariant
2995     * big-endianness (because user-only code cannot tell the
2996     * difference), and so we need to use a data access endianness
2997     * that depends on SCTLR.B.
2998     */
2999    if (sctlr_b) {
3000        return true;
3001    }
3002#endif
3003    /* In 32bit endianness is determined by looking at CPSR's E bit */
3004    return env->uncached_cpsr & CPSR_E;
3005}
3006
3007static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3008{
3009    return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3010}
3011
3012/* Return true if the processor is in big-endian mode. */
3013static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3014{
3015    if (!is_a64(env)) {
3016        return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3017    } else {
3018        int cur_el = arm_current_el(env);
3019        uint64_t sctlr = arm_sctlr(env, cur_el);
3020        return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3021    }
3022}
3023
3024#include "exec/cpu-all.h"
3025
3026/*
3027 * We have more than 32-bits worth of state per TB, so we split the data
3028 * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3029 * We collect these two parts in CPUARMTBFlags where they are named
3030 * flags and flags2 respectively.
3031 *
3032 * The flags that are shared between all execution modes, TBFLAG_ANY,
3033 * are stored in flags.  The flags that are specific to a given mode
3034 * are stores in flags2.  Since cs_base is sized on the configured
3035 * address size, flags2 always has 64-bits for A64, and a minimum of
3036 * 32-bits for A32 and M32.
3037 *
3038 * The bits for 32-bit A-profile and M-profile partially overlap:
3039 *
3040 *  31         23         11 10             0
3041 * +-------------+----------+----------------+
3042 * |             |          |   TBFLAG_A32   |
3043 * | TBFLAG_AM32 |          +-----+----------+
3044 * |             |                |TBFLAG_M32|
3045 * +-------------+----------------+----------+
3046 *  31         23                6 5        0
3047 *
3048 * Unless otherwise noted, these bits are cached in env->hflags.
3049 */
3050FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3051FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3052FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3053FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3054FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3055/* Target EL if we take a floating-point-disabled exception */
3056FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3057/* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3058FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3059FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3060FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3061FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3062
3063/*
3064 * Bit usage when in AArch32 state, both A- and M-profile.
3065 */
3066FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3067FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3068
3069/*
3070 * Bit usage when in AArch32 state, for A-profile only.
3071 */
3072FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3073FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3074/*
3075 * We store the bottom two bits of the CPAR as TB flags and handle
3076 * checks on the other bits at runtime. This shares the same bits as
3077 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3078 * Not cached, because VECLEN+VECSTRIDE are not cached.
3079 */
3080FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3081FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3082FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3083FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3084/*
3085 * Indicates whether cp register reads and writes by guest code should access
3086 * the secure or nonsecure bank of banked registers; note that this is not
3087 * the same thing as the current security state of the processor!
3088 */
3089FIELD(TBFLAG_A32, NS, 10, 1)
3090/*
3091 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3092 * This requires an SME trap from AArch32 mode when using NEON.
3093 */
3094FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3095
3096/*
3097 * Bit usage when in AArch32 state, for M-profile only.
3098 */
3099/* Handler (ie not Thread) mode */
3100FIELD(TBFLAG_M32, HANDLER, 0, 1)
3101/* Whether we should generate stack-limit checks */
3102FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3103/* Set if FPCCR.LSPACT is set */
3104FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3105/* Set if we must create a new FP context */
3106FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3107/* Set if FPCCR.S does not match current security state */
3108FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3109/* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3110FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3111/* Set if in secure mode */
3112FIELD(TBFLAG_M32, SECURE, 6, 1)
3113
3114/*
3115 * Bit usage when in AArch64 state
3116 */
3117FIELD(TBFLAG_A64, TBII, 0, 2)
3118FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3119/* The current vector length, either NVL or SVL. */
3120FIELD(TBFLAG_A64, VL, 4, 4)
3121FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3122FIELD(TBFLAG_A64, BT, 9, 1)
3123FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3124FIELD(TBFLAG_A64, TBID, 12, 2)
3125FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3126FIELD(TBFLAG_A64, ATA, 15, 1)
3127FIELD(TBFLAG_A64, TCMA, 16, 2)
3128FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3129FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3130FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3131FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3132FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3133FIELD(TBFLAG_A64, SVL, 24, 4)
3134/* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3135FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3136FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
3137FIELD(TBFLAG_A64, NAA, 30, 1)
3138
3139/*
3140 * Helpers for using the above.
3141 */
3142#define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3143    (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3144#define DP_TBFLAG_A64(DST, WHICH, VAL) \
3145    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3146#define DP_TBFLAG_A32(DST, WHICH, VAL) \
3147    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3148#define DP_TBFLAG_M32(DST, WHICH, VAL) \
3149    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3150#define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3151    (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3152
3153#define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3154#define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3155#define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3156#define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3157#define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3158
3159/**
3160 * cpu_mmu_index:
3161 * @env: The cpu environment
3162 * @ifetch: True for code access, false for data access.
3163 *
3164 * Return the core mmu index for the current translation regime.
3165 * This function is used by generic TCG code paths.
3166 */
3167static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3168{
3169    return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3170}
3171
3172/**
3173 * sve_vq
3174 * @env: the cpu context
3175 *
3176 * Return the VL cached within env->hflags, in units of quadwords.
3177 */
3178static inline int sve_vq(CPUARMState *env)
3179{
3180    return EX_TBFLAG_A64(env->hflags, VL) + 1;
3181}
3182
3183/**
3184 * sme_vq
3185 * @env: the cpu context
3186 *
3187 * Return the SVL cached within env->hflags, in units of quadwords.
3188 */
3189static inline int sme_vq(CPUARMState *env)
3190{
3191    return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3192}
3193
3194static inline bool bswap_code(bool sctlr_b)
3195{
3196#ifdef CONFIG_USER_ONLY
3197    /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3198     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3199     * would also end up as a mixed-endian mode with BE code, LE data.
3200     */
3201    return
3202#if TARGET_BIG_ENDIAN
3203        1 ^
3204#endif
3205        sctlr_b;
3206#else
3207    /* All code access in ARM is little endian, and there are no loaders
3208     * doing swaps that need to be reversed
3209     */
3210    return 0;
3211#endif
3212}
3213
3214#ifdef CONFIG_USER_ONLY
3215static inline bool arm_cpu_bswap_data(CPUARMState *env)
3216{
3217    return
3218#if TARGET_BIG_ENDIAN
3219       1 ^
3220#endif
3221       arm_cpu_data_is_big_endian(env);
3222}
3223#endif
3224
3225void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3226                          uint64_t *cs_base, uint32_t *flags);
3227
3228enum {
3229    QEMU_PSCI_CONDUIT_DISABLED = 0,
3230    QEMU_PSCI_CONDUIT_SMC = 1,
3231    QEMU_PSCI_CONDUIT_HVC = 2,
3232};
3233
3234#ifndef CONFIG_USER_ONLY
3235/* Return the address space index to use for a memory access */
3236static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3237{
3238    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3239}
3240
3241/* Return the AddressSpace to use for a memory access
3242 * (which depends on whether the access is S or NS, and whether
3243 * the board gave us a separate AddressSpace for S accesses).
3244 */
3245static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3246{
3247    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3248}
3249#endif
3250
3251/**
3252 * arm_register_pre_el_change_hook:
3253 * Register a hook function which will be called immediately before this
3254 * CPU changes exception level or mode. The hook function will be
3255 * passed a pointer to the ARMCPU and the opaque data pointer passed
3256 * to this function when the hook was registered.
3257 *
3258 * Note that if a pre-change hook is called, any registered post-change hooks
3259 * are guaranteed to subsequently be called.
3260 */
3261void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3262                                 void *opaque);
3263/**
3264 * arm_register_el_change_hook:
3265 * Register a hook function which will be called immediately after this
3266 * CPU changes exception level or mode. The hook function will be
3267 * passed a pointer to the ARMCPU and the opaque data pointer passed
3268 * to this function when the hook was registered.
3269 *
3270 * Note that any registered hooks registered here are guaranteed to be called
3271 * if pre-change hooks have been.
3272 */
3273void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3274        *opaque);
3275
3276/**
3277 * arm_rebuild_hflags:
3278 * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3279 */
3280void arm_rebuild_hflags(CPUARMState *env);
3281
3282/**
3283 * aa32_vfp_dreg:
3284 * Return a pointer to the Dn register within env in 32-bit mode.
3285 */
3286static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3287{
3288    return &env->vfp.zregs[regno >> 1].d[regno & 1];
3289}
3290
3291/**
3292 * aa32_vfp_qreg:
3293 * Return a pointer to the Qn register within env in 32-bit mode.
3294 */
3295static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3296{
3297    return &env->vfp.zregs[regno].d[0];
3298}
3299
3300/**
3301 * aa64_vfp_qreg:
3302 * Return a pointer to the Qn register within env in 64-bit mode.
3303 */
3304static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3305{
3306    return &env->vfp.zregs[regno].d[0];
3307}
3308
3309/* Shared between translate-sve.c and sve_helper.c.  */
3310extern const uint64_t pred_esz_masks[5];
3311
3312/*
3313 * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3314 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3315 * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3316 */
3317#define PAGE_BTI            PAGE_TARGET_1
3318#define PAGE_MTE            PAGE_TARGET_2
3319#define PAGE_TARGET_STICKY  PAGE_MTE
3320
3321/* We associate one allocation tag per 16 bytes, the minimum.  */
3322#define LOG2_TAG_GRANULE 4
3323#define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3324
3325#ifdef CONFIG_USER_ONLY
3326#define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3327#endif
3328
3329#ifdef TARGET_TAGGED_ADDRESSES
3330/**
3331 * cpu_untagged_addr:
3332 * @cs: CPU context
3333 * @x: tagged address
3334 *
3335 * Remove any address tag from @x.  This is explicitly related to the
3336 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3337 *
3338 * There should be a better place to put this, but we need this in
3339 * include/exec/cpu_ldst.h, and not some place linux-user specific.
3340 */
3341static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3342{
3343    ARMCPU *cpu = ARM_CPU(cs);
3344    if (cpu->env.tagged_addr_enable) {
3345        /*
3346         * TBI is enabled for userspace but not kernelspace addresses.
3347         * Only clear the tag if bit 55 is clear.
3348         */
3349        x &= sextract64(x, 0, 56);
3350    }
3351    return x;
3352}
3353#endif
3354
3355/*
3356 * Naming convention for isar_feature functions:
3357 * Functions which test 32-bit ID registers should have _aa32_ in
3358 * their name. Functions which test 64-bit ID registers should have
3359 * _aa64_ in their name. These must only be used in code where we
3360 * know for certain that the CPU has AArch32 or AArch64 respectively
3361 * or where the correct answer for a CPU which doesn't implement that
3362 * CPU state is "false" (eg when generating A32 or A64 code, if adding
3363 * system registers that are specific to that CPU state, for "should
3364 * we let this system register bit be set" tests where the 32-bit
3365 * flavour of the register doesn't have the bit, and so on).
3366 * Functions which simply ask "does this feature exist at all" have
3367 * _any_ in their name, and always return the logical OR of the _aa64_
3368 * and the _aa32_ function.
3369 */
3370
3371/*
3372 * 32-bit feature tests via id registers.
3373 */
3374static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3375{
3376    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3377}
3378
3379static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3380{
3381    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3382}
3383
3384static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3385{
3386    /* (M-profile) low-overhead loops and branch future */
3387    return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3388}
3389
3390static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3391{
3392    return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3393}
3394
3395static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3396{
3397    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3398}
3399
3400static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3401{
3402    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3403}
3404
3405static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3406{
3407    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3408}
3409
3410static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3411{
3412    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3413}
3414
3415static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3416{
3417    return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3418}
3419
3420static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3421{
3422    return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3423}
3424
3425static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3426{
3427    return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3428}
3429
3430static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3431{
3432    return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3433}
3434
3435static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3436{
3437    return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3438}
3439
3440static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3441{
3442    return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3443}
3444
3445static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3446{
3447    return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3448}
3449
3450static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3451{
3452    return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3453}
3454
3455static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3456{
3457    return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3458}
3459
3460static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3461{
3462    return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3463}
3464
3465static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3466{
3467    return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3468}
3469
3470static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3471{
3472    return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3473}
3474
3475static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3476{
3477    /*
3478     * Return true if M-profile state handling insns
3479     * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3480     */
3481    return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3482}
3483
3484static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3485{
3486    /* Sadly this is encoded differently for A-profile and M-profile */
3487    if (isar_feature_aa32_mprofile(id)) {
3488        return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3489    } else {
3490        return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3491    }
3492}
3493
3494static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3495{
3496    /*
3497     * Return true if MVE is supported (either integer or floating point).
3498     * We must check for M-profile as the MVFR1 field means something
3499     * else for A-profile.
3500     */
3501    return isar_feature_aa32_mprofile(id) &&
3502        FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3503}
3504
3505static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3506{
3507    /*
3508     * Return true if MVE is supported (either integer or floating point).
3509     * We must check for M-profile as the MVFR1 field means something
3510     * else for A-profile.
3511     */
3512    return isar_feature_aa32_mprofile(id) &&
3513        FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3514}
3515
3516static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3517{
3518    /*
3519     * Return true if either VFP or SIMD is implemented.
3520     * In this case, a minimum of VFP w/ D0-D15.
3521     */
3522    return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3523}
3524
3525static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3526{
3527    /* Return true if D16-D31 are implemented */
3528    return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3529}
3530
3531static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3532{
3533    return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3534}
3535
3536static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3537{
3538    /* Return true if CPU supports single precision floating point, VFPv2 */
3539    return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3540}
3541
3542static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3543{
3544    /* Return true if CPU supports single precision floating point, VFPv3 */
3545    return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3546}
3547
3548static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3549{
3550    /* Return true if CPU supports double precision floating point, VFPv2 */
3551    return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3552}
3553
3554static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3555{
3556    /* Return true if CPU supports double precision floating point, VFPv3 */
3557    return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3558}
3559
3560static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3561{
3562    return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3563}
3564
3565/*
3566 * We always set the FP and SIMD FP16 fields to indicate identical
3567 * levels of support (assuming SIMD is implemented at all), so
3568 * we only need one set of accessors.
3569 */
3570static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3571{
3572    return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3573}
3574
3575static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3576{
3577    return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3578}
3579
3580/*
3581 * Note that this ID register field covers both VFP and Neon FMAC,
3582 * so should usually be tested in combination with some other
3583 * check that confirms the presence of whichever of VFP or Neon is
3584 * relevant, to avoid accidentally enabling a Neon feature on
3585 * a VFP-no-Neon core or vice-versa.
3586 */
3587static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3588{
3589    return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3590}
3591
3592static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3593{
3594    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3595}
3596
3597static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3598{
3599    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3600}
3601
3602static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3603{
3604    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3605}
3606
3607static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3608{
3609    return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3610}
3611
3612static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3613{
3614    return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3615}
3616
3617static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3618{
3619    return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3620}
3621
3622static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3623{
3624    return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3625}
3626
3627static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
3628{
3629    /* 0xf means "non-standard IMPDEF PMU" */
3630    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3631        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3632}
3633
3634static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
3635{
3636    /* 0xf means "non-standard IMPDEF PMU" */
3637    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3638        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3639}
3640
3641static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3642{
3643    /* 0xf means "non-standard IMPDEF PMU" */
3644    return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3645        FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3646}
3647
3648static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3649{
3650    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3651}
3652
3653static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3654{
3655    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3656}
3657
3658static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3659{
3660    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3661}
3662
3663static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3664{
3665    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3666}
3667
3668static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id)
3669{
3670    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1;
3671}
3672
3673static inline bool isar_feature_aa32_evt(const ARMISARegisters *id)
3674{
3675    return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2;
3676}
3677
3678static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3679{
3680    return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3681}
3682
3683static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3684{
3685    return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3686}
3687
3688static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3689{
3690    return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3691}
3692
3693static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3694{
3695    return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3696}
3697
3698static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3699{
3700    return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3701}
3702
3703/*
3704 * 64-bit feature tests via id registers.
3705 */
3706static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3707{
3708    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3709}
3710
3711static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3712{
3713    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3714}
3715
3716static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3717{
3718    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3719}
3720
3721static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3722{
3723    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3724}
3725
3726static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3727{
3728    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3729}
3730
3731static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3732{
3733    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3734}
3735
3736static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3737{
3738    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3739}
3740
3741static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3742{
3743    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3744}
3745
3746static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3747{
3748    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3749}
3750
3751static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3752{
3753    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3754}
3755
3756static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3757{
3758    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3759}
3760
3761static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3762{
3763    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3764}
3765
3766static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3767{
3768    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3769}
3770
3771static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3772{
3773    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3774}
3775
3776static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3777{
3778    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3779}
3780
3781static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3782{
3783    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3784}
3785
3786static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3787{
3788    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3789}
3790
3791static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3792{
3793    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3794}
3795
3796static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3797{
3798    /*
3799     * Return true if any form of pauth is enabled, as this
3800     * predicate controls migration of the 128-bit keys.
3801     */
3802    return (id->id_aa64isar1 &
3803            (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3804             FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3805             FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3806             FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3807}
3808
3809static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3810{
3811    /*
3812     * Return true if pauth is enabled with the architected QARMA algorithm.
3813     * QEMU will always set APA+GPA to the same value.
3814     */
3815    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3816}
3817
3818static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3819{
3820    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3821}
3822
3823static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3824{
3825    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3826}
3827
3828static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3829{
3830    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3831}
3832
3833static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3834{
3835    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3836}
3837
3838static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3839{
3840    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3841}
3842
3843static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3844{
3845    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3846}
3847
3848static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3849{
3850    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3851}
3852
3853static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3854{
3855    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3856}
3857
3858static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3859{
3860    /* We always set the AdvSIMD and FP fields identically.  */
3861    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3862}
3863
3864static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3865{
3866    /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3867    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3868}
3869
3870static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3871{
3872    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3873}
3874
3875static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3876{
3877    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3878}
3879
3880static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3881{
3882    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3883}
3884
3885static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3886{
3887    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3888}
3889
3890static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
3891{
3892    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
3893}
3894
3895static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3896{
3897    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3898}
3899
3900static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3901{
3902    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3903}
3904
3905static inline bool isar_feature_aa64_rme(const ARMISARegisters *id)
3906{
3907    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RME) != 0;
3908}
3909
3910static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3911{
3912    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3913}
3914
3915static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3916{
3917    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3918}
3919
3920static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3921{
3922    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3923}
3924
3925static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3926{
3927    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3928}
3929
3930static inline bool isar_feature_aa64_pan3(const ARMISARegisters *id)
3931{
3932    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 3;
3933}
3934
3935static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3936{
3937    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3938}
3939
3940static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3941{
3942    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3943}
3944
3945static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3946{
3947    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3948}
3949
3950static inline bool isar_feature_aa64_lse2(const ARMISARegisters *id)
3951{
3952    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, AT) != 0;
3953}
3954
3955static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3956{
3957    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3958}
3959
3960static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
3961{
3962    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
3963}
3964
3965static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id)
3966{
3967    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1;
3968}
3969
3970static inline bool isar_feature_aa64_evt(const ARMISARegisters *id)
3971{
3972    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2;
3973}
3974
3975static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3976{
3977    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3978}
3979
3980static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3981{
3982    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3983}
3984
3985static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3986{
3987    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3988}
3989
3990static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
3991{
3992    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
3993}
3994
3995static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
3996{
3997    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3998        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3999}
4000
4001static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
4002{
4003    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4004        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4005}
4006
4007static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
4008{
4009    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
4010        FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4011}
4012
4013static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4014{
4015    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4016}
4017
4018static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4019{
4020    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4021}
4022
4023static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4024{
4025    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4026}
4027
4028static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4029{
4030    return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4031}
4032
4033static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4034{
4035    unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4036    return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4037}
4038
4039static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4040{
4041    return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4042}
4043
4044static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4045{
4046    unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4047    return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4048}
4049
4050static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
4051{
4052    return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
4053}
4054
4055static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
4056{
4057    return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
4058}
4059
4060static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
4061{
4062    return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
4063}
4064
4065static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
4066{
4067    unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4068    return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
4069}
4070
4071static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
4072{
4073    unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4074    return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
4075}
4076
4077static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
4078{
4079    unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
4080    return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
4081}
4082
4083static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id)
4084{
4085    return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0;
4086}
4087
4088static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4089{
4090    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4091}
4092
4093static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4094{
4095    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4096}
4097
4098static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
4099{
4100    return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
4101}
4102
4103static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id)
4104{
4105    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0;
4106}
4107
4108static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id)
4109{
4110    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2;
4111}
4112
4113static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4114{
4115    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4116}
4117
4118static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4119{
4120    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4121}
4122
4123static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4124{
4125    int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4126    if (key >= 2) {
4127        return true;      /* FEAT_CSV2_2 */
4128    }
4129    if (key == 1) {
4130        key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4131        return key >= 2;  /* FEAT_CSV2_1p2 */
4132    }
4133    return false;
4134}
4135
4136static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4137{
4138    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4139}
4140
4141static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4142{
4143    return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4144}
4145
4146static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4147{
4148    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4149}
4150
4151static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4152{
4153    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4154}
4155
4156static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4157{
4158    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4159}
4160
4161static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4162{
4163    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4164}
4165
4166static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4167{
4168    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4169}
4170
4171static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4172{
4173    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4174}
4175
4176static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4177{
4178    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4179}
4180
4181static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4182{
4183    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4184}
4185
4186static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4187{
4188    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4189}
4190
4191static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4192{
4193    return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4194}
4195
4196static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4197{
4198    return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4199}
4200
4201static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4202{
4203    return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4204}
4205
4206static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4207{
4208    return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4209}
4210
4211static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4212{
4213    return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4214}
4215
4216/*
4217 * Feature tests for "does this exist in either 32-bit or 64-bit?"
4218 */
4219static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4220{
4221    return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4222}
4223
4224static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4225{
4226    return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4227}
4228
4229static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
4230{
4231    return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
4232}
4233
4234static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
4235{
4236    return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
4237}
4238
4239static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4240{
4241    return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4242}
4243
4244static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4245{
4246    return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4247}
4248
4249static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4250{
4251    return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4252}
4253
4254static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4255{
4256    return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4257}
4258
4259static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4260{
4261    return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4262}
4263
4264static inline bool isar_feature_any_half_evt(const ARMISARegisters *id)
4265{
4266    return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id);
4267}
4268
4269static inline bool isar_feature_any_evt(const ARMISARegisters *id)
4270{
4271    return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id);
4272}
4273
4274/*
4275 * Forward to the above feature tests given an ARMCPU pointer.
4276 */
4277#define cpu_isar_feature(name, cpu) \
4278    ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4279
4280#endif
4281