qemu/target/i386/kvm/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright (C) 2006-2008 Qumranet Technologies
   5 * Copyright IBM, Corp. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qapi/qapi-events-run-state.h"
  17#include "qapi/error.h"
  18#include "qapi/visitor.h"
  19#include <sys/ioctl.h>
  20#include <sys/utsname.h>
  21#include <sys/syscall.h>
  22
  23#include <linux/kvm.h>
  24#include "standard-headers/asm-x86/kvm_para.h"
  25#include "hw/xen/interface/arch-x86/cpuid.h"
  26
  27#include "cpu.h"
  28#include "host-cpu.h"
  29#include "sysemu/sysemu.h"
  30#include "sysemu/hw_accel.h"
  31#include "sysemu/kvm_int.h"
  32#include "sysemu/runstate.h"
  33#include "kvm_i386.h"
  34#include "sev.h"
  35#include "xen-emu.h"
  36#include "hyperv.h"
  37#include "hyperv-proto.h"
  38
  39#include "exec/gdbstub.h"
  40#include "qemu/host-utils.h"
  41#include "qemu/main-loop.h"
  42#include "qemu/ratelimit.h"
  43#include "qemu/config-file.h"
  44#include "qemu/error-report.h"
  45#include "qemu/memalign.h"
  46#include "hw/i386/x86.h"
  47#include "hw/i386/kvm/xen_evtchn.h"
  48#include "hw/i386/pc.h"
  49#include "hw/i386/apic.h"
  50#include "hw/i386/apic_internal.h"
  51#include "hw/i386/apic-msidef.h"
  52#include "hw/i386/intel_iommu.h"
  53#include "hw/i386/x86-iommu.h"
  54#include "hw/i386/e820_memory_layout.h"
  55
  56#include "hw/xen/xen.h"
  57
  58#include "hw/pci/pci.h"
  59#include "hw/pci/msi.h"
  60#include "hw/pci/msix.h"
  61#include "migration/blocker.h"
  62#include "exec/memattrs.h"
  63#include "trace.h"
  64
  65#include CONFIG_DEVICES
  66
  67//#define DEBUG_KVM
  68
  69#ifdef DEBUG_KVM
  70#define DPRINTF(fmt, ...) \
  71    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  72#else
  73#define DPRINTF(fmt, ...) \
  74    do { } while (0)
  75#endif
  76
  77/* From arch/x86/kvm/lapic.h */
  78#define KVM_APIC_BUS_CYCLE_NS       1
  79#define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
  80
  81#define MSR_KVM_WALL_CLOCK  0x11
  82#define MSR_KVM_SYSTEM_TIME 0x12
  83
  84/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
  85 * 255 kvm_msr_entry structs */
  86#define MSR_BUF_SIZE 4096
  87
  88static void kvm_init_msrs(X86CPU *cpu);
  89
  90const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  91    KVM_CAP_INFO(SET_TSS_ADDR),
  92    KVM_CAP_INFO(EXT_CPUID),
  93    KVM_CAP_INFO(MP_STATE),
  94    KVM_CAP_LAST_INFO
  95};
  96
  97static bool has_msr_star;
  98static bool has_msr_hsave_pa;
  99static bool has_msr_tsc_aux;
 100static bool has_msr_tsc_adjust;
 101static bool has_msr_tsc_deadline;
 102static bool has_msr_feature_control;
 103static bool has_msr_misc_enable;
 104static bool has_msr_smbase;
 105static bool has_msr_bndcfgs;
 106static int lm_capable_kernel;
 107static bool has_msr_hv_hypercall;
 108static bool has_msr_hv_crash;
 109static bool has_msr_hv_reset;
 110static bool has_msr_hv_vpindex;
 111static bool hv_vpindex_settable;
 112static bool has_msr_hv_runtime;
 113static bool has_msr_hv_synic;
 114static bool has_msr_hv_stimer;
 115static bool has_msr_hv_frequencies;
 116static bool has_msr_hv_reenlightenment;
 117static bool has_msr_hv_syndbg_options;
 118static bool has_msr_xss;
 119static bool has_msr_umwait;
 120static bool has_msr_spec_ctrl;
 121static bool has_tsc_scale_msr;
 122static bool has_msr_tsx_ctrl;
 123static bool has_msr_virt_ssbd;
 124static bool has_msr_smi_count;
 125static bool has_msr_arch_capabs;
 126static bool has_msr_core_capabs;
 127static bool has_msr_vmx_vmfunc;
 128static bool has_msr_ucode_rev;
 129static bool has_msr_vmx_procbased_ctls2;
 130static bool has_msr_perf_capabs;
 131static bool has_msr_pkrs;
 132
 133static uint32_t has_architectural_pmu_version;
 134static uint32_t num_architectural_pmu_gp_counters;
 135static uint32_t num_architectural_pmu_fixed_counters;
 136
 137static int has_xsave;
 138static int has_xsave2;
 139static int has_xcrs;
 140static int has_pit_state2;
 141static int has_sregs2;
 142static int has_exception_payload;
 143static int has_triple_fault_event;
 144
 145static bool has_msr_mcg_ext_ctl;
 146
 147static struct kvm_cpuid2 *cpuid_cache;
 148static struct kvm_cpuid2 *hv_cpuid_cache;
 149static struct kvm_msr_list *kvm_feature_msrs;
 150
 151static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
 152
 153#define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
 154static RateLimit bus_lock_ratelimit_ctrl;
 155static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
 156
 157int kvm_has_pit_state2(void)
 158{
 159    return has_pit_state2;
 160}
 161
 162bool kvm_has_smm(void)
 163{
 164    return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
 165}
 166
 167bool kvm_has_adjust_clock_stable(void)
 168{
 169    int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 170
 171    return (ret & KVM_CLOCK_TSC_STABLE);
 172}
 173
 174bool kvm_has_adjust_clock(void)
 175{
 176    return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 177}
 178
 179bool kvm_has_exception_payload(void)
 180{
 181    return has_exception_payload;
 182}
 183
 184static bool kvm_x2apic_api_set_flags(uint64_t flags)
 185{
 186    KVMState *s = KVM_STATE(current_accel());
 187
 188    return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
 189}
 190
 191#define MEMORIZE(fn, _result) \
 192    ({ \
 193        static bool _memorized; \
 194        \
 195        if (_memorized) { \
 196            return _result; \
 197        } \
 198        _memorized = true; \
 199        _result = fn; \
 200    })
 201
 202static bool has_x2apic_api;
 203
 204bool kvm_has_x2apic_api(void)
 205{
 206    return has_x2apic_api;
 207}
 208
 209bool kvm_enable_x2apic(void)
 210{
 211    return MEMORIZE(
 212             kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
 213                                      KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
 214             has_x2apic_api);
 215}
 216
 217bool kvm_hv_vpindex_settable(void)
 218{
 219    return hv_vpindex_settable;
 220}
 221
 222static int kvm_get_tsc(CPUState *cs)
 223{
 224    X86CPU *cpu = X86_CPU(cs);
 225    CPUX86State *env = &cpu->env;
 226    uint64_t value;
 227    int ret;
 228
 229    if (env->tsc_valid) {
 230        return 0;
 231    }
 232
 233    env->tsc_valid = !runstate_is_running();
 234
 235    ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
 236    if (ret < 0) {
 237        return ret;
 238    }
 239
 240    env->tsc = value;
 241    return 0;
 242}
 243
 244static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
 245{
 246    kvm_get_tsc(cpu);
 247}
 248
 249void kvm_synchronize_all_tsc(void)
 250{
 251    CPUState *cpu;
 252
 253    if (kvm_enabled()) {
 254        CPU_FOREACH(cpu) {
 255            run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
 256        }
 257    }
 258}
 259
 260static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
 261{
 262    struct kvm_cpuid2 *cpuid;
 263    int r, size;
 264
 265    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 266    cpuid = g_malloc0(size);
 267    cpuid->nent = max;
 268    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
 269    if (r == 0 && cpuid->nent >= max) {
 270        r = -E2BIG;
 271    }
 272    if (r < 0) {
 273        if (r == -E2BIG) {
 274            g_free(cpuid);
 275            return NULL;
 276        } else {
 277            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
 278                    strerror(-r));
 279            exit(1);
 280        }
 281    }
 282    return cpuid;
 283}
 284
 285/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
 286 * for all entries.
 287 */
 288static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
 289{
 290    struct kvm_cpuid2 *cpuid;
 291    int max = 1;
 292
 293    if (cpuid_cache != NULL) {
 294        return cpuid_cache;
 295    }
 296    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
 297        max *= 2;
 298    }
 299    cpuid_cache = cpuid;
 300    return cpuid;
 301}
 302
 303static bool host_tsx_broken(void)
 304{
 305    int family, model, stepping;\
 306    char vendor[CPUID_VENDOR_SZ + 1];
 307
 308    host_cpu_vendor_fms(vendor, &family, &model, &stepping);
 309
 310    /* Check if we are running on a Haswell host known to have broken TSX */
 311    return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
 312           (family == 6) &&
 313           ((model == 63 && stepping < 4) ||
 314            model == 60 || model == 69 || model == 70);
 315}
 316
 317/* Returns the value for a specific register on the cpuid entry
 318 */
 319static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
 320{
 321    uint32_t ret = 0;
 322    switch (reg) {
 323    case R_EAX:
 324        ret = entry->eax;
 325        break;
 326    case R_EBX:
 327        ret = entry->ebx;
 328        break;
 329    case R_ECX:
 330        ret = entry->ecx;
 331        break;
 332    case R_EDX:
 333        ret = entry->edx;
 334        break;
 335    }
 336    return ret;
 337}
 338
 339/* Find matching entry for function/index on kvm_cpuid2 struct
 340 */
 341static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
 342                                                 uint32_t function,
 343                                                 uint32_t index)
 344{
 345    int i;
 346    for (i = 0; i < cpuid->nent; ++i) {
 347        if (cpuid->entries[i].function == function &&
 348            cpuid->entries[i].index == index) {
 349            return &cpuid->entries[i];
 350        }
 351    }
 352    /* not found: */
 353    return NULL;
 354}
 355
 356uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
 357                                      uint32_t index, int reg)
 358{
 359    struct kvm_cpuid2 *cpuid;
 360    uint32_t ret = 0;
 361    uint32_t cpuid_1_edx, unused;
 362    uint64_t bitmask;
 363
 364    cpuid = get_supported_cpuid(s);
 365
 366    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
 367    if (entry) {
 368        ret = cpuid_entry_get_reg(entry, reg);
 369    }
 370
 371    /* Fixups for the data returned by KVM, below */
 372
 373    if (function == 1 && reg == R_EDX) {
 374        /* KVM before 2.6.30 misreports the following features */
 375        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
 376    } else if (function == 1 && reg == R_ECX) {
 377        /* We can set the hypervisor flag, even if KVM does not return it on
 378         * GET_SUPPORTED_CPUID
 379         */
 380        ret |= CPUID_EXT_HYPERVISOR;
 381        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
 382         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
 383         * and the irqchip is in the kernel.
 384         */
 385        if (kvm_irqchip_in_kernel() &&
 386                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
 387            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
 388        }
 389
 390        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
 391         * without the in-kernel irqchip
 392         */
 393        if (!kvm_irqchip_in_kernel()) {
 394            ret &= ~CPUID_EXT_X2APIC;
 395        }
 396
 397        if (enable_cpu_pm) {
 398            int disable_exits = kvm_check_extension(s,
 399                                                    KVM_CAP_X86_DISABLE_EXITS);
 400
 401            if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
 402                ret |= CPUID_EXT_MONITOR;
 403            }
 404        }
 405    } else if (function == 6 && reg == R_EAX) {
 406        ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
 407    } else if (function == 7 && index == 0 && reg == R_EBX) {
 408        /* Not new instructions, just an optimization.  */
 409        uint32_t ebx;
 410        host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
 411        ret |= ebx & CPUID_7_0_EBX_ERMS;
 412
 413        if (host_tsx_broken()) {
 414            ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
 415        }
 416    } else if (function == 7 && index == 0 && reg == R_EDX) {
 417        /* Not new instructions, just an optimization.  */
 418        uint32_t edx;
 419        host_cpuid(7, 0, &unused, &unused, &unused, &edx);
 420        ret |= edx & CPUID_7_0_EDX_FSRM;
 421
 422        /*
 423         * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
 424         * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
 425         * returned by KVM_GET_MSR_INDEX_LIST.
 426         */
 427        if (!has_msr_arch_capabs) {
 428            ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
 429        }
 430    } else if (function == 7 && index == 1 && reg == R_EAX) {
 431        /* Not new instructions, just an optimization.  */
 432        uint32_t eax;
 433        host_cpuid(7, 1, &eax, &unused, &unused, &unused);
 434        ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
 435    } else if (function == 7 && index == 2 && reg == R_EDX) {
 436        uint32_t edx;
 437        host_cpuid(7, 2, &unused, &unused, &unused, &edx);
 438        ret |= edx & CPUID_7_2_EDX_MCDT_NO;
 439    } else if (function == 0xd && index == 0 &&
 440               (reg == R_EAX || reg == R_EDX)) {
 441        /*
 442         * The value returned by KVM_GET_SUPPORTED_CPUID does not include
 443         * features that still have to be enabled with the arch_prctl
 444         * system call.  QEMU needs the full value, which is retrieved
 445         * with KVM_GET_DEVICE_ATTR.
 446         */
 447        struct kvm_device_attr attr = {
 448            .group = 0,
 449            .attr = KVM_X86_XCOMP_GUEST_SUPP,
 450            .addr = (unsigned long) &bitmask
 451        };
 452
 453        bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
 454        if (!sys_attr) {
 455            return ret;
 456        }
 457
 458        int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
 459        if (rc < 0) {
 460            if (rc != -ENXIO) {
 461                warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
 462                            "error: %d", rc);
 463            }
 464            return ret;
 465        }
 466        ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
 467    } else if (function == 0x80000001 && reg == R_ECX) {
 468        /*
 469         * It's safe to enable TOPOEXT even if it's not returned by
 470         * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
 471         * us to keep CPU models including TOPOEXT runnable on older kernels.
 472         */
 473        ret |= CPUID_EXT3_TOPOEXT;
 474    } else if (function == 0x80000001 && reg == R_EDX) {
 475        /* On Intel, kvm returns cpuid according to the Intel spec,
 476         * so add missing bits according to the AMD spec:
 477         */
 478        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
 479        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
 480    } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
 481        /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
 482         * be enabled without the in-kernel irqchip
 483         */
 484        if (!kvm_irqchip_in_kernel()) {
 485            ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
 486        }
 487        if (kvm_irqchip_is_split()) {
 488            ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
 489        }
 490    } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
 491        ret |= 1U << KVM_HINTS_REALTIME;
 492    }
 493
 494    return ret;
 495}
 496
 497uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
 498{
 499    struct {
 500        struct kvm_msrs info;
 501        struct kvm_msr_entry entries[1];
 502    } msr_data = {};
 503    uint64_t value;
 504    uint32_t ret, can_be_one, must_be_one;
 505
 506    if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
 507        return 0;
 508    }
 509
 510    /* Check if requested MSR is supported feature MSR */
 511    int i;
 512    for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
 513        if (kvm_feature_msrs->indices[i] == index) {
 514            break;
 515        }
 516    if (i == kvm_feature_msrs->nmsrs) {
 517        return 0; /* if the feature MSR is not supported, simply return 0 */
 518    }
 519
 520    msr_data.info.nmsrs = 1;
 521    msr_data.entries[0].index = index;
 522
 523    ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
 524    if (ret != 1) {
 525        error_report("KVM get MSR (index=0x%x) feature failed, %s",
 526            index, strerror(-ret));
 527        exit(1);
 528    }
 529
 530    value = msr_data.entries[0].data;
 531    switch (index) {
 532    case MSR_IA32_VMX_PROCBASED_CTLS2:
 533        if (!has_msr_vmx_procbased_ctls2) {
 534            /* KVM forgot to add these bits for some time, do this ourselves. */
 535            if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
 536                CPUID_XSAVE_XSAVES) {
 537                value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
 538            }
 539            if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
 540                CPUID_EXT_RDRAND) {
 541                value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
 542            }
 543            if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
 544                CPUID_7_0_EBX_INVPCID) {
 545                value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
 546            }
 547            if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
 548                CPUID_7_0_EBX_RDSEED) {
 549                value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
 550            }
 551            if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
 552                CPUID_EXT2_RDTSCP) {
 553                value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
 554            }
 555        }
 556        /* fall through */
 557    case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
 558    case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
 559    case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
 560    case MSR_IA32_VMX_TRUE_EXIT_CTLS:
 561        /*
 562         * Return true for bits that can be one, but do not have to be one.
 563         * The SDM tells us which bits could have a "must be one" setting,
 564         * so we can do the opposite transformation in make_vmx_msr_value.
 565         */
 566        must_be_one = (uint32_t)value;
 567        can_be_one = (uint32_t)(value >> 32);
 568        return can_be_one & ~must_be_one;
 569
 570    default:
 571        return value;
 572    }
 573}
 574
 575static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
 576                                     int *max_banks)
 577{
 578    int r;
 579
 580    r = kvm_check_extension(s, KVM_CAP_MCE);
 581    if (r > 0) {
 582        *max_banks = r;
 583        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
 584    }
 585    return -ENOSYS;
 586}
 587
 588static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
 589{
 590    CPUState *cs = CPU(cpu);
 591    CPUX86State *env = &cpu->env;
 592    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
 593                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
 594    uint64_t mcg_status = MCG_STATUS_MCIP;
 595    int flags = 0;
 596
 597    if (code == BUS_MCEERR_AR) {
 598        status |= MCI_STATUS_AR | 0x134;
 599        mcg_status |= MCG_STATUS_RIPV | MCG_STATUS_EIPV;
 600    } else {
 601        status |= 0xc0;
 602        mcg_status |= MCG_STATUS_RIPV;
 603    }
 604
 605    flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
 606    /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
 607     * guest kernel back into env->mcg_ext_ctl.
 608     */
 609    cpu_synchronize_state(cs);
 610    if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
 611        mcg_status |= MCG_STATUS_LMCE;
 612        flags = 0;
 613    }
 614
 615    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
 616                       (MCM_ADDR_PHYS << 6) | 0xc, flags);
 617}
 618
 619static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
 620{
 621    MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
 622
 623    qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
 624                                   &mff);
 625}
 626
 627static void hardware_memory_error(void *host_addr)
 628{
 629    emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
 630    error_report("QEMU got Hardware memory error at addr %p", host_addr);
 631    exit(1);
 632}
 633
 634void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
 635{
 636    X86CPU *cpu = X86_CPU(c);
 637    CPUX86State *env = &cpu->env;
 638    ram_addr_t ram_addr;
 639    hwaddr paddr;
 640
 641    /* If we get an action required MCE, it has been injected by KVM
 642     * while the VM was running.  An action optional MCE instead should
 643     * be coming from the main thread, which qemu_init_sigbus identifies
 644     * as the "early kill" thread.
 645     */
 646    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
 647
 648    if ((env->mcg_cap & MCG_SER_P) && addr) {
 649        ram_addr = qemu_ram_addr_from_host(addr);
 650        if (ram_addr != RAM_ADDR_INVALID &&
 651            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
 652            kvm_hwpoison_page_add(ram_addr);
 653            kvm_mce_inject(cpu, paddr, code);
 654
 655            /*
 656             * Use different logging severity based on error type.
 657             * If there is additional MCE reporting on the hypervisor, QEMU VA
 658             * could be another source to identify the PA and MCE details.
 659             */
 660            if (code == BUS_MCEERR_AR) {
 661                error_report("Guest MCE Memory Error at QEMU addr %p and "
 662                    "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
 663                    addr, paddr, "BUS_MCEERR_AR");
 664            } else {
 665                 warn_report("Guest MCE Memory Error at QEMU addr %p and "
 666                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
 667                     addr, paddr, "BUS_MCEERR_AO");
 668            }
 669
 670            return;
 671        }
 672
 673        if (code == BUS_MCEERR_AO) {
 674            warn_report("Hardware memory error at addr %p of type %s "
 675                "for memory used by QEMU itself instead of guest system!",
 676                 addr, "BUS_MCEERR_AO");
 677        }
 678    }
 679
 680    if (code == BUS_MCEERR_AR) {
 681        hardware_memory_error(addr);
 682    }
 683
 684    /* Hope we are lucky for AO MCE, just notify a event */
 685    emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
 686}
 687
 688static void kvm_reset_exception(CPUX86State *env)
 689{
 690    env->exception_nr = -1;
 691    env->exception_pending = 0;
 692    env->exception_injected = 0;
 693    env->exception_has_payload = false;
 694    env->exception_payload = 0;
 695}
 696
 697static void kvm_queue_exception(CPUX86State *env,
 698                                int32_t exception_nr,
 699                                uint8_t exception_has_payload,
 700                                uint64_t exception_payload)
 701{
 702    assert(env->exception_nr == -1);
 703    assert(!env->exception_pending);
 704    assert(!env->exception_injected);
 705    assert(!env->exception_has_payload);
 706
 707    env->exception_nr = exception_nr;
 708
 709    if (has_exception_payload) {
 710        env->exception_pending = 1;
 711
 712        env->exception_has_payload = exception_has_payload;
 713        env->exception_payload = exception_payload;
 714    } else {
 715        env->exception_injected = 1;
 716
 717        if (exception_nr == EXCP01_DB) {
 718            assert(exception_has_payload);
 719            env->dr[6] = exception_payload;
 720        } else if (exception_nr == EXCP0E_PAGE) {
 721            assert(exception_has_payload);
 722            env->cr[2] = exception_payload;
 723        } else {
 724            assert(!exception_has_payload);
 725        }
 726    }
 727}
 728
 729static int kvm_inject_mce_oldstyle(X86CPU *cpu)
 730{
 731    CPUX86State *env = &cpu->env;
 732
 733    if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
 734        unsigned int bank, bank_num = env->mcg_cap & 0xff;
 735        struct kvm_x86_mce mce;
 736
 737        kvm_reset_exception(env);
 738
 739        /*
 740         * There must be at least one bank in use if an MCE is pending.
 741         * Find it and use its values for the event injection.
 742         */
 743        for (bank = 0; bank < bank_num; bank++) {
 744            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
 745                break;
 746            }
 747        }
 748        assert(bank < bank_num);
 749
 750        mce.bank = bank;
 751        mce.status = env->mce_banks[bank * 4 + 1];
 752        mce.mcg_status = env->mcg_status;
 753        mce.addr = env->mce_banks[bank * 4 + 2];
 754        mce.misc = env->mce_banks[bank * 4 + 3];
 755
 756        return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
 757    }
 758    return 0;
 759}
 760
 761static void cpu_update_state(void *opaque, bool running, RunState state)
 762{
 763    CPUX86State *env = opaque;
 764
 765    if (running) {
 766        env->tsc_valid = false;
 767    }
 768}
 769
 770unsigned long kvm_arch_vcpu_id(CPUState *cs)
 771{
 772    X86CPU *cpu = X86_CPU(cs);
 773    return cpu->apic_id;
 774}
 775
 776#ifndef KVM_CPUID_SIGNATURE_NEXT
 777#define KVM_CPUID_SIGNATURE_NEXT                0x40000100
 778#endif
 779
 780static bool hyperv_enabled(X86CPU *cpu)
 781{
 782    return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
 783        ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
 784         cpu->hyperv_features || cpu->hyperv_passthrough);
 785}
 786
 787/*
 788 * Check whether target_freq is within conservative
 789 * ntp correctable bounds (250ppm) of freq
 790 */
 791static inline bool freq_within_bounds(int freq, int target_freq)
 792{
 793        int max_freq = freq + (freq * 250 / 1000000);
 794        int min_freq = freq - (freq * 250 / 1000000);
 795
 796        if (target_freq >= min_freq && target_freq <= max_freq) {
 797                return true;
 798        }
 799
 800        return false;
 801}
 802
 803static int kvm_arch_set_tsc_khz(CPUState *cs)
 804{
 805    X86CPU *cpu = X86_CPU(cs);
 806    CPUX86State *env = &cpu->env;
 807    int r, cur_freq;
 808    bool set_ioctl = false;
 809
 810    if (!env->tsc_khz) {
 811        return 0;
 812    }
 813
 814    cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 815               kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
 816
 817    /*
 818     * If TSC scaling is supported, attempt to set TSC frequency.
 819     */
 820    if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
 821        set_ioctl = true;
 822    }
 823
 824    /*
 825     * If desired TSC frequency is within bounds of NTP correction,
 826     * attempt to set TSC frequency.
 827     */
 828    if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
 829        set_ioctl = true;
 830    }
 831
 832    r = set_ioctl ?
 833        kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
 834        -ENOTSUP;
 835
 836    if (r < 0) {
 837        /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
 838         * TSC frequency doesn't match the one we want.
 839         */
 840        cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 841                   kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
 842                   -ENOTSUP;
 843        if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
 844            warn_report("TSC frequency mismatch between "
 845                        "VM (%" PRId64 " kHz) and host (%d kHz), "
 846                        "and TSC scaling unavailable",
 847                        env->tsc_khz, cur_freq);
 848            return r;
 849        }
 850    }
 851
 852    return 0;
 853}
 854
 855static bool tsc_is_stable_and_known(CPUX86State *env)
 856{
 857    if (!env->tsc_khz) {
 858        return false;
 859    }
 860    return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
 861        || env->user_tsc_khz;
 862}
 863
 864#define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
 865
 866static struct {
 867    const char *desc;
 868    struct {
 869        uint32_t func;
 870        int reg;
 871        uint32_t bits;
 872    } flags[2];
 873    uint64_t dependencies;
 874} kvm_hyperv_properties[] = {
 875    [HYPERV_FEAT_RELAXED] = {
 876        .desc = "relaxed timing (hv-relaxed)",
 877        .flags = {
 878            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 879             .bits = HV_RELAXED_TIMING_RECOMMENDED}
 880        }
 881    },
 882    [HYPERV_FEAT_VAPIC] = {
 883        .desc = "virtual APIC (hv-vapic)",
 884        .flags = {
 885            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 886             .bits = HV_APIC_ACCESS_AVAILABLE}
 887        }
 888    },
 889    [HYPERV_FEAT_TIME] = {
 890        .desc = "clocksources (hv-time)",
 891        .flags = {
 892            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 893             .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
 894        }
 895    },
 896    [HYPERV_FEAT_CRASH] = {
 897        .desc = "crash MSRs (hv-crash)",
 898        .flags = {
 899            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 900             .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
 901        }
 902    },
 903    [HYPERV_FEAT_RESET] = {
 904        .desc = "reset MSR (hv-reset)",
 905        .flags = {
 906            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 907             .bits = HV_RESET_AVAILABLE}
 908        }
 909    },
 910    [HYPERV_FEAT_VPINDEX] = {
 911        .desc = "VP_INDEX MSR (hv-vpindex)",
 912        .flags = {
 913            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 914             .bits = HV_VP_INDEX_AVAILABLE}
 915        }
 916    },
 917    [HYPERV_FEAT_RUNTIME] = {
 918        .desc = "VP_RUNTIME MSR (hv-runtime)",
 919        .flags = {
 920            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 921             .bits = HV_VP_RUNTIME_AVAILABLE}
 922        }
 923    },
 924    [HYPERV_FEAT_SYNIC] = {
 925        .desc = "synthetic interrupt controller (hv-synic)",
 926        .flags = {
 927            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 928             .bits = HV_SYNIC_AVAILABLE}
 929        }
 930    },
 931    [HYPERV_FEAT_STIMER] = {
 932        .desc = "synthetic timers (hv-stimer)",
 933        .flags = {
 934            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 935             .bits = HV_SYNTIMERS_AVAILABLE}
 936        },
 937        .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
 938    },
 939    [HYPERV_FEAT_FREQUENCIES] = {
 940        .desc = "frequency MSRs (hv-frequencies)",
 941        .flags = {
 942            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 943             .bits = HV_ACCESS_FREQUENCY_MSRS},
 944            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 945             .bits = HV_FREQUENCY_MSRS_AVAILABLE}
 946        }
 947    },
 948    [HYPERV_FEAT_REENLIGHTENMENT] = {
 949        .desc = "reenlightenment MSRs (hv-reenlightenment)",
 950        .flags = {
 951            {.func = HV_CPUID_FEATURES, .reg = R_EAX,
 952             .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
 953        }
 954    },
 955    [HYPERV_FEAT_TLBFLUSH] = {
 956        .desc = "paravirtualized TLB flush (hv-tlbflush)",
 957        .flags = {
 958            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 959             .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
 960             HV_EX_PROCESSOR_MASKS_RECOMMENDED}
 961        },
 962        .dependencies = BIT(HYPERV_FEAT_VPINDEX)
 963    },
 964    [HYPERV_FEAT_EVMCS] = {
 965        .desc = "enlightened VMCS (hv-evmcs)",
 966        .flags = {
 967            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 968             .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
 969        },
 970        .dependencies = BIT(HYPERV_FEAT_VAPIC)
 971    },
 972    [HYPERV_FEAT_IPI] = {
 973        .desc = "paravirtualized IPI (hv-ipi)",
 974        .flags = {
 975            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 976             .bits = HV_CLUSTER_IPI_RECOMMENDED |
 977             HV_EX_PROCESSOR_MASKS_RECOMMENDED}
 978        },
 979        .dependencies = BIT(HYPERV_FEAT_VPINDEX)
 980    },
 981    [HYPERV_FEAT_STIMER_DIRECT] = {
 982        .desc = "direct mode synthetic timers (hv-stimer-direct)",
 983        .flags = {
 984            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
 985             .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
 986        },
 987        .dependencies = BIT(HYPERV_FEAT_STIMER)
 988    },
 989    [HYPERV_FEAT_AVIC] = {
 990        .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
 991        .flags = {
 992            {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
 993             .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
 994        }
 995    },
 996#ifdef CONFIG_SYNDBG
 997    [HYPERV_FEAT_SYNDBG] = {
 998        .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
 999        .flags = {
1000            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1001             .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1002        },
1003        .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
1004    },
1005#endif
1006    [HYPERV_FEAT_MSR_BITMAP] = {
1007        .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1008        .flags = {
1009            {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1010             .bits = HV_NESTED_MSR_BITMAP}
1011        }
1012    },
1013    [HYPERV_FEAT_XMM_INPUT] = {
1014        .desc = "XMM fast hypercall input (hv-xmm-input)",
1015        .flags = {
1016            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1017             .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1018        }
1019    },
1020    [HYPERV_FEAT_TLBFLUSH_EXT] = {
1021        .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1022        .flags = {
1023            {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1024             .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1025        },
1026        .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1027    },
1028    [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1029        .desc = "direct TLB flush (hv-tlbflush-direct)",
1030        .flags = {
1031            {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1032             .bits = HV_NESTED_DIRECT_FLUSH}
1033        },
1034        .dependencies = BIT(HYPERV_FEAT_VAPIC)
1035    },
1036};
1037
1038static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1039                                           bool do_sys_ioctl)
1040{
1041    struct kvm_cpuid2 *cpuid;
1042    int r, size;
1043
1044    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1045    cpuid = g_malloc0(size);
1046    cpuid->nent = max;
1047
1048    if (do_sys_ioctl) {
1049        r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1050    } else {
1051        r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1052    }
1053    if (r == 0 && cpuid->nent >= max) {
1054        r = -E2BIG;
1055    }
1056    if (r < 0) {
1057        if (r == -E2BIG) {
1058            g_free(cpuid);
1059            return NULL;
1060        } else {
1061            fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1062                    strerror(-r));
1063            exit(1);
1064        }
1065    }
1066    return cpuid;
1067}
1068
1069/*
1070 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1071 * for all entries.
1072 */
1073static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1074{
1075    struct kvm_cpuid2 *cpuid;
1076    /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1077    int max = 11;
1078    int i;
1079    bool do_sys_ioctl;
1080
1081    do_sys_ioctl =
1082        kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1083
1084    /*
1085     * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1086     * unsupported, kvm_hyperv_expand_features() checks for that.
1087     */
1088    assert(do_sys_ioctl || cs->kvm_state);
1089
1090    /*
1091     * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1092     * -E2BIG, however, it doesn't report back the right size. Keep increasing
1093     * it and re-trying until we succeed.
1094     */
1095    while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1096        max++;
1097    }
1098
1099    /*
1100     * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1101     * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1102     * information early, just check for the capability and set the bit
1103     * manually.
1104     */
1105    if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1106                            KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1107        for (i = 0; i < cpuid->nent; i++) {
1108            if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1109                cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1110            }
1111        }
1112    }
1113
1114    return cpuid;
1115}
1116
1117/*
1118 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1119 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1120 */
1121static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1122{
1123    X86CPU *cpu = X86_CPU(cs);
1124    struct kvm_cpuid2 *cpuid;
1125    struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1126
1127    /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1128    cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1129    cpuid->nent = 2;
1130
1131    /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1132    entry_feat = &cpuid->entries[0];
1133    entry_feat->function = HV_CPUID_FEATURES;
1134
1135    entry_recomm = &cpuid->entries[1];
1136    entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1137    entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1138
1139    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1140        entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1141        entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1142        entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1143        entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1144        entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1145    }
1146
1147    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1148        entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1149        entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1150    }
1151
1152    if (has_msr_hv_frequencies) {
1153        entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1154        entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1155    }
1156
1157    if (has_msr_hv_crash) {
1158        entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1159    }
1160
1161    if (has_msr_hv_reenlightenment) {
1162        entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1163    }
1164
1165    if (has_msr_hv_reset) {
1166        entry_feat->eax |= HV_RESET_AVAILABLE;
1167    }
1168
1169    if (has_msr_hv_vpindex) {
1170        entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1171    }
1172
1173    if (has_msr_hv_runtime) {
1174        entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1175    }
1176
1177    if (has_msr_hv_synic) {
1178        unsigned int cap = cpu->hyperv_synic_kvm_only ?
1179            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1180
1181        if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1182            entry_feat->eax |= HV_SYNIC_AVAILABLE;
1183        }
1184    }
1185
1186    if (has_msr_hv_stimer) {
1187        entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1188    }
1189
1190    if (has_msr_hv_syndbg_options) {
1191        entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1192        entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1193        entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1194    }
1195
1196    if (kvm_check_extension(cs->kvm_state,
1197                            KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1198        entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1199        entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1200    }
1201
1202    if (kvm_check_extension(cs->kvm_state,
1203                            KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1204        entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1205    }
1206
1207    if (kvm_check_extension(cs->kvm_state,
1208                            KVM_CAP_HYPERV_SEND_IPI) > 0) {
1209        entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1210        entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1211    }
1212
1213    return cpuid;
1214}
1215
1216static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1217{
1218    struct kvm_cpuid_entry2 *entry;
1219    struct kvm_cpuid2 *cpuid;
1220
1221    if (hv_cpuid_cache) {
1222        cpuid = hv_cpuid_cache;
1223    } else {
1224        if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1225            cpuid = get_supported_hv_cpuid(cs);
1226        } else {
1227            /*
1228             * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1229             * before KVM context is created but this is only done when
1230             * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1231             * KVM_CAP_HYPERV_CPUID.
1232             */
1233            assert(cs->kvm_state);
1234
1235            cpuid = get_supported_hv_cpuid_legacy(cs);
1236        }
1237        hv_cpuid_cache = cpuid;
1238    }
1239
1240    if (!cpuid) {
1241        return 0;
1242    }
1243
1244    entry = cpuid_find_entry(cpuid, func, 0);
1245    if (!entry) {
1246        return 0;
1247    }
1248
1249    return cpuid_entry_get_reg(entry, reg);
1250}
1251
1252static bool hyperv_feature_supported(CPUState *cs, int feature)
1253{
1254    uint32_t func, bits;
1255    int i, reg;
1256
1257    for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1258
1259        func = kvm_hyperv_properties[feature].flags[i].func;
1260        reg = kvm_hyperv_properties[feature].flags[i].reg;
1261        bits = kvm_hyperv_properties[feature].flags[i].bits;
1262
1263        if (!func) {
1264            continue;
1265        }
1266
1267        if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1268            return false;
1269        }
1270    }
1271
1272    return true;
1273}
1274
1275/* Checks that all feature dependencies are enabled */
1276static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1277{
1278    uint64_t deps;
1279    int dep_feat;
1280
1281    deps = kvm_hyperv_properties[feature].dependencies;
1282    while (deps) {
1283        dep_feat = ctz64(deps);
1284        if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1285            error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1286                       kvm_hyperv_properties[feature].desc,
1287                       kvm_hyperv_properties[dep_feat].desc);
1288            return false;
1289        }
1290        deps &= ~(1ull << dep_feat);
1291    }
1292
1293    return true;
1294}
1295
1296static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1297{
1298    X86CPU *cpu = X86_CPU(cs);
1299    uint32_t r = 0;
1300    int i, j;
1301
1302    for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1303        if (!hyperv_feat_enabled(cpu, i)) {
1304            continue;
1305        }
1306
1307        for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1308            if (kvm_hyperv_properties[i].flags[j].func != func) {
1309                continue;
1310            }
1311            if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1312                continue;
1313            }
1314
1315            r |= kvm_hyperv_properties[i].flags[j].bits;
1316        }
1317    }
1318
1319    /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1320    if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1321        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1322            r |= DEFAULT_EVMCS_VERSION;
1323        }
1324    }
1325
1326    return r;
1327}
1328
1329/*
1330 * Expand Hyper-V CPU features. In partucular, check that all the requested
1331 * features are supported by the host and the sanity of the configuration
1332 * (that all the required dependencies are included). Also, this takes care
1333 * of 'hv_passthrough' mode and fills the environment with all supported
1334 * Hyper-V features.
1335 */
1336bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1337{
1338    CPUState *cs = CPU(cpu);
1339    Error *local_err = NULL;
1340    int feat;
1341
1342    if (!hyperv_enabled(cpu))
1343        return true;
1344
1345    /*
1346     * When kvm_hyperv_expand_features is called at CPU feature expansion
1347     * time per-CPU kvm_state is not available yet so we can only proceed
1348     * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1349     */
1350    if (!cs->kvm_state &&
1351        !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1352        return true;
1353
1354    if (cpu->hyperv_passthrough) {
1355        cpu->hyperv_vendor_id[0] =
1356            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1357        cpu->hyperv_vendor_id[1] =
1358            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1359        cpu->hyperv_vendor_id[2] =
1360            hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1361        cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1362                                       sizeof(cpu->hyperv_vendor_id) + 1);
1363        memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1364               sizeof(cpu->hyperv_vendor_id));
1365        cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1366
1367        cpu->hyperv_interface_id[0] =
1368            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1369        cpu->hyperv_interface_id[1] =
1370            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1371        cpu->hyperv_interface_id[2] =
1372            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1373        cpu->hyperv_interface_id[3] =
1374            hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1375
1376        cpu->hyperv_ver_id_build =
1377            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1378        cpu->hyperv_ver_id_major =
1379            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1380        cpu->hyperv_ver_id_minor =
1381            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1382        cpu->hyperv_ver_id_sp =
1383            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1384        cpu->hyperv_ver_id_sb =
1385            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1386        cpu->hyperv_ver_id_sn =
1387            hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1388
1389        cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1390                                            R_EAX);
1391        cpu->hyperv_limits[0] =
1392            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1393        cpu->hyperv_limits[1] =
1394            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1395        cpu->hyperv_limits[2] =
1396            hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1397
1398        cpu->hyperv_spinlock_attempts =
1399            hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1400
1401        /*
1402         * Mark feature as enabled in 'cpu->hyperv_features' as
1403         * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1404         */
1405        for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1406            if (hyperv_feature_supported(cs, feat)) {
1407                cpu->hyperv_features |= BIT(feat);
1408            }
1409        }
1410    } else {
1411        /* Check features availability and dependencies */
1412        for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1413            /* If the feature was not requested skip it. */
1414            if (!hyperv_feat_enabled(cpu, feat)) {
1415                continue;
1416            }
1417
1418            /* Check if the feature is supported by KVM */
1419            if (!hyperv_feature_supported(cs, feat)) {
1420                error_setg(errp, "Hyper-V %s is not supported by kernel",
1421                           kvm_hyperv_properties[feat].desc);
1422                return false;
1423            }
1424
1425            /* Check dependencies */
1426            if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1427                error_propagate(errp, local_err);
1428                return false;
1429            }
1430        }
1431    }
1432
1433    /* Additional dependencies not covered by kvm_hyperv_properties[] */
1434    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1435        !cpu->hyperv_synic_kvm_only &&
1436        !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1437        error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1438                   kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1439                   kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1440        return false;
1441    }
1442
1443    return true;
1444}
1445
1446/*
1447 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1448 */
1449static int hyperv_fill_cpuids(CPUState *cs,
1450                              struct kvm_cpuid_entry2 *cpuid_ent)
1451{
1452    X86CPU *cpu = X86_CPU(cs);
1453    struct kvm_cpuid_entry2 *c;
1454    uint32_t signature[3];
1455    uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1456    uint32_t nested_eax =
1457        hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1458
1459    max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1460        HV_CPUID_IMPLEMENT_LIMITS;
1461
1462    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1463        max_cpuid_leaf =
1464            MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1465    }
1466
1467    c = &cpuid_ent[cpuid_i++];
1468    c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1469    c->eax = max_cpuid_leaf;
1470    c->ebx = cpu->hyperv_vendor_id[0];
1471    c->ecx = cpu->hyperv_vendor_id[1];
1472    c->edx = cpu->hyperv_vendor_id[2];
1473
1474    c = &cpuid_ent[cpuid_i++];
1475    c->function = HV_CPUID_INTERFACE;
1476    c->eax = cpu->hyperv_interface_id[0];
1477    c->ebx = cpu->hyperv_interface_id[1];
1478    c->ecx = cpu->hyperv_interface_id[2];
1479    c->edx = cpu->hyperv_interface_id[3];
1480
1481    c = &cpuid_ent[cpuid_i++];
1482    c->function = HV_CPUID_VERSION;
1483    c->eax = cpu->hyperv_ver_id_build;
1484    c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1485        cpu->hyperv_ver_id_minor;
1486    c->ecx = cpu->hyperv_ver_id_sp;
1487    c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1488        (cpu->hyperv_ver_id_sn & 0xffffff);
1489
1490    c = &cpuid_ent[cpuid_i++];
1491    c->function = HV_CPUID_FEATURES;
1492    c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1493    c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1494    c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1495
1496    /* Unconditionally required with any Hyper-V enlightenment */
1497    c->eax |= HV_HYPERCALL_AVAILABLE;
1498
1499    /* SynIC and Vmbus devices require messages/signals hypercalls */
1500    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1501        !cpu->hyperv_synic_kvm_only) {
1502        c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1503    }
1504
1505
1506    /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1507    c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1508
1509    c = &cpuid_ent[cpuid_i++];
1510    c->function = HV_CPUID_ENLIGHTMENT_INFO;
1511    c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1512    c->ebx = cpu->hyperv_spinlock_attempts;
1513
1514    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1515        !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1516        c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1517    }
1518
1519    if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1520        c->eax |= HV_NO_NONARCH_CORESHARING;
1521    } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1522        c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1523            HV_NO_NONARCH_CORESHARING;
1524    }
1525
1526    c = &cpuid_ent[cpuid_i++];
1527    c->function = HV_CPUID_IMPLEMENT_LIMITS;
1528    c->eax = cpu->hv_max_vps;
1529    c->ebx = cpu->hyperv_limits[0];
1530    c->ecx = cpu->hyperv_limits[1];
1531    c->edx = cpu->hyperv_limits[2];
1532
1533    if (nested_eax) {
1534        uint32_t function;
1535
1536        /* Create zeroed 0x40000006..0x40000009 leaves */
1537        for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1538             function < HV_CPUID_NESTED_FEATURES; function++) {
1539            c = &cpuid_ent[cpuid_i++];
1540            c->function = function;
1541        }
1542
1543        c = &cpuid_ent[cpuid_i++];
1544        c->function = HV_CPUID_NESTED_FEATURES;
1545        c->eax = nested_eax;
1546    }
1547
1548    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1549        c = &cpuid_ent[cpuid_i++];
1550        c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1551        c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1552            HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1553        memcpy(signature, "Microsoft VS", 12);
1554        c->eax = 0;
1555        c->ebx = signature[0];
1556        c->ecx = signature[1];
1557        c->edx = signature[2];
1558
1559        c = &cpuid_ent[cpuid_i++];
1560        c->function = HV_CPUID_SYNDBG_INTERFACE;
1561        memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1562        c->eax = signature[0];
1563        c->ebx = 0;
1564        c->ecx = 0;
1565        c->edx = 0;
1566
1567        c = &cpuid_ent[cpuid_i++];
1568        c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1569        c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1570        c->ebx = 0;
1571        c->ecx = 0;
1572        c->edx = 0;
1573    }
1574
1575    return cpuid_i;
1576}
1577
1578static Error *hv_passthrough_mig_blocker;
1579static Error *hv_no_nonarch_cs_mig_blocker;
1580
1581/* Checks that the exposed eVMCS version range is supported by KVM */
1582static bool evmcs_version_supported(uint16_t evmcs_version,
1583                                    uint16_t supported_evmcs_version)
1584{
1585    uint8_t min_version = evmcs_version & 0xff;
1586    uint8_t max_version = evmcs_version >> 8;
1587    uint8_t min_supported_version = supported_evmcs_version & 0xff;
1588    uint8_t max_supported_version = supported_evmcs_version >> 8;
1589
1590    return (min_version >= min_supported_version) &&
1591        (max_version <= max_supported_version);
1592}
1593
1594static int hyperv_init_vcpu(X86CPU *cpu)
1595{
1596    CPUState *cs = CPU(cpu);
1597    Error *local_err = NULL;
1598    int ret;
1599
1600    if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1601        error_setg(&hv_passthrough_mig_blocker,
1602                   "'hv-passthrough' CPU flag prevents migration, use explicit"
1603                   " set of hv-* flags instead");
1604        ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1605        if (ret < 0) {
1606            error_report_err(local_err);
1607            return ret;
1608        }
1609    }
1610
1611    if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1612        hv_no_nonarch_cs_mig_blocker == NULL) {
1613        error_setg(&hv_no_nonarch_cs_mig_blocker,
1614                   "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1615                   " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1616                   " make sure SMT is disabled and/or that vCPUs are properly"
1617                   " pinned)");
1618        ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1619        if (ret < 0) {
1620            error_report_err(local_err);
1621            return ret;
1622        }
1623    }
1624
1625    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1626        /*
1627         * the kernel doesn't support setting vp_index; assert that its value
1628         * is in sync
1629         */
1630        uint64_t value;
1631
1632        ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1633        if (ret < 0) {
1634            return ret;
1635        }
1636
1637        if (value != hyperv_vp_index(CPU(cpu))) {
1638            error_report("kernel's vp_index != QEMU's vp_index");
1639            return -ENXIO;
1640        }
1641    }
1642
1643    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1644        uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1645            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1646        ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1647        if (ret < 0) {
1648            error_report("failed to turn on HyperV SynIC in KVM: %s",
1649                         strerror(-ret));
1650            return ret;
1651        }
1652
1653        if (!cpu->hyperv_synic_kvm_only) {
1654            ret = hyperv_x86_synic_add(cpu);
1655            if (ret < 0) {
1656                error_report("failed to create HyperV SynIC: %s",
1657                             strerror(-ret));
1658                return ret;
1659            }
1660        }
1661    }
1662
1663    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1664        uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1665        uint16_t supported_evmcs_version;
1666
1667        ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1668                                  (uintptr_t)&supported_evmcs_version);
1669
1670        /*
1671         * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1672         * option sets. Note: we hardcode the maximum supported eVMCS version
1673         * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1674         * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1675         * to be added.
1676         */
1677        if (ret < 0) {
1678            error_report("Hyper-V %s is not supported by kernel",
1679                         kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1680            return ret;
1681        }
1682
1683        if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1684            error_report("eVMCS version range [%d..%d] is not supported by "
1685                         "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1686                         evmcs_version >> 8, supported_evmcs_version & 0xff,
1687                         supported_evmcs_version >> 8);
1688            return -ENOTSUP;
1689        }
1690    }
1691
1692    if (cpu->hyperv_enforce_cpuid) {
1693        ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1694        if (ret < 0) {
1695            error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1696                         strerror(-ret));
1697            return ret;
1698        }
1699    }
1700
1701    return 0;
1702}
1703
1704static Error *invtsc_mig_blocker;
1705
1706#define KVM_MAX_CPUID_ENTRIES  100
1707
1708static void kvm_init_xsave(CPUX86State *env)
1709{
1710    if (has_xsave2) {
1711        env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1712    } else if (has_xsave) {
1713        env->xsave_buf_len = sizeof(struct kvm_xsave);
1714    } else {
1715        return;
1716    }
1717
1718    env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1719    memset(env->xsave_buf, 0, env->xsave_buf_len);
1720    /*
1721     * The allocated storage must be large enough for all of the
1722     * possible XSAVE state components.
1723     */
1724    assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1725           env->xsave_buf_len);
1726}
1727
1728static void kvm_init_nested_state(CPUX86State *env)
1729{
1730    struct kvm_vmx_nested_state_hdr *vmx_hdr;
1731    uint32_t size;
1732
1733    if (!env->nested_state) {
1734        return;
1735    }
1736
1737    size = env->nested_state->size;
1738
1739    memset(env->nested_state, 0, size);
1740    env->nested_state->size = size;
1741
1742    if (cpu_has_vmx(env)) {
1743        env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1744        vmx_hdr = &env->nested_state->hdr.vmx;
1745        vmx_hdr->vmxon_pa = -1ull;
1746        vmx_hdr->vmcs12_pa = -1ull;
1747    } else if (cpu_has_svm(env)) {
1748        env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1749    }
1750}
1751
1752int kvm_arch_init_vcpu(CPUState *cs)
1753{
1754    struct {
1755        struct kvm_cpuid2 cpuid;
1756        struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1757    } cpuid_data;
1758    /*
1759     * The kernel defines these structs with padding fields so there
1760     * should be no extra padding in our cpuid_data struct.
1761     */
1762    QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1763                      sizeof(struct kvm_cpuid2) +
1764                      sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1765
1766    X86CPU *cpu = X86_CPU(cs);
1767    CPUX86State *env = &cpu->env;
1768    uint32_t limit, i, j, cpuid_i;
1769    uint32_t unused;
1770    struct kvm_cpuid_entry2 *c;
1771    uint32_t signature[3];
1772    int kvm_base = KVM_CPUID_SIGNATURE;
1773    int max_nested_state_len;
1774    int r;
1775    Error *local_err = NULL;
1776
1777    memset(&cpuid_data, 0, sizeof(cpuid_data));
1778
1779    cpuid_i = 0;
1780
1781    has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
1782
1783    r = kvm_arch_set_tsc_khz(cs);
1784    if (r < 0) {
1785        return r;
1786    }
1787
1788    /* vcpu's TSC frequency is either specified by user, or following
1789     * the value used by KVM if the former is not present. In the
1790     * latter case, we query it from KVM and record in env->tsc_khz,
1791     * so that vcpu's TSC frequency can be migrated later via this field.
1792     */
1793    if (!env->tsc_khz) {
1794        r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1795            kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1796            -ENOTSUP;
1797        if (r > 0) {
1798            env->tsc_khz = r;
1799        }
1800    }
1801
1802    env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1803
1804    /*
1805     * kvm_hyperv_expand_features() is called here for the second time in case
1806     * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
1807     * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
1808     * check which Hyper-V enlightenments are supported and which are not, we
1809     * can still proceed and check/expand Hyper-V enlightenments here so legacy
1810     * behavior is preserved.
1811     */
1812    if (!kvm_hyperv_expand_features(cpu, &local_err)) {
1813        error_report_err(local_err);
1814        return -ENOSYS;
1815    }
1816
1817    if (hyperv_enabled(cpu)) {
1818        r = hyperv_init_vcpu(cpu);
1819        if (r) {
1820            return r;
1821        }
1822
1823        cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
1824        kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1825        has_msr_hv_hypercall = true;
1826    }
1827
1828    if (cs->kvm_state->xen_version) {
1829#ifdef CONFIG_XEN_EMU
1830        struct kvm_cpuid_entry2 *xen_max_leaf;
1831
1832        memcpy(signature, "XenVMMXenVMM", 12);
1833
1834        xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
1835        c->function = kvm_base + XEN_CPUID_SIGNATURE;
1836        c->eax = kvm_base + XEN_CPUID_TIME;
1837        c->ebx = signature[0];
1838        c->ecx = signature[1];
1839        c->edx = signature[2];
1840
1841        c = &cpuid_data.entries[cpuid_i++];
1842        c->function = kvm_base + XEN_CPUID_VENDOR;
1843        c->eax = cs->kvm_state->xen_version;
1844        c->ebx = 0;
1845        c->ecx = 0;
1846        c->edx = 0;
1847
1848        c = &cpuid_data.entries[cpuid_i++];
1849        c->function = kvm_base + XEN_CPUID_HVM_MSR;
1850        /* Number of hypercall-transfer pages */
1851        c->eax = 1;
1852        /* Hypercall MSR base address */
1853        if (hyperv_enabled(cpu)) {
1854            c->ebx = XEN_HYPERCALL_MSR_HYPERV;
1855            kvm_xen_init(cs->kvm_state, c->ebx);
1856        } else {
1857            c->ebx = XEN_HYPERCALL_MSR;
1858        }
1859        c->ecx = 0;
1860        c->edx = 0;
1861
1862        c = &cpuid_data.entries[cpuid_i++];
1863        c->function = kvm_base + XEN_CPUID_TIME;
1864        c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
1865            (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
1866        /* default=0 (emulate if necessary) */
1867        c->ebx = 0;
1868        /* guest tsc frequency */
1869        c->ecx = env->user_tsc_khz;
1870        /* guest tsc incarnation (migration count) */
1871        c->edx = 0;
1872
1873        c = &cpuid_data.entries[cpuid_i++];
1874        c->function = kvm_base + XEN_CPUID_HVM;
1875        xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
1876        if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
1877            c->function = kvm_base + XEN_CPUID_HVM;
1878
1879            if (cpu->xen_vapic) {
1880                c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
1881                c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
1882            }
1883
1884            c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
1885
1886            if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
1887                c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
1888                c->ebx = cs->cpu_index;
1889            }
1890        }
1891
1892        r = kvm_xen_init_vcpu(cs);
1893        if (r) {
1894            return r;
1895        }
1896
1897        kvm_base += 0x100;
1898#else /* CONFIG_XEN_EMU */
1899        /* This should never happen as kvm_arch_init() would have died first. */
1900        fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
1901        abort();
1902#endif
1903    } else if (cpu->expose_kvm) {
1904        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1905        c = &cpuid_data.entries[cpuid_i++];
1906        c->function = KVM_CPUID_SIGNATURE | kvm_base;
1907        c->eax = KVM_CPUID_FEATURES | kvm_base;
1908        c->ebx = signature[0];
1909        c->ecx = signature[1];
1910        c->edx = signature[2];
1911
1912        c = &cpuid_data.entries[cpuid_i++];
1913        c->function = KVM_CPUID_FEATURES | kvm_base;
1914        c->eax = env->features[FEAT_KVM];
1915        c->edx = env->features[FEAT_KVM_HINTS];
1916    }
1917
1918    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1919
1920    if (cpu->kvm_pv_enforce_cpuid) {
1921        r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
1922        if (r < 0) {
1923            fprintf(stderr,
1924                    "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
1925                    strerror(-r));
1926            abort();
1927        }
1928    }
1929
1930    for (i = 0; i <= limit; i++) {
1931        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1932            fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1933            abort();
1934        }
1935        c = &cpuid_data.entries[cpuid_i++];
1936
1937        switch (i) {
1938        case 2: {
1939            /* Keep reading function 2 till all the input is received */
1940            int times;
1941
1942            c->function = i;
1943            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1944                       KVM_CPUID_FLAG_STATE_READ_NEXT;
1945            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1946            times = c->eax & 0xff;
1947
1948            for (j = 1; j < times; ++j) {
1949                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1950                    fprintf(stderr, "cpuid_data is full, no space for "
1951                            "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1952                    abort();
1953                }
1954                c = &cpuid_data.entries[cpuid_i++];
1955                c->function = i;
1956                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1957                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1958            }
1959            break;
1960        }
1961        case 0x1f:
1962            if (env->nr_dies < 2) {
1963                break;
1964            }
1965            /* fallthrough */
1966        case 4:
1967        case 0xb:
1968        case 0xd:
1969            for (j = 0; ; j++) {
1970                if (i == 0xd && j == 64) {
1971                    break;
1972                }
1973
1974                if (i == 0x1f && j == 64) {
1975                    break;
1976                }
1977
1978                c->function = i;
1979                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1980                c->index = j;
1981                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1982
1983                if (i == 4 && c->eax == 0) {
1984                    break;
1985                }
1986                if (i == 0xb && !(c->ecx & 0xff00)) {
1987                    break;
1988                }
1989                if (i == 0x1f && !(c->ecx & 0xff00)) {
1990                    break;
1991                }
1992                if (i == 0xd && c->eax == 0) {
1993                    continue;
1994                }
1995                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1996                    fprintf(stderr, "cpuid_data is full, no space for "
1997                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1998                    abort();
1999                }
2000                c = &cpuid_data.entries[cpuid_i++];
2001            }
2002            break;
2003        case 0x7:
2004        case 0x12:
2005            for (j = 0; ; j++) {
2006                c->function = i;
2007                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2008                c->index = j;
2009                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2010
2011                if (j > 1 && (c->eax & 0xf) != 1) {
2012                    break;
2013                }
2014
2015                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2016                    fprintf(stderr, "cpuid_data is full, no space for "
2017                                "cpuid(eax:0x12,ecx:0x%x)\n", j);
2018                    abort();
2019                }
2020                c = &cpuid_data.entries[cpuid_i++];
2021            }
2022            break;
2023        case 0x14:
2024        case 0x1d:
2025        case 0x1e: {
2026            uint32_t times;
2027
2028            c->function = i;
2029            c->index = 0;
2030            c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2031            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2032            times = c->eax;
2033
2034            for (j = 1; j <= times; ++j) {
2035                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2036                    fprintf(stderr, "cpuid_data is full, no space for "
2037                                "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2038                    abort();
2039                }
2040                c = &cpuid_data.entries[cpuid_i++];
2041                c->function = i;
2042                c->index = j;
2043                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2044                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2045            }
2046            break;
2047        }
2048        default:
2049            c->function = i;
2050            c->flags = 0;
2051            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2052            if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2053                /*
2054                 * KVM already returns all zeroes if a CPUID entry is missing,
2055                 * so we can omit it and avoid hitting KVM's 80-entry limit.
2056                 */
2057                cpuid_i--;
2058            }
2059            break;
2060        }
2061    }
2062
2063    if (limit >= 0x0a) {
2064        uint32_t eax, edx;
2065
2066        cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
2067
2068        has_architectural_pmu_version = eax & 0xff;
2069        if (has_architectural_pmu_version > 0) {
2070            num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
2071
2072            /* Shouldn't be more than 32, since that's the number of bits
2073             * available in EBX to tell us _which_ counters are available.
2074             * Play it safe.
2075             */
2076            if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
2077                num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
2078            }
2079
2080            if (has_architectural_pmu_version > 1) {
2081                num_architectural_pmu_fixed_counters = edx & 0x1f;
2082
2083                if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
2084                    num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
2085                }
2086            }
2087        }
2088    }
2089
2090    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
2091
2092    for (i = 0x80000000; i <= limit; i++) {
2093        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2094            fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
2095            abort();
2096        }
2097        c = &cpuid_data.entries[cpuid_i++];
2098
2099        switch (i) {
2100        case 0x8000001d:
2101            /* Query for all AMD cache information leaves */
2102            for (j = 0; ; j++) {
2103                c->function = i;
2104                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2105                c->index = j;
2106                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2107
2108                if (c->eax == 0) {
2109                    break;
2110                }
2111                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2112                    fprintf(stderr, "cpuid_data is full, no space for "
2113                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2114                    abort();
2115                }
2116                c = &cpuid_data.entries[cpuid_i++];
2117            }
2118            break;
2119        default:
2120            c->function = i;
2121            c->flags = 0;
2122            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2123            if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2124                /*
2125                 * KVM already returns all zeroes if a CPUID entry is missing,
2126                 * so we can omit it and avoid hitting KVM's 80-entry limit.
2127                 */
2128                cpuid_i--;
2129            }
2130            break;
2131        }
2132    }
2133
2134    /* Call Centaur's CPUID instructions they are supported. */
2135    if (env->cpuid_xlevel2 > 0) {
2136        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2137
2138        for (i = 0xC0000000; i <= limit; i++) {
2139            if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2140                fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
2141                abort();
2142            }
2143            c = &cpuid_data.entries[cpuid_i++];
2144
2145            c->function = i;
2146            c->flags = 0;
2147            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2148        }
2149    }
2150
2151    cpuid_data.cpuid.nent = cpuid_i;
2152
2153    if (((env->cpuid_version >> 8)&0xF) >= 6
2154        && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2155           (CPUID_MCE | CPUID_MCA)
2156        && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
2157        uint64_t mcg_cap, unsupported_caps;
2158        int banks;
2159        int ret;
2160
2161        ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2162        if (ret < 0) {
2163            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2164            return ret;
2165        }
2166
2167        if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2168            error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2169                         (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2170            return -ENOTSUP;
2171        }
2172
2173        unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2174        if (unsupported_caps) {
2175            if (unsupported_caps & MCG_LMCE_P) {
2176                error_report("kvm: LMCE not supported");
2177                return -ENOTSUP;
2178            }
2179            warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2180                        unsupported_caps);
2181        }
2182
2183        env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2184        ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2185        if (ret < 0) {
2186            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2187            return ret;
2188        }
2189    }
2190
2191    cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2192
2193    c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2194    if (c) {
2195        has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2196                                  !!(c->ecx & CPUID_EXT_SMX);
2197    }
2198
2199    c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2200    if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2201        has_msr_feature_control = true;
2202    }
2203
2204    if (env->mcg_cap & MCG_LMCE_P) {
2205        has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2206    }
2207
2208    if (!env->user_tsc_khz) {
2209        if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2210            invtsc_mig_blocker == NULL) {
2211            error_setg(&invtsc_mig_blocker,
2212                       "State blocked by non-migratable CPU device"
2213                       " (invtsc flag)");
2214            r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
2215            if (r < 0) {
2216                error_report_err(local_err);
2217                return r;
2218            }
2219        }
2220    }
2221
2222    if (cpu->vmware_cpuid_freq
2223        /* Guests depend on 0x40000000 to detect this feature, so only expose
2224         * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2225        && cpu->expose_kvm
2226        && kvm_base == KVM_CPUID_SIGNATURE
2227        /* TSC clock must be stable and known for this feature. */
2228        && tsc_is_stable_and_known(env)) {
2229
2230        c = &cpuid_data.entries[cpuid_i++];
2231        c->function = KVM_CPUID_SIGNATURE | 0x10;
2232        c->eax = env->tsc_khz;
2233        c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2234        c->ecx = c->edx = 0;
2235
2236        c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2237        c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2238    }
2239
2240    cpuid_data.cpuid.nent = cpuid_i;
2241
2242    cpuid_data.cpuid.padding = 0;
2243    r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2244    if (r) {
2245        goto fail;
2246    }
2247    kvm_init_xsave(env);
2248
2249    max_nested_state_len = kvm_max_nested_state_length();
2250    if (max_nested_state_len > 0) {
2251        assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2252
2253        if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2254            env->nested_state = g_malloc0(max_nested_state_len);
2255            env->nested_state->size = max_nested_state_len;
2256
2257            kvm_init_nested_state(env);
2258        }
2259    }
2260
2261    cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2262
2263    if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2264        has_msr_tsc_aux = false;
2265    }
2266
2267    kvm_init_msrs(cpu);
2268
2269    return 0;
2270
2271 fail:
2272    migrate_del_blocker(invtsc_mig_blocker);
2273
2274    return r;
2275}
2276
2277int kvm_arch_destroy_vcpu(CPUState *cs)
2278{
2279    X86CPU *cpu = X86_CPU(cs);
2280    CPUX86State *env = &cpu->env;
2281
2282    g_free(env->xsave_buf);
2283
2284    g_free(cpu->kvm_msr_buf);
2285    cpu->kvm_msr_buf = NULL;
2286
2287    g_free(env->nested_state);
2288    env->nested_state = NULL;
2289
2290    qemu_del_vm_change_state_handler(cpu->vmsentry);
2291
2292    return 0;
2293}
2294
2295void kvm_arch_reset_vcpu(X86CPU *cpu)
2296{
2297    CPUX86State *env = &cpu->env;
2298
2299    env->xcr0 = 1;
2300    if (kvm_irqchip_in_kernel()) {
2301        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2302                                          KVM_MP_STATE_UNINITIALIZED;
2303    } else {
2304        env->mp_state = KVM_MP_STATE_RUNNABLE;
2305    }
2306
2307    /* enabled by default */
2308    env->poll_control_msr = 1;
2309
2310    kvm_init_nested_state(env);
2311
2312    sev_es_set_reset_vector(CPU(cpu));
2313}
2314
2315void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2316{
2317    CPUX86State *env = &cpu->env;
2318    int i;
2319
2320    /*
2321     * Reset SynIC after all other devices have been reset to let them remove
2322     * their SINT routes first.
2323     */
2324    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2325        for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2326            env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2327        }
2328
2329        hyperv_x86_synic_reset(cpu);
2330    }
2331}
2332
2333void kvm_arch_do_init_vcpu(X86CPU *cpu)
2334{
2335    CPUX86State *env = &cpu->env;
2336
2337    /* APs get directly into wait-for-SIPI state.  */
2338    if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2339        env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2340    }
2341}
2342
2343static int kvm_get_supported_feature_msrs(KVMState *s)
2344{
2345    int ret = 0;
2346
2347    if (kvm_feature_msrs != NULL) {
2348        return 0;
2349    }
2350
2351    if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2352        return 0;
2353    }
2354
2355    struct kvm_msr_list msr_list;
2356
2357    msr_list.nmsrs = 0;
2358    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2359    if (ret < 0 && ret != -E2BIG) {
2360        error_report("Fetch KVM feature MSR list failed: %s",
2361            strerror(-ret));
2362        return ret;
2363    }
2364
2365    assert(msr_list.nmsrs > 0);
2366    kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2367                 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2368
2369    kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2370    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2371
2372    if (ret < 0) {
2373        error_report("Fetch KVM feature MSR list failed: %s",
2374            strerror(-ret));
2375        g_free(kvm_feature_msrs);
2376        kvm_feature_msrs = NULL;
2377        return ret;
2378    }
2379
2380    return 0;
2381}
2382
2383static int kvm_get_supported_msrs(KVMState *s)
2384{
2385    int ret = 0;
2386    struct kvm_msr_list msr_list, *kvm_msr_list;
2387
2388    /*
2389     *  Obtain MSR list from KVM.  These are the MSRs that we must
2390     *  save/restore.
2391     */
2392    msr_list.nmsrs = 0;
2393    ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2394    if (ret < 0 && ret != -E2BIG) {
2395        return ret;
2396    }
2397    /*
2398     * Old kernel modules had a bug and could write beyond the provided
2399     * memory. Allocate at least a safe amount of 1K.
2400     */
2401    kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2402                                          msr_list.nmsrs *
2403                                          sizeof(msr_list.indices[0])));
2404
2405    kvm_msr_list->nmsrs = msr_list.nmsrs;
2406    ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2407    if (ret >= 0) {
2408        int i;
2409
2410        for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2411            switch (kvm_msr_list->indices[i]) {
2412            case MSR_STAR:
2413                has_msr_star = true;
2414                break;
2415            case MSR_VM_HSAVE_PA:
2416                has_msr_hsave_pa = true;
2417                break;
2418            case MSR_TSC_AUX:
2419                has_msr_tsc_aux = true;
2420                break;
2421            case MSR_TSC_ADJUST:
2422                has_msr_tsc_adjust = true;
2423                break;
2424            case MSR_IA32_TSCDEADLINE:
2425                has_msr_tsc_deadline = true;
2426                break;
2427            case MSR_IA32_SMBASE:
2428                has_msr_smbase = true;
2429                break;
2430            case MSR_SMI_COUNT:
2431                has_msr_smi_count = true;
2432                break;
2433            case MSR_IA32_MISC_ENABLE:
2434                has_msr_misc_enable = true;
2435                break;
2436            case MSR_IA32_BNDCFGS:
2437                has_msr_bndcfgs = true;
2438                break;
2439            case MSR_IA32_XSS:
2440                has_msr_xss = true;
2441                break;
2442            case MSR_IA32_UMWAIT_CONTROL:
2443                has_msr_umwait = true;
2444                break;
2445            case HV_X64_MSR_CRASH_CTL:
2446                has_msr_hv_crash = true;
2447                break;
2448            case HV_X64_MSR_RESET:
2449                has_msr_hv_reset = true;
2450                break;
2451            case HV_X64_MSR_VP_INDEX:
2452                has_msr_hv_vpindex = true;
2453                break;
2454            case HV_X64_MSR_VP_RUNTIME:
2455                has_msr_hv_runtime = true;
2456                break;
2457            case HV_X64_MSR_SCONTROL:
2458                has_msr_hv_synic = true;
2459                break;
2460            case HV_X64_MSR_STIMER0_CONFIG:
2461                has_msr_hv_stimer = true;
2462                break;
2463            case HV_X64_MSR_TSC_FREQUENCY:
2464                has_msr_hv_frequencies = true;
2465                break;
2466            case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2467                has_msr_hv_reenlightenment = true;
2468                break;
2469            case HV_X64_MSR_SYNDBG_OPTIONS:
2470                has_msr_hv_syndbg_options = true;
2471                break;
2472            case MSR_IA32_SPEC_CTRL:
2473                has_msr_spec_ctrl = true;
2474                break;
2475            case MSR_AMD64_TSC_RATIO:
2476                has_tsc_scale_msr = true;
2477                break;
2478            case MSR_IA32_TSX_CTRL:
2479                has_msr_tsx_ctrl = true;
2480                break;
2481            case MSR_VIRT_SSBD:
2482                has_msr_virt_ssbd = true;
2483                break;
2484            case MSR_IA32_ARCH_CAPABILITIES:
2485                has_msr_arch_capabs = true;
2486                break;
2487            case MSR_IA32_CORE_CAPABILITY:
2488                has_msr_core_capabs = true;
2489                break;
2490            case MSR_IA32_PERF_CAPABILITIES:
2491                has_msr_perf_capabs = true;
2492                break;
2493            case MSR_IA32_VMX_VMFUNC:
2494                has_msr_vmx_vmfunc = true;
2495                break;
2496            case MSR_IA32_UCODE_REV:
2497                has_msr_ucode_rev = true;
2498                break;
2499            case MSR_IA32_VMX_PROCBASED_CTLS2:
2500                has_msr_vmx_procbased_ctls2 = true;
2501                break;
2502            case MSR_IA32_PKRS:
2503                has_msr_pkrs = true;
2504                break;
2505            }
2506        }
2507    }
2508
2509    g_free(kvm_msr_list);
2510
2511    return ret;
2512}
2513
2514static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, uint32_t msr,
2515                                        uint64_t *val)
2516{
2517    CPUState *cs = CPU(cpu);
2518
2519    *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2520    *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2521
2522    return true;
2523}
2524
2525static Notifier smram_machine_done;
2526static KVMMemoryListener smram_listener;
2527static AddressSpace smram_address_space;
2528static MemoryRegion smram_as_root;
2529static MemoryRegion smram_as_mem;
2530
2531static void register_smram_listener(Notifier *n, void *unused)
2532{
2533    MemoryRegion *smram =
2534        (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2535
2536    /* Outer container... */
2537    memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2538    memory_region_set_enabled(&smram_as_root, true);
2539
2540    /* ... with two regions inside: normal system memory with low
2541     * priority, and...
2542     */
2543    memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2544                             get_system_memory(), 0, ~0ull);
2545    memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2546    memory_region_set_enabled(&smram_as_mem, true);
2547
2548    if (smram) {
2549        /* ... SMRAM with higher priority */
2550        memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2551        memory_region_set_enabled(smram, true);
2552    }
2553
2554    address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2555    kvm_memory_listener_register(kvm_state, &smram_listener,
2556                                 &smram_address_space, 1, "kvm-smram");
2557}
2558
2559int kvm_arch_get_default_type(MachineState *ms)
2560{
2561    return 0;
2562}
2563
2564int kvm_arch_init(MachineState *ms, KVMState *s)
2565{
2566    uint64_t identity_base = 0xfffbc000;
2567    uint64_t shadow_mem;
2568    int ret;
2569    struct utsname utsname;
2570    Error *local_err = NULL;
2571
2572    /*
2573     * Initialize SEV context, if required
2574     *
2575     * If no memory encryption is requested (ms->cgs == NULL) this is
2576     * a no-op.
2577     *
2578     * It's also a no-op if a non-SEV confidential guest support
2579     * mechanism is selected.  SEV is the only mechanism available to
2580     * select on x86 at present, so this doesn't arise, but if new
2581     * mechanisms are supported in future (e.g. TDX), they'll need
2582     * their own initialization either here or elsewhere.
2583     */
2584    ret = sev_kvm_init(ms->cgs, &local_err);
2585    if (ret < 0) {
2586        error_report_err(local_err);
2587        return ret;
2588    }
2589
2590    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2591        error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2592        return -ENOTSUP;
2593    }
2594
2595    has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2596    has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2597    has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2598    has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
2599
2600    hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2601
2602    has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2603    if (has_exception_payload) {
2604        ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2605        if (ret < 0) {
2606            error_report("kvm: Failed to enable exception payload cap: %s",
2607                         strerror(-ret));
2608            return ret;
2609        }
2610    }
2611
2612    has_triple_fault_event = kvm_check_extension(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT);
2613    if (has_triple_fault_event) {
2614        ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
2615        if (ret < 0) {
2616            error_report("kvm: Failed to enable triple fault event cap: %s",
2617                         strerror(-ret));
2618            return ret;
2619        }
2620    }
2621
2622    if (s->xen_version) {
2623#ifdef CONFIG_XEN_EMU
2624        if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
2625            error_report("kvm: Xen support only available in PC machine");
2626            return -ENOTSUP;
2627        }
2628        /* hyperv_enabled() doesn't work yet. */
2629        uint32_t msr = XEN_HYPERCALL_MSR;
2630        ret = kvm_xen_init(s, msr);
2631        if (ret < 0) {
2632            return ret;
2633        }
2634#else
2635        error_report("kvm: Xen support not enabled in qemu");
2636        return -ENOTSUP;
2637#endif
2638    }
2639
2640    ret = kvm_get_supported_msrs(s);
2641    if (ret < 0) {
2642        return ret;
2643    }
2644
2645    kvm_get_supported_feature_msrs(s);
2646
2647    uname(&utsname);
2648    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2649
2650    /*
2651     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2652     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2653     * Since these must be part of guest physical memory, we need to allocate
2654     * them, both by setting their start addresses in the kernel and by
2655     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2656     *
2657     * Older KVM versions may not support setting the identity map base. In
2658     * that case we need to stick with the default, i.e. a 256K maximum BIOS
2659     * size.
2660     */
2661    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2662        /* Allows up to 16M BIOSes. */
2663        identity_base = 0xfeffc000;
2664
2665        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2666        if (ret < 0) {
2667            return ret;
2668        }
2669    }
2670
2671    /* Set TSS base one page after EPT identity map. */
2672    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2673    if (ret < 0) {
2674        return ret;
2675    }
2676
2677    /* Tell fw_cfg to notify the BIOS to reserve the range. */
2678    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2679    if (ret < 0) {
2680        fprintf(stderr, "e820_add_entry() table is full\n");
2681        return ret;
2682    }
2683
2684    shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2685    if (shadow_mem != -1) {
2686        shadow_mem /= 4096;
2687        ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2688        if (ret < 0) {
2689            return ret;
2690        }
2691    }
2692
2693    if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2694        object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2695        x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2696        smram_machine_done.notify = register_smram_listener;
2697        qemu_add_machine_init_done_notifier(&smram_machine_done);
2698    }
2699
2700    if (enable_cpu_pm) {
2701        int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2702        int ret;
2703
2704/* Work around for kernel header with a typo. TODO: fix header and drop. */
2705#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2706#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2707#endif
2708        if (disable_exits) {
2709            disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2710                              KVM_X86_DISABLE_EXITS_HLT |
2711                              KVM_X86_DISABLE_EXITS_PAUSE |
2712                              KVM_X86_DISABLE_EXITS_CSTATE);
2713        }
2714
2715        ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2716                                disable_exits);
2717        if (ret < 0) {
2718            error_report("kvm: guest stopping CPU not supported: %s",
2719                         strerror(-ret));
2720        }
2721    }
2722
2723    if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
2724        X86MachineState *x86ms = X86_MACHINE(ms);
2725
2726        if (x86ms->bus_lock_ratelimit > 0) {
2727            ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
2728            if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
2729                error_report("kvm: bus lock detection unsupported");
2730                return -ENOTSUP;
2731            }
2732            ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
2733                                    KVM_BUS_LOCK_DETECTION_EXIT);
2734            if (ret < 0) {
2735                error_report("kvm: Failed to enable bus lock detection cap: %s",
2736                             strerror(-ret));
2737                return ret;
2738            }
2739            ratelimit_init(&bus_lock_ratelimit_ctrl);
2740            ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
2741                                x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
2742        }
2743    }
2744
2745    if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE &&
2746        kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
2747            uint64_t notify_window_flags =
2748                ((uint64_t)s->notify_window << 32) |
2749                KVM_X86_NOTIFY_VMEXIT_ENABLED |
2750                KVM_X86_NOTIFY_VMEXIT_USER;
2751            ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
2752                                    notify_window_flags);
2753            if (ret < 0) {
2754                error_report("kvm: Failed to enable notify vmexit cap: %s",
2755                             strerror(-ret));
2756                return ret;
2757            }
2758    }
2759    if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
2760        bool r;
2761
2762        ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
2763                                KVM_MSR_EXIT_REASON_FILTER);
2764        if (ret) {
2765            error_report("Could not enable user space MSRs: %s",
2766                         strerror(-ret));
2767            exit(1);
2768        }
2769
2770        r = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
2771                           kvm_rdmsr_core_thread_count, NULL);
2772        if (!r) {
2773            error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
2774                         strerror(-ret));
2775            exit(1);
2776        }
2777    }
2778
2779    return 0;
2780}
2781
2782static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2783{
2784    lhs->selector = rhs->selector;
2785    lhs->base = rhs->base;
2786    lhs->limit = rhs->limit;
2787    lhs->type = 3;
2788    lhs->present = 1;
2789    lhs->dpl = 3;
2790    lhs->db = 0;
2791    lhs->s = 1;
2792    lhs->l = 0;
2793    lhs->g = 0;
2794    lhs->avl = 0;
2795    lhs->unusable = 0;
2796}
2797
2798static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2799{
2800    unsigned flags = rhs->flags;
2801    lhs->selector = rhs->selector;
2802    lhs->base = rhs->base;
2803    lhs->limit = rhs->limit;
2804    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2805    lhs->present = (flags & DESC_P_MASK) != 0;
2806    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2807    lhs->db = (flags >> DESC_B_SHIFT) & 1;
2808    lhs->s = (flags & DESC_S_MASK) != 0;
2809    lhs->l = (flags >> DESC_L_SHIFT) & 1;
2810    lhs->g = (flags & DESC_G_MASK) != 0;
2811    lhs->avl = (flags & DESC_AVL_MASK) != 0;
2812    lhs->unusable = !lhs->present;
2813    lhs->padding = 0;
2814}
2815
2816static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2817{
2818    lhs->selector = rhs->selector;
2819    lhs->base = rhs->base;
2820    lhs->limit = rhs->limit;
2821    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2822                 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2823                 (rhs->dpl << DESC_DPL_SHIFT) |
2824                 (rhs->db << DESC_B_SHIFT) |
2825                 (rhs->s * DESC_S_MASK) |
2826                 (rhs->l << DESC_L_SHIFT) |
2827                 (rhs->g * DESC_G_MASK) |
2828                 (rhs->avl * DESC_AVL_MASK);
2829}
2830
2831static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2832{
2833    if (set) {
2834        *kvm_reg = *qemu_reg;
2835    } else {
2836        *qemu_reg = *kvm_reg;
2837    }
2838}
2839
2840static int kvm_getput_regs(X86CPU *cpu, int set)
2841{
2842    CPUX86State *env = &cpu->env;
2843    struct kvm_regs regs;
2844    int ret = 0;
2845
2846    if (!set) {
2847        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2848        if (ret < 0) {
2849            return ret;
2850        }
2851    }
2852
2853    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2854    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2855    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2856    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2857    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2858    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2859    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2860    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2861#ifdef TARGET_X86_64
2862    kvm_getput_reg(&regs.r8, &env->regs[8], set);
2863    kvm_getput_reg(&regs.r9, &env->regs[9], set);
2864    kvm_getput_reg(&regs.r10, &env->regs[10], set);
2865    kvm_getput_reg(&regs.r11, &env->regs[11], set);
2866    kvm_getput_reg(&regs.r12, &env->regs[12], set);
2867    kvm_getput_reg(&regs.r13, &env->regs[13], set);
2868    kvm_getput_reg(&regs.r14, &env->regs[14], set);
2869    kvm_getput_reg(&regs.r15, &env->regs[15], set);
2870#endif
2871
2872    kvm_getput_reg(&regs.rflags, &env->eflags, set);
2873    kvm_getput_reg(&regs.rip, &env->eip, set);
2874
2875    if (set) {
2876        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2877    }
2878
2879    return ret;
2880}
2881
2882static int kvm_put_fpu(X86CPU *cpu)
2883{
2884    CPUX86State *env = &cpu->env;
2885    struct kvm_fpu fpu;
2886    int i;
2887
2888    memset(&fpu, 0, sizeof fpu);
2889    fpu.fsw = env->fpus & ~(7 << 11);
2890    fpu.fsw |= (env->fpstt & 7) << 11;
2891    fpu.fcw = env->fpuc;
2892    fpu.last_opcode = env->fpop;
2893    fpu.last_ip = env->fpip;
2894    fpu.last_dp = env->fpdp;
2895    for (i = 0; i < 8; ++i) {
2896        fpu.ftwx |= (!env->fptags[i]) << i;
2897    }
2898    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2899    for (i = 0; i < CPU_NB_REGS; i++) {
2900        stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2901        stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2902    }
2903    fpu.mxcsr = env->mxcsr;
2904
2905    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2906}
2907
2908static int kvm_put_xsave(X86CPU *cpu)
2909{
2910    CPUX86State *env = &cpu->env;
2911    void *xsave = env->xsave_buf;
2912
2913    if (!has_xsave) {
2914        return kvm_put_fpu(cpu);
2915    }
2916    x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
2917
2918    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2919}
2920
2921static int kvm_put_xcrs(X86CPU *cpu)
2922{
2923    CPUX86State *env = &cpu->env;
2924    struct kvm_xcrs xcrs = {};
2925
2926    if (!has_xcrs) {
2927        return 0;
2928    }
2929
2930    xcrs.nr_xcrs = 1;
2931    xcrs.flags = 0;
2932    xcrs.xcrs[0].xcr = 0;
2933    xcrs.xcrs[0].value = env->xcr0;
2934    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2935}
2936
2937static int kvm_put_sregs(X86CPU *cpu)
2938{
2939    CPUX86State *env = &cpu->env;
2940    struct kvm_sregs sregs;
2941
2942    /*
2943     * The interrupt_bitmap is ignored because KVM_SET_SREGS is
2944     * always followed by KVM_SET_VCPU_EVENTS.
2945     */
2946    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2947
2948    if ((env->eflags & VM_MASK)) {
2949        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2950        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2951        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2952        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2953        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2954        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2955    } else {
2956        set_seg(&sregs.cs, &env->segs[R_CS]);
2957        set_seg(&sregs.ds, &env->segs[R_DS]);
2958        set_seg(&sregs.es, &env->segs[R_ES]);
2959        set_seg(&sregs.fs, &env->segs[R_FS]);
2960        set_seg(&sregs.gs, &env->segs[R_GS]);
2961        set_seg(&sregs.ss, &env->segs[R_SS]);
2962    }
2963
2964    set_seg(&sregs.tr, &env->tr);
2965    set_seg(&sregs.ldt, &env->ldt);
2966
2967    sregs.idt.limit = env->idt.limit;
2968    sregs.idt.base = env->idt.base;
2969    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2970    sregs.gdt.limit = env->gdt.limit;
2971    sregs.gdt.base = env->gdt.base;
2972    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2973
2974    sregs.cr0 = env->cr[0];
2975    sregs.cr2 = env->cr[2];
2976    sregs.cr3 = env->cr[3];
2977    sregs.cr4 = env->cr[4];
2978
2979    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2980    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2981
2982    sregs.efer = env->efer;
2983
2984    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2985}
2986
2987static int kvm_put_sregs2(X86CPU *cpu)
2988{
2989    CPUX86State *env = &cpu->env;
2990    struct kvm_sregs2 sregs;
2991    int i;
2992
2993    sregs.flags = 0;
2994
2995    if ((env->eflags & VM_MASK)) {
2996        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2997        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2998        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2999        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3000        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3001        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3002    } else {
3003        set_seg(&sregs.cs, &env->segs[R_CS]);
3004        set_seg(&sregs.ds, &env->segs[R_DS]);
3005        set_seg(&sregs.es, &env->segs[R_ES]);
3006        set_seg(&sregs.fs, &env->segs[R_FS]);
3007        set_seg(&sregs.gs, &env->segs[R_GS]);
3008        set_seg(&sregs.ss, &env->segs[R_SS]);
3009    }
3010
3011    set_seg(&sregs.tr, &env->tr);
3012    set_seg(&sregs.ldt, &env->ldt);
3013
3014    sregs.idt.limit = env->idt.limit;
3015    sregs.idt.base = env->idt.base;
3016    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3017    sregs.gdt.limit = env->gdt.limit;
3018    sregs.gdt.base = env->gdt.base;
3019    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3020
3021    sregs.cr0 = env->cr[0];
3022    sregs.cr2 = env->cr[2];
3023    sregs.cr3 = env->cr[3];
3024    sregs.cr4 = env->cr[4];
3025
3026    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3027    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3028
3029    sregs.efer = env->efer;
3030
3031    if (env->pdptrs_valid) {
3032        for (i = 0; i < 4; i++) {
3033            sregs.pdptrs[i] = env->pdptrs[i];
3034        }
3035        sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3036    }
3037
3038    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3039}
3040
3041
3042static void kvm_msr_buf_reset(X86CPU *cpu)
3043{
3044    memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3045}
3046
3047static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3048{
3049    struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3050    void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3051    struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3052
3053    assert((void *)(entry + 1) <= limit);
3054
3055    entry->index = index;
3056    entry->reserved = 0;
3057    entry->data = value;
3058    msrs->nmsrs++;
3059}
3060
3061static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3062{
3063    kvm_msr_buf_reset(cpu);
3064    kvm_msr_entry_add(cpu, index, value);
3065
3066    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3067}
3068
3069static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3070{
3071    int ret;
3072    struct {
3073        struct kvm_msrs info;
3074        struct kvm_msr_entry entries[1];
3075    } msr_data = {
3076        .info.nmsrs = 1,
3077        .entries[0].index = index,
3078    };
3079
3080    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3081    if (ret < 0) {
3082        return ret;
3083    }
3084    assert(ret == 1);
3085    *value = msr_data.entries[0].data;
3086    return ret;
3087}
3088void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3089{
3090    int ret;
3091
3092    ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3093    assert(ret == 1);
3094}
3095
3096static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3097{
3098    CPUX86State *env = &cpu->env;
3099    int ret;
3100
3101    if (!has_msr_tsc_deadline) {
3102        return 0;
3103    }
3104
3105    ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3106    if (ret < 0) {
3107        return ret;
3108    }
3109
3110    assert(ret == 1);
3111    return 0;
3112}
3113
3114/*
3115 * Provide a separate write service for the feature control MSR in order to
3116 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3117 * before writing any other state because forcibly leaving nested mode
3118 * invalidates the VCPU state.
3119 */
3120static int kvm_put_msr_feature_control(X86CPU *cpu)
3121{
3122    int ret;
3123
3124    if (!has_msr_feature_control) {
3125        return 0;
3126    }
3127
3128    ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3129                          cpu->env.msr_ia32_feature_control);
3130    if (ret < 0) {
3131        return ret;
3132    }
3133
3134    assert(ret == 1);
3135    return 0;
3136}
3137
3138static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3139{
3140    uint32_t default1, can_be_one, can_be_zero;
3141    uint32_t must_be_one;
3142
3143    switch (index) {
3144    case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3145        default1 = 0x00000016;
3146        break;
3147    case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3148        default1 = 0x0401e172;
3149        break;
3150    case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3151        default1 = 0x000011ff;
3152        break;
3153    case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3154        default1 = 0x00036dff;
3155        break;
3156    case MSR_IA32_VMX_PROCBASED_CTLS2:
3157        default1 = 0;
3158        break;
3159    default:
3160        abort();
3161    }
3162
3163    /* If a feature bit is set, the control can be either set or clear.
3164     * Otherwise the value is limited to either 0 or 1 by default1.
3165     */
3166    can_be_one = features | default1;
3167    can_be_zero = features | ~default1;
3168    must_be_one = ~can_be_zero;
3169
3170    /*
3171     * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3172     * Bit 32:63 -> 1 if the control bit can be one.
3173     */
3174    return must_be_one | (((uint64_t)can_be_one) << 32);
3175}
3176
3177static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3178{
3179    uint64_t kvm_vmx_basic =
3180        kvm_arch_get_supported_msr_feature(kvm_state,
3181                                           MSR_IA32_VMX_BASIC);
3182
3183    if (!kvm_vmx_basic) {
3184        /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3185         * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3186         */
3187        return;
3188    }
3189
3190    uint64_t kvm_vmx_misc =
3191        kvm_arch_get_supported_msr_feature(kvm_state,
3192                                           MSR_IA32_VMX_MISC);
3193    uint64_t kvm_vmx_ept_vpid =
3194        kvm_arch_get_supported_msr_feature(kvm_state,
3195                                           MSR_IA32_VMX_EPT_VPID_CAP);
3196
3197    /*
3198     * If the guest is 64-bit, a value of 1 is allowed for the host address
3199     * space size vmexit control.
3200     */
3201    uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3202        ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3203
3204    /*
3205     * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3206     * not change them for backwards compatibility.
3207     */
3208    uint64_t fixed_vmx_basic = kvm_vmx_basic &
3209        (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3210         MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3211         MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3212
3213    /*
3214     * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3215     * change in the future but are always zero for now, clear them to be
3216     * future proof.  Bits 32-63 in theory could change, though KVM does
3217     * not support dual-monitor treatment and probably never will; mask
3218     * them out as well.
3219     */
3220    uint64_t fixed_vmx_misc = kvm_vmx_misc &
3221        (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3222         MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3223
3224    /*
3225     * EPT memory types should not change either, so we do not bother
3226     * adding features for them.
3227     */
3228    uint64_t fixed_vmx_ept_mask =
3229            (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3230             MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3231    uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3232
3233    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3234                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3235                                         f[FEAT_VMX_PROCBASED_CTLS]));
3236    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3237                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3238                                         f[FEAT_VMX_PINBASED_CTLS]));
3239    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3240                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3241                                         f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3242    kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3243                      make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3244                                         f[FEAT_VMX_ENTRY_CTLS]));
3245    kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3246                      make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3247                                         f[FEAT_VMX_SECONDARY_CTLS]));
3248    kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3249                      f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3250    kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3251                      f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3252    kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3253                      f[FEAT_VMX_MISC] | fixed_vmx_misc);
3254    if (has_msr_vmx_vmfunc) {
3255        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3256    }
3257
3258    /*
3259     * Just to be safe, write these with constant values.  The CRn_FIXED1
3260     * MSRs are generated by KVM based on the vCPU's CPUID.
3261     */
3262    kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3263                      CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3264    kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3265                      CR4_VMXE_MASK);
3266
3267    if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3268        /* TSC multiplier (0x2032).  */
3269        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3270    } else {
3271        /* Preemption timer (0x482E).  */
3272        kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3273    }
3274}
3275
3276static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3277{
3278    uint64_t kvm_perf_cap =
3279        kvm_arch_get_supported_msr_feature(kvm_state,
3280                                           MSR_IA32_PERF_CAPABILITIES);
3281
3282    if (kvm_perf_cap) {
3283        kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3284                        kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3285    }
3286}
3287
3288static int kvm_buf_set_msrs(X86CPU *cpu)
3289{
3290    int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3291    if (ret < 0) {
3292        return ret;
3293    }
3294
3295    if (ret < cpu->kvm_msr_buf->nmsrs) {
3296        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3297        error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3298                     (uint32_t)e->index, (uint64_t)e->data);
3299    }
3300
3301    assert(ret == cpu->kvm_msr_buf->nmsrs);
3302    return 0;
3303}
3304
3305static void kvm_init_msrs(X86CPU *cpu)
3306{
3307    CPUX86State *env = &cpu->env;
3308
3309    kvm_msr_buf_reset(cpu);
3310    if (has_msr_arch_capabs) {
3311        kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3312                          env->features[FEAT_ARCH_CAPABILITIES]);
3313    }
3314
3315    if (has_msr_core_capabs) {
3316        kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3317                          env->features[FEAT_CORE_CAPABILITY]);
3318    }
3319
3320    if (has_msr_perf_capabs && cpu->enable_pmu) {
3321        kvm_msr_entry_add_perf(cpu, env->features);
3322    }
3323
3324    if (has_msr_ucode_rev) {
3325        kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3326    }
3327
3328    /*
3329     * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3330     * all kernels with MSR features should have them.
3331     */
3332    if (kvm_feature_msrs && cpu_has_vmx(env)) {
3333        kvm_msr_entry_add_vmx(cpu, env->features);
3334    }
3335
3336    assert(kvm_buf_set_msrs(cpu) == 0);
3337}
3338
3339static int kvm_put_msrs(X86CPU *cpu, int level)
3340{
3341    CPUX86State *env = &cpu->env;
3342    int i;
3343
3344    kvm_msr_buf_reset(cpu);
3345
3346    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3347    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3348    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3349    kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3350    if (has_msr_star) {
3351        kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3352    }
3353    if (has_msr_hsave_pa) {
3354        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3355    }
3356    if (has_msr_tsc_aux) {
3357        kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3358    }
3359    if (has_msr_tsc_adjust) {
3360        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3361    }
3362    if (has_msr_misc_enable) {
3363        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3364                          env->msr_ia32_misc_enable);
3365    }
3366    if (has_msr_smbase) {
3367        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3368    }
3369    if (has_msr_smi_count) {
3370        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3371    }
3372    if (has_msr_pkrs) {
3373        kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3374    }
3375    if (has_msr_bndcfgs) {
3376        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3377    }
3378    if (has_msr_xss) {
3379        kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3380    }
3381    if (has_msr_umwait) {
3382        kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3383    }
3384    if (has_msr_spec_ctrl) {
3385        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3386    }
3387    if (has_tsc_scale_msr) {
3388        kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3389    }
3390
3391    if (has_msr_tsx_ctrl) {
3392        kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3393    }
3394    if (has_msr_virt_ssbd) {
3395        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3396    }
3397
3398#ifdef TARGET_X86_64
3399    if (lm_capable_kernel) {
3400        kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3401        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3402        kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3403        kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3404    }
3405#endif
3406
3407    /*
3408     * The following MSRs have side effects on the guest or are too heavy
3409     * for normal writeback. Limit them to reset or full state updates.
3410     */
3411    if (level >= KVM_PUT_RESET_STATE) {
3412        kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3413        kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3414        kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3415        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3416            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3417        }
3418        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3419            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3420        }
3421        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3422            kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3423        }
3424        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3425            kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3426        }
3427
3428        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3429            kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3430        }
3431
3432        if (has_architectural_pmu_version > 0) {
3433            if (has_architectural_pmu_version > 1) {
3434                /* Stop the counter.  */
3435                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3436                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3437            }
3438
3439            /* Set the counter values.  */
3440            for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3441                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3442                                  env->msr_fixed_counters[i]);
3443            }
3444            for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3445                kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3446                                  env->msr_gp_counters[i]);
3447                kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3448                                  env->msr_gp_evtsel[i]);
3449            }
3450            if (has_architectural_pmu_version > 1) {
3451                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3452                                  env->msr_global_status);
3453                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3454                                  env->msr_global_ovf_ctrl);
3455
3456                /* Now start the PMU.  */
3457                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3458                                  env->msr_fixed_ctr_ctrl);
3459                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3460                                  env->msr_global_ctrl);
3461            }
3462        }
3463        /*
3464         * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3465         * only sync them to KVM on the first cpu
3466         */
3467        if (current_cpu == first_cpu) {
3468            if (has_msr_hv_hypercall) {
3469                kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
3470                                  env->msr_hv_guest_os_id);
3471                kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
3472                                  env->msr_hv_hypercall);
3473            }
3474            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3475                kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
3476                                  env->msr_hv_tsc);
3477            }
3478            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3479                kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
3480                                  env->msr_hv_reenlightenment_control);
3481                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
3482                                  env->msr_hv_tsc_emulation_control);
3483                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
3484                                  env->msr_hv_tsc_emulation_status);
3485            }
3486#ifdef CONFIG_SYNDBG
3487            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
3488                has_msr_hv_syndbg_options) {
3489                kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
3490                                  hyperv_syndbg_query_options());
3491            }
3492#endif
3493        }
3494        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3495            kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
3496                              env->msr_hv_vapic);
3497        }
3498        if (has_msr_hv_crash) {
3499            int j;
3500
3501            for (j = 0; j < HV_CRASH_PARAMS; j++)
3502                kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
3503                                  env->msr_hv_crash_params[j]);
3504
3505            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
3506        }
3507        if (has_msr_hv_runtime) {
3508            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
3509        }
3510        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
3511            && hv_vpindex_settable) {
3512            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
3513                              hyperv_vp_index(CPU(cpu)));
3514        }
3515        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3516            int j;
3517
3518            kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
3519
3520            kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
3521                              env->msr_hv_synic_control);
3522            kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
3523                              env->msr_hv_synic_evt_page);
3524            kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
3525                              env->msr_hv_synic_msg_page);
3526
3527            for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
3528                kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
3529                                  env->msr_hv_synic_sint[j]);
3530            }
3531        }
3532        if (has_msr_hv_stimer) {
3533            int j;
3534
3535            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
3536                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
3537                                env->msr_hv_stimer_config[j]);
3538            }
3539
3540            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
3541                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
3542                                env->msr_hv_stimer_count[j]);
3543            }
3544        }
3545        if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3546            uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
3547
3548            kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
3549            kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
3550            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
3551            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
3552            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
3553            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
3554            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
3555            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
3556            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
3557            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
3558            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
3559            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
3560            for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3561                /* The CPU GPs if we write to a bit above the physical limit of
3562                 * the host CPU (and KVM emulates that)
3563                 */
3564                uint64_t mask = env->mtrr_var[i].mask;
3565                mask &= phys_mask;
3566
3567                kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3568                                  env->mtrr_var[i].base);
3569                kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3570            }
3571        }
3572        if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3573            int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3574                                                    0x14, 1, R_EAX) & 0x7;
3575
3576            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3577                            env->msr_rtit_ctrl);
3578            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3579                            env->msr_rtit_status);
3580            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3581                            env->msr_rtit_output_base);
3582            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3583                            env->msr_rtit_output_mask);
3584            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3585                            env->msr_rtit_cr3_match);
3586            for (i = 0; i < addr_num; i++) {
3587                kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3588                            env->msr_rtit_addrs[i]);
3589            }
3590        }
3591
3592        if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
3593            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
3594                              env->msr_ia32_sgxlepubkeyhash[0]);
3595            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
3596                              env->msr_ia32_sgxlepubkeyhash[1]);
3597            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
3598                              env->msr_ia32_sgxlepubkeyhash[2]);
3599            kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
3600                              env->msr_ia32_sgxlepubkeyhash[3]);
3601        }
3602
3603        if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
3604            kvm_msr_entry_add(cpu, MSR_IA32_XFD,
3605                              env->msr_xfd);
3606            kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
3607                              env->msr_xfd_err);
3608        }
3609
3610        if (kvm_enabled() && cpu->enable_pmu &&
3611            (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
3612            uint64_t depth;
3613            int i, ret;
3614
3615            /*
3616             * Only migrate Arch LBR states when the host Arch LBR depth
3617             * equals that of source guest's, this is to avoid mismatch
3618             * of guest/host config for the msr hence avoid unexpected
3619             * misbehavior.
3620             */
3621            ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
3622
3623            if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
3624                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
3625                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
3626
3627                for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
3628                    if (!env->lbr_records[i].from) {
3629                        continue;
3630                    }
3631                    kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
3632                                      env->lbr_records[i].from);
3633                    kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
3634                                      env->lbr_records[i].to);
3635                    kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
3636                                      env->lbr_records[i].info);
3637                }
3638            }
3639        }
3640
3641        /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3642         *       kvm_put_msr_feature_control. */
3643    }
3644
3645    if (env->mcg_cap) {
3646        int i;
3647
3648        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3649        kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3650        if (has_msr_mcg_ext_ctl) {
3651            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3652        }
3653        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3654            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3655        }
3656    }
3657
3658    return kvm_buf_set_msrs(cpu);
3659}
3660
3661
3662static int kvm_get_fpu(X86CPU *cpu)
3663{
3664    CPUX86State *env = &cpu->env;
3665    struct kvm_fpu fpu;
3666    int i, ret;
3667
3668    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3669    if (ret < 0) {
3670        return ret;
3671    }
3672
3673    env->fpstt = (fpu.fsw >> 11) & 7;
3674    env->fpus = fpu.fsw;
3675    env->fpuc = fpu.fcw;
3676    env->fpop = fpu.last_opcode;
3677    env->fpip = fpu.last_ip;
3678    env->fpdp = fpu.last_dp;
3679    for (i = 0; i < 8; ++i) {
3680        env->fptags[i] = !((fpu.ftwx >> i) & 1);
3681    }
3682    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3683    for (i = 0; i < CPU_NB_REGS; i++) {
3684        env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3685        env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3686    }
3687    env->mxcsr = fpu.mxcsr;
3688
3689    return 0;
3690}
3691
3692static int kvm_get_xsave(X86CPU *cpu)
3693{
3694    CPUX86State *env = &cpu->env;
3695    void *xsave = env->xsave_buf;
3696    int type, ret;
3697
3698    if (!has_xsave) {
3699        return kvm_get_fpu(cpu);
3700    }
3701
3702    type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
3703    ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
3704    if (ret < 0) {
3705        return ret;
3706    }
3707    x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
3708
3709    return 0;
3710}
3711
3712static int kvm_get_xcrs(X86CPU *cpu)
3713{
3714    CPUX86State *env = &cpu->env;
3715    int i, ret;
3716    struct kvm_xcrs xcrs;
3717
3718    if (!has_xcrs) {
3719        return 0;
3720    }
3721
3722    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3723    if (ret < 0) {
3724        return ret;
3725    }
3726
3727    for (i = 0; i < xcrs.nr_xcrs; i++) {
3728        /* Only support xcr0 now */
3729        if (xcrs.xcrs[i].xcr == 0) {
3730            env->xcr0 = xcrs.xcrs[i].value;
3731            break;
3732        }
3733    }
3734    return 0;
3735}
3736
3737static int kvm_get_sregs(X86CPU *cpu)
3738{
3739    CPUX86State *env = &cpu->env;
3740    struct kvm_sregs sregs;
3741    int ret;
3742
3743    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3744    if (ret < 0) {
3745        return ret;
3746    }
3747
3748    /*
3749     * The interrupt_bitmap is ignored because KVM_GET_SREGS is
3750     * always preceded by KVM_GET_VCPU_EVENTS.
3751     */
3752
3753    get_seg(&env->segs[R_CS], &sregs.cs);
3754    get_seg(&env->segs[R_DS], &sregs.ds);
3755    get_seg(&env->segs[R_ES], &sregs.es);
3756    get_seg(&env->segs[R_FS], &sregs.fs);
3757    get_seg(&env->segs[R_GS], &sregs.gs);
3758    get_seg(&env->segs[R_SS], &sregs.ss);
3759
3760    get_seg(&env->tr, &sregs.tr);
3761    get_seg(&env->ldt, &sregs.ldt);
3762
3763    env->idt.limit = sregs.idt.limit;
3764    env->idt.base = sregs.idt.base;
3765    env->gdt.limit = sregs.gdt.limit;
3766    env->gdt.base = sregs.gdt.base;
3767
3768    env->cr[0] = sregs.cr0;
3769    env->cr[2] = sregs.cr2;
3770    env->cr[3] = sregs.cr3;
3771    env->cr[4] = sregs.cr4;
3772
3773    env->efer = sregs.efer;
3774
3775    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3776    x86_update_hflags(env);
3777
3778    return 0;
3779}
3780
3781static int kvm_get_sregs2(X86CPU *cpu)
3782{
3783    CPUX86State *env = &cpu->env;
3784    struct kvm_sregs2 sregs;
3785    int i, ret;
3786
3787    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
3788    if (ret < 0) {
3789        return ret;
3790    }
3791
3792    get_seg(&env->segs[R_CS], &sregs.cs);
3793    get_seg(&env->segs[R_DS], &sregs.ds);
3794    get_seg(&env->segs[R_ES], &sregs.es);
3795    get_seg(&env->segs[R_FS], &sregs.fs);
3796    get_seg(&env->segs[R_GS], &sregs.gs);
3797    get_seg(&env->segs[R_SS], &sregs.ss);
3798
3799    get_seg(&env->tr, &sregs.tr);
3800    get_seg(&env->ldt, &sregs.ldt);
3801
3802    env->idt.limit = sregs.idt.limit;
3803    env->idt.base = sregs.idt.base;
3804    env->gdt.limit = sregs.gdt.limit;
3805    env->gdt.base = sregs.gdt.base;
3806
3807    env->cr[0] = sregs.cr0;
3808    env->cr[2] = sregs.cr2;
3809    env->cr[3] = sregs.cr3;
3810    env->cr[4] = sregs.cr4;
3811
3812    env->efer = sregs.efer;
3813
3814    env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
3815
3816    if (env->pdptrs_valid) {
3817        for (i = 0; i < 4; i++) {
3818            env->pdptrs[i] = sregs.pdptrs[i];
3819        }
3820    }
3821
3822    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3823    x86_update_hflags(env);
3824
3825    return 0;
3826}
3827
3828static int kvm_get_msrs(X86CPU *cpu)
3829{
3830    CPUX86State *env = &cpu->env;
3831    struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3832    int ret, i;
3833    uint64_t mtrr_top_bits;
3834
3835    kvm_msr_buf_reset(cpu);
3836
3837    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3838    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3839    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3840    kvm_msr_entry_add(cpu, MSR_PAT, 0);
3841    if (has_msr_star) {
3842        kvm_msr_entry_add(cpu, MSR_STAR, 0);
3843    }
3844    if (has_msr_hsave_pa) {
3845        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3846    }
3847    if (has_msr_tsc_aux) {
3848        kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3849    }
3850    if (has_msr_tsc_adjust) {
3851        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3852    }
3853    if (has_msr_tsc_deadline) {
3854        kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3855    }
3856    if (has_msr_misc_enable) {
3857        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3858    }
3859    if (has_msr_smbase) {
3860        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3861    }
3862    if (has_msr_smi_count) {
3863        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3864    }
3865    if (has_msr_feature_control) {
3866        kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3867    }
3868    if (has_msr_pkrs) {
3869        kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3870    }
3871    if (has_msr_bndcfgs) {
3872        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3873    }
3874    if (has_msr_xss) {
3875        kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3876    }
3877    if (has_msr_umwait) {
3878        kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3879    }
3880    if (has_msr_spec_ctrl) {
3881        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3882    }
3883    if (has_tsc_scale_msr) {
3884        kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
3885    }
3886
3887    if (has_msr_tsx_ctrl) {
3888        kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3889    }
3890    if (has_msr_virt_ssbd) {
3891        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3892    }
3893    if (!env->tsc_valid) {
3894        kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3895        env->tsc_valid = !runstate_is_running();
3896    }
3897
3898#ifdef TARGET_X86_64
3899    if (lm_capable_kernel) {
3900        kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3901        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3902        kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3903        kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3904    }
3905#endif
3906    kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3907    kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3908    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3909        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3910    }
3911    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3912        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3913    }
3914    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3915        kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3916    }
3917    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3918        kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3919    }
3920    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3921        kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3922    }
3923    if (has_architectural_pmu_version > 0) {
3924        if (has_architectural_pmu_version > 1) {
3925            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3926            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3927            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3928            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3929        }
3930        for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3931            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3932        }
3933        for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3934            kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3935            kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3936        }
3937    }
3938
3939    if (env->mcg_cap) {
3940        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3941        kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3942        if (has_msr_mcg_ext_ctl) {
3943            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3944        }
3945        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3946            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3947        }
3948    }
3949
3950    if (has_msr_hv_hypercall) {
3951        kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3952        kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3953    }
3954    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3955        kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3956    }
3957    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3958        kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3959    }
3960    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3961        kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3962        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3963        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3964    }
3965    if (has_msr_hv_syndbg_options) {
3966        kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
3967    }
3968    if (has_msr_hv_crash) {
3969        int j;
3970
3971        for (j = 0; j < HV_CRASH_PARAMS; j++) {
3972            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3973        }
3974    }
3975    if (has_msr_hv_runtime) {
3976        kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3977    }
3978    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3979        uint32_t msr;
3980
3981        kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3982        kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3983        kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3984        for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3985            kvm_msr_entry_add(cpu, msr, 0);
3986        }
3987    }
3988    if (has_msr_hv_stimer) {
3989        uint32_t msr;
3990
3991        for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3992             msr++) {
3993            kvm_msr_entry_add(cpu, msr, 0);
3994        }
3995    }
3996    if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3997        kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3998        kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3999        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
4000        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
4001        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
4002        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
4003        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
4004        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
4005        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
4006        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
4007        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
4008        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4009        for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4010            kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4011            kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4012        }
4013    }
4014
4015    if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4016        int addr_num =
4017            kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4018
4019        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4020        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4021        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4022        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4023        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4024        for (i = 0; i < addr_num; i++) {
4025            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4026        }
4027    }
4028
4029    if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4030        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4031        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4032        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4033        kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4034    }
4035
4036    if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4037        kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4038        kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4039    }
4040
4041    if (kvm_enabled() && cpu->enable_pmu &&
4042        (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4043        uint64_t depth;
4044        int i, ret;
4045
4046        ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4047        if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4048            kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4049            kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4050
4051            for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4052                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4053                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4054                kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4055            }
4056        }
4057    }
4058
4059    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4060    if (ret < 0) {
4061        return ret;
4062    }
4063
4064    if (ret < cpu->kvm_msr_buf->nmsrs) {
4065        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4066        error_report("error: failed to get MSR 0x%" PRIx32,
4067                     (uint32_t)e->index);
4068    }
4069
4070    assert(ret == cpu->kvm_msr_buf->nmsrs);
4071    /*
4072     * MTRR masks: Each mask consists of 5 parts
4073     * a  10..0: must be zero
4074     * b  11   : valid bit
4075     * c n-1.12: actual mask bits
4076     * d  51..n: reserved must be zero
4077     * e  63.52: reserved must be zero
4078     *
4079     * 'n' is the number of physical bits supported by the CPU and is
4080     * apparently always <= 52.   We know our 'n' but don't know what
4081     * the destinations 'n' is; it might be smaller, in which case
4082     * it masks (c) on loading. It might be larger, in which case
4083     * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4084     * we're migrating to.
4085     */
4086
4087    if (cpu->fill_mtrr_mask) {
4088        QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4089        assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4090        mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4091    } else {
4092        mtrr_top_bits = 0;
4093    }
4094
4095    for (i = 0; i < ret; i++) {
4096        uint32_t index = msrs[i].index;
4097        switch (index) {
4098        case MSR_IA32_SYSENTER_CS:
4099            env->sysenter_cs = msrs[i].data;
4100            break;
4101        case MSR_IA32_SYSENTER_ESP:
4102            env->sysenter_esp = msrs[i].data;
4103            break;
4104        case MSR_IA32_SYSENTER_EIP:
4105            env->sysenter_eip = msrs[i].data;
4106            break;
4107        case MSR_PAT:
4108            env->pat = msrs[i].data;
4109            break;
4110        case MSR_STAR:
4111            env->star = msrs[i].data;
4112            break;
4113#ifdef TARGET_X86_64
4114        case MSR_CSTAR:
4115            env->cstar = msrs[i].data;
4116            break;
4117        case MSR_KERNELGSBASE:
4118            env->kernelgsbase = msrs[i].data;
4119            break;
4120        case MSR_FMASK:
4121            env->fmask = msrs[i].data;
4122            break;
4123        case MSR_LSTAR:
4124            env->lstar = msrs[i].data;
4125            break;
4126#endif
4127        case MSR_IA32_TSC:
4128            env->tsc = msrs[i].data;
4129            break;
4130        case MSR_TSC_AUX:
4131            env->tsc_aux = msrs[i].data;
4132            break;
4133        case MSR_TSC_ADJUST:
4134            env->tsc_adjust = msrs[i].data;
4135            break;
4136        case MSR_IA32_TSCDEADLINE:
4137            env->tsc_deadline = msrs[i].data;
4138            break;
4139        case MSR_VM_HSAVE_PA:
4140            env->vm_hsave = msrs[i].data;
4141            break;
4142        case MSR_KVM_SYSTEM_TIME:
4143            env->system_time_msr = msrs[i].data;
4144            break;
4145        case MSR_KVM_WALL_CLOCK:
4146            env->wall_clock_msr = msrs[i].data;
4147            break;
4148        case MSR_MCG_STATUS:
4149            env->mcg_status = msrs[i].data;
4150            break;
4151        case MSR_MCG_CTL:
4152            env->mcg_ctl = msrs[i].data;
4153            break;
4154        case MSR_MCG_EXT_CTL:
4155            env->mcg_ext_ctl = msrs[i].data;
4156            break;
4157        case MSR_IA32_MISC_ENABLE:
4158            env->msr_ia32_misc_enable = msrs[i].data;
4159            break;
4160        case MSR_IA32_SMBASE:
4161            env->smbase = msrs[i].data;
4162            break;
4163        case MSR_SMI_COUNT:
4164            env->msr_smi_count = msrs[i].data;
4165            break;
4166        case MSR_IA32_FEATURE_CONTROL:
4167            env->msr_ia32_feature_control = msrs[i].data;
4168            break;
4169        case MSR_IA32_BNDCFGS:
4170            env->msr_bndcfgs = msrs[i].data;
4171            break;
4172        case MSR_IA32_XSS:
4173            env->xss = msrs[i].data;
4174            break;
4175        case MSR_IA32_UMWAIT_CONTROL:
4176            env->umwait = msrs[i].data;
4177            break;
4178        case MSR_IA32_PKRS:
4179            env->pkrs = msrs[i].data;
4180            break;
4181        default:
4182            if (msrs[i].index >= MSR_MC0_CTL &&
4183                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4184                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4185            }
4186            break;
4187        case MSR_KVM_ASYNC_PF_EN:
4188            env->async_pf_en_msr = msrs[i].data;
4189            break;
4190        case MSR_KVM_ASYNC_PF_INT:
4191            env->async_pf_int_msr = msrs[i].data;
4192            break;
4193        case MSR_KVM_PV_EOI_EN:
4194            env->pv_eoi_en_msr = msrs[i].data;
4195            break;
4196        case MSR_KVM_STEAL_TIME:
4197            env->steal_time_msr = msrs[i].data;
4198            break;
4199        case MSR_KVM_POLL_CONTROL: {
4200            env->poll_control_msr = msrs[i].data;
4201            break;
4202        }
4203        case MSR_CORE_PERF_FIXED_CTR_CTRL:
4204            env->msr_fixed_ctr_ctrl = msrs[i].data;
4205            break;
4206        case MSR_CORE_PERF_GLOBAL_CTRL:
4207            env->msr_global_ctrl = msrs[i].data;
4208            break;
4209        case MSR_CORE_PERF_GLOBAL_STATUS:
4210            env->msr_global_status = msrs[i].data;
4211            break;
4212        case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4213            env->msr_global_ovf_ctrl = msrs[i].data;
4214            break;
4215        case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4216            env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4217            break;
4218        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4219            env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4220            break;
4221        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4222            env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4223            break;
4224        case HV_X64_MSR_HYPERCALL:
4225            env->msr_hv_hypercall = msrs[i].data;
4226            break;
4227        case HV_X64_MSR_GUEST_OS_ID:
4228            env->msr_hv_guest_os_id = msrs[i].data;
4229            break;
4230        case HV_X64_MSR_APIC_ASSIST_PAGE:
4231            env->msr_hv_vapic = msrs[i].data;
4232            break;
4233        case HV_X64_MSR_REFERENCE_TSC:
4234            env->msr_hv_tsc = msrs[i].data;
4235            break;
4236        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4237            env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4238            break;
4239        case HV_X64_MSR_VP_RUNTIME:
4240            env->msr_hv_runtime = msrs[i].data;
4241            break;
4242        case HV_X64_MSR_SCONTROL:
4243            env->msr_hv_synic_control = msrs[i].data;
4244            break;
4245        case HV_X64_MSR_SIEFP:
4246            env->msr_hv_synic_evt_page = msrs[i].data;
4247            break;
4248        case HV_X64_MSR_SIMP:
4249            env->msr_hv_synic_msg_page = msrs[i].data;
4250            break;
4251        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4252            env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4253            break;
4254        case HV_X64_MSR_STIMER0_CONFIG:
4255        case HV_X64_MSR_STIMER1_CONFIG:
4256        case HV_X64_MSR_STIMER2_CONFIG:
4257        case HV_X64_MSR_STIMER3_CONFIG:
4258            env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4259                                msrs[i].data;
4260            break;
4261        case HV_X64_MSR_STIMER0_COUNT:
4262        case HV_X64_MSR_STIMER1_COUNT:
4263        case HV_X64_MSR_STIMER2_COUNT:
4264        case HV_X64_MSR_STIMER3_COUNT:
4265            env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4266                                msrs[i].data;
4267            break;
4268        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4269            env->msr_hv_reenlightenment_control = msrs[i].data;
4270            break;
4271        case HV_X64_MSR_TSC_EMULATION_CONTROL:
4272            env->msr_hv_tsc_emulation_control = msrs[i].data;
4273            break;
4274        case HV_X64_MSR_TSC_EMULATION_STATUS:
4275            env->msr_hv_tsc_emulation_status = msrs[i].data;
4276            break;
4277        case HV_X64_MSR_SYNDBG_OPTIONS:
4278            env->msr_hv_syndbg_options = msrs[i].data;
4279            break;
4280        case MSR_MTRRdefType:
4281            env->mtrr_deftype = msrs[i].data;
4282            break;
4283        case MSR_MTRRfix64K_00000:
4284            env->mtrr_fixed[0] = msrs[i].data;
4285            break;
4286        case MSR_MTRRfix16K_80000:
4287            env->mtrr_fixed[1] = msrs[i].data;
4288            break;
4289        case MSR_MTRRfix16K_A0000:
4290            env->mtrr_fixed[2] = msrs[i].data;
4291            break;
4292        case MSR_MTRRfix4K_C0000:
4293            env->mtrr_fixed[3] = msrs[i].data;
4294            break;
4295        case MSR_MTRRfix4K_C8000:
4296            env->mtrr_fixed[4] = msrs[i].data;
4297            break;
4298        case MSR_MTRRfix4K_D0000:
4299            env->mtrr_fixed[5] = msrs[i].data;
4300            break;
4301        case MSR_MTRRfix4K_D8000:
4302            env->mtrr_fixed[6] = msrs[i].data;
4303            break;
4304        case MSR_MTRRfix4K_E0000:
4305            env->mtrr_fixed[7] = msrs[i].data;
4306            break;
4307        case MSR_MTRRfix4K_E8000:
4308            env->mtrr_fixed[8] = msrs[i].data;
4309            break;
4310        case MSR_MTRRfix4K_F0000:
4311            env->mtrr_fixed[9] = msrs[i].data;
4312            break;
4313        case MSR_MTRRfix4K_F8000:
4314            env->mtrr_fixed[10] = msrs[i].data;
4315            break;
4316        case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4317            if (index & 1) {
4318                env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4319                                                               mtrr_top_bits;
4320            } else {
4321                env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4322            }
4323            break;
4324        case MSR_IA32_SPEC_CTRL:
4325            env->spec_ctrl = msrs[i].data;
4326            break;
4327        case MSR_AMD64_TSC_RATIO:
4328            env->amd_tsc_scale_msr = msrs[i].data;
4329            break;
4330        case MSR_IA32_TSX_CTRL:
4331            env->tsx_ctrl = msrs[i].data;
4332            break;
4333        case MSR_VIRT_SSBD:
4334            env->virt_ssbd = msrs[i].data;
4335            break;
4336        case MSR_IA32_RTIT_CTL:
4337            env->msr_rtit_ctrl = msrs[i].data;
4338            break;
4339        case MSR_IA32_RTIT_STATUS:
4340            env->msr_rtit_status = msrs[i].data;
4341            break;
4342        case MSR_IA32_RTIT_OUTPUT_BASE:
4343            env->msr_rtit_output_base = msrs[i].data;
4344            break;
4345        case MSR_IA32_RTIT_OUTPUT_MASK:
4346            env->msr_rtit_output_mask = msrs[i].data;
4347            break;
4348        case MSR_IA32_RTIT_CR3_MATCH:
4349            env->msr_rtit_cr3_match = msrs[i].data;
4350            break;
4351        case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4352            env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4353            break;
4354        case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4355            env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4356                           msrs[i].data;
4357            break;
4358        case MSR_IA32_XFD:
4359            env->msr_xfd = msrs[i].data;
4360            break;
4361        case MSR_IA32_XFD_ERR:
4362            env->msr_xfd_err = msrs[i].data;
4363            break;
4364        case MSR_ARCH_LBR_CTL:
4365            env->msr_lbr_ctl = msrs[i].data;
4366            break;
4367        case MSR_ARCH_LBR_DEPTH:
4368            env->msr_lbr_depth = msrs[i].data;
4369            break;
4370        case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4371            env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4372            break;
4373        case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4374            env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4375            break;
4376        case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4377            env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4378            break;
4379        }
4380    }
4381
4382    return 0;
4383}
4384
4385static int kvm_put_mp_state(X86CPU *cpu)
4386{
4387    struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4388
4389    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4390}
4391
4392static int kvm_get_mp_state(X86CPU *cpu)
4393{
4394    CPUState *cs = CPU(cpu);
4395    CPUX86State *env = &cpu->env;
4396    struct kvm_mp_state mp_state;
4397    int ret;
4398
4399    ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4400    if (ret < 0) {
4401        return ret;
4402    }
4403    env->mp_state = mp_state.mp_state;
4404    if (kvm_irqchip_in_kernel()) {
4405        cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4406    }
4407    return 0;
4408}
4409
4410static int kvm_get_apic(X86CPU *cpu)
4411{
4412    DeviceState *apic = cpu->apic_state;
4413    struct kvm_lapic_state kapic;
4414    int ret;
4415
4416    if (apic && kvm_irqchip_in_kernel()) {
4417        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4418        if (ret < 0) {
4419            return ret;
4420        }
4421
4422        kvm_get_apic_state(apic, &kapic);
4423    }
4424    return 0;
4425}
4426
4427static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4428{
4429    CPUState *cs = CPU(cpu);
4430    CPUX86State *env = &cpu->env;
4431    struct kvm_vcpu_events events = {};
4432
4433    if (!kvm_has_vcpu_events()) {
4434        return 0;
4435    }
4436
4437    events.flags = 0;
4438
4439    if (has_exception_payload) {
4440        events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4441        events.exception.pending = env->exception_pending;
4442        events.exception_has_payload = env->exception_has_payload;
4443        events.exception_payload = env->exception_payload;
4444    }
4445    events.exception.nr = env->exception_nr;
4446    events.exception.injected = env->exception_injected;
4447    events.exception.has_error_code = env->has_error_code;
4448    events.exception.error_code = env->error_code;
4449
4450    events.interrupt.injected = (env->interrupt_injected >= 0);
4451    events.interrupt.nr = env->interrupt_injected;
4452    events.interrupt.soft = env->soft_interrupt;
4453
4454    events.nmi.injected = env->nmi_injected;
4455    events.nmi.pending = env->nmi_pending;
4456    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4457
4458    events.sipi_vector = env->sipi_vector;
4459
4460    if (has_msr_smbase) {
4461        events.smi.smm = !!(env->hflags & HF_SMM_MASK);
4462        events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
4463        if (kvm_irqchip_in_kernel()) {
4464            /* As soon as these are moved to the kernel, remove them
4465             * from cs->interrupt_request.
4466             */
4467            events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
4468            events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
4469            cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
4470        } else {
4471            /* Keep these in cs->interrupt_request.  */
4472            events.smi.pending = 0;
4473            events.smi.latched_init = 0;
4474        }
4475        /* Stop SMI delivery on old machine types to avoid a reboot
4476         * on an inward migration of an old VM.
4477         */
4478        if (!cpu->kvm_no_smi_migration) {
4479            events.flags |= KVM_VCPUEVENT_VALID_SMM;
4480        }
4481    }
4482
4483    if (level >= KVM_PUT_RESET_STATE) {
4484        events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
4485        if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
4486            events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
4487        }
4488    }
4489
4490    if (has_triple_fault_event) {
4491        events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
4492        events.triple_fault.pending = env->triple_fault_pending;
4493    }
4494
4495    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
4496}
4497
4498static int kvm_get_vcpu_events(X86CPU *cpu)
4499{
4500    CPUX86State *env = &cpu->env;
4501    struct kvm_vcpu_events events;
4502    int ret;
4503
4504    if (!kvm_has_vcpu_events()) {
4505        return 0;
4506    }
4507
4508    memset(&events, 0, sizeof(events));
4509    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
4510    if (ret < 0) {
4511       return ret;
4512    }
4513
4514    if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4515        env->exception_pending = events.exception.pending;
4516        env->exception_has_payload = events.exception_has_payload;
4517        env->exception_payload = events.exception_payload;
4518    } else {
4519        env->exception_pending = 0;
4520        env->exception_has_payload = false;
4521    }
4522    env->exception_injected = events.exception.injected;
4523    env->exception_nr =
4524        (env->exception_pending || env->exception_injected) ?
4525        events.exception.nr : -1;
4526    env->has_error_code = events.exception.has_error_code;
4527    env->error_code = events.exception.error_code;
4528
4529    env->interrupt_injected =
4530        events.interrupt.injected ? events.interrupt.nr : -1;
4531    env->soft_interrupt = events.interrupt.soft;
4532
4533    env->nmi_injected = events.nmi.injected;
4534    env->nmi_pending = events.nmi.pending;
4535    if (events.nmi.masked) {
4536        env->hflags2 |= HF2_NMI_MASK;
4537    } else {
4538        env->hflags2 &= ~HF2_NMI_MASK;
4539    }
4540
4541    if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
4542        if (events.smi.smm) {
4543            env->hflags |= HF_SMM_MASK;
4544        } else {
4545            env->hflags &= ~HF_SMM_MASK;
4546        }
4547        if (events.smi.pending) {
4548            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4549        } else {
4550            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
4551        }
4552        if (events.smi.smm_inside_nmi) {
4553            env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
4554        } else {
4555            env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
4556        }
4557        if (events.smi.latched_init) {
4558            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4559        } else {
4560            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
4561        }
4562    }
4563
4564    if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
4565        env->triple_fault_pending = events.triple_fault.pending;
4566    }
4567
4568    env->sipi_vector = events.sipi_vector;
4569
4570    return 0;
4571}
4572
4573static int kvm_guest_debug_workarounds(X86CPU *cpu)
4574{
4575    CPUState *cs = CPU(cpu);
4576    CPUX86State *env = &cpu->env;
4577    int ret = 0;
4578    unsigned long reinject_trap = 0;
4579
4580    if (!kvm_has_vcpu_events()) {
4581        if (env->exception_nr == EXCP01_DB) {
4582            reinject_trap = KVM_GUESTDBG_INJECT_DB;
4583        } else if (env->exception_injected == EXCP03_INT3) {
4584            reinject_trap = KVM_GUESTDBG_INJECT_BP;
4585        }
4586        kvm_reset_exception(env);
4587    }
4588
4589    /*
4590     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
4591     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
4592     * by updating the debug state once again if single-stepping is on.
4593     * Another reason to call kvm_update_guest_debug here is a pending debug
4594     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
4595     * reinject them via SET_GUEST_DEBUG.
4596     */
4597    if (reinject_trap ||
4598        (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
4599        ret = kvm_update_guest_debug(cs, reinject_trap);
4600    }
4601    return ret;
4602}
4603
4604static int kvm_put_debugregs(X86CPU *cpu)
4605{
4606    CPUX86State *env = &cpu->env;
4607    struct kvm_debugregs dbgregs;
4608    int i;
4609
4610    if (!kvm_has_debugregs()) {
4611        return 0;
4612    }
4613
4614    memset(&dbgregs, 0, sizeof(dbgregs));
4615    for (i = 0; i < 4; i++) {
4616        dbgregs.db[i] = env->dr[i];
4617    }
4618    dbgregs.dr6 = env->dr[6];
4619    dbgregs.dr7 = env->dr[7];
4620    dbgregs.flags = 0;
4621
4622    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
4623}
4624
4625static int kvm_get_debugregs(X86CPU *cpu)
4626{
4627    CPUX86State *env = &cpu->env;
4628    struct kvm_debugregs dbgregs;
4629    int i, ret;
4630
4631    if (!kvm_has_debugregs()) {
4632        return 0;
4633    }
4634
4635    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
4636    if (ret < 0) {
4637        return ret;
4638    }
4639    for (i = 0; i < 4; i++) {
4640        env->dr[i] = dbgregs.db[i];
4641    }
4642    env->dr[4] = env->dr[6] = dbgregs.dr6;
4643    env->dr[5] = env->dr[7] = dbgregs.dr7;
4644
4645    return 0;
4646}
4647
4648static int kvm_put_nested_state(X86CPU *cpu)
4649{
4650    CPUX86State *env = &cpu->env;
4651    int max_nested_state_len = kvm_max_nested_state_length();
4652
4653    if (!env->nested_state) {
4654        return 0;
4655    }
4656
4657    /*
4658     * Copy flags that are affected by reset from env->hflags and env->hflags2.
4659     */
4660    if (env->hflags & HF_GUEST_MASK) {
4661        env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
4662    } else {
4663        env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
4664    }
4665
4666    /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
4667    if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
4668        env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
4669    } else {
4670        env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
4671    }
4672
4673    assert(env->nested_state->size <= max_nested_state_len);
4674    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
4675}
4676
4677static int kvm_get_nested_state(X86CPU *cpu)
4678{
4679    CPUX86State *env = &cpu->env;
4680    int max_nested_state_len = kvm_max_nested_state_length();
4681    int ret;
4682
4683    if (!env->nested_state) {
4684        return 0;
4685    }
4686
4687    /*
4688     * It is possible that migration restored a smaller size into
4689     * nested_state->hdr.size than what our kernel support.
4690     * We preserve migration origin nested_state->hdr.size for
4691     * call to KVM_SET_NESTED_STATE but wish that our next call
4692     * to KVM_GET_NESTED_STATE will use max size our kernel support.
4693     */
4694    env->nested_state->size = max_nested_state_len;
4695
4696    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
4697    if (ret < 0) {
4698        return ret;
4699    }
4700
4701    /*
4702     * Copy flags that are affected by reset to env->hflags and env->hflags2.
4703     */
4704    if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
4705        env->hflags |= HF_GUEST_MASK;
4706    } else {
4707        env->hflags &= ~HF_GUEST_MASK;
4708    }
4709
4710    /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
4711    if (cpu_has_svm(env)) {
4712        if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
4713            env->hflags2 |= HF2_GIF_MASK;
4714        } else {
4715            env->hflags2 &= ~HF2_GIF_MASK;
4716        }
4717    }
4718
4719    return ret;
4720}
4721
4722int kvm_arch_put_registers(CPUState *cpu, int level)
4723{
4724    X86CPU *x86_cpu = X86_CPU(cpu);
4725    int ret;
4726
4727    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
4728
4729    /*
4730     * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
4731     * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
4732     * preceed kvm_put_nested_state() when 'real' nested state is set.
4733     */
4734    if (level >= KVM_PUT_RESET_STATE) {
4735        ret = kvm_put_msr_feature_control(x86_cpu);
4736        if (ret < 0) {
4737            return ret;
4738        }
4739    }
4740
4741    /* must be before kvm_put_nested_state so that EFER.SVME is set */
4742    ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
4743    if (ret < 0) {
4744        return ret;
4745    }
4746
4747    if (level >= KVM_PUT_RESET_STATE) {
4748        ret = kvm_put_nested_state(x86_cpu);
4749        if (ret < 0) {
4750            return ret;
4751        }
4752    }
4753
4754    if (level == KVM_PUT_FULL_STATE) {
4755        /* We don't check for kvm_arch_set_tsc_khz() errors here,
4756         * because TSC frequency mismatch shouldn't abort migration,
4757         * unless the user explicitly asked for a more strict TSC
4758         * setting (e.g. using an explicit "tsc-freq" option).
4759         */
4760        kvm_arch_set_tsc_khz(cpu);
4761    }
4762
4763#ifdef CONFIG_XEN_EMU
4764    if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
4765        ret = kvm_put_xen_state(cpu);
4766        if (ret < 0) {
4767            return ret;
4768        }
4769    }
4770#endif
4771
4772    ret = kvm_getput_regs(x86_cpu, 1);
4773    if (ret < 0) {
4774        return ret;
4775    }
4776    ret = kvm_put_xsave(x86_cpu);
4777    if (ret < 0) {
4778        return ret;
4779    }
4780    ret = kvm_put_xcrs(x86_cpu);
4781    if (ret < 0) {
4782        return ret;
4783    }
4784    /* must be before kvm_put_msrs */
4785    ret = kvm_inject_mce_oldstyle(x86_cpu);
4786    if (ret < 0) {
4787        return ret;
4788    }
4789    ret = kvm_put_msrs(x86_cpu, level);
4790    if (ret < 0) {
4791        return ret;
4792    }
4793    ret = kvm_put_vcpu_events(x86_cpu, level);
4794    if (ret < 0) {
4795        return ret;
4796    }
4797    if (level >= KVM_PUT_RESET_STATE) {
4798        ret = kvm_put_mp_state(x86_cpu);
4799        if (ret < 0) {
4800            return ret;
4801        }
4802    }
4803
4804    ret = kvm_put_tscdeadline_msr(x86_cpu);
4805    if (ret < 0) {
4806        return ret;
4807    }
4808    ret = kvm_put_debugregs(x86_cpu);
4809    if (ret < 0) {
4810        return ret;
4811    }
4812    /* must be last */
4813    ret = kvm_guest_debug_workarounds(x86_cpu);
4814    if (ret < 0) {
4815        return ret;
4816    }
4817    return 0;
4818}
4819
4820int kvm_arch_get_registers(CPUState *cs)
4821{
4822    X86CPU *cpu = X86_CPU(cs);
4823    int ret;
4824
4825    assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4826
4827    ret = kvm_get_vcpu_events(cpu);
4828    if (ret < 0) {
4829        goto out;
4830    }
4831    /*
4832     * KVM_GET_MPSTATE can modify CS and RIP, call it before
4833     * KVM_GET_REGS and KVM_GET_SREGS.
4834     */
4835    ret = kvm_get_mp_state(cpu);
4836    if (ret < 0) {
4837        goto out;
4838    }
4839    ret = kvm_getput_regs(cpu, 0);
4840    if (ret < 0) {
4841        goto out;
4842    }
4843    ret = kvm_get_xsave(cpu);
4844    if (ret < 0) {
4845        goto out;
4846    }
4847    ret = kvm_get_xcrs(cpu);
4848    if (ret < 0) {
4849        goto out;
4850    }
4851    ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
4852    if (ret < 0) {
4853        goto out;
4854    }
4855    ret = kvm_get_msrs(cpu);
4856    if (ret < 0) {
4857        goto out;
4858    }
4859    ret = kvm_get_apic(cpu);
4860    if (ret < 0) {
4861        goto out;
4862    }
4863    ret = kvm_get_debugregs(cpu);
4864    if (ret < 0) {
4865        goto out;
4866    }
4867    ret = kvm_get_nested_state(cpu);
4868    if (ret < 0) {
4869        goto out;
4870    }
4871#ifdef CONFIG_XEN_EMU
4872    if (xen_mode == XEN_EMULATE) {
4873        ret = kvm_get_xen_state(cs);
4874        if (ret < 0) {
4875            goto out;
4876        }
4877    }
4878#endif
4879    ret = 0;
4880 out:
4881    cpu_sync_bndcs_hflags(&cpu->env);
4882    return ret;
4883}
4884
4885void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4886{
4887    X86CPU *x86_cpu = X86_CPU(cpu);
4888    CPUX86State *env = &x86_cpu->env;
4889    int ret;
4890
4891    /* Inject NMI */
4892    if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4893        if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4894            qemu_mutex_lock_iothread();
4895            cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4896            qemu_mutex_unlock_iothread();
4897            DPRINTF("injected NMI\n");
4898            ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4899            if (ret < 0) {
4900                fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4901                        strerror(-ret));
4902            }
4903        }
4904        if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4905            qemu_mutex_lock_iothread();
4906            cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4907            qemu_mutex_unlock_iothread();
4908            DPRINTF("injected SMI\n");
4909            ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4910            if (ret < 0) {
4911                fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4912                        strerror(-ret));
4913            }
4914        }
4915    }
4916
4917    if (!kvm_pic_in_kernel()) {
4918        qemu_mutex_lock_iothread();
4919    }
4920
4921    /* Force the VCPU out of its inner loop to process any INIT requests
4922     * or (for userspace APIC, but it is cheap to combine the checks here)
4923     * pending TPR access reports.
4924     */
4925    if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4926        if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4927            !(env->hflags & HF_SMM_MASK)) {
4928            cpu->exit_request = 1;
4929        }
4930        if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4931            cpu->exit_request = 1;
4932        }
4933    }
4934
4935    if (!kvm_pic_in_kernel()) {
4936        /* Try to inject an interrupt if the guest can accept it */
4937        if (run->ready_for_interrupt_injection &&
4938            (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4939            (env->eflags & IF_MASK)) {
4940            int irq;
4941
4942            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4943            irq = cpu_get_pic_interrupt(env);
4944            if (irq >= 0) {
4945                struct kvm_interrupt intr;
4946
4947                intr.irq = irq;
4948                DPRINTF("injected interrupt %d\n", irq);
4949                ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4950                if (ret < 0) {
4951                    fprintf(stderr,
4952                            "KVM: injection failed, interrupt lost (%s)\n",
4953                            strerror(-ret));
4954                }
4955            }
4956        }
4957
4958        /* If we have an interrupt but the guest is not ready to receive an
4959         * interrupt, request an interrupt window exit.  This will
4960         * cause a return to userspace as soon as the guest is ready to
4961         * receive interrupts. */
4962        if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4963            run->request_interrupt_window = 1;
4964        } else {
4965            run->request_interrupt_window = 0;
4966        }
4967
4968        DPRINTF("setting tpr\n");
4969        run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4970
4971        qemu_mutex_unlock_iothread();
4972    }
4973}
4974
4975static void kvm_rate_limit_on_bus_lock(void)
4976{
4977    uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
4978
4979    if (delay_ns) {
4980        g_usleep(delay_ns / SCALE_US);
4981    }
4982}
4983
4984MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4985{
4986    X86CPU *x86_cpu = X86_CPU(cpu);
4987    CPUX86State *env = &x86_cpu->env;
4988
4989    if (run->flags & KVM_RUN_X86_SMM) {
4990        env->hflags |= HF_SMM_MASK;
4991    } else {
4992        env->hflags &= ~HF_SMM_MASK;
4993    }
4994    if (run->if_flag) {
4995        env->eflags |= IF_MASK;
4996    } else {
4997        env->eflags &= ~IF_MASK;
4998    }
4999    if (run->flags & KVM_RUN_X86_BUS_LOCK) {
5000        kvm_rate_limit_on_bus_lock();
5001    }
5002
5003#ifdef CONFIG_XEN_EMU    
5004    /*
5005     * If the callback is asserted as a GSI (or PCI INTx) then check if
5006     * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
5007     * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
5008     * EOI and only resample then, exactly how the VFIO eventfd pairs
5009     * are designed to work for level triggered interrupts.
5010     */
5011    if (x86_cpu->env.xen_callback_asserted) {
5012        kvm_xen_maybe_deassert_callback(cpu);
5013    }
5014#endif
5015
5016    /* We need to protect the apic state against concurrent accesses from
5017     * different threads in case the userspace irqchip is used. */
5018    if (!kvm_irqchip_in_kernel()) {
5019        qemu_mutex_lock_iothread();
5020    }
5021    cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5022    cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5023    if (!kvm_irqchip_in_kernel()) {
5024        qemu_mutex_unlock_iothread();
5025    }
5026    return cpu_get_mem_attrs(env);
5027}
5028
5029int kvm_arch_process_async_events(CPUState *cs)
5030{
5031    X86CPU *cpu = X86_CPU(cs);
5032    CPUX86State *env = &cpu->env;
5033
5034    if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5035        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5036        assert(env->mcg_cap);
5037
5038        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5039
5040        kvm_cpu_synchronize_state(cs);
5041
5042        if (env->exception_nr == EXCP08_DBLE) {
5043            /* this means triple fault */
5044            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5045            cs->exit_request = 1;
5046            return 0;
5047        }
5048        kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5049        env->has_error_code = 0;
5050
5051        cs->halted = 0;
5052        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5053            env->mp_state = KVM_MP_STATE_RUNNABLE;
5054        }
5055    }
5056
5057    if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5058        !(env->hflags & HF_SMM_MASK)) {
5059        kvm_cpu_synchronize_state(cs);
5060        do_cpu_init(cpu);
5061    }
5062
5063    if (kvm_irqchip_in_kernel()) {
5064        return 0;
5065    }
5066
5067    if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5068        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5069        apic_poll_irq(cpu->apic_state);
5070    }
5071    if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5072         (env->eflags & IF_MASK)) ||
5073        (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5074        cs->halted = 0;
5075    }
5076    if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5077        kvm_cpu_synchronize_state(cs);
5078        do_cpu_sipi(cpu);
5079    }
5080    if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5081        cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5082        kvm_cpu_synchronize_state(cs);
5083        apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5084                                      env->tpr_access_type);
5085    }
5086
5087    return cs->halted;
5088}
5089
5090static int kvm_handle_halt(X86CPU *cpu)
5091{
5092    CPUState *cs = CPU(cpu);
5093    CPUX86State *env = &cpu->env;
5094
5095    if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5096          (env->eflags & IF_MASK)) &&
5097        !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5098        cs->halted = 1;
5099        return EXCP_HLT;
5100    }
5101
5102    return 0;
5103}
5104
5105static int kvm_handle_tpr_access(X86CPU *cpu)
5106{
5107    CPUState *cs = CPU(cpu);
5108    struct kvm_run *run = cs->kvm_run;
5109
5110    apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5111                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
5112                                                           : TPR_ACCESS_READ);
5113    return 1;
5114}
5115
5116int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5117{
5118    static const uint8_t int3 = 0xcc;
5119
5120    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5121        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5122        return -EINVAL;
5123    }
5124    return 0;
5125}
5126
5127int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5128{
5129    uint8_t int3;
5130
5131    if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5132        return -EINVAL;
5133    }
5134    if (int3 != 0xcc) {
5135        return 0;
5136    }
5137    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5138        return -EINVAL;
5139    }
5140    return 0;
5141}
5142
5143static struct {
5144    target_ulong addr;
5145    int len;
5146    int type;
5147} hw_breakpoint[4];
5148
5149static int nb_hw_breakpoint;
5150
5151static int find_hw_breakpoint(target_ulong addr, int len, int type)
5152{
5153    int n;
5154
5155    for (n = 0; n < nb_hw_breakpoint; n++) {
5156        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5157            (hw_breakpoint[n].len == len || len == -1)) {
5158            return n;
5159        }
5160    }
5161    return -1;
5162}
5163
5164int kvm_arch_insert_hw_breakpoint(target_ulong addr,
5165                                  target_ulong len, int type)
5166{
5167    switch (type) {
5168    case GDB_BREAKPOINT_HW:
5169        len = 1;
5170        break;
5171    case GDB_WATCHPOINT_WRITE:
5172    case GDB_WATCHPOINT_ACCESS:
5173        switch (len) {
5174        case 1:
5175            break;
5176        case 2:
5177        case 4:
5178        case 8:
5179            if (addr & (len - 1)) {
5180                return -EINVAL;
5181            }
5182            break;
5183        default:
5184            return -EINVAL;
5185        }
5186        break;
5187    default:
5188        return -ENOSYS;
5189    }
5190
5191    if (nb_hw_breakpoint == 4) {
5192        return -ENOBUFS;
5193    }
5194    if (find_hw_breakpoint(addr, len, type) >= 0) {
5195        return -EEXIST;
5196    }
5197    hw_breakpoint[nb_hw_breakpoint].addr = addr;
5198    hw_breakpoint[nb_hw_breakpoint].len = len;
5199    hw_breakpoint[nb_hw_breakpoint].type = type;
5200    nb_hw_breakpoint++;
5201
5202    return 0;
5203}
5204
5205int kvm_arch_remove_hw_breakpoint(target_ulong addr,
5206                                  target_ulong len, int type)
5207{
5208    int n;
5209
5210    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5211    if (n < 0) {
5212        return -ENOENT;
5213    }
5214    nb_hw_breakpoint--;
5215    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5216
5217    return 0;
5218}
5219
5220void kvm_arch_remove_all_hw_breakpoints(void)
5221{
5222    nb_hw_breakpoint = 0;
5223}
5224
5225static CPUWatchpoint hw_watchpoint;
5226
5227static int kvm_handle_debug(X86CPU *cpu,
5228                            struct kvm_debug_exit_arch *arch_info)
5229{
5230    CPUState *cs = CPU(cpu);
5231    CPUX86State *env = &cpu->env;
5232    int ret = 0;
5233    int n;
5234
5235    if (arch_info->exception == EXCP01_DB) {
5236        if (arch_info->dr6 & DR6_BS) {
5237            if (cs->singlestep_enabled) {
5238                ret = EXCP_DEBUG;
5239            }
5240        } else {
5241            for (n = 0; n < 4; n++) {
5242                if (arch_info->dr6 & (1 << n)) {
5243                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5244                    case 0x0:
5245                        ret = EXCP_DEBUG;
5246                        break;
5247                    case 0x1:
5248                        ret = EXCP_DEBUG;
5249                        cs->watchpoint_hit = &hw_watchpoint;
5250                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5251                        hw_watchpoint.flags = BP_MEM_WRITE;
5252                        break;
5253                    case 0x3:
5254                        ret = EXCP_DEBUG;
5255                        cs->watchpoint_hit = &hw_watchpoint;
5256                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5257                        hw_watchpoint.flags = BP_MEM_ACCESS;
5258                        break;
5259                    }
5260                }
5261            }
5262        }
5263    } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5264        ret = EXCP_DEBUG;
5265    }
5266    if (ret == 0) {
5267        cpu_synchronize_state(cs);
5268        assert(env->exception_nr == -1);
5269
5270        /* pass to guest */
5271        kvm_queue_exception(env, arch_info->exception,
5272                            arch_info->exception == EXCP01_DB,
5273                            arch_info->dr6);
5274        env->has_error_code = 0;
5275    }
5276
5277    return ret;
5278}
5279
5280void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5281{
5282    const uint8_t type_code[] = {
5283        [GDB_BREAKPOINT_HW] = 0x0,
5284        [GDB_WATCHPOINT_WRITE] = 0x1,
5285        [GDB_WATCHPOINT_ACCESS] = 0x3
5286    };
5287    const uint8_t len_code[] = {
5288        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5289    };
5290    int n;
5291
5292    if (kvm_sw_breakpoints_active(cpu)) {
5293        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5294    }
5295    if (nb_hw_breakpoint > 0) {
5296        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5297        dbg->arch.debugreg[7] = 0x0600;
5298        for (n = 0; n < nb_hw_breakpoint; n++) {
5299            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5300            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5301                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5302                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5303        }
5304    }
5305}
5306
5307static bool kvm_install_msr_filters(KVMState *s)
5308{
5309    uint64_t zero = 0;
5310    struct kvm_msr_filter filter = {
5311        .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5312    };
5313    int r, i, j = 0;
5314
5315    for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5316        KVMMSRHandlers *handler = &msr_handlers[i];
5317        if (handler->msr) {
5318            struct kvm_msr_filter_range *range = &filter.ranges[j++];
5319
5320            *range = (struct kvm_msr_filter_range) {
5321                .flags = 0,
5322                .nmsrs = 1,
5323                .base = handler->msr,
5324                .bitmap = (__u8 *)&zero,
5325            };
5326
5327            if (handler->rdmsr) {
5328                range->flags |= KVM_MSR_FILTER_READ;
5329            }
5330
5331            if (handler->wrmsr) {
5332                range->flags |= KVM_MSR_FILTER_WRITE;
5333            }
5334        }
5335    }
5336
5337    r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5338    if (r) {
5339        return false;
5340    }
5341
5342    return true;
5343}
5344
5345bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5346                    QEMUWRMSRHandler *wrmsr)
5347{
5348    int i;
5349
5350    for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5351        if (!msr_handlers[i].msr) {
5352            msr_handlers[i] = (KVMMSRHandlers) {
5353                .msr = msr,
5354                .rdmsr = rdmsr,
5355                .wrmsr = wrmsr,
5356            };
5357
5358            if (!kvm_install_msr_filters(s)) {
5359                msr_handlers[i] = (KVMMSRHandlers) { };
5360                return false;
5361            }
5362
5363            return true;
5364        }
5365    }
5366
5367    return false;
5368}
5369
5370static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5371{
5372    int i;
5373    bool r;
5374
5375    for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5376        KVMMSRHandlers *handler = &msr_handlers[i];
5377        if (run->msr.index == handler->msr) {
5378            if (handler->rdmsr) {
5379                r = handler->rdmsr(cpu, handler->msr,
5380                                   (uint64_t *)&run->msr.data);
5381                run->msr.error = r ? 0 : 1;
5382                return 0;
5383            }
5384        }
5385    }
5386
5387    assert(false);
5388}
5389
5390static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5391{
5392    int i;
5393    bool r;
5394
5395    for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5396        KVMMSRHandlers *handler = &msr_handlers[i];
5397        if (run->msr.index == handler->msr) {
5398            if (handler->wrmsr) {
5399                r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5400                run->msr.error = r ? 0 : 1;
5401                return 0;
5402            }
5403        }
5404    }
5405
5406    assert(false);
5407}
5408
5409static bool has_sgx_provisioning;
5410
5411static bool __kvm_enable_sgx_provisioning(KVMState *s)
5412{
5413    int fd, ret;
5414
5415    if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5416        return false;
5417    }
5418
5419    fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5420    if (fd < 0) {
5421        return false;
5422    }
5423
5424    ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5425    if (ret) {
5426        error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5427        exit(1);
5428    }
5429    close(fd);
5430    return true;
5431}
5432
5433bool kvm_enable_sgx_provisioning(KVMState *s)
5434{
5435    return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5436}
5437
5438static bool host_supports_vmx(void)
5439{
5440    uint32_t ecx, unused;
5441
5442    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5443    return ecx & CPUID_EXT_VMX;
5444}
5445
5446#define VMX_INVALID_GUEST_STATE 0x80000021
5447
5448int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5449{
5450    X86CPU *cpu = X86_CPU(cs);
5451    uint64_t code;
5452    int ret;
5453    bool ctx_invalid;
5454    char str[256];
5455    KVMState *state;
5456
5457    switch (run->exit_reason) {
5458    case KVM_EXIT_HLT:
5459        DPRINTF("handle_hlt\n");
5460        qemu_mutex_lock_iothread();
5461        ret = kvm_handle_halt(cpu);
5462        qemu_mutex_unlock_iothread();
5463        break;
5464    case KVM_EXIT_SET_TPR:
5465        ret = 0;
5466        break;
5467    case KVM_EXIT_TPR_ACCESS:
5468        qemu_mutex_lock_iothread();
5469        ret = kvm_handle_tpr_access(cpu);
5470        qemu_mutex_unlock_iothread();
5471        break;
5472    case KVM_EXIT_FAIL_ENTRY:
5473        code = run->fail_entry.hardware_entry_failure_reason;
5474        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
5475                code);
5476        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
5477            fprintf(stderr,
5478                    "\nIf you're running a guest on an Intel machine without "
5479                        "unrestricted mode\n"
5480                    "support, the failure can be most likely due to the guest "
5481                        "entering an invalid\n"
5482                    "state for Intel VT. For example, the guest maybe running "
5483                        "in big real mode\n"
5484                    "which is not supported on less recent Intel processors."
5485                        "\n\n");
5486        }
5487        ret = -1;
5488        break;
5489    case KVM_EXIT_EXCEPTION:
5490        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
5491                run->ex.exception, run->ex.error_code);
5492        ret = -1;
5493        break;
5494    case KVM_EXIT_DEBUG:
5495        DPRINTF("kvm_exit_debug\n");
5496        qemu_mutex_lock_iothread();
5497        ret = kvm_handle_debug(cpu, &run->debug.arch);
5498        qemu_mutex_unlock_iothread();
5499        break;
5500    case KVM_EXIT_HYPERV:
5501        ret = kvm_hv_handle_exit(cpu, &run->hyperv);
5502        break;
5503    case KVM_EXIT_IOAPIC_EOI:
5504        ioapic_eoi_broadcast(run->eoi.vector);
5505        ret = 0;
5506        break;
5507    case KVM_EXIT_X86_BUS_LOCK:
5508        /* already handled in kvm_arch_post_run */
5509        ret = 0;
5510        break;
5511    case KVM_EXIT_NOTIFY:
5512        ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
5513        state = KVM_STATE(current_accel());
5514        sprintf(str, "Encounter a notify exit with %svalid context in"
5515                     " guest. There can be possible misbehaves in guest."
5516                     " Please have a look.", ctx_invalid ? "in" : "");
5517        if (ctx_invalid ||
5518            state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
5519            warn_report("KVM internal error: %s", str);
5520            ret = -1;
5521        } else {
5522            warn_report_once("KVM: %s", str);
5523            ret = 0;
5524        }
5525        break;
5526    case KVM_EXIT_X86_RDMSR:
5527        /* We only enable MSR filtering, any other exit is bogus */
5528        assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5529        ret = kvm_handle_rdmsr(cpu, run);
5530        break;
5531    case KVM_EXIT_X86_WRMSR:
5532        /* We only enable MSR filtering, any other exit is bogus */
5533        assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
5534        ret = kvm_handle_wrmsr(cpu, run);
5535        break;
5536#ifdef CONFIG_XEN_EMU
5537    case KVM_EXIT_XEN:
5538        ret = kvm_xen_handle_exit(cpu, &run->xen);
5539        break;
5540#endif
5541    default:
5542        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
5543        ret = -1;
5544        break;
5545    }
5546
5547    return ret;
5548}
5549
5550bool kvm_arch_stop_on_emulation_error(CPUState *cs)
5551{
5552    X86CPU *cpu = X86_CPU(cs);
5553    CPUX86State *env = &cpu->env;
5554
5555    kvm_cpu_synchronize_state(cs);
5556    return !(env->cr[0] & CR0_PE_MASK) ||
5557           ((env->segs[R_CS].selector  & 3) != 3);
5558}
5559
5560void kvm_arch_init_irq_routing(KVMState *s)
5561{
5562    /* We know at this point that we're using the in-kernel
5563     * irqchip, so we can use irqfds, and on x86 we know
5564     * we can use msi via irqfd and GSI routing.
5565     */
5566    kvm_msi_via_irqfd_allowed = true;
5567    kvm_gsi_routing_allowed = true;
5568
5569    if (kvm_irqchip_is_split()) {
5570        KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
5571        int i;
5572
5573        /* If the ioapic is in QEMU and the lapics are in KVM, reserve
5574           MSI routes for signaling interrupts to the local apics. */
5575        for (i = 0; i < IOAPIC_NUM_PINS; i++) {
5576            if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
5577                error_report("Could not enable split IRQ mode.");
5578                exit(1);
5579            }
5580        }
5581        kvm_irqchip_commit_route_changes(&c);
5582    }
5583}
5584
5585int kvm_arch_irqchip_create(KVMState *s)
5586{
5587    int ret;
5588    if (kvm_kernel_irqchip_split()) {
5589        ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
5590        if (ret) {
5591            error_report("Could not enable split irqchip mode: %s",
5592                         strerror(-ret));
5593            exit(1);
5594        } else {
5595            DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
5596            kvm_split_irqchip = true;
5597            return 1;
5598        }
5599    } else {
5600        return 0;
5601    }
5602}
5603
5604uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
5605{
5606    CPUX86State *env;
5607    uint64_t ext_id;
5608
5609    if (!first_cpu) {
5610        return address;
5611    }
5612    env = &X86_CPU(first_cpu)->env;
5613    if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
5614        return address;
5615    }
5616
5617    /*
5618     * If the remappable format bit is set, or the upper bits are
5619     * already set in address_hi, or the low extended bits aren't
5620     * there anyway, do nothing.
5621     */
5622    ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
5623    if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
5624        return address;
5625    }
5626
5627    address &= ~ext_id;
5628    address |= ext_id << 35;
5629    return address;
5630}
5631
5632int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
5633                             uint64_t address, uint32_t data, PCIDevice *dev)
5634{
5635    X86IOMMUState *iommu = x86_iommu_get_default();
5636
5637    if (iommu) {
5638        X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
5639
5640        if (class->int_remap) {
5641            int ret;
5642            MSIMessage src, dst;
5643
5644            src.address = route->u.msi.address_hi;
5645            src.address <<= VTD_MSI_ADDR_HI_SHIFT;
5646            src.address |= route->u.msi.address_lo;
5647            src.data = route->u.msi.data;
5648
5649            ret = class->int_remap(iommu, &src, &dst, dev ?     \
5650                                   pci_requester_id(dev) :      \
5651                                   X86_IOMMU_SID_INVALID);
5652            if (ret) {
5653                trace_kvm_x86_fixup_msi_error(route->gsi);
5654                return 1;
5655            }
5656
5657            /*
5658             * Handled untranslated compatibilty format interrupt with
5659             * extended destination ID in the low bits 11-5. */
5660            dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
5661
5662            route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
5663            route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
5664            route->u.msi.data = dst.data;
5665            return 0;
5666        }
5667    }
5668
5669#ifdef CONFIG_XEN_EMU
5670    if (xen_mode == XEN_EMULATE) {
5671        int handled = xen_evtchn_translate_pirq_msi(route, address, data);
5672
5673        /*
5674         * If it was a PIRQ and successfully routed (handled == 0) or it was
5675         * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
5676         */
5677        if (handled <= 0) {
5678            return handled;
5679        }
5680    }
5681#endif
5682
5683    address = kvm_swizzle_msi_ext_dest_id(address);
5684    route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
5685    route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
5686    return 0;
5687}
5688
5689typedef struct MSIRouteEntry MSIRouteEntry;
5690
5691struct MSIRouteEntry {
5692    PCIDevice *dev;             /* Device pointer */
5693    int vector;                 /* MSI/MSIX vector index */
5694    int virq;                   /* Virtual IRQ index */
5695    QLIST_ENTRY(MSIRouteEntry) list;
5696};
5697
5698/* List of used GSI routes */
5699static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
5700    QLIST_HEAD_INITIALIZER(msi_route_list);
5701
5702void kvm_update_msi_routes_all(void *private, bool global,
5703                               uint32_t index, uint32_t mask)
5704{
5705    int cnt = 0, vector;
5706    MSIRouteEntry *entry;
5707    MSIMessage msg;
5708    PCIDevice *dev;
5709
5710    /* TODO: explicit route update */
5711    QLIST_FOREACH(entry, &msi_route_list, list) {
5712        cnt++;
5713        vector = entry->vector;
5714        dev = entry->dev;
5715        if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
5716            msg = msix_get_message(dev, vector);
5717        } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
5718            msg = msi_get_message(dev, vector);
5719        } else {
5720            /*
5721             * Either MSI/MSIX is disabled for the device, or the
5722             * specific message was masked out.  Skip this one.
5723             */
5724            continue;
5725        }
5726        kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
5727    }
5728    kvm_irqchip_commit_routes(kvm_state);
5729    trace_kvm_x86_update_msi_routes(cnt);
5730}
5731
5732int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
5733                                int vector, PCIDevice *dev)
5734{
5735    static bool notify_list_inited = false;
5736    MSIRouteEntry *entry;
5737
5738    if (!dev) {
5739        /* These are (possibly) IOAPIC routes only used for split
5740         * kernel irqchip mode, while what we are housekeeping are
5741         * PCI devices only. */
5742        return 0;
5743    }
5744
5745    entry = g_new0(MSIRouteEntry, 1);
5746    entry->dev = dev;
5747    entry->vector = vector;
5748    entry->virq = route->gsi;
5749    QLIST_INSERT_HEAD(&msi_route_list, entry, list);
5750
5751    trace_kvm_x86_add_msi_route(route->gsi);
5752
5753    if (!notify_list_inited) {
5754        /* For the first time we do add route, add ourselves into
5755         * IOMMU's IEC notify list if needed. */
5756        X86IOMMUState *iommu = x86_iommu_get_default();
5757        if (iommu) {
5758            x86_iommu_iec_register_notifier(iommu,
5759                                            kvm_update_msi_routes_all,
5760                                            NULL);
5761        }
5762        notify_list_inited = true;
5763    }
5764    return 0;
5765}
5766
5767int kvm_arch_release_virq_post(int virq)
5768{
5769    MSIRouteEntry *entry, *next;
5770    QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
5771        if (entry->virq == virq) {
5772            trace_kvm_x86_remove_msi_route(virq);
5773            QLIST_REMOVE(entry, list);
5774            g_free(entry);
5775            break;
5776        }
5777    }
5778    return 0;
5779}
5780
5781int kvm_arch_msi_data_to_gsi(uint32_t data)
5782{
5783    abort();
5784}
5785
5786bool kvm_has_waitpkg(void)
5787{
5788    return has_msr_umwait;
5789}
5790
5791bool kvm_arch_cpu_check_are_resettable(void)
5792{
5793    return !sev_es_enabled();
5794}
5795
5796#define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
5797
5798void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
5799{
5800    KVMState *s = kvm_state;
5801    uint64_t supported;
5802
5803    mask &= XSTATE_DYNAMIC_MASK;
5804    if (!mask) {
5805        return;
5806    }
5807    /*
5808     * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
5809     * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
5810     * about them already because they are not supported features.
5811     */
5812    supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
5813    supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
5814    mask &= supported;
5815
5816    while (mask) {
5817        int bit = ctz64(mask);
5818        int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
5819        if (rc) {
5820            /*
5821             * Older kernel version (<5.17) do not support
5822             * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
5823             * any dynamic feature from kvm_arch_get_supported_cpuid.
5824             */
5825            warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
5826                        "for feature bit %d", bit);
5827        }
5828        mask &= ~BIT_ULL(bit);
5829    }
5830}
5831
5832static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
5833{
5834    KVMState *s = KVM_STATE(obj);
5835    return s->notify_vmexit;
5836}
5837
5838static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
5839{
5840    KVMState *s = KVM_STATE(obj);
5841
5842    if (s->fd != -1) {
5843        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5844        return;
5845    }
5846
5847    s->notify_vmexit = value;
5848}
5849
5850static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
5851                                       const char *name, void *opaque,
5852                                       Error **errp)
5853{
5854    KVMState *s = KVM_STATE(obj);
5855    uint32_t value = s->notify_window;
5856
5857    visit_type_uint32(v, name, &value, errp);
5858}
5859
5860static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
5861                                       const char *name, void *opaque,
5862                                       Error **errp)
5863{
5864    KVMState *s = KVM_STATE(obj);
5865    uint32_t value;
5866
5867    if (s->fd != -1) {
5868        error_setg(errp, "Cannot set properties after the accelerator has been initialized");
5869        return;
5870    }
5871
5872    if (!visit_type_uint32(v, name, &value, errp)) {
5873        return;
5874    }
5875
5876    s->notify_window = value;
5877}
5878
5879static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
5880                                     const char *name, void *opaque,
5881                                     Error **errp)
5882{
5883    KVMState *s = KVM_STATE(obj);
5884    uint32_t value = s->xen_version;
5885
5886    visit_type_uint32(v, name, &value, errp);
5887}
5888
5889static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
5890                                     const char *name, void *opaque,
5891                                     Error **errp)
5892{
5893    KVMState *s = KVM_STATE(obj);
5894    Error *error = NULL;
5895    uint32_t value;
5896
5897    visit_type_uint32(v, name, &value, &error);
5898    if (error) {
5899        error_propagate(errp, error);
5900        return;
5901    }
5902
5903    s->xen_version = value;
5904    if (value && xen_mode == XEN_DISABLED) {
5905        xen_mode = XEN_EMULATE;
5906    }
5907}
5908
5909static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
5910                                               const char *name, void *opaque,
5911                                               Error **errp)
5912{
5913    KVMState *s = KVM_STATE(obj);
5914    uint16_t value = s->xen_gnttab_max_frames;
5915
5916    visit_type_uint16(v, name, &value, errp);
5917}
5918
5919static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
5920                                               const char *name, void *opaque,
5921                                               Error **errp)
5922{
5923    KVMState *s = KVM_STATE(obj);
5924    Error *error = NULL;
5925    uint16_t value;
5926
5927    visit_type_uint16(v, name, &value, &error);
5928    if (error) {
5929        error_propagate(errp, error);
5930        return;
5931    }
5932
5933    s->xen_gnttab_max_frames = value;
5934}
5935
5936static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5937                                             const char *name, void *opaque,
5938                                             Error **errp)
5939{
5940    KVMState *s = KVM_STATE(obj);
5941    uint16_t value = s->xen_evtchn_max_pirq;
5942
5943    visit_type_uint16(v, name, &value, errp);
5944}
5945
5946static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
5947                                             const char *name, void *opaque,
5948                                             Error **errp)
5949{
5950    KVMState *s = KVM_STATE(obj);
5951    Error *error = NULL;
5952    uint16_t value;
5953
5954    visit_type_uint16(v, name, &value, &error);
5955    if (error) {
5956        error_propagate(errp, error);
5957        return;
5958    }
5959
5960    s->xen_evtchn_max_pirq = value;
5961}
5962
5963void kvm_arch_accel_class_init(ObjectClass *oc)
5964{
5965    object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
5966                                   &NotifyVmexitOption_lookup,
5967                                   kvm_arch_get_notify_vmexit,
5968                                   kvm_arch_set_notify_vmexit);
5969    object_class_property_set_description(oc, "notify-vmexit",
5970                                          "Enable notify VM exit");
5971
5972    object_class_property_add(oc, "notify-window", "uint32",
5973                              kvm_arch_get_notify_window,
5974                              kvm_arch_set_notify_window,
5975                              NULL, NULL);
5976    object_class_property_set_description(oc, "notify-window",
5977                                          "Clock cycles without an event window "
5978                                          "after which a notification VM exit occurs");
5979
5980    object_class_property_add(oc, "xen-version", "uint32",
5981                              kvm_arch_get_xen_version,
5982                              kvm_arch_set_xen_version,
5983                              NULL, NULL);
5984    object_class_property_set_description(oc, "xen-version",
5985                                          "Xen version to be emulated "
5986                                          "(in XENVER_version form "
5987                                          "e.g. 0x4000a for 4.10)");
5988
5989    object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
5990                              kvm_arch_get_xen_gnttab_max_frames,
5991                              kvm_arch_set_xen_gnttab_max_frames,
5992                              NULL, NULL);
5993    object_class_property_set_description(oc, "xen-gnttab-max-frames",
5994                                          "Maximum number of grant table frames");
5995
5996    object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
5997                              kvm_arch_get_xen_evtchn_max_pirq,
5998                              kvm_arch_set_xen_evtchn_max_pirq,
5999                              NULL, NULL);
6000    object_class_property_set_description(oc, "xen-evtchn-max-pirq",
6001                                          "Maximum number of Xen PIRQs");
6002}
6003
6004void kvm_set_max_apic_id(uint32_t max_apic_id)
6005{
6006    kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
6007}
6008