qemu/target/ppc/fpu_helper.c
<<
>>
Prefs
   1/*
   2 *  PowerPC floating point and SPE emulation helpers for QEMU.
   3 *
   4 *  Copyright (c) 2003-2007 Jocelyn Mayer
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2.1 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20#include "cpu.h"
  21#include "exec/helper-proto.h"
  22#include "exec/exec-all.h"
  23#include "internal.h"
  24#include "fpu/softfloat.h"
  25
  26static inline float128 float128_snan_to_qnan(float128 x)
  27{
  28    float128 r;
  29
  30    r.high = x.high | 0x0000800000000000;
  31    r.low = x.low;
  32    return r;
  33}
  34
  35#define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
  36#define float32_snan_to_qnan(x) ((x) | 0x00400000)
  37#define float16_snan_to_qnan(x) ((x) | 0x0200)
  38
  39static inline float32 bfp32_neg(float32 a)
  40{
  41    if (unlikely(float32_is_any_nan(a))) {
  42        return a;
  43    } else {
  44        return float32_chs(a);
  45    }
  46}
  47
  48static inline bool fp_exceptions_enabled(CPUPPCState *env)
  49{
  50#ifdef CONFIG_USER_ONLY
  51    return true;
  52#else
  53    return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
  54#endif
  55}
  56
  57/*****************************************************************************/
  58/* Floating point operations helpers */
  59
  60/*
  61 * This is the non-arithmatic conversion that happens e.g. on loads.
  62 * In the Power ISA pseudocode, this is called DOUBLE.
  63 */
  64uint64_t helper_todouble(uint32_t arg)
  65{
  66    uint32_t abs_arg = arg & 0x7fffffff;
  67    uint64_t ret;
  68
  69    if (likely(abs_arg >= 0x00800000)) {
  70        if (unlikely(extract32(arg, 23, 8) == 0xff)) {
  71            /* Inf or NAN.  */
  72            ret  = (uint64_t)extract32(arg, 31, 1) << 63;
  73            ret |= (uint64_t)0x7ff << 52;
  74            ret |= (uint64_t)extract32(arg, 0, 23) << 29;
  75        } else {
  76            /* Normalized operand.  */
  77            ret  = (uint64_t)extract32(arg, 30, 2) << 62;
  78            ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
  79            ret |= (uint64_t)extract32(arg, 0, 30) << 29;
  80        }
  81    } else {
  82        /* Zero or Denormalized operand.  */
  83        ret = (uint64_t)extract32(arg, 31, 1) << 63;
  84        if (unlikely(abs_arg != 0)) {
  85            /*
  86             * Denormalized operand.
  87             * Shift fraction so that the msb is in the implicit bit position.
  88             * Thus, shift is in the range [1:23].
  89             */
  90            int shift = clz32(abs_arg) - 8;
  91            /*
  92             * The first 3 terms compute the float64 exponent.  We then bias
  93             * this result by -1 so that we can swallow the implicit bit below.
  94             */
  95            int exp = -126 - shift + 1023 - 1;
  96
  97            ret |= (uint64_t)exp << 52;
  98            ret += (uint64_t)abs_arg << (52 - 23 + shift);
  99        }
 100    }
 101    return ret;
 102}
 103
 104/*
 105 * This is the non-arithmatic conversion that happens e.g. on stores.
 106 * In the Power ISA pseudocode, this is called SINGLE.
 107 */
 108uint32_t helper_tosingle(uint64_t arg)
 109{
 110    int exp = extract64(arg, 52, 11);
 111    uint32_t ret;
 112
 113    if (likely(exp > 896)) {
 114        /* No denormalization required (includes Inf, NaN).  */
 115        ret  = extract64(arg, 62, 2) << 30;
 116        ret |= extract64(arg, 29, 30);
 117    } else {
 118        /*
 119         * Zero or Denormal result.  If the exponent is in bounds for
 120         * a single-precision denormal result, extract the proper
 121         * bits.  If the input is not zero, and the exponent is out of
 122         * bounds, then the result is undefined; this underflows to
 123         * zero.
 124         */
 125        ret = extract64(arg, 63, 1) << 31;
 126        if (unlikely(exp >= 874)) {
 127            /* Denormal result.  */
 128            ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
 129        }
 130    }
 131    return ret;
 132}
 133
 134static inline int ppc_float32_get_unbiased_exp(float32 f)
 135{
 136    return ((f >> 23) & 0xFF) - 127;
 137}
 138
 139static inline int ppc_float64_get_unbiased_exp(float64 f)
 140{
 141    return ((f >> 52) & 0x7FF) - 1023;
 142}
 143
 144#define COMPUTE_FPRF(tp)                                          \
 145void helper_compute_fprf_##tp(CPUPPCState *env, tp arg)           \
 146{                                                                 \
 147    bool neg = tp##_is_neg(arg);                                  \
 148    target_ulong fprf;                                            \
 149    if (likely(tp##_is_normal(arg))) {                            \
 150        fprf = neg ? 0x08 << FPSCR_FPRF : 0x04 << FPSCR_FPRF;     \
 151    } else if (tp##_is_zero(arg)) {                               \
 152        fprf = neg ? 0x12 << FPSCR_FPRF : 0x02 << FPSCR_FPRF;     \
 153    } else if (tp##_is_zero_or_denormal(arg)) {                   \
 154        fprf = neg ? 0x18 << FPSCR_FPRF : 0x14 << FPSCR_FPRF;     \
 155    } else if (tp##_is_infinity(arg)) {                           \
 156        fprf = neg ? 0x09 << FPSCR_FPRF : 0x05 << FPSCR_FPRF;     \
 157    } else {                                                      \
 158        float_status dummy = { };  /* snan_bit_is_one = 0 */      \
 159        if (tp##_is_signaling_nan(arg, &dummy)) {                 \
 160            fprf = 0x00 << FPSCR_FPRF;                            \
 161        } else {                                                  \
 162            fprf = 0x11 << FPSCR_FPRF;                            \
 163        }                                                         \
 164    }                                                             \
 165    env->fpscr = (env->fpscr & ~FP_FPRF) | fprf;                  \
 166}
 167
 168COMPUTE_FPRF(float16)
 169COMPUTE_FPRF(float32)
 170COMPUTE_FPRF(float64)
 171COMPUTE_FPRF(float128)
 172
 173/* Floating-point invalid operations exception */
 174static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
 175{
 176    /* Update the floating-point invalid operation summary */
 177    env->fpscr |= FP_VX;
 178    /* Update the floating-point exception summary */
 179    env->fpscr |= FP_FX;
 180    if (env->fpscr & FP_VE) {
 181        /* Update the floating-point enabled exception summary */
 182        env->fpscr |= FP_FEX;
 183        if (fp_exceptions_enabled(env)) {
 184            raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 185                                   POWERPC_EXCP_FP | op, retaddr);
 186        }
 187    }
 188}
 189
 190static void finish_invalid_op_arith(CPUPPCState *env, int op,
 191                                    bool set_fpcc, uintptr_t retaddr)
 192{
 193    env->fpscr &= ~(FP_FR | FP_FI);
 194    if (!(env->fpscr & FP_VE)) {
 195        if (set_fpcc) {
 196            env->fpscr &= ~FP_FPCC;
 197            env->fpscr |= (FP_C | FP_FU);
 198        }
 199    }
 200    finish_invalid_op_excp(env, op, retaddr);
 201}
 202
 203/* Signalling NaN */
 204static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
 205{
 206    env->fpscr |= FP_VXSNAN;
 207    finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
 208}
 209
 210/* Magnitude subtraction of infinities */
 211static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
 212                                   uintptr_t retaddr)
 213{
 214    env->fpscr |= FP_VXISI;
 215    finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
 216}
 217
 218/* Division of infinity by infinity */
 219static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
 220                                   uintptr_t retaddr)
 221{
 222    env->fpscr |= FP_VXIDI;
 223    finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
 224}
 225
 226/* Division of zero by zero */
 227static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
 228                                   uintptr_t retaddr)
 229{
 230    env->fpscr |= FP_VXZDZ;
 231    finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
 232}
 233
 234/* Multiplication of zero by infinity */
 235static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
 236                                   uintptr_t retaddr)
 237{
 238    env->fpscr |= FP_VXIMZ;
 239    finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
 240}
 241
 242/* Square root of a negative number */
 243static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
 244                                    uintptr_t retaddr)
 245{
 246    env->fpscr |= FP_VXSQRT;
 247    finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
 248}
 249
 250/* Ordered comparison of NaN */
 251static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
 252                                  uintptr_t retaddr)
 253{
 254    env->fpscr |= FP_VXVC;
 255    if (set_fpcc) {
 256        env->fpscr &= ~FP_FPCC;
 257        env->fpscr |= (FP_C | FP_FU);
 258    }
 259    /* Update the floating-point invalid operation summary */
 260    env->fpscr |= FP_VX;
 261    /* Update the floating-point exception summary */
 262    env->fpscr |= FP_FX;
 263    /* We must update the target FPR before raising the exception */
 264    if (env->fpscr & FP_VE) {
 265        CPUState *cs = env_cpu(env);
 266
 267        cs->exception_index = POWERPC_EXCP_PROGRAM;
 268        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
 269        /* Update the floating-point enabled exception summary */
 270        env->fpscr |= FP_FEX;
 271        /* Exception is deferred */
 272    }
 273}
 274
 275/* Invalid conversion */
 276static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
 277                                   uintptr_t retaddr)
 278{
 279    env->fpscr |= FP_VXCVI;
 280    env->fpscr &= ~(FP_FR | FP_FI);
 281    if (!(env->fpscr & FP_VE)) {
 282        if (set_fpcc) {
 283            env->fpscr &= ~FP_FPCC;
 284            env->fpscr |= (FP_C | FP_FU);
 285        }
 286    }
 287    finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
 288}
 289
 290static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
 291{
 292    env->fpscr |= FP_ZX;
 293    env->fpscr &= ~(FP_FR | FP_FI);
 294    /* Update the floating-point exception summary */
 295    env->fpscr |= FP_FX;
 296    if (env->fpscr & FP_ZE) {
 297        /* Update the floating-point enabled exception summary */
 298        env->fpscr |= FP_FEX;
 299        if (fp_exceptions_enabled(env)) {
 300            raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 301                                   POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
 302                                   raddr);
 303        }
 304    }
 305}
 306
 307static inline int float_overflow_excp(CPUPPCState *env)
 308{
 309    CPUState *cs = env_cpu(env);
 310
 311    env->fpscr |= FP_OX;
 312    /* Update the floating-point exception summary */
 313    env->fpscr |= FP_FX;
 314
 315    bool overflow_enabled = !!(env->fpscr & FP_OE);
 316    if (overflow_enabled) {
 317        /* Update the floating-point enabled exception summary */
 318        env->fpscr |= FP_FEX;
 319        /* We must update the target FPR before raising the exception */
 320        cs->exception_index = POWERPC_EXCP_PROGRAM;
 321        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
 322    }
 323
 324    return overflow_enabled ? 0 : float_flag_inexact;
 325}
 326
 327static inline void float_underflow_excp(CPUPPCState *env)
 328{
 329    CPUState *cs = env_cpu(env);
 330
 331    env->fpscr |= FP_UX;
 332    /* Update the floating-point exception summary */
 333    env->fpscr |= FP_FX;
 334    if (env->fpscr & FP_UE) {
 335        /* Update the floating-point enabled exception summary */
 336        env->fpscr |= FP_FEX;
 337        /* We must update the target FPR before raising the exception */
 338        cs->exception_index = POWERPC_EXCP_PROGRAM;
 339        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
 340    }
 341}
 342
 343static inline void float_inexact_excp(CPUPPCState *env)
 344{
 345    CPUState *cs = env_cpu(env);
 346
 347    env->fpscr |= FP_XX;
 348    /* Update the floating-point exception summary */
 349    env->fpscr |= FP_FX;
 350    if (env->fpscr & FP_XE) {
 351        /* Update the floating-point enabled exception summary */
 352        env->fpscr |= FP_FEX;
 353        /* We must update the target FPR before raising the exception */
 354        cs->exception_index = POWERPC_EXCP_PROGRAM;
 355        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
 356    }
 357}
 358
 359void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
 360{
 361    uint32_t mask = 1u << bit;
 362    if (env->fpscr & mask) {
 363        ppc_store_fpscr(env, env->fpscr & ~(target_ulong)mask);
 364    }
 365}
 366
 367void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
 368{
 369    uint32_t mask = 1u << bit;
 370    if (!(env->fpscr & mask)) {
 371        ppc_store_fpscr(env, env->fpscr | mask);
 372    }
 373}
 374
 375void helper_store_fpscr(CPUPPCState *env, uint64_t val, uint32_t nibbles)
 376{
 377    target_ulong mask = 0;
 378    int i;
 379
 380    /* TODO: push this extension back to translation time */
 381    for (i = 0; i < sizeof(target_ulong) * 2; i++) {
 382        if (nibbles & (1 << i)) {
 383            mask |= (target_ulong) 0xf << (4 * i);
 384        }
 385    }
 386    val = (val & mask) | (env->fpscr & ~mask);
 387    ppc_store_fpscr(env, val);
 388}
 389
 390static void do_fpscr_check_status(CPUPPCState *env, uintptr_t raddr)
 391{
 392    CPUState *cs = env_cpu(env);
 393    target_ulong fpscr = env->fpscr;
 394    int error = 0;
 395
 396    if ((fpscr & FP_OX) && (fpscr & FP_OE)) {
 397        error = POWERPC_EXCP_FP_OX;
 398    } else if ((fpscr & FP_UX) && (fpscr & FP_UE)) {
 399        error = POWERPC_EXCP_FP_UX;
 400    } else if ((fpscr & FP_XX) && (fpscr & FP_XE)) {
 401        error = POWERPC_EXCP_FP_XX;
 402    } else if ((fpscr & FP_ZX) && (fpscr & FP_ZE)) {
 403        error = POWERPC_EXCP_FP_ZX;
 404    } else if (fpscr & FP_VE) {
 405        if (fpscr & FP_VXSOFT) {
 406            error = POWERPC_EXCP_FP_VXSOFT;
 407        } else if (fpscr & FP_VXSNAN) {
 408            error = POWERPC_EXCP_FP_VXSNAN;
 409        } else if (fpscr & FP_VXISI) {
 410            error = POWERPC_EXCP_FP_VXISI;
 411        } else if (fpscr & FP_VXIDI) {
 412            error = POWERPC_EXCP_FP_VXIDI;
 413        } else if (fpscr & FP_VXZDZ) {
 414            error = POWERPC_EXCP_FP_VXZDZ;
 415        } else if (fpscr & FP_VXIMZ) {
 416            error = POWERPC_EXCP_FP_VXIMZ;
 417        } else if (fpscr & FP_VXVC) {
 418            error = POWERPC_EXCP_FP_VXVC;
 419        } else if (fpscr & FP_VXSQRT) {
 420            error = POWERPC_EXCP_FP_VXSQRT;
 421        } else if (fpscr & FP_VXCVI) {
 422            error = POWERPC_EXCP_FP_VXCVI;
 423        } else {
 424            return;
 425        }
 426    } else {
 427        return;
 428    }
 429    cs->exception_index = POWERPC_EXCP_PROGRAM;
 430    env->error_code = error | POWERPC_EXCP_FP;
 431    env->fpscr |= FP_FEX;
 432    /* Deferred floating-point exception after target FPSCR update */
 433    if (fp_exceptions_enabled(env)) {
 434        raise_exception_err_ra(env, cs->exception_index,
 435                               env->error_code, raddr);
 436    }
 437}
 438
 439void helper_fpscr_check_status(CPUPPCState *env)
 440{
 441    do_fpscr_check_status(env, GETPC());
 442}
 443
 444static void do_float_check_status(CPUPPCState *env, bool change_fi,
 445                                  uintptr_t raddr)
 446{
 447    CPUState *cs = env_cpu(env);
 448    int status = get_float_exception_flags(&env->fp_status);
 449
 450    if (status & float_flag_overflow) {
 451        status |= float_overflow_excp(env);
 452    } else if (status & float_flag_underflow) {
 453        float_underflow_excp(env);
 454    }
 455    if (status & float_flag_inexact) {
 456        float_inexact_excp(env);
 457    }
 458    if (change_fi) {
 459        env->fpscr = FIELD_DP64(env->fpscr, FPSCR, FI,
 460                                !!(status & float_flag_inexact));
 461    }
 462
 463    if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
 464        (env->error_code & POWERPC_EXCP_FP)) {
 465        /* Deferred floating-point exception after target FPR update */
 466        if (fp_exceptions_enabled(env)) {
 467            raise_exception_err_ra(env, cs->exception_index,
 468                                   env->error_code, raddr);
 469        }
 470    }
 471}
 472
 473void helper_float_check_status(CPUPPCState *env)
 474{
 475    do_float_check_status(env, true, GETPC());
 476}
 477
 478void helper_reset_fpstatus(CPUPPCState *env)
 479{
 480    set_float_exception_flags(0, &env->fp_status);
 481}
 482
 483static void float_invalid_op_addsub(CPUPPCState *env, int flags,
 484                                    bool set_fpcc, uintptr_t retaddr)
 485{
 486    if (flags & float_flag_invalid_isi) {
 487        float_invalid_op_vxisi(env, set_fpcc, retaddr);
 488    } else if (flags & float_flag_invalid_snan) {
 489        float_invalid_op_vxsnan(env, retaddr);
 490    }
 491}
 492
 493/* fadd - fadd. */
 494float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
 495{
 496    float64 ret = float64_add(arg1, arg2, &env->fp_status);
 497    int flags = get_float_exception_flags(&env->fp_status);
 498
 499    if (unlikely(flags & float_flag_invalid)) {
 500        float_invalid_op_addsub(env, flags, 1, GETPC());
 501    }
 502
 503    return ret;
 504}
 505
 506/* fadds - fadds. */
 507float64 helper_fadds(CPUPPCState *env, float64 arg1, float64 arg2)
 508{
 509    float64 ret = float64r32_add(arg1, arg2, &env->fp_status);
 510    int flags = get_float_exception_flags(&env->fp_status);
 511
 512    if (unlikely(flags & float_flag_invalid)) {
 513        float_invalid_op_addsub(env, flags, 1, GETPC());
 514    }
 515    return ret;
 516}
 517
 518/* fsub - fsub. */
 519float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
 520{
 521    float64 ret = float64_sub(arg1, arg2, &env->fp_status);
 522    int flags = get_float_exception_flags(&env->fp_status);
 523
 524    if (unlikely(flags & float_flag_invalid)) {
 525        float_invalid_op_addsub(env, flags, 1, GETPC());
 526    }
 527
 528    return ret;
 529}
 530
 531/* fsubs - fsubs. */
 532float64 helper_fsubs(CPUPPCState *env, float64 arg1, float64 arg2)
 533{
 534    float64 ret = float64r32_sub(arg1, arg2, &env->fp_status);
 535    int flags = get_float_exception_flags(&env->fp_status);
 536
 537    if (unlikely(flags & float_flag_invalid)) {
 538        float_invalid_op_addsub(env, flags, 1, GETPC());
 539    }
 540    return ret;
 541}
 542
 543static void float_invalid_op_mul(CPUPPCState *env, int flags,
 544                                 bool set_fprc, uintptr_t retaddr)
 545{
 546    if (flags & float_flag_invalid_imz) {
 547        float_invalid_op_vximz(env, set_fprc, retaddr);
 548    } else if (flags & float_flag_invalid_snan) {
 549        float_invalid_op_vxsnan(env, retaddr);
 550    }
 551}
 552
 553/* fmul - fmul. */
 554float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
 555{
 556    float64 ret = float64_mul(arg1, arg2, &env->fp_status);
 557    int flags = get_float_exception_flags(&env->fp_status);
 558
 559    if (unlikely(flags & float_flag_invalid)) {
 560        float_invalid_op_mul(env, flags, 1, GETPC());
 561    }
 562
 563    return ret;
 564}
 565
 566/* fmuls - fmuls. */
 567float64 helper_fmuls(CPUPPCState *env, float64 arg1, float64 arg2)
 568{
 569    float64 ret = float64r32_mul(arg1, arg2, &env->fp_status);
 570    int flags = get_float_exception_flags(&env->fp_status);
 571
 572    if (unlikely(flags & float_flag_invalid)) {
 573        float_invalid_op_mul(env, flags, 1, GETPC());
 574    }
 575    return ret;
 576}
 577
 578static void float_invalid_op_div(CPUPPCState *env, int flags,
 579                                 bool set_fprc, uintptr_t retaddr)
 580{
 581    if (flags & float_flag_invalid_idi) {
 582        float_invalid_op_vxidi(env, set_fprc, retaddr);
 583    } else if (flags & float_flag_invalid_zdz) {
 584        float_invalid_op_vxzdz(env, set_fprc, retaddr);
 585    } else if (flags & float_flag_invalid_snan) {
 586        float_invalid_op_vxsnan(env, retaddr);
 587    }
 588}
 589
 590/* fdiv - fdiv. */
 591float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
 592{
 593    float64 ret = float64_div(arg1, arg2, &env->fp_status);
 594    int flags = get_float_exception_flags(&env->fp_status);
 595
 596    if (unlikely(flags & float_flag_invalid)) {
 597        float_invalid_op_div(env, flags, 1, GETPC());
 598    }
 599    if (unlikely(flags & float_flag_divbyzero)) {
 600        float_zero_divide_excp(env, GETPC());
 601    }
 602
 603    return ret;
 604}
 605
 606/* fdivs - fdivs. */
 607float64 helper_fdivs(CPUPPCState *env, float64 arg1, float64 arg2)
 608{
 609    float64 ret = float64r32_div(arg1, arg2, &env->fp_status);
 610    int flags = get_float_exception_flags(&env->fp_status);
 611
 612    if (unlikely(flags & float_flag_invalid)) {
 613        float_invalid_op_div(env, flags, 1, GETPC());
 614    }
 615    if (unlikely(flags & float_flag_divbyzero)) {
 616        float_zero_divide_excp(env, GETPC());
 617    }
 618
 619    return ret;
 620}
 621
 622static uint64_t float_invalid_cvt(CPUPPCState *env, int flags,
 623                                  uint64_t ret, uint64_t ret_nan,
 624                                  bool set_fprc, uintptr_t retaddr)
 625{
 626    /*
 627     * VXCVI is different from most in that it sets two exception bits,
 628     * VXCVI and VXSNAN for an SNaN input.
 629     */
 630    if (flags & float_flag_invalid_snan) {
 631        env->fpscr |= FP_VXSNAN;
 632    }
 633    float_invalid_op_vxcvi(env, set_fprc, retaddr);
 634
 635    return flags & float_flag_invalid_cvti ? ret : ret_nan;
 636}
 637
 638#define FPU_FCTI(op, cvt, nanval)                                      \
 639uint64_t helper_##op(CPUPPCState *env, float64 arg)                    \
 640{                                                                      \
 641    uint64_t ret = float64_to_##cvt(arg, &env->fp_status);             \
 642    int flags = get_float_exception_flags(&env->fp_status);            \
 643    if (unlikely(flags & float_flag_invalid)) {                        \
 644        ret = float_invalid_cvt(env, flags, ret, nanval, 1, GETPC());  \
 645    }                                                                  \
 646    return ret;                                                        \
 647}
 648
 649FPU_FCTI(fctiw, int32, 0x80000000U)
 650FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
 651FPU_FCTI(fctiwu, uint32, 0x00000000U)
 652FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
 653FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
 654FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
 655FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
 656FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
 657
 658#define FPU_FCFI(op, cvtr, is_single)                      \
 659uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
 660{                                                          \
 661    CPU_DoubleU farg;                                      \
 662                                                           \
 663    if (is_single) {                                       \
 664        float32 tmp = cvtr(arg, &env->fp_status);          \
 665        farg.d = float32_to_float64(tmp, &env->fp_status); \
 666    } else {                                               \
 667        farg.d = cvtr(arg, &env->fp_status);               \
 668    }                                                      \
 669    do_float_check_status(env, true, GETPC());             \
 670    return farg.ll;                                        \
 671}
 672
 673FPU_FCFI(fcfid, int64_to_float64, 0)
 674FPU_FCFI(fcfids, int64_to_float32, 1)
 675FPU_FCFI(fcfidu, uint64_to_float64, 0)
 676FPU_FCFI(fcfidus, uint64_to_float32, 1)
 677
 678static uint64_t do_fri(CPUPPCState *env, uint64_t arg,
 679                       FloatRoundMode rounding_mode)
 680{
 681    FloatRoundMode old_rounding_mode = get_float_rounding_mode(&env->fp_status);
 682    int flags;
 683
 684    set_float_rounding_mode(rounding_mode, &env->fp_status);
 685    arg = float64_round_to_int(arg, &env->fp_status);
 686    set_float_rounding_mode(old_rounding_mode, &env->fp_status);
 687
 688    flags = get_float_exception_flags(&env->fp_status);
 689    if (flags & float_flag_invalid_snan) {
 690        float_invalid_op_vxsnan(env, GETPC());
 691    }
 692
 693    /* fri* does not set FPSCR[XX] */
 694    set_float_exception_flags(flags & ~float_flag_inexact, &env->fp_status);
 695    do_float_check_status(env, true, GETPC());
 696
 697    return arg;
 698}
 699
 700uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
 701{
 702    return do_fri(env, arg, float_round_ties_away);
 703}
 704
 705uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
 706{
 707    return do_fri(env, arg, float_round_to_zero);
 708}
 709
 710uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
 711{
 712    return do_fri(env, arg, float_round_up);
 713}
 714
 715uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
 716{
 717    return do_fri(env, arg, float_round_down);
 718}
 719
 720static void float_invalid_op_madd(CPUPPCState *env, int flags,
 721                                  bool set_fpcc, uintptr_t retaddr)
 722{
 723    if (flags & float_flag_invalid_imz) {
 724        float_invalid_op_vximz(env, set_fpcc, retaddr);
 725    } else {
 726        float_invalid_op_addsub(env, flags, set_fpcc, retaddr);
 727    }
 728}
 729
 730static float64 do_fmadd(CPUPPCState *env, float64 a, float64 b,
 731                         float64 c, int madd_flags, uintptr_t retaddr)
 732{
 733    float64 ret = float64_muladd(a, b, c, madd_flags, &env->fp_status);
 734    int flags = get_float_exception_flags(&env->fp_status);
 735
 736    if (unlikely(flags & float_flag_invalid)) {
 737        float_invalid_op_madd(env, flags, 1, retaddr);
 738    }
 739    return ret;
 740}
 741
 742static uint64_t do_fmadds(CPUPPCState *env, float64 a, float64 b,
 743                          float64 c, int madd_flags, uintptr_t retaddr)
 744{
 745    float64 ret = float64r32_muladd(a, b, c, madd_flags, &env->fp_status);
 746    int flags = get_float_exception_flags(&env->fp_status);
 747
 748    if (unlikely(flags & float_flag_invalid)) {
 749        float_invalid_op_madd(env, flags, 1, retaddr);
 750    }
 751    return ret;
 752}
 753
 754#define FPU_FMADD(op, madd_flags)                                    \
 755    uint64_t helper_##op(CPUPPCState *env, uint64_t arg1,            \
 756                         uint64_t arg2, uint64_t arg3)               \
 757    { return do_fmadd(env, arg1, arg2, arg3, madd_flags, GETPC()); } \
 758    uint64_t helper_##op##s(CPUPPCState *env, uint64_t arg1,         \
 759                         uint64_t arg2, uint64_t arg3)               \
 760    { return do_fmadds(env, arg1, arg2, arg3, madd_flags, GETPC()); }
 761
 762#define MADD_FLGS 0
 763#define MSUB_FLGS float_muladd_negate_c
 764#define NMADD_FLGS float_muladd_negate_result
 765#define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
 766
 767FPU_FMADD(fmadd, MADD_FLGS)
 768FPU_FMADD(fnmadd, NMADD_FLGS)
 769FPU_FMADD(fmsub, MSUB_FLGS)
 770FPU_FMADD(fnmsub, NMSUB_FLGS)
 771
 772/* frsp - frsp. */
 773static uint64_t do_frsp(CPUPPCState *env, uint64_t arg, uintptr_t retaddr)
 774{
 775    float32 f32 = float64_to_float32(arg, &env->fp_status);
 776    int flags = get_float_exception_flags(&env->fp_status);
 777
 778    if (unlikely(flags & float_flag_invalid_snan)) {
 779        float_invalid_op_vxsnan(env, retaddr);
 780    }
 781    return helper_todouble(f32);
 782}
 783
 784uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
 785{
 786    return do_frsp(env, arg, GETPC());
 787}
 788
 789static void float_invalid_op_sqrt(CPUPPCState *env, int flags,
 790                                  bool set_fpcc, uintptr_t retaddr)
 791{
 792    if (unlikely(flags & float_flag_invalid_sqrt)) {
 793        float_invalid_op_vxsqrt(env, set_fpcc, retaddr);
 794    } else if (unlikely(flags & float_flag_invalid_snan)) {
 795        float_invalid_op_vxsnan(env, retaddr);
 796    }
 797}
 798
 799#define FPU_FSQRT(name, op)                                                   \
 800float64 helper_##name(CPUPPCState *env, float64 arg)                          \
 801{                                                                             \
 802    float64 ret = op(arg, &env->fp_status);                                   \
 803    int flags = get_float_exception_flags(&env->fp_status);                   \
 804                                                                              \
 805    if (unlikely(flags & float_flag_invalid)) {                               \
 806        float_invalid_op_sqrt(env, flags, 1, GETPC());                        \
 807    }                                                                         \
 808                                                                              \
 809    return ret;                                                               \
 810}
 811
 812FPU_FSQRT(FSQRT, float64_sqrt)
 813FPU_FSQRT(FSQRTS, float64r32_sqrt)
 814
 815/* fre - fre. */
 816float64 helper_fre(CPUPPCState *env, float64 arg)
 817{
 818    /* "Estimate" the reciprocal with actual division.  */
 819    float64 ret = float64_div(float64_one, arg, &env->fp_status);
 820    int flags = get_float_exception_flags(&env->fp_status);
 821
 822    if (unlikely(flags & float_flag_invalid_snan)) {
 823        float_invalid_op_vxsnan(env, GETPC());
 824    }
 825    if (unlikely(flags & float_flag_divbyzero)) {
 826        float_zero_divide_excp(env, GETPC());
 827        /* For FPSCR.ZE == 0, the result is 1/2.  */
 828        ret = float64_set_sign(float64_half, float64_is_neg(arg));
 829    }
 830
 831    return ret;
 832}
 833
 834/* fres - fres. */
 835uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
 836{
 837    /* "Estimate" the reciprocal with actual division.  */
 838    float64 ret = float64r32_div(float64_one, arg, &env->fp_status);
 839    int flags = get_float_exception_flags(&env->fp_status);
 840
 841    if (unlikely(flags & float_flag_invalid_snan)) {
 842        float_invalid_op_vxsnan(env, GETPC());
 843    }
 844    if (unlikely(flags & float_flag_divbyzero)) {
 845        float_zero_divide_excp(env, GETPC());
 846        /* For FPSCR.ZE == 0, the result is 1/2.  */
 847        ret = float64_set_sign(float64_half, float64_is_neg(arg));
 848    }
 849
 850    return ret;
 851}
 852
 853/* frsqrte  - frsqrte. */
 854float64 helper_frsqrte(CPUPPCState *env, float64 arg)
 855{
 856    /* "Estimate" the reciprocal with actual division.  */
 857    float64 rets = float64_sqrt(arg, &env->fp_status);
 858    float64 retd = float64_div(float64_one, rets, &env->fp_status);
 859    int flags = get_float_exception_flags(&env->fp_status);
 860
 861    if (unlikely(flags & float_flag_invalid)) {
 862        float_invalid_op_sqrt(env, flags, 1, GETPC());
 863    }
 864    if (unlikely(flags & float_flag_divbyzero)) {
 865        /* Reciprocal of (square root of) zero.  */
 866        float_zero_divide_excp(env, GETPC());
 867    }
 868
 869    return retd;
 870}
 871
 872/* frsqrtes  - frsqrtes. */
 873float64 helper_frsqrtes(CPUPPCState *env, float64 arg)
 874{
 875    /* "Estimate" the reciprocal with actual division.  */
 876    float64 rets = float64_sqrt(arg, &env->fp_status);
 877    float64 retd = float64r32_div(float64_one, rets, &env->fp_status);
 878    int flags = get_float_exception_flags(&env->fp_status);
 879
 880    if (unlikely(flags & float_flag_invalid)) {
 881        float_invalid_op_sqrt(env, flags, 1, GETPC());
 882    }
 883    if (unlikely(flags & float_flag_divbyzero)) {
 884        /* Reciprocal of (square root of) zero.  */
 885        float_zero_divide_excp(env, GETPC());
 886    }
 887
 888    return retd;
 889}
 890
 891/* fsel - fsel. */
 892uint64_t helper_FSEL(uint64_t a, uint64_t b, uint64_t c)
 893{
 894    CPU_DoubleU fa;
 895
 896    fa.ll = a;
 897
 898    if ((!float64_is_neg(fa.d) || float64_is_zero(fa.d)) &&
 899        !float64_is_any_nan(fa.d)) {
 900        return c;
 901    } else {
 902        return b;
 903    }
 904}
 905
 906uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
 907{
 908    int fe_flag = 0;
 909    int fg_flag = 0;
 910
 911    if (unlikely(float64_is_infinity(fra) ||
 912                 float64_is_infinity(frb) ||
 913                 float64_is_zero(frb))) {
 914        fe_flag = 1;
 915        fg_flag = 1;
 916    } else {
 917        int e_a = ppc_float64_get_unbiased_exp(fra);
 918        int e_b = ppc_float64_get_unbiased_exp(frb);
 919
 920        if (unlikely(float64_is_any_nan(fra) ||
 921                     float64_is_any_nan(frb))) {
 922            fe_flag = 1;
 923        } else if ((e_b <= -1022) || (e_b >= 1021)) {
 924            fe_flag = 1;
 925        } else if (!float64_is_zero(fra) &&
 926                   (((e_a - e_b) >= 1023) ||
 927                    ((e_a - e_b) <= -1021) ||
 928                    (e_a <= -970))) {
 929            fe_flag = 1;
 930        }
 931
 932        if (unlikely(float64_is_zero_or_denormal(frb))) {
 933            /* XB is not zero because of the above check and */
 934            /* so must be denormalized.                      */
 935            fg_flag = 1;
 936        }
 937    }
 938
 939    return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
 940}
 941
 942uint32_t helper_ftsqrt(uint64_t frb)
 943{
 944    int fe_flag = 0;
 945    int fg_flag = 0;
 946
 947    if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
 948        fe_flag = 1;
 949        fg_flag = 1;
 950    } else {
 951        int e_b = ppc_float64_get_unbiased_exp(frb);
 952
 953        if (unlikely(float64_is_any_nan(frb))) {
 954            fe_flag = 1;
 955        } else if (unlikely(float64_is_zero(frb))) {
 956            fe_flag = 1;
 957        } else if (unlikely(float64_is_neg(frb))) {
 958            fe_flag = 1;
 959        } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
 960            fe_flag = 1;
 961        }
 962
 963        if (unlikely(float64_is_zero_or_denormal(frb))) {
 964            /* XB is not zero because of the above check and */
 965            /* therefore must be denormalized.               */
 966            fg_flag = 1;
 967        }
 968    }
 969
 970    return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
 971}
 972
 973void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 974                  uint32_t crfD)
 975{
 976    CPU_DoubleU farg1, farg2;
 977    uint32_t ret = 0;
 978
 979    farg1.ll = arg1;
 980    farg2.ll = arg2;
 981
 982    if (unlikely(float64_is_any_nan(farg1.d) ||
 983                 float64_is_any_nan(farg2.d))) {
 984        ret = 0x01UL;
 985    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
 986        ret = 0x08UL;
 987    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
 988        ret = 0x04UL;
 989    } else {
 990        ret = 0x02UL;
 991    }
 992
 993    env->fpscr &= ~FP_FPCC;
 994    env->fpscr |= ret << FPSCR_FPCC;
 995    env->crf[crfD] = ret;
 996    if (unlikely(ret == 0x01UL
 997                 && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
 998                     float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
 999        /* sNaN comparison */
1000        float_invalid_op_vxsnan(env, GETPC());
1001    }
1002}
1003
1004void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1005                  uint32_t crfD)
1006{
1007    CPU_DoubleU farg1, farg2;
1008    uint32_t ret = 0;
1009
1010    farg1.ll = arg1;
1011    farg2.ll = arg2;
1012
1013    if (unlikely(float64_is_any_nan(farg1.d) ||
1014                 float64_is_any_nan(farg2.d))) {
1015        ret = 0x01UL;
1016    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1017        ret = 0x08UL;
1018    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1019        ret = 0x04UL;
1020    } else {
1021        ret = 0x02UL;
1022    }
1023
1024    env->fpscr &= ~FP_FPCC;
1025    env->fpscr |= ret << FPSCR_FPCC;
1026    env->crf[crfD] = (uint32_t) ret;
1027    if (unlikely(ret == 0x01UL)) {
1028        float_invalid_op_vxvc(env, 1, GETPC());
1029        if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1030            float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1031            /* sNaN comparison */
1032            float_invalid_op_vxsnan(env, GETPC());
1033        }
1034    }
1035}
1036
1037/* Single-precision floating-point conversions */
1038static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1039{
1040    CPU_FloatU u;
1041
1042    u.f = int32_to_float32(val, &env->vec_status);
1043
1044    return u.l;
1045}
1046
1047static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1048{
1049    CPU_FloatU u;
1050
1051    u.f = uint32_to_float32(val, &env->vec_status);
1052
1053    return u.l;
1054}
1055
1056static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1057{
1058    CPU_FloatU u;
1059
1060    u.l = val;
1061    /* NaN are not treated the same way IEEE 754 does */
1062    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1063        return 0;
1064    }
1065
1066    return float32_to_int32(u.f, &env->vec_status);
1067}
1068
1069static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1070{
1071    CPU_FloatU u;
1072
1073    u.l = val;
1074    /* NaN are not treated the same way IEEE 754 does */
1075    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1076        return 0;
1077    }
1078
1079    return float32_to_uint32(u.f, &env->vec_status);
1080}
1081
1082static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1083{
1084    CPU_FloatU u;
1085
1086    u.l = val;
1087    /* NaN are not treated the same way IEEE 754 does */
1088    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1089        return 0;
1090    }
1091
1092    return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1093}
1094
1095static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1096{
1097    CPU_FloatU u;
1098
1099    u.l = val;
1100    /* NaN are not treated the same way IEEE 754 does */
1101    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1102        return 0;
1103    }
1104
1105    return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1106}
1107
1108static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1109{
1110    CPU_FloatU u;
1111    float32 tmp;
1112
1113    u.f = int32_to_float32(val, &env->vec_status);
1114    tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1115    u.f = float32_div(u.f, tmp, &env->vec_status);
1116
1117    return u.l;
1118}
1119
1120static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1121{
1122    CPU_FloatU u;
1123    float32 tmp;
1124
1125    u.f = uint32_to_float32(val, &env->vec_status);
1126    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1127    u.f = float32_div(u.f, tmp, &env->vec_status);
1128
1129    return u.l;
1130}
1131
1132static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1133{
1134    CPU_FloatU u;
1135    float32 tmp;
1136
1137    u.l = val;
1138    /* NaN are not treated the same way IEEE 754 does */
1139    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1140        return 0;
1141    }
1142    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1143    u.f = float32_mul(u.f, tmp, &env->vec_status);
1144
1145    return float32_to_int32(u.f, &env->vec_status);
1146}
1147
1148static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1149{
1150    CPU_FloatU u;
1151    float32 tmp;
1152
1153    u.l = val;
1154    /* NaN are not treated the same way IEEE 754 does */
1155    if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1156        return 0;
1157    }
1158    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1159    u.f = float32_mul(u.f, tmp, &env->vec_status);
1160
1161    return float32_to_uint32(u.f, &env->vec_status);
1162}
1163
1164#define HELPER_SPE_SINGLE_CONV(name)                              \
1165    uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1166    {                                                             \
1167        return e##name(env, val);                                 \
1168    }
1169/* efscfsi */
1170HELPER_SPE_SINGLE_CONV(fscfsi);
1171/* efscfui */
1172HELPER_SPE_SINGLE_CONV(fscfui);
1173/* efscfuf */
1174HELPER_SPE_SINGLE_CONV(fscfuf);
1175/* efscfsf */
1176HELPER_SPE_SINGLE_CONV(fscfsf);
1177/* efsctsi */
1178HELPER_SPE_SINGLE_CONV(fsctsi);
1179/* efsctui */
1180HELPER_SPE_SINGLE_CONV(fsctui);
1181/* efsctsiz */
1182HELPER_SPE_SINGLE_CONV(fsctsiz);
1183/* efsctuiz */
1184HELPER_SPE_SINGLE_CONV(fsctuiz);
1185/* efsctsf */
1186HELPER_SPE_SINGLE_CONV(fsctsf);
1187/* efsctuf */
1188HELPER_SPE_SINGLE_CONV(fsctuf);
1189
1190#define HELPER_SPE_VECTOR_CONV(name)                            \
1191    uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1192    {                                                           \
1193        return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1194            (uint64_t)e##name(env, val);                        \
1195    }
1196/* evfscfsi */
1197HELPER_SPE_VECTOR_CONV(fscfsi);
1198/* evfscfui */
1199HELPER_SPE_VECTOR_CONV(fscfui);
1200/* evfscfuf */
1201HELPER_SPE_VECTOR_CONV(fscfuf);
1202/* evfscfsf */
1203HELPER_SPE_VECTOR_CONV(fscfsf);
1204/* evfsctsi */
1205HELPER_SPE_VECTOR_CONV(fsctsi);
1206/* evfsctui */
1207HELPER_SPE_VECTOR_CONV(fsctui);
1208/* evfsctsiz */
1209HELPER_SPE_VECTOR_CONV(fsctsiz);
1210/* evfsctuiz */
1211HELPER_SPE_VECTOR_CONV(fsctuiz);
1212/* evfsctsf */
1213HELPER_SPE_VECTOR_CONV(fsctsf);
1214/* evfsctuf */
1215HELPER_SPE_VECTOR_CONV(fsctuf);
1216
1217/* Single-precision floating-point arithmetic */
1218static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1219{
1220    CPU_FloatU u1, u2;
1221
1222    u1.l = op1;
1223    u2.l = op2;
1224    u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1225    return u1.l;
1226}
1227
1228static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1229{
1230    CPU_FloatU u1, u2;
1231
1232    u1.l = op1;
1233    u2.l = op2;
1234    u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1235    return u1.l;
1236}
1237
1238static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1239{
1240    CPU_FloatU u1, u2;
1241
1242    u1.l = op1;
1243    u2.l = op2;
1244    u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1245    return u1.l;
1246}
1247
1248static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1249{
1250    CPU_FloatU u1, u2;
1251
1252    u1.l = op1;
1253    u2.l = op2;
1254    u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1255    return u1.l;
1256}
1257
1258#define HELPER_SPE_SINGLE_ARITH(name)                                   \
1259    uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1260    {                                                                   \
1261        return e##name(env, op1, op2);                                  \
1262    }
1263/* efsadd */
1264HELPER_SPE_SINGLE_ARITH(fsadd);
1265/* efssub */
1266HELPER_SPE_SINGLE_ARITH(fssub);
1267/* efsmul */
1268HELPER_SPE_SINGLE_ARITH(fsmul);
1269/* efsdiv */
1270HELPER_SPE_SINGLE_ARITH(fsdiv);
1271
1272#define HELPER_SPE_VECTOR_ARITH(name)                                   \
1273    uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1274    {                                                                   \
1275        return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1276            (uint64_t)e##name(env, op1, op2);                           \
1277    }
1278/* evfsadd */
1279HELPER_SPE_VECTOR_ARITH(fsadd);
1280/* evfssub */
1281HELPER_SPE_VECTOR_ARITH(fssub);
1282/* evfsmul */
1283HELPER_SPE_VECTOR_ARITH(fsmul);
1284/* evfsdiv */
1285HELPER_SPE_VECTOR_ARITH(fsdiv);
1286
1287/* Single-precision floating-point comparisons */
1288static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1289{
1290    CPU_FloatU u1, u2;
1291
1292    u1.l = op1;
1293    u2.l = op2;
1294    return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1295}
1296
1297static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1298{
1299    CPU_FloatU u1, u2;
1300
1301    u1.l = op1;
1302    u2.l = op2;
1303    return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1304}
1305
1306static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1307{
1308    CPU_FloatU u1, u2;
1309
1310    u1.l = op1;
1311    u2.l = op2;
1312    return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1313}
1314
1315static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1316{
1317    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1318    return efscmplt(env, op1, op2);
1319}
1320
1321static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1322{
1323    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1324    return efscmpgt(env, op1, op2);
1325}
1326
1327static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1328{
1329    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1330    return efscmpeq(env, op1, op2);
1331}
1332
1333#define HELPER_SINGLE_SPE_CMP(name)                                     \
1334    uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1335    {                                                                   \
1336        return e##name(env, op1, op2);                                  \
1337    }
1338/* efststlt */
1339HELPER_SINGLE_SPE_CMP(fststlt);
1340/* efststgt */
1341HELPER_SINGLE_SPE_CMP(fststgt);
1342/* efststeq */
1343HELPER_SINGLE_SPE_CMP(fststeq);
1344/* efscmplt */
1345HELPER_SINGLE_SPE_CMP(fscmplt);
1346/* efscmpgt */
1347HELPER_SINGLE_SPE_CMP(fscmpgt);
1348/* efscmpeq */
1349HELPER_SINGLE_SPE_CMP(fscmpeq);
1350
1351static inline uint32_t evcmp_merge(int t0, int t1)
1352{
1353    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1354}
1355
1356#define HELPER_VECTOR_SPE_CMP(name)                                     \
1357    uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1358    {                                                                   \
1359        return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1360                           e##name(env, op1, op2));                     \
1361    }
1362/* evfststlt */
1363HELPER_VECTOR_SPE_CMP(fststlt);
1364/* evfststgt */
1365HELPER_VECTOR_SPE_CMP(fststgt);
1366/* evfststeq */
1367HELPER_VECTOR_SPE_CMP(fststeq);
1368/* evfscmplt */
1369HELPER_VECTOR_SPE_CMP(fscmplt);
1370/* evfscmpgt */
1371HELPER_VECTOR_SPE_CMP(fscmpgt);
1372/* evfscmpeq */
1373HELPER_VECTOR_SPE_CMP(fscmpeq);
1374
1375/* Double-precision floating-point conversion */
1376uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1377{
1378    CPU_DoubleU u;
1379
1380    u.d = int32_to_float64(val, &env->vec_status);
1381
1382    return u.ll;
1383}
1384
1385uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1386{
1387    CPU_DoubleU u;
1388
1389    u.d = int64_to_float64(val, &env->vec_status);
1390
1391    return u.ll;
1392}
1393
1394uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1395{
1396    CPU_DoubleU u;
1397
1398    u.d = uint32_to_float64(val, &env->vec_status);
1399
1400    return u.ll;
1401}
1402
1403uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1404{
1405    CPU_DoubleU u;
1406
1407    u.d = uint64_to_float64(val, &env->vec_status);
1408
1409    return u.ll;
1410}
1411
1412uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1413{
1414    CPU_DoubleU u;
1415
1416    u.ll = val;
1417    /* NaN are not treated the same way IEEE 754 does */
1418    if (unlikely(float64_is_any_nan(u.d))) {
1419        return 0;
1420    }
1421
1422    return float64_to_int32(u.d, &env->vec_status);
1423}
1424
1425uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1426{
1427    CPU_DoubleU u;
1428
1429    u.ll = val;
1430    /* NaN are not treated the same way IEEE 754 does */
1431    if (unlikely(float64_is_any_nan(u.d))) {
1432        return 0;
1433    }
1434
1435    return float64_to_uint32(u.d, &env->vec_status);
1436}
1437
1438uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1439{
1440    CPU_DoubleU u;
1441
1442    u.ll = val;
1443    /* NaN are not treated the same way IEEE 754 does */
1444    if (unlikely(float64_is_any_nan(u.d))) {
1445        return 0;
1446    }
1447
1448    return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1449}
1450
1451uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1452{
1453    CPU_DoubleU u;
1454
1455    u.ll = val;
1456    /* NaN are not treated the same way IEEE 754 does */
1457    if (unlikely(float64_is_any_nan(u.d))) {
1458        return 0;
1459    }
1460
1461    return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1462}
1463
1464uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1465{
1466    CPU_DoubleU u;
1467
1468    u.ll = val;
1469    /* NaN are not treated the same way IEEE 754 does */
1470    if (unlikely(float64_is_any_nan(u.d))) {
1471        return 0;
1472    }
1473
1474    return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1475}
1476
1477uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1478{
1479    CPU_DoubleU u;
1480
1481    u.ll = val;
1482    /* NaN are not treated the same way IEEE 754 does */
1483    if (unlikely(float64_is_any_nan(u.d))) {
1484        return 0;
1485    }
1486
1487    return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1488}
1489
1490uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1491{
1492    CPU_DoubleU u;
1493    float64 tmp;
1494
1495    u.d = int32_to_float64(val, &env->vec_status);
1496    tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1497    u.d = float64_div(u.d, tmp, &env->vec_status);
1498
1499    return u.ll;
1500}
1501
1502uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1503{
1504    CPU_DoubleU u;
1505    float64 tmp;
1506
1507    u.d = uint32_to_float64(val, &env->vec_status);
1508    tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1509    u.d = float64_div(u.d, tmp, &env->vec_status);
1510
1511    return u.ll;
1512}
1513
1514uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1515{
1516    CPU_DoubleU u;
1517    float64 tmp;
1518
1519    u.ll = val;
1520    /* NaN are not treated the same way IEEE 754 does */
1521    if (unlikely(float64_is_any_nan(u.d))) {
1522        return 0;
1523    }
1524    tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1525    u.d = float64_mul(u.d, tmp, &env->vec_status);
1526
1527    return float64_to_int32(u.d, &env->vec_status);
1528}
1529
1530uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1531{
1532    CPU_DoubleU u;
1533    float64 tmp;
1534
1535    u.ll = val;
1536    /* NaN are not treated the same way IEEE 754 does */
1537    if (unlikely(float64_is_any_nan(u.d))) {
1538        return 0;
1539    }
1540    tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1541    u.d = float64_mul(u.d, tmp, &env->vec_status);
1542
1543    return float64_to_uint32(u.d, &env->vec_status);
1544}
1545
1546uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1547{
1548    CPU_DoubleU u1;
1549    CPU_FloatU u2;
1550
1551    u1.ll = val;
1552    u2.f = float64_to_float32(u1.d, &env->vec_status);
1553
1554    return u2.l;
1555}
1556
1557uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1558{
1559    CPU_DoubleU u2;
1560    CPU_FloatU u1;
1561
1562    u1.l = val;
1563    u2.d = float32_to_float64(u1.f, &env->vec_status);
1564
1565    return u2.ll;
1566}
1567
1568/* Double precision fixed-point arithmetic */
1569uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1570{
1571    CPU_DoubleU u1, u2;
1572
1573    u1.ll = op1;
1574    u2.ll = op2;
1575    u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1576    return u1.ll;
1577}
1578
1579uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1580{
1581    CPU_DoubleU u1, u2;
1582
1583    u1.ll = op1;
1584    u2.ll = op2;
1585    u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1586    return u1.ll;
1587}
1588
1589uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1590{
1591    CPU_DoubleU u1, u2;
1592
1593    u1.ll = op1;
1594    u2.ll = op2;
1595    u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1596    return u1.ll;
1597}
1598
1599uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1600{
1601    CPU_DoubleU u1, u2;
1602
1603    u1.ll = op1;
1604    u2.ll = op2;
1605    u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1606    return u1.ll;
1607}
1608
1609/* Double precision floating point helpers */
1610uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1611{
1612    CPU_DoubleU u1, u2;
1613
1614    u1.ll = op1;
1615    u2.ll = op2;
1616    return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1617}
1618
1619uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1620{
1621    CPU_DoubleU u1, u2;
1622
1623    u1.ll = op1;
1624    u2.ll = op2;
1625    return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1626}
1627
1628uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1629{
1630    CPU_DoubleU u1, u2;
1631
1632    u1.ll = op1;
1633    u2.ll = op2;
1634    return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1635}
1636
1637uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1638{
1639    /* XXX: TODO: test special values (NaN, infinites, ...) */
1640    return helper_efdtstlt(env, op1, op2);
1641}
1642
1643uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1644{
1645    /* XXX: TODO: test special values (NaN, infinites, ...) */
1646    return helper_efdtstgt(env, op1, op2);
1647}
1648
1649uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1650{
1651    /* XXX: TODO: test special values (NaN, infinites, ...) */
1652    return helper_efdtsteq(env, op1, op2);
1653}
1654
1655#define float64_to_float64(x, env) x
1656
1657
1658/*
1659 * VSX_ADD_SUB - VSX floating point add/subtract
1660 *   name  - instruction mnemonic
1661 *   op    - operation (add or sub)
1662 *   nels  - number of elements (1, 2 or 4)
1663 *   tp    - type (float32 or float64)
1664 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1665 *   sfifprf - set FI and FPRF
1666 */
1667#define VSX_ADD_SUB(name, op, nels, tp, fld, sfifprf, r2sp)                  \
1668void helper_##name(CPUPPCState *env, ppc_vsr_t *xt,                          \
1669                   ppc_vsr_t *xa, ppc_vsr_t *xb)                             \
1670{                                                                            \
1671    ppc_vsr_t t = { };                                                       \
1672    int i;                                                                   \
1673                                                                             \
1674    helper_reset_fpstatus(env);                                              \
1675                                                                             \
1676    for (i = 0; i < nels; i++) {                                             \
1677        float_status tstat = env->fp_status;                                 \
1678        set_float_exception_flags(0, &tstat);                                \
1679        t.fld = tp##_##op(xa->fld, xb->fld, &tstat);                         \
1680        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1681                                                                             \
1682        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1683            float_invalid_op_addsub(env, tstat.float_exception_flags,        \
1684                                    sfifprf, GETPC());                       \
1685        }                                                                    \
1686                                                                             \
1687        if (r2sp) {                                                          \
1688            t.fld = do_frsp(env, t.fld, GETPC());                            \
1689        }                                                                    \
1690                                                                             \
1691        if (sfifprf) {                                                       \
1692            helper_compute_fprf_float64(env, t.fld);                         \
1693        }                                                                    \
1694    }                                                                        \
1695    *xt = t;                                                                 \
1696    do_float_check_status(env, sfifprf, GETPC());                            \
1697}
1698
1699VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1700VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1701VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1702VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1703VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1704VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1705VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1706VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1707
1708void helper_xsaddqp(CPUPPCState *env, uint32_t opcode,
1709                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1710{
1711    ppc_vsr_t t = *xt;
1712    float_status tstat;
1713
1714    helper_reset_fpstatus(env);
1715
1716    tstat = env->fp_status;
1717    if (unlikely(Rc(opcode) != 0)) {
1718        tstat.float_rounding_mode = float_round_to_odd;
1719    }
1720
1721    set_float_exception_flags(0, &tstat);
1722    t.f128 = float128_add(xa->f128, xb->f128, &tstat);
1723    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1724
1725    if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1726        float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC());
1727    }
1728
1729    helper_compute_fprf_float128(env, t.f128);
1730
1731    *xt = t;
1732    do_float_check_status(env, true, GETPC());
1733}
1734
1735/*
1736 * VSX_MUL - VSX floating point multiply
1737 *   op    - instruction mnemonic
1738 *   nels  - number of elements (1, 2 or 4)
1739 *   tp    - type (float32 or float64)
1740 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1741 *   sfifprf - set FI and FPRF
1742 */
1743#define VSX_MUL(op, nels, tp, fld, sfifprf, r2sp)                            \
1744void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                            \
1745                 ppc_vsr_t *xa, ppc_vsr_t *xb)                               \
1746{                                                                            \
1747    ppc_vsr_t t = { };                                                       \
1748    int i;                                                                   \
1749                                                                             \
1750    helper_reset_fpstatus(env);                                              \
1751                                                                             \
1752    for (i = 0; i < nels; i++) {                                             \
1753        float_status tstat = env->fp_status;                                 \
1754        set_float_exception_flags(0, &tstat);                                \
1755        t.fld = tp##_mul(xa->fld, xb->fld, &tstat);                          \
1756        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1757                                                                             \
1758        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1759            float_invalid_op_mul(env, tstat.float_exception_flags,           \
1760                                 sfifprf, GETPC());                          \
1761        }                                                                    \
1762                                                                             \
1763        if (r2sp) {                                                          \
1764            t.fld = do_frsp(env, t.fld, GETPC());                            \
1765        }                                                                    \
1766                                                                             \
1767        if (sfifprf) {                                                       \
1768            helper_compute_fprf_float64(env, t.fld);                         \
1769        }                                                                    \
1770    }                                                                        \
1771                                                                             \
1772    *xt = t;                                                                 \
1773    do_float_check_status(env, sfifprf, GETPC());                            \
1774}
1775
1776VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1777VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1778VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1779VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1780
1781void helper_xsmulqp(CPUPPCState *env, uint32_t opcode,
1782                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1783{
1784    ppc_vsr_t t = *xt;
1785    float_status tstat;
1786
1787    helper_reset_fpstatus(env);
1788    tstat = env->fp_status;
1789    if (unlikely(Rc(opcode) != 0)) {
1790        tstat.float_rounding_mode = float_round_to_odd;
1791    }
1792
1793    set_float_exception_flags(0, &tstat);
1794    t.f128 = float128_mul(xa->f128, xb->f128, &tstat);
1795    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1796
1797    if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1798        float_invalid_op_mul(env, tstat.float_exception_flags, 1, GETPC());
1799    }
1800    helper_compute_fprf_float128(env, t.f128);
1801
1802    *xt = t;
1803    do_float_check_status(env, true, GETPC());
1804}
1805
1806/*
1807 * VSX_DIV - VSX floating point divide
1808 *   op    - instruction mnemonic
1809 *   nels  - number of elements (1, 2 or 4)
1810 *   tp    - type (float32 or float64)
1811 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1812 *   sfifprf - set FI and FPRF
1813 */
1814#define VSX_DIV(op, nels, tp, fld, sfifprf, r2sp)                             \
1815void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \
1816                 ppc_vsr_t *xa, ppc_vsr_t *xb)                                \
1817{                                                                             \
1818    ppc_vsr_t t = { };                                                        \
1819    int i;                                                                    \
1820                                                                              \
1821    helper_reset_fpstatus(env);                                               \
1822                                                                              \
1823    for (i = 0; i < nels; i++) {                                              \
1824        float_status tstat = env->fp_status;                                  \
1825        set_float_exception_flags(0, &tstat);                                 \
1826        t.fld = tp##_div(xa->fld, xb->fld, &tstat);                           \
1827        env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1828                                                                              \
1829        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1830            float_invalid_op_div(env, tstat.float_exception_flags,            \
1831                                 sfifprf, GETPC());                           \
1832        }                                                                     \
1833        if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {   \
1834            float_zero_divide_excp(env, GETPC());                             \
1835        }                                                                     \
1836                                                                              \
1837        if (r2sp) {                                                           \
1838            t.fld = do_frsp(env, t.fld, GETPC());                             \
1839        }                                                                     \
1840                                                                              \
1841        if (sfifprf) {                                                        \
1842            helper_compute_fprf_float64(env, t.fld);                          \
1843        }                                                                     \
1844    }                                                                         \
1845                                                                              \
1846    *xt = t;                                                                  \
1847    do_float_check_status(env, sfifprf, GETPC());                             \
1848}
1849
1850VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1851VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1852VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1853VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1854
1855void helper_xsdivqp(CPUPPCState *env, uint32_t opcode,
1856                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1857{
1858    ppc_vsr_t t = *xt;
1859    float_status tstat;
1860
1861    helper_reset_fpstatus(env);
1862    tstat = env->fp_status;
1863    if (unlikely(Rc(opcode) != 0)) {
1864        tstat.float_rounding_mode = float_round_to_odd;
1865    }
1866
1867    set_float_exception_flags(0, &tstat);
1868    t.f128 = float128_div(xa->f128, xb->f128, &tstat);
1869    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1870
1871    if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1872        float_invalid_op_div(env, tstat.float_exception_flags, 1, GETPC());
1873    }
1874    if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
1875        float_zero_divide_excp(env, GETPC());
1876    }
1877
1878    helper_compute_fprf_float128(env, t.f128);
1879    *xt = t;
1880    do_float_check_status(env, true, GETPC());
1881}
1882
1883/*
1884 * VSX_RE  - VSX floating point reciprocal estimate
1885 *   op    - instruction mnemonic
1886 *   nels  - number of elements (1, 2 or 4)
1887 *   tp    - type (float32 or float64)
1888 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1889 *   sfifprf - set FI and FPRF
1890 */
1891#define VSX_RE(op, nels, tp, fld, sfifprf, r2sp)                              \
1892void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)              \
1893{                                                                             \
1894    ppc_vsr_t t = { };                                                        \
1895    int i;                                                                    \
1896                                                                              \
1897    helper_reset_fpstatus(env);                                               \
1898                                                                              \
1899    for (i = 0; i < nels; i++) {                                              \
1900        if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) {      \
1901            float_invalid_op_vxsnan(env, GETPC());                            \
1902        }                                                                     \
1903        t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status);                 \
1904                                                                              \
1905        if (r2sp) {                                                           \
1906            t.fld = do_frsp(env, t.fld, GETPC());                             \
1907        }                                                                     \
1908                                                                              \
1909        if (sfifprf) {                                                        \
1910            helper_compute_fprf_float64(env, t.fld);                          \
1911        }                                                                     \
1912    }                                                                         \
1913                                                                              \
1914    *xt = t;                                                                  \
1915    do_float_check_status(env, sfifprf, GETPC());                             \
1916}
1917
1918VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
1919VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
1920VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
1921VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
1922
1923/*
1924 * VSX_SQRT - VSX floating point square root
1925 *   op    - instruction mnemonic
1926 *   nels  - number of elements (1, 2 or 4)
1927 *   tp    - type (float32 or float64)
1928 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1929 *   sfifprf - set FI and FPRF
1930 */
1931#define VSX_SQRT(op, nels, tp, fld, sfifprf, r2sp)                           \
1932void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
1933{                                                                            \
1934    ppc_vsr_t t = { };                                                       \
1935    int i;                                                                   \
1936                                                                             \
1937    helper_reset_fpstatus(env);                                              \
1938                                                                             \
1939    for (i = 0; i < nels; i++) {                                             \
1940        float_status tstat = env->fp_status;                                 \
1941        set_float_exception_flags(0, &tstat);                                \
1942        t.fld = tp##_sqrt(xb->fld, &tstat);                                  \
1943        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1944                                                                             \
1945        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1946            float_invalid_op_sqrt(env, tstat.float_exception_flags,          \
1947                                  sfifprf, GETPC());                         \
1948        }                                                                    \
1949                                                                             \
1950        if (r2sp) {                                                          \
1951            t.fld = do_frsp(env, t.fld, GETPC());                            \
1952        }                                                                    \
1953                                                                             \
1954        if (sfifprf) {                                                       \
1955            helper_compute_fprf_float64(env, t.fld);                         \
1956        }                                                                    \
1957    }                                                                        \
1958                                                                             \
1959    *xt = t;                                                                 \
1960    do_float_check_status(env, sfifprf, GETPC());                            \
1961}
1962
1963VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
1964VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
1965VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
1966VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
1967
1968/*
1969 *VSX_RSQRTE - VSX floating point reciprocal square root estimate
1970 *   op    - instruction mnemonic
1971 *   nels  - number of elements (1, 2 or 4)
1972 *   tp    - type (float32 or float64)
1973 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1974 *   sfifprf - set FI and FPRF
1975 */
1976#define VSX_RSQRTE(op, nels, tp, fld, sfifprf, r2sp)                         \
1977void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
1978{                                                                            \
1979    ppc_vsr_t t = { };                                                       \
1980    int i;                                                                   \
1981                                                                             \
1982    helper_reset_fpstatus(env);                                              \
1983                                                                             \
1984    for (i = 0; i < nels; i++) {                                             \
1985        float_status tstat = env->fp_status;                                 \
1986        set_float_exception_flags(0, &tstat);                                \
1987        t.fld = tp##_sqrt(xb->fld, &tstat);                                  \
1988        t.fld = tp##_div(tp##_one, t.fld, &tstat);                           \
1989        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1990        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1991            float_invalid_op_sqrt(env, tstat.float_exception_flags,          \
1992                                  sfifprf, GETPC());                         \
1993        }                                                                    \
1994        if (r2sp) {                                                          \
1995            t.fld = do_frsp(env, t.fld, GETPC());                            \
1996        }                                                                    \
1997                                                                             \
1998        if (sfifprf) {                                                       \
1999            helper_compute_fprf_float64(env, t.fld);                         \
2000        }                                                                    \
2001    }                                                                        \
2002                                                                             \
2003    *xt = t;                                                                 \
2004    do_float_check_status(env, sfifprf, GETPC());                            \
2005}
2006
2007VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2008VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2009VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2010VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2011
2012/*
2013 * VSX_TDIV - VSX floating point test for divide
2014 *   op    - instruction mnemonic
2015 *   nels  - number of elements (1, 2 or 4)
2016 *   tp    - type (float32 or float64)
2017 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2018 *   emin  - minimum unbiased exponent
2019 *   emax  - maximum unbiased exponent
2020 *   nbits - number of fraction bits
2021 */
2022#define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
2023void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
2024                 ppc_vsr_t *xa, ppc_vsr_t *xb)                          \
2025{                                                                       \
2026    int i;                                                              \
2027    int fe_flag = 0;                                                    \
2028    int fg_flag = 0;                                                    \
2029                                                                        \
2030    for (i = 0; i < nels; i++) {                                        \
2031        if (unlikely(tp##_is_infinity(xa->fld) ||                       \
2032                     tp##_is_infinity(xb->fld) ||                       \
2033                     tp##_is_zero(xb->fld))) {                          \
2034            fe_flag = 1;                                                \
2035            fg_flag = 1;                                                \
2036        } else {                                                        \
2037            int e_a = ppc_##tp##_get_unbiased_exp(xa->fld);             \
2038            int e_b = ppc_##tp##_get_unbiased_exp(xb->fld);             \
2039                                                                        \
2040            if (unlikely(tp##_is_any_nan(xa->fld) ||                    \
2041                         tp##_is_any_nan(xb->fld))) {                   \
2042                fe_flag = 1;                                            \
2043            } else if ((e_b <= emin) || (e_b >= (emax - 2))) {          \
2044                fe_flag = 1;                                            \
2045            } else if (!tp##_is_zero(xa->fld) &&                        \
2046                       (((e_a - e_b) >= emax) ||                        \
2047                        ((e_a - e_b) <= (emin + 1)) ||                  \
2048                        (e_a <= (emin + nbits)))) {                     \
2049                fe_flag = 1;                                            \
2050            }                                                           \
2051                                                                        \
2052            if (unlikely(tp##_is_zero_or_denormal(xb->fld))) {          \
2053                /*                                                      \
2054                 * XB is not zero because of the above check and so     \
2055                 * must be denormalized.                                \
2056                 */                                                     \
2057                fg_flag = 1;                                            \
2058            }                                                           \
2059        }                                                               \
2060    }                                                                   \
2061                                                                        \
2062    env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2063}
2064
2065VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2066VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2067VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2068
2069/*
2070 * VSX_TSQRT - VSX floating point test for square root
2071 *   op    - instruction mnemonic
2072 *   nels  - number of elements (1, 2 or 4)
2073 *   tp    - type (float32 or float64)
2074 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2075 *   emin  - minimum unbiased exponent
2076 *   emax  - maximum unbiased exponent
2077 *   nbits - number of fraction bits
2078 */
2079#define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
2080void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)      \
2081{                                                                       \
2082    int i;                                                              \
2083    int fe_flag = 0;                                                    \
2084    int fg_flag = 0;                                                    \
2085                                                                        \
2086    for (i = 0; i < nels; i++) {                                        \
2087        if (unlikely(tp##_is_infinity(xb->fld) ||                       \
2088                     tp##_is_zero(xb->fld))) {                          \
2089            fe_flag = 1;                                                \
2090            fg_flag = 1;                                                \
2091        } else {                                                        \
2092            int e_b = ppc_##tp##_get_unbiased_exp(xb->fld);             \
2093                                                                        \
2094            if (unlikely(tp##_is_any_nan(xb->fld))) {                   \
2095                fe_flag = 1;                                            \
2096            } else if (unlikely(tp##_is_zero(xb->fld))) {               \
2097                fe_flag = 1;                                            \
2098            } else if (unlikely(tp##_is_neg(xb->fld))) {                \
2099                fe_flag = 1;                                            \
2100            } else if (!tp##_is_zero(xb->fld) &&                        \
2101                       (e_b <= (emin + nbits))) {                       \
2102                fe_flag = 1;                                            \
2103            }                                                           \
2104                                                                        \
2105            if (unlikely(tp##_is_zero_or_denormal(xb->fld))) {          \
2106                /*                                                      \
2107                 * XB is not zero because of the above check and        \
2108                 * therefore must be denormalized.                      \
2109                 */                                                     \
2110                fg_flag = 1;                                            \
2111            }                                                           \
2112        }                                                               \
2113    }                                                                   \
2114                                                                        \
2115    env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2116}
2117
2118VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2119VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2120VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2121
2122/*
2123 * VSX_MADD - VSX floating point muliply/add variations
2124 *   op    - instruction mnemonic
2125 *   nels  - number of elements (1, 2 or 4)
2126 *   tp    - type (float32 or float64)
2127 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2128 *   maddflgs - flags for the float*muladd routine that control the
2129 *           various forms (madd, msub, nmadd, nmsub)
2130 *   sfifprf - set FI and FPRF
2131 */
2132#define VSX_MADD(op, nels, tp, fld, maddflgs, sfifprf)                        \
2133void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \
2134                 ppc_vsr_t *s1, ppc_vsr_t *s2, ppc_vsr_t *s3)                 \
2135{                                                                             \
2136    ppc_vsr_t t = { };                                                        \
2137    int i;                                                                    \
2138                                                                              \
2139    helper_reset_fpstatus(env);                                               \
2140                                                                              \
2141    for (i = 0; i < nels; i++) {                                              \
2142        float_status tstat = env->fp_status;                                  \
2143        set_float_exception_flags(0, &tstat);                                 \
2144        t.fld = tp##_muladd(s1->fld, s3->fld, s2->fld, maddflgs, &tstat);     \
2145        env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2146                                                                              \
2147        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2148            float_invalid_op_madd(env, tstat.float_exception_flags,           \
2149                                  sfifprf, GETPC());                          \
2150        }                                                                     \
2151                                                                              \
2152        if (sfifprf) {                                                        \
2153            helper_compute_fprf_float64(env, t.fld);                          \
2154        }                                                                     \
2155    }                                                                         \
2156    *xt = t;                                                                  \
2157    do_float_check_status(env, sfifprf, GETPC());                             \
2158}
2159
2160VSX_MADD(XSMADDDP, 1, float64, VsrD(0), MADD_FLGS, 1)
2161VSX_MADD(XSMSUBDP, 1, float64, VsrD(0), MSUB_FLGS, 1)
2162VSX_MADD(XSNMADDDP, 1, float64, VsrD(0), NMADD_FLGS, 1)
2163VSX_MADD(XSNMSUBDP, 1, float64, VsrD(0), NMSUB_FLGS, 1)
2164VSX_MADD(XSMADDSP, 1, float64r32, VsrD(0), MADD_FLGS, 1)
2165VSX_MADD(XSMSUBSP, 1, float64r32, VsrD(0), MSUB_FLGS, 1)
2166VSX_MADD(XSNMADDSP, 1, float64r32, VsrD(0), NMADD_FLGS, 1)
2167VSX_MADD(XSNMSUBSP, 1, float64r32, VsrD(0), NMSUB_FLGS, 1)
2168
2169VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0)
2170VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0)
2171VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0)
2172VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0)
2173
2174VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0)
2175VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0)
2176VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0)
2177VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0)
2178
2179/*
2180 * VSX_MADDQ - VSX floating point quad-precision muliply/add
2181 *   op    - instruction mnemonic
2182 *   maddflgs - flags for the float*muladd routine that control the
2183 *           various forms (madd, msub, nmadd, nmsub)
2184 *   ro    - round to odd
2185 */
2186#define VSX_MADDQ(op, maddflgs, ro)                                            \
2187void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *s1, ppc_vsr_t *s2,\
2188                 ppc_vsr_t *s3)                                                \
2189{                                                                              \
2190    ppc_vsr_t t = *xt;                                                         \
2191                                                                               \
2192    helper_reset_fpstatus(env);                                                \
2193                                                                               \
2194    float_status tstat = env->fp_status;                                       \
2195    set_float_exception_flags(0, &tstat);                                      \
2196    if (ro) {                                                                  \
2197        tstat.float_rounding_mode = float_round_to_odd;                        \
2198    }                                                                          \
2199    t.f128 = float128_muladd(s1->f128, s3->f128, s2->f128, maddflgs, &tstat);  \
2200    env->fp_status.float_exception_flags |= tstat.float_exception_flags;       \
2201                                                                               \
2202    if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {          \
2203        float_invalid_op_madd(env, tstat.float_exception_flags,                \
2204                              false, GETPC());                                 \
2205    }                                                                          \
2206                                                                               \
2207    helper_compute_fprf_float128(env, t.f128);                                 \
2208    *xt = t;                                                                   \
2209    do_float_check_status(env, true, GETPC());                                 \
2210}
2211
2212VSX_MADDQ(XSMADDQP, MADD_FLGS, 0)
2213VSX_MADDQ(XSMADDQPO, MADD_FLGS, 1)
2214VSX_MADDQ(XSMSUBQP, MSUB_FLGS, 0)
2215VSX_MADDQ(XSMSUBQPO, MSUB_FLGS, 1)
2216VSX_MADDQ(XSNMADDQP, NMADD_FLGS, 0)
2217VSX_MADDQ(XSNMADDQPO, NMADD_FLGS, 1)
2218VSX_MADDQ(XSNMSUBQP, NMSUB_FLGS, 0)
2219VSX_MADDQ(XSNMSUBQPO, NMSUB_FLGS, 0)
2220
2221/*
2222 * VSX_SCALAR_CMP - VSX scalar floating point compare
2223 *   op    - instruction mnemonic
2224 *   tp    - type
2225 *   cmp   - comparison operation
2226 *   fld   - vsr_t field
2227 *   svxvc - set VXVC bit
2228 */
2229#define VSX_SCALAR_CMP(op, tp, cmp, fld, svxvc)                               \
2230        void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                     \
2231                ppc_vsr_t *xa, ppc_vsr_t *xb)                                 \
2232{                                                                             \
2233    int flags;                                                                \
2234    bool r, vxvc;                                                             \
2235                                                                              \
2236    helper_reset_fpstatus(env);                                               \
2237                                                                              \
2238    if (svxvc) {                                                              \
2239        r = tp##_##cmp(xb->fld, xa->fld, &env->fp_status);                    \
2240    } else {                                                                  \
2241        r = tp##_##cmp##_quiet(xb->fld, xa->fld, &env->fp_status);            \
2242    }                                                                         \
2243                                                                              \
2244    flags = get_float_exception_flags(&env->fp_status);                       \
2245    if (unlikely(flags & float_flag_invalid)) {                               \
2246        vxvc = svxvc;                                                         \
2247        if (flags & float_flag_invalid_snan) {                                \
2248            float_invalid_op_vxsnan(env, GETPC());                            \
2249            vxvc &= !(env->fpscr & FP_VE);                                    \
2250        }                                                                     \
2251        if (vxvc) {                                                           \
2252            float_invalid_op_vxvc(env, 0, GETPC());                           \
2253        }                                                                     \
2254    }                                                                         \
2255                                                                              \
2256    memset(xt, 0, sizeof(*xt));                                               \
2257    memset(&xt->fld, -r, sizeof(xt->fld));                                    \
2258    do_float_check_status(env, false, GETPC());                               \
2259}
2260
2261VSX_SCALAR_CMP(XSCMPEQDP, float64, eq, VsrD(0), 0)
2262VSX_SCALAR_CMP(XSCMPGEDP, float64, le, VsrD(0), 1)
2263VSX_SCALAR_CMP(XSCMPGTDP, float64, lt, VsrD(0), 1)
2264VSX_SCALAR_CMP(XSCMPEQQP, float128, eq, f128, 0)
2265VSX_SCALAR_CMP(XSCMPGEQP, float128, le, f128, 1)
2266VSX_SCALAR_CMP(XSCMPGTQP, float128, lt, f128, 1)
2267
2268void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode,
2269                       ppc_vsr_t *xa, ppc_vsr_t *xb)
2270{
2271    int64_t exp_a, exp_b;
2272    uint32_t cc;
2273
2274    exp_a = extract64(xa->VsrD(0), 52, 11);
2275    exp_b = extract64(xb->VsrD(0), 52, 11);
2276
2277    if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||
2278                 float64_is_any_nan(xb->VsrD(0)))) {
2279        cc = CRF_SO;
2280    } else {
2281        if (exp_a < exp_b) {
2282            cc = CRF_LT;
2283        } else if (exp_a > exp_b) {
2284            cc = CRF_GT;
2285        } else {
2286            cc = CRF_EQ;
2287        }
2288    }
2289
2290    env->fpscr &= ~FP_FPCC;
2291    env->fpscr |= cc << FPSCR_FPCC;
2292    env->crf[BF(opcode)] = cc;
2293
2294    do_float_check_status(env, false, GETPC());
2295}
2296
2297void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode,
2298                       ppc_vsr_t *xa, ppc_vsr_t *xb)
2299{
2300    int64_t exp_a, exp_b;
2301    uint32_t cc;
2302
2303    exp_a = extract64(xa->VsrD(0), 48, 15);
2304    exp_b = extract64(xb->VsrD(0), 48, 15);
2305
2306    if (unlikely(float128_is_any_nan(xa->f128) ||
2307                 float128_is_any_nan(xb->f128))) {
2308        cc = CRF_SO;
2309    } else {
2310        if (exp_a < exp_b) {
2311            cc = CRF_LT;
2312        } else if (exp_a > exp_b) {
2313            cc = CRF_GT;
2314        } else {
2315            cc = CRF_EQ;
2316        }
2317    }
2318
2319    env->fpscr &= ~FP_FPCC;
2320    env->fpscr |= cc << FPSCR_FPCC;
2321    env->crf[BF(opcode)] = cc;
2322
2323    do_float_check_status(env, false, GETPC());
2324}
2325
2326static inline void do_scalar_cmp(CPUPPCState *env, ppc_vsr_t *xa, ppc_vsr_t *xb,
2327                                 int crf_idx, bool ordered)
2328{
2329    uint32_t cc;
2330    bool vxsnan_flag = false, vxvc_flag = false;
2331
2332    helper_reset_fpstatus(env);
2333
2334    switch (float64_compare(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) {
2335    case float_relation_less:
2336        cc = CRF_LT;
2337        break;
2338    case float_relation_equal:
2339        cc = CRF_EQ;
2340        break;
2341    case float_relation_greater:
2342        cc = CRF_GT;
2343        break;
2344    case float_relation_unordered:
2345        cc = CRF_SO;
2346
2347        if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) ||
2348            float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {
2349            vxsnan_flag = true;
2350            if (!(env->fpscr & FP_VE) && ordered) {
2351                vxvc_flag = true;
2352            }
2353        } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) ||
2354                   float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) {
2355            if (ordered) {
2356                vxvc_flag = true;
2357            }
2358        }
2359
2360        break;
2361    default:
2362        g_assert_not_reached();
2363    }
2364
2365    env->fpscr &= ~FP_FPCC;
2366    env->fpscr |= cc << FPSCR_FPCC;
2367    env->crf[crf_idx] = cc;
2368
2369    if (vxsnan_flag) {
2370        float_invalid_op_vxsnan(env, GETPC());
2371    }
2372    if (vxvc_flag) {
2373        float_invalid_op_vxvc(env, 0, GETPC());
2374    }
2375
2376    do_float_check_status(env, false, GETPC());
2377}
2378
2379void helper_xscmpodp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2380                     ppc_vsr_t *xb)
2381{
2382    do_scalar_cmp(env, xa, xb, BF(opcode), true);
2383}
2384
2385void helper_xscmpudp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2386                     ppc_vsr_t *xb)
2387{
2388    do_scalar_cmp(env, xa, xb, BF(opcode), false);
2389}
2390
2391static inline void do_scalar_cmpq(CPUPPCState *env, ppc_vsr_t *xa,
2392                                  ppc_vsr_t *xb, int crf_idx, bool ordered)
2393{
2394    uint32_t cc;
2395    bool vxsnan_flag = false, vxvc_flag = false;
2396
2397    helper_reset_fpstatus(env);
2398
2399    switch (float128_compare(xa->f128, xb->f128, &env->fp_status)) {
2400    case float_relation_less:
2401        cc = CRF_LT;
2402        break;
2403    case float_relation_equal:
2404        cc = CRF_EQ;
2405        break;
2406    case float_relation_greater:
2407        cc = CRF_GT;
2408        break;
2409    case float_relation_unordered:
2410        cc = CRF_SO;
2411
2412        if (float128_is_signaling_nan(xa->f128, &env->fp_status) ||
2413            float128_is_signaling_nan(xb->f128, &env->fp_status)) {
2414            vxsnan_flag = true;
2415            if (!(env->fpscr & FP_VE) && ordered) {
2416                vxvc_flag = true;
2417            }
2418        } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) ||
2419                   float128_is_quiet_nan(xb->f128, &env->fp_status)) {
2420            if (ordered) {
2421                vxvc_flag = true;
2422            }
2423        }
2424
2425        break;
2426    default:
2427        g_assert_not_reached();
2428    }
2429
2430    env->fpscr &= ~FP_FPCC;
2431    env->fpscr |= cc << FPSCR_FPCC;
2432    env->crf[crf_idx] = cc;
2433
2434    if (vxsnan_flag) {
2435        float_invalid_op_vxsnan(env, GETPC());
2436    }
2437    if (vxvc_flag) {
2438        float_invalid_op_vxvc(env, 0, GETPC());
2439    }
2440
2441    do_float_check_status(env, false, GETPC());
2442}
2443
2444void helper_xscmpoqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2445                     ppc_vsr_t *xb)
2446{
2447    do_scalar_cmpq(env, xa, xb, BF(opcode), true);
2448}
2449
2450void helper_xscmpuqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2451                     ppc_vsr_t *xb)
2452{
2453    do_scalar_cmpq(env, xa, xb, BF(opcode), false);
2454}
2455
2456/*
2457 * VSX_MAX_MIN - VSX floating point maximum/minimum
2458 *   name  - instruction mnemonic
2459 *   op    - operation (max or min)
2460 *   nels  - number of elements (1, 2 or 4)
2461 *   tp    - type (float32 or float64)
2462 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2463 */
2464#define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2465void helper_##name(CPUPPCState *env, ppc_vsr_t *xt,                           \
2466                   ppc_vsr_t *xa, ppc_vsr_t *xb)                              \
2467{                                                                             \
2468    ppc_vsr_t t = { };                                                        \
2469    int i;                                                                    \
2470                                                                              \
2471    for (i = 0; i < nels; i++) {                                              \
2472        t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status);                 \
2473        if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) ||       \
2474                     tp##_is_signaling_nan(xb->fld, &env->fp_status))) {      \
2475            float_invalid_op_vxsnan(env, GETPC());                            \
2476        }                                                                     \
2477    }                                                                         \
2478                                                                              \
2479    *xt = t;                                                                  \
2480    do_float_check_status(env, false, GETPC());                               \
2481}
2482
2483VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2484VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2485VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2486VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2487VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2488VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2489
2490#define VSX_MAX_MINC(name, max, tp, fld)                                      \
2491void helper_##name(CPUPPCState *env,                                          \
2492                   ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)               \
2493{                                                                             \
2494    ppc_vsr_t t = { };                                                        \
2495    bool first;                                                               \
2496                                                                              \
2497    helper_reset_fpstatus(env);                                               \
2498                                                                              \
2499    if (max) {                                                                \
2500        first = tp##_le_quiet(xb->fld, xa->fld, &env->fp_status);             \
2501    } else {                                                                  \
2502        first = tp##_lt_quiet(xa->fld, xb->fld, &env->fp_status);             \
2503    }                                                                         \
2504                                                                              \
2505    if (first) {                                                              \
2506        t.fld = xa->fld;                                                      \
2507    } else {                                                                  \
2508        t.fld = xb->fld;                                                      \
2509        if (env->fp_status.float_exception_flags & float_flag_invalid_snan) { \
2510            float_invalid_op_vxsnan(env, GETPC());                            \
2511        }                                                                     \
2512    }                                                                         \
2513                                                                              \
2514    *xt = t;                                                                  \
2515}
2516
2517VSX_MAX_MINC(XSMAXCDP, true, float64, VsrD(0));
2518VSX_MAX_MINC(XSMINCDP, false, float64, VsrD(0));
2519VSX_MAX_MINC(XSMAXCQP, true, float128, f128);
2520VSX_MAX_MINC(XSMINCQP, false, float128, f128);
2521
2522#define VSX_MAX_MINJ(name, max)                                               \
2523void helper_##name(CPUPPCState *env,                                          \
2524                   ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)               \
2525{                                                                             \
2526    ppc_vsr_t t = { };                                                        \
2527    bool vxsnan_flag = false, vex_flag = false;                               \
2528                                                                              \
2529    if (unlikely(float64_is_any_nan(xa->VsrD(0)))) {                          \
2530        if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) {         \
2531            vxsnan_flag = true;                                               \
2532        }                                                                     \
2533        t.VsrD(0) = xa->VsrD(0);                                              \
2534    } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) {                   \
2535        if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {         \
2536            vxsnan_flag = true;                                               \
2537        }                                                                     \
2538        t.VsrD(0) = xb->VsrD(0);                                              \
2539    } else if (float64_is_zero(xa->VsrD(0)) &&                                \
2540               float64_is_zero(xb->VsrD(0))) {                                \
2541        if (max) {                                                            \
2542            if (!float64_is_neg(xa->VsrD(0)) ||                               \
2543                !float64_is_neg(xb->VsrD(0))) {                               \
2544                t.VsrD(0) = 0ULL;                                             \
2545            } else {                                                          \
2546                t.VsrD(0) = 0x8000000000000000ULL;                            \
2547            }                                                                 \
2548        } else {                                                              \
2549            if (float64_is_neg(xa->VsrD(0)) ||                                \
2550                float64_is_neg(xb->VsrD(0))) {                                \
2551                t.VsrD(0) = 0x8000000000000000ULL;                            \
2552            } else {                                                          \
2553                t.VsrD(0) = 0ULL;                                             \
2554            }                                                                 \
2555        }                                                                     \
2556    } else if ((max &&                                                        \
2557               !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) ||     \
2558               (!max &&                                                       \
2559               float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) {      \
2560        t.VsrD(0) = xa->VsrD(0);                                              \
2561    } else {                                                                  \
2562        t.VsrD(0) = xb->VsrD(0);                                              \
2563    }                                                                         \
2564                                                                              \
2565    vex_flag = (env->fpscr & FP_VE) && vxsnan_flag;                           \
2566    if (vxsnan_flag) {                                                        \
2567        float_invalid_op_vxsnan(env, GETPC());                                \
2568    }                                                                         \
2569    if (!vex_flag) {                                                          \
2570        *xt = t;                                                              \
2571    }                                                                         \
2572}                                                                             \
2573
2574VSX_MAX_MINJ(XSMAXJDP, 1);
2575VSX_MAX_MINJ(XSMINJDP, 0);
2576
2577/*
2578 * VSX_CMP - VSX floating point compare
2579 *   op    - instruction mnemonic
2580 *   nels  - number of elements (1, 2 or 4)
2581 *   tp    - type (float32 or float64)
2582 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2583 *   cmp   - comparison operation
2584 *   svxvc - set VXVC bit
2585 *   exp   - expected result of comparison
2586 */
2587#define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp)                       \
2588uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                     \
2589                     ppc_vsr_t *xa, ppc_vsr_t *xb)                        \
2590{                                                                         \
2591    ppc_vsr_t t = *xt;                                                    \
2592    uint32_t crf6 = 0;                                                    \
2593    int i;                                                                \
2594    int all_true = 1;                                                     \
2595    int all_false = 1;                                                    \
2596                                                                          \
2597    helper_reset_fpstatus(env);                                           \
2598                                                                          \
2599    for (i = 0; i < nels; i++) {                                          \
2600        if (unlikely(tp##_is_any_nan(xa->fld) ||                          \
2601                     tp##_is_any_nan(xb->fld))) {                         \
2602            if (tp##_is_signaling_nan(xa->fld, &env->fp_status) ||        \
2603                tp##_is_signaling_nan(xb->fld, &env->fp_status)) {        \
2604                float_invalid_op_vxsnan(env, GETPC());                    \
2605            }                                                             \
2606            if (svxvc) {                                                  \
2607                float_invalid_op_vxvc(env, 0, GETPC());                   \
2608            }                                                             \
2609            t.fld = 0;                                                    \
2610            all_true = 0;                                                 \
2611        } else {                                                          \
2612            if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) {   \
2613                t.fld = -1;                                               \
2614                all_false = 0;                                            \
2615            } else {                                                      \
2616                t.fld = 0;                                                \
2617                all_true = 0;                                             \
2618            }                                                             \
2619        }                                                                 \
2620    }                                                                     \
2621                                                                          \
2622    *xt = t;                                                              \
2623    crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);                  \
2624    return crf6;                                                          \
2625}
2626
2627VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2628VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2629VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2630VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2631VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2632VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2633VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2634VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2635
2636/*
2637 * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2638 *   op    - instruction mnemonic
2639 *   nels  - number of elements (1, 2 or 4)
2640 *   stp   - source type (float32 or float64)
2641 *   ttp   - target type (float32 or float64)
2642 *   sfld  - source vsr_t field
2643 *   tfld  - target vsr_t field (f32 or f64)
2644 *   sfifprf - set FI and FPRF
2645 */
2646#define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf)  \
2647void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)   \
2648{                                                                  \
2649    ppc_vsr_t t = { };                                             \
2650    int i;                                                         \
2651                                                                   \
2652    helper_reset_fpstatus(env);                                    \
2653                                                                   \
2654    for (i = 0; i < nels; i++) {                                   \
2655        t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);        \
2656        if (unlikely(stp##_is_signaling_nan(xb->sfld,              \
2657                                            &env->fp_status))) {   \
2658            float_invalid_op_vxsnan(env, GETPC());                 \
2659            t.tfld = ttp##_snan_to_qnan(t.tfld);                   \
2660        }                                                          \
2661        if (sfifprf) {                                             \
2662            helper_compute_fprf_##ttp(env, t.tfld);                \
2663        }                                                          \
2664    }                                                              \
2665                                                                   \
2666    *xt = t;                                                       \
2667    do_float_check_status(env, sfifprf, GETPC());                  \
2668}
2669
2670VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2671VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
2672
2673#define VSX_CVT_FP_TO_FP2(op, nels, stp, ttp, sfifprf)                \
2674void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)      \
2675{                                                                     \
2676    ppc_vsr_t t = { };                                                \
2677    int i;                                                            \
2678                                                                      \
2679    helper_reset_fpstatus(env);                                       \
2680                                                                      \
2681    for (i = 0; i < nels; i++) {                                      \
2682        t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status); \
2683        if (unlikely(stp##_is_signaling_nan(xb->VsrD(i),              \
2684                                            &env->fp_status))) {      \
2685            float_invalid_op_vxsnan(env, GETPC());                    \
2686            t.VsrW(2 * i) = ttp##_snan_to_qnan(t.VsrW(2 * i));        \
2687        }                                                             \
2688        if (sfifprf) {                                                \
2689            helper_compute_fprf_##ttp(env, t.VsrW(2 * i));            \
2690        }                                                             \
2691        t.VsrW(2 * i + 1) = t.VsrW(2 * i);                            \
2692    }                                                                 \
2693                                                                      \
2694    *xt = t;                                                          \
2695    do_float_check_status(env, sfifprf, GETPC());                     \
2696}
2697
2698VSX_CVT_FP_TO_FP2(xvcvdpsp, 2, float64, float32, 0)
2699VSX_CVT_FP_TO_FP2(xscvdpsp, 1, float64, float32, 1)
2700
2701/*
2702 * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2703 *   op    - instruction mnemonic
2704 *   nels  - number of elements (1, 2 or 4)
2705 *   stp   - source type (float32 or float64)
2706 *   ttp   - target type (float32 or float64)
2707 *   sfld  - source vsr_t field
2708 *   tfld  - target vsr_t field (f32 or f64)
2709 *   sfprf - set FPRF
2710 */
2711#define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf)  \
2712void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
2713                 ppc_vsr_t *xt, ppc_vsr_t *xb)                          \
2714{                                                                       \
2715    ppc_vsr_t t = *xt;                                                  \
2716    int i;                                                              \
2717                                                                        \
2718    helper_reset_fpstatus(env);                                         \
2719                                                                        \
2720    for (i = 0; i < nels; i++) {                                        \
2721        t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);             \
2722        if (unlikely(stp##_is_signaling_nan(xb->sfld,                   \
2723                                            &env->fp_status))) {        \
2724            float_invalid_op_vxsnan(env, GETPC());                      \
2725            t.tfld = ttp##_snan_to_qnan(t.tfld);                        \
2726        }                                                               \
2727        if (sfprf) {                                                    \
2728            helper_compute_fprf_##ttp(env, t.tfld);                     \
2729        }                                                               \
2730    }                                                                   \
2731                                                                        \
2732    *xt = t;                                                            \
2733    do_float_check_status(env, true, GETPC());                          \
2734}
2735
2736VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2737
2738/*
2739 * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2740 *                       involving one half precision value
2741 *   op    - instruction mnemonic
2742 *   nels  - number of elements (1, 2 or 4)
2743 *   stp   - source type
2744 *   ttp   - target type
2745 *   sfld  - source vsr_t field
2746 *   tfld  - target vsr_t field
2747 *   sfifprf - set FI and FPRF
2748 */
2749#define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfifprf) \
2750void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)   \
2751{                                                                  \
2752    ppc_vsr_t t = { };                                             \
2753    int i;                                                         \
2754                                                                   \
2755    helper_reset_fpstatus(env);                                    \
2756                                                                   \
2757    for (i = 0; i < nels; i++) {                                   \
2758        t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status);     \
2759        if (unlikely(stp##_is_signaling_nan(xb->sfld,              \
2760                                            &env->fp_status))) {   \
2761            float_invalid_op_vxsnan(env, GETPC());                 \
2762            t.tfld = ttp##_snan_to_qnan(t.tfld);                   \
2763        }                                                          \
2764        if (sfifprf) {                                             \
2765            helper_compute_fprf_##ttp(env, t.tfld);                \
2766        }                                                          \
2767    }                                                              \
2768                                                                   \
2769    *xt = t;                                                       \
2770    do_float_check_status(env, sfifprf, GETPC());                  \
2771}
2772
2773VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2774VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2775VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i  + 1), 0)
2776VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2777
2778void helper_XVCVSPBF16(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
2779{
2780    ppc_vsr_t t = { };
2781    int i, status;
2782
2783    helper_reset_fpstatus(env);
2784
2785    for (i = 0; i < 4; i++) {
2786        t.VsrH(2 * i + 1) = float32_to_bfloat16(xb->VsrW(i), &env->fp_status);
2787    }
2788
2789    status = get_float_exception_flags(&env->fp_status);
2790    if (unlikely(status & float_flag_invalid_snan)) {
2791        float_invalid_op_vxsnan(env, GETPC());
2792    }
2793
2794    *xt = t;
2795    do_float_check_status(env, false, GETPC());
2796}
2797
2798void helper_XSCVQPDP(CPUPPCState *env, uint32_t ro, ppc_vsr_t *xt,
2799                     ppc_vsr_t *xb)
2800{
2801    ppc_vsr_t t = { };
2802    float_status tstat;
2803
2804    helper_reset_fpstatus(env);
2805
2806    tstat = env->fp_status;
2807    if (ro != 0) {
2808        tstat.float_rounding_mode = float_round_to_odd;
2809    }
2810
2811    t.VsrD(0) = float128_to_float64(xb->f128, &tstat);
2812    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2813    if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) {
2814        float_invalid_op_vxsnan(env, GETPC());
2815        t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0));
2816    }
2817    helper_compute_fprf_float64(env, t.VsrD(0));
2818
2819    *xt = t;
2820    do_float_check_status(env, true, GETPC());
2821}
2822
2823uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2824{
2825    uint64_t result, sign, exp, frac;
2826
2827    helper_reset_fpstatus(env);
2828    float_status tstat = env->fp_status;
2829    set_float_exception_flags(0, &tstat);
2830
2831    sign = extract64(xb, 63,  1);
2832    exp  = extract64(xb, 52, 11);
2833    frac = extract64(xb,  0, 52) | 0x10000000000000ULL;
2834
2835    if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) {
2836        /* DP denormal operand.  */
2837        /* Exponent override to DP min exp.  */
2838        exp = 1;
2839        /* Implicit bit override to 0.  */
2840        frac = deposit64(frac, 53, 1, 0);
2841    }
2842
2843    if (unlikely(exp < 897 && frac != 0)) {
2844        /* SP tiny operand.  */
2845        if (897 - exp > 63) {
2846            frac = 0;
2847        } else {
2848            /* Denormalize until exp = SP min exp.  */
2849            frac >>= (897 - exp);
2850        }
2851        /* Exponent override to SP min exp - 1.  */
2852        exp = 896;
2853    }
2854
2855    result = sign << 31;
2856    result |= extract64(exp, 10, 1) << 30;
2857    result |= extract64(exp, 0, 7) << 23;
2858    result |= extract64(frac, 29, 23);
2859
2860    /* hardware replicates result to both words of the doubleword result.  */
2861    return (result << 32) | result;
2862}
2863
2864uint64_t helper_XSCVSPDPN(uint64_t xb)
2865{
2866    return helper_todouble(xb >> 32);
2867}
2868
2869/*
2870 * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2871 *   op    - instruction mnemonic
2872 *   nels  - number of elements (1, 2 or 4)
2873 *   stp   - source type (float32 or float64)
2874 *   ttp   - target type (int32, uint32, int64 or uint64)
2875 *   sfld  - source vsr_t field
2876 *   tfld  - target vsr_t field
2877 *   sfi   - set FI
2878 *   rnan  - resulting NaN
2879 */
2880#define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, sfi, rnan)         \
2881void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
2882{                                                                            \
2883    ppc_vsr_t t = { };                                                       \
2884    int i, flags;                                                            \
2885                                                                             \
2886    helper_reset_fpstatus(env);                                              \
2887                                                                             \
2888    for (i = 0; i < nels; i++) {                                             \
2889        t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status);  \
2890        flags = env->fp_status.float_exception_flags;                        \
2891        if (unlikely(flags & float_flag_invalid)) {                          \
2892            t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());\
2893        }                                                                    \
2894    }                                                                        \
2895                                                                             \
2896    *xt = t;                                                                 \
2897    do_float_check_status(env, sfi, GETPC());                                \
2898}
2899
2900VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), true, \
2901                  0x8000000000000000ULL)
2902VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), true, 0ULL)
2903VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), false, \
2904                  0x8000000000000000ULL)
2905VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), false, \
2906                  0ULL)
2907VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), false, \
2908                  0x8000000000000000ULL)
2909VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), false, \
2910                  0x80000000ULL)
2911VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), \
2912                  false, 0ULL)
2913VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), false, 0U)
2914
2915#define VSX_CVT_FP_TO_INT128(op, tp, rnan)                                     \
2916void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)               \
2917{                                                                              \
2918    ppc_vsr_t t;                                                               \
2919    int flags;                                                                 \
2920                                                                               \
2921    helper_reset_fpstatus(env);                                                \
2922    t.s128 = float128_to_##tp##_round_to_zero(xb->f128, &env->fp_status);      \
2923    flags = get_float_exception_flags(&env->fp_status);                        \
2924    if (unlikely(flags & float_flag_invalid)) {                                \
2925        t.VsrD(0) = float_invalid_cvt(env, flags, t.VsrD(0), rnan, 0, GETPC());\
2926        t.VsrD(1) = -(t.VsrD(0) & 1);                                          \
2927    }                                                                          \
2928                                                                               \
2929    *xt = t;                                                                   \
2930    do_float_check_status(env, true, GETPC());                                 \
2931}
2932
2933VSX_CVT_FP_TO_INT128(XSCVQPUQZ, uint128, 0)
2934VSX_CVT_FP_TO_INT128(XSCVQPSQZ, int128, 0x8000000000000000ULL);
2935
2936/*
2937 * Likewise, except that the result is duplicated into both subwords.
2938 * Power ISA v3.1 has Programming Notes for these insns:
2939 *     Previous versions of the architecture allowed the contents of
2940 *     word 0 of the result register to be undefined. However, all
2941 *     processors that support this instruction write the result into
2942 *     words 0 and 1 (and words 2 and 3) of the result register, as
2943 *     is required by this version of the architecture.
2944 */
2945#define VSX_CVT_FP_TO_INT2(op, nels, stp, ttp, sfi, rnan)                    \
2946void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
2947{                                                                            \
2948    ppc_vsr_t t = { };                                                       \
2949    int i, flags;                                                            \
2950                                                                             \
2951    helper_reset_fpstatus(env);                                              \
2952                                                                             \
2953    for (i = 0; i < nels; i++) {                                             \
2954        t.VsrW(2 * i) = stp##_to_##ttp##_round_to_zero(xb->VsrD(i),          \
2955                                                       &env->fp_status);     \
2956        flags = env->fp_status.float_exception_flags;                        \
2957        if (unlikely(flags & float_flag_invalid)) {                          \
2958            t.VsrW(2 * i) = float_invalid_cvt(env, flags, t.VsrW(2 * i),     \
2959                                              rnan, 0, GETPC());             \
2960        }                                                                    \
2961        t.VsrW(2 * i + 1) = t.VsrW(2 * i);                                   \
2962    }                                                                        \
2963                                                                             \
2964    *xt = t;                                                                 \
2965    do_float_check_status(env, sfi, GETPC());                                \
2966}
2967
2968VSX_CVT_FP_TO_INT2(xscvdpsxws, 1, float64, int32, true, 0x80000000U)
2969VSX_CVT_FP_TO_INT2(xscvdpuxws, 1, float64, uint32, true, 0U)
2970VSX_CVT_FP_TO_INT2(xvcvdpsxws, 2, float64, int32, false, 0x80000000U)
2971VSX_CVT_FP_TO_INT2(xvcvdpuxws, 2, float64, uint32, false, 0U)
2972
2973/*
2974 * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2975 *   op    - instruction mnemonic
2976 *   stp   - source type (float32 or float64)
2977 *   ttp   - target type (int32, uint32, int64 or uint64)
2978 *   sfld  - source vsr_t field
2979 *   tfld  - target vsr_t field
2980 *   rnan  - resulting NaN
2981 */
2982#define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan)             \
2983void helper_##op(CPUPPCState *env, uint32_t opcode,                          \
2984                 ppc_vsr_t *xt, ppc_vsr_t *xb)                               \
2985{                                                                            \
2986    ppc_vsr_t t = { };                                                       \
2987    int flags;                                                               \
2988                                                                             \
2989    helper_reset_fpstatus(env);                                              \
2990                                                                             \
2991    t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status);      \
2992    flags = get_float_exception_flags(&env->fp_status);                      \
2993    if (flags & float_flag_invalid) {                                        \
2994        t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());    \
2995    }                                                                        \
2996                                                                             \
2997    *xt = t;                                                                 \
2998    do_float_check_status(env, true, GETPC());                               \
2999}
3000
3001VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0),          \
3002                  0x8000000000000000ULL)
3003VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0),          \
3004                  0xffffffff80000000ULL)
3005VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
3006VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
3007
3008/*
3009 * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
3010 *   op    - instruction mnemonic
3011 *   nels  - number of elements (1, 2 or 4)
3012 *   stp   - source type (int32, uint32, int64 or uint64)
3013 *   ttp   - target type (float32 or float64)
3014 *   sfld  - source vsr_t field
3015 *   tfld  - target vsr_t field
3016 *   jdef  - definition of the j index (i or 2*i)
3017 *   sfifprf - set FI and FPRF
3018 */
3019#define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf, r2sp)\
3020void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)        \
3021{                                                                       \
3022    ppc_vsr_t t = { };                                                  \
3023    int i;                                                              \
3024                                                                        \
3025    helper_reset_fpstatus(env);                                         \
3026                                                                        \
3027    for (i = 0; i < nels; i++) {                                        \
3028        t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);             \
3029        if (r2sp) {                                                     \
3030            t.tfld = do_frsp(env, t.tfld, GETPC());                     \
3031        }                                                               \
3032        if (sfifprf) {                                                  \
3033            helper_compute_fprf_float64(env, t.tfld);                   \
3034        }                                                               \
3035    }                                                                   \
3036                                                                        \
3037    *xt = t;                                                            \
3038    do_float_check_status(env, sfifprf, GETPC());                       \
3039}
3040
3041VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
3042VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
3043VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
3044VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
3045VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
3046VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
3047VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
3048VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
3049VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3050VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3051
3052#define VSX_CVT_INT_TO_FP2(op, stp, ttp)                                \
3053void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)        \
3054{                                                                       \
3055    ppc_vsr_t t = { };                                                  \
3056    int i;                                                              \
3057                                                                        \
3058    for (i = 0; i < 2; i++) {                                           \
3059        t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status);   \
3060        t.VsrW(2 * i + 1) = t.VsrW(2 * i);                              \
3061    }                                                                   \
3062                                                                        \
3063    *xt = t;                                                            \
3064    do_float_check_status(env, false, GETPC());                         \
3065}
3066
3067VSX_CVT_INT_TO_FP2(xvcvsxdsp, int64, float32)
3068VSX_CVT_INT_TO_FP2(xvcvuxdsp, uint64, float32)
3069
3070#define VSX_CVT_INT128_TO_FP(op, tp)                            \
3071void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)\
3072{                                                               \
3073    helper_reset_fpstatus(env);                                 \
3074    xt->f128 = tp##_to_float128(xb->s128, &env->fp_status);     \
3075    helper_compute_fprf_float128(env, xt->f128);                \
3076    do_float_check_status(env, true, GETPC());                  \
3077}
3078
3079VSX_CVT_INT128_TO_FP(XSCVUQQP, uint128);
3080VSX_CVT_INT128_TO_FP(XSCVSQQP, int128);
3081
3082/*
3083 * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3084 *   op    - instruction mnemonic
3085 *   stp   - source type (int32, uint32, int64 or uint64)
3086 *   ttp   - target type (float32 or float64)
3087 *   sfld  - source vsr_t field
3088 *   tfld  - target vsr_t field
3089 */
3090#define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld)              \
3091void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
3092                 ppc_vsr_t *xt, ppc_vsr_t *xb)                          \
3093{                                                                       \
3094    ppc_vsr_t t = *xt;                                                  \
3095                                                                        \
3096    helper_reset_fpstatus(env);                                         \
3097    t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);                 \
3098    helper_compute_fprf_##ttp(env, t.tfld);                             \
3099                                                                        \
3100    *xt = t;                                                            \
3101    do_float_check_status(env, true, GETPC());                          \
3102}
3103
3104VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3105VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3106
3107/*
3108 * For "use current rounding mode", define a value that will not be
3109 * one of the existing rounding model enums.
3110 */
3111#define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3112  float_round_up + float_round_to_zero)
3113
3114/*
3115 * VSX_ROUND - VSX floating point round
3116 *   op    - instruction mnemonic
3117 *   nels  - number of elements (1, 2 or 4)
3118 *   tp    - type (float32 or float64)
3119 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
3120 *   rmode - rounding mode
3121 *   sfifprf - set FI and FPRF
3122 */
3123#define VSX_ROUND(op, nels, tp, fld, rmode, sfifprf)                   \
3124void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)       \
3125{                                                                      \
3126    ppc_vsr_t t = { };                                                 \
3127    int i;                                                             \
3128    FloatRoundMode curr_rounding_mode;                                 \
3129                                                                       \
3130    helper_reset_fpstatus(env);                                        \
3131                                                                       \
3132    if (rmode != FLOAT_ROUND_CURRENT) {                                \
3133        curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \
3134        set_float_rounding_mode(rmode, &env->fp_status);               \
3135    }                                                                  \
3136                                                                       \
3137    for (i = 0; i < nels; i++) {                                       \
3138        if (unlikely(tp##_is_signaling_nan(xb->fld,                    \
3139                                           &env->fp_status))) {        \
3140            float_invalid_op_vxsnan(env, GETPC());                     \
3141            t.fld = tp##_snan_to_qnan(xb->fld);                        \
3142        } else {                                                       \
3143            t.fld = tp##_round_to_int(xb->fld, &env->fp_status);       \
3144        }                                                              \
3145        if (sfifprf) {                                                 \
3146            helper_compute_fprf_float64(env, t.fld);                   \
3147        }                                                              \
3148    }                                                                  \
3149                                                                       \
3150    /*                                                                 \
3151     * If this is not a "use current rounding mode" instruction,       \
3152     * then inhibit setting of the XX bit and restore rounding         \
3153     * mode from FPSCR                                                 \
3154     */                                                                \
3155    if (rmode != FLOAT_ROUND_CURRENT) {                                \
3156        set_float_rounding_mode(curr_rounding_mode, &env->fp_status);  \
3157        env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
3158    }                                                                  \
3159                                                                       \
3160    *xt = t;                                                           \
3161    do_float_check_status(env, sfifprf, GETPC());                      \
3162}
3163
3164VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3165VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3166VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3167VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3168VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3169
3170VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3171VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3172VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3173VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3174VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3175
3176VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3177VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3178VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3179VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3180VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3181
3182uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3183{
3184    helper_reset_fpstatus(env);
3185
3186    uint64_t xt = do_frsp(env, xb, GETPC());
3187
3188    helper_compute_fprf_float64(env, xt);
3189    do_float_check_status(env, true, GETPC());
3190    return xt;
3191}
3192
3193void helper_XVXSIGSP(ppc_vsr_t *xt, ppc_vsr_t *xb)
3194{
3195    ppc_vsr_t t = { };
3196    uint32_t exp, i, fraction;
3197
3198    for (i = 0; i < 4; i++) {
3199        exp = (xb->VsrW(i) >> 23) & 0xFF;
3200        fraction = xb->VsrW(i) & 0x7FFFFF;
3201        if (exp != 0 && exp != 255) {
3202            t.VsrW(i) = fraction | 0x00800000;
3203        } else {
3204            t.VsrW(i) = fraction;
3205        }
3206    }
3207    *xt = t;
3208}
3209
3210#define VSX_TSTDC(tp)                                       \
3211static int32_t tp##_tstdc(tp b, uint32_t dcmx)              \
3212{                                                           \
3213    uint32_t match = 0;                                     \
3214    uint32_t sign = tp##_is_neg(b);                         \
3215    if (tp##_is_any_nan(b)) {                               \
3216        match = extract32(dcmx, 6, 1);                      \
3217    } else if (tp##_is_infinity(b)) {                       \
3218        match = extract32(dcmx, 4 + !sign, 1);              \
3219    } else if (tp##_is_zero(b)) {                           \
3220        match = extract32(dcmx, 2 + !sign, 1);              \
3221    } else if (tp##_is_zero_or_denormal(b)) {               \
3222        match = extract32(dcmx, 0 + !sign, 1);              \
3223    }                                                       \
3224    return (match != 0);                                    \
3225}
3226
3227VSX_TSTDC(float32)
3228VSX_TSTDC(float64)
3229VSX_TSTDC(float128)
3230#undef VSX_TSTDC
3231
3232void helper_XVTSTDCDP(ppc_vsr_t *t, ppc_vsr_t *b, uint64_t dcmx, uint32_t v)
3233{
3234    int i;
3235    for (i = 0; i < 2; i++) {
3236        t->s64[i] = (int64_t)-float64_tstdc(b->f64[i], dcmx);
3237    }
3238}
3239
3240void helper_XVTSTDCSP(ppc_vsr_t *t, ppc_vsr_t *b, uint64_t dcmx, uint32_t v)
3241{
3242    int i;
3243    for (i = 0; i < 4; i++) {
3244        t->s32[i] = (int32_t)-float32_tstdc(b->f32[i], dcmx);
3245    }
3246}
3247
3248static bool not_SP_value(float64 val)
3249{
3250    return val != helper_todouble(helper_tosingle(val));
3251}
3252
3253/*
3254 * VSX_XS_TSTDC - VSX Scalar Test Data Class
3255 *   NAME  - instruction name
3256 *   FLD   - vsr_t field (VsrD(0) or f128)
3257 *   TP    - type (float64 or float128)
3258 */
3259#define VSX_XS_TSTDC(NAME, FLD, TP)                                         \
3260    void helper_##NAME(CPUPPCState *env, uint32_t bf,                       \
3261                       uint32_t dcmx, ppc_vsr_t *b)                         \
3262    {                                                                       \
3263        uint32_t cc, match, sign = TP##_is_neg(b->FLD);                     \
3264        match = TP##_tstdc(b->FLD, dcmx);                                   \
3265        cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT;                      \
3266        env->fpscr &= ~FP_FPCC;                                             \
3267        env->fpscr |= cc << FPSCR_FPCC;                                     \
3268        env->crf[bf] = cc;                                                  \
3269    }
3270
3271VSX_XS_TSTDC(XSTSTDCDP, VsrD(0), float64)
3272VSX_XS_TSTDC(XSTSTDCQP, f128, float128)
3273#undef VSX_XS_TSTDC
3274
3275void helper_XSTSTDCSP(CPUPPCState *env, uint32_t bf,
3276                      uint32_t dcmx, ppc_vsr_t *b)
3277{
3278    uint32_t cc, match, sign = float64_is_neg(b->VsrD(0));
3279    uint32_t exp = (b->VsrD(0) >> 52) & 0x7FF;
3280    int not_sp = (int)not_SP_value(b->VsrD(0));
3281    match = float64_tstdc(b->VsrD(0), dcmx) || (exp > 0 && exp < 0x381);
3282    cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3283    env->fpscr &= ~FP_FPCC;
3284    env->fpscr |= cc << FPSCR_FPCC;
3285    env->crf[bf] = cc;
3286}
3287
3288void helper_xsrqpi(CPUPPCState *env, uint32_t opcode,
3289                   ppc_vsr_t *xt, ppc_vsr_t *xb)
3290{
3291    ppc_vsr_t t = { };
3292    uint8_t r = Rrm(opcode);
3293    uint8_t ex = Rc(opcode);
3294    uint8_t rmc = RMC(opcode);
3295    uint8_t rmode = 0;
3296    float_status tstat;
3297
3298    helper_reset_fpstatus(env);
3299
3300    if (r == 0 && rmc == 0) {
3301        rmode = float_round_ties_away;
3302    } else if (r == 0 && rmc == 0x3) {
3303        rmode = env->fpscr & FP_RN;
3304    } else if (r == 1) {
3305        switch (rmc) {
3306        case 0:
3307            rmode = float_round_nearest_even;
3308            break;
3309        case 1:
3310            rmode = float_round_to_zero;
3311            break;
3312        case 2:
3313            rmode = float_round_up;
3314            break;
3315        case 3:
3316            rmode = float_round_down;
3317            break;
3318        default:
3319            abort();
3320        }
3321    }
3322
3323    tstat = env->fp_status;
3324    set_float_exception_flags(0, &tstat);
3325    set_float_rounding_mode(rmode, &tstat);
3326    t.f128 = float128_round_to_int(xb->f128, &tstat);
3327    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3328
3329    if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) {
3330        float_invalid_op_vxsnan(env, GETPC());
3331    }
3332
3333    if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3334        env->fp_status.float_exception_flags &= ~float_flag_inexact;
3335    }
3336
3337    helper_compute_fprf_float128(env, t.f128);
3338    do_float_check_status(env, true, GETPC());
3339    *xt = t;
3340}
3341
3342void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode,
3343                    ppc_vsr_t *xt, ppc_vsr_t *xb)
3344{
3345    ppc_vsr_t t = { };
3346    uint8_t r = Rrm(opcode);
3347    uint8_t rmc = RMC(opcode);
3348    uint8_t rmode = 0;
3349    floatx80 round_res;
3350    float_status tstat;
3351
3352    helper_reset_fpstatus(env);
3353
3354    if (r == 0 && rmc == 0) {
3355        rmode = float_round_ties_away;
3356    } else if (r == 0 && rmc == 0x3) {
3357        rmode = env->fpscr & FP_RN;
3358    } else if (r == 1) {
3359        switch (rmc) {
3360        case 0:
3361            rmode = float_round_nearest_even;
3362            break;
3363        case 1:
3364            rmode = float_round_to_zero;
3365            break;
3366        case 2:
3367            rmode = float_round_up;
3368            break;
3369        case 3:
3370            rmode = float_round_down;
3371            break;
3372        default:
3373            abort();
3374        }
3375    }
3376
3377    tstat = env->fp_status;
3378    set_float_exception_flags(0, &tstat);
3379    set_float_rounding_mode(rmode, &tstat);
3380    round_res = float128_to_floatx80(xb->f128, &tstat);
3381    t.f128 = floatx80_to_float128(round_res, &tstat);
3382    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3383
3384    if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) {
3385        float_invalid_op_vxsnan(env, GETPC());
3386        t.f128 = float128_snan_to_qnan(t.f128);
3387    }
3388
3389    helper_compute_fprf_float128(env, t.f128);
3390    *xt = t;
3391    do_float_check_status(env, true, GETPC());
3392}
3393
3394void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode,
3395                     ppc_vsr_t *xt, ppc_vsr_t *xb)
3396{
3397    ppc_vsr_t t = { };
3398    float_status tstat;
3399
3400    helper_reset_fpstatus(env);
3401
3402    tstat = env->fp_status;
3403    if (unlikely(Rc(opcode) != 0)) {
3404        tstat.float_rounding_mode = float_round_to_odd;
3405    }
3406
3407    set_float_exception_flags(0, &tstat);
3408    t.f128 = float128_sqrt(xb->f128, &tstat);
3409    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3410
3411    if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3412        float_invalid_op_sqrt(env, tstat.float_exception_flags, 1, GETPC());
3413    }
3414
3415    helper_compute_fprf_float128(env, t.f128);
3416    *xt = t;
3417    do_float_check_status(env, true, GETPC());
3418}
3419
3420void helper_xssubqp(CPUPPCState *env, uint32_t opcode,
3421                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
3422{
3423    ppc_vsr_t t = *xt;
3424    float_status tstat;
3425
3426    helper_reset_fpstatus(env);
3427
3428    tstat = env->fp_status;
3429    if (unlikely(Rc(opcode) != 0)) {
3430        tstat.float_rounding_mode = float_round_to_odd;
3431    }
3432
3433    set_float_exception_flags(0, &tstat);
3434    t.f128 = float128_sub(xa->f128, xb->f128, &tstat);
3435    env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3436
3437    if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3438        float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC());
3439    }
3440
3441    helper_compute_fprf_float128(env, t.f128);
3442    *xt = t;
3443    do_float_check_status(env, true, GETPC());
3444}
3445
3446static inline void vsxger_excp(CPUPPCState *env, uintptr_t retaddr)
3447{
3448    /*
3449     * XV*GER instructions execute and set the FPSCR as if exceptions
3450     * are disabled and only at the end throw an exception
3451     */
3452    target_ulong enable;
3453    enable = env->fpscr & (FP_ENABLES | FP_FI | FP_FR);
3454    env->fpscr &= ~(FP_ENABLES | FP_FI | FP_FR);
3455    int status = get_float_exception_flags(&env->fp_status);
3456    if (unlikely(status & float_flag_invalid)) {
3457        if (status & float_flag_invalid_snan) {
3458            float_invalid_op_vxsnan(env, 0);
3459        }
3460        if (status & float_flag_invalid_imz) {
3461            float_invalid_op_vximz(env, false, 0);
3462        }
3463        if (status & float_flag_invalid_isi) {
3464            float_invalid_op_vxisi(env, false, 0);
3465        }
3466    }
3467    do_float_check_status(env, false, retaddr);
3468    env->fpscr |= enable;
3469    do_fpscr_check_status(env, retaddr);
3470}
3471
3472typedef float64 extract_f16(float16, float_status *);
3473
3474static float64 extract_hf16(float16 in, float_status *fp_status)
3475{
3476    return float16_to_float64(in, true, fp_status);
3477}
3478
3479static float64 extract_bf16(bfloat16 in, float_status *fp_status)
3480{
3481    return bfloat16_to_float64(in, fp_status);
3482}
3483
3484static void vsxger16(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3485                     ppc_acc_t  *at, uint32_t mask, bool acc,
3486                     bool neg_mul, bool neg_acc, extract_f16 extract)
3487{
3488    float32 r, aux_acc;
3489    float64 psum, va, vb, vc, vd;
3490    int i, j, xmsk_bit, ymsk_bit;
3491    uint8_t pmsk = FIELD_EX32(mask, GER_MSK, PMSK),
3492            xmsk = FIELD_EX32(mask, GER_MSK, XMSK),
3493            ymsk = FIELD_EX32(mask, GER_MSK, YMSK);
3494    float_status *excp_ptr = &env->fp_status;
3495    for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) {
3496        for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) {
3497            if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) {
3498                va = !(pmsk & 2) ? float64_zero :
3499                                   extract(a->VsrHF(2 * i), excp_ptr);
3500                vb = !(pmsk & 2) ? float64_zero :
3501                                   extract(b->VsrHF(2 * j), excp_ptr);
3502                vc = !(pmsk & 1) ? float64_zero :
3503                                   extract(a->VsrHF(2 * i + 1), excp_ptr);
3504                vd = !(pmsk & 1) ? float64_zero :
3505                                   extract(b->VsrHF(2 * j + 1), excp_ptr);
3506                psum = float64_mul(va, vb, excp_ptr);
3507                psum = float64r32_muladd(vc, vd, psum, 0, excp_ptr);
3508                r = float64_to_float32(psum, excp_ptr);
3509                if (acc) {
3510                    aux_acc = at[i].VsrSF(j);
3511                    if (neg_mul) {
3512                        r = bfp32_neg(r);
3513                    }
3514                    if (neg_acc) {
3515                        aux_acc = bfp32_neg(aux_acc);
3516                    }
3517                    r = float32_add(r, aux_acc, excp_ptr);
3518                }
3519                at[i].VsrSF(j) = r;
3520            } else {
3521                at[i].VsrSF(j) = float32_zero;
3522            }
3523        }
3524    }
3525    vsxger_excp(env, GETPC());
3526}
3527
3528typedef void vsxger_zero(ppc_vsr_t *at, int, int);
3529
3530typedef void vsxger_muladd_f(ppc_vsr_t *, ppc_vsr_t *, ppc_vsr_t *, int, int,
3531                             int flags, float_status *s);
3532
3533static void vsxger_muladd32(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3534                            int j, int flags, float_status *s)
3535{
3536    at[i].VsrSF(j) = float32_muladd(a->VsrSF(i), b->VsrSF(j),
3537                                    at[i].VsrSF(j), flags, s);
3538}
3539
3540static void vsxger_mul32(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3541                         int j, int flags, float_status *s)
3542{
3543    at[i].VsrSF(j) = float32_mul(a->VsrSF(i), b->VsrSF(j), s);
3544}
3545
3546static void vsxger_zero32(ppc_vsr_t *at, int i, int j)
3547{
3548    at[i].VsrSF(j) = float32_zero;
3549}
3550
3551static void vsxger_muladd64(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3552                            int j, int flags, float_status *s)
3553{
3554    if (j >= 2) {
3555        j -= 2;
3556        at[i].VsrDF(j) = float64_muladd(a[i / 2].VsrDF(i % 2), b->VsrDF(j),
3557                                        at[i].VsrDF(j), flags, s);
3558    }
3559}
3560
3561static void vsxger_mul64(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3562                         int j, int flags, float_status *s)
3563{
3564    if (j >= 2) {
3565        j -= 2;
3566        at[i].VsrDF(j) = float64_mul(a[i / 2].VsrDF(i % 2), b->VsrDF(j), s);
3567    }
3568}
3569
3570static void vsxger_zero64(ppc_vsr_t *at, int i, int j)
3571{
3572    if (j >= 2) {
3573        j -= 2;
3574        at[i].VsrDF(j) = float64_zero;
3575    }
3576}
3577
3578static void vsxger(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3579                   ppc_acc_t  *at, uint32_t mask, bool acc, bool neg_mul,
3580                   bool neg_acc, vsxger_muladd_f mul, vsxger_muladd_f muladd,
3581                   vsxger_zero zero)
3582{
3583    int i, j, xmsk_bit, ymsk_bit, op_flags;
3584    uint8_t xmsk = mask & 0x0F;
3585    uint8_t ymsk = (mask >> 4) & 0x0F;
3586    float_status *excp_ptr = &env->fp_status;
3587    op_flags = (neg_acc ^ neg_mul) ? float_muladd_negate_c : 0;
3588    op_flags |= (neg_mul) ? float_muladd_negate_result : 0;
3589    helper_reset_fpstatus(env);
3590    for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) {
3591        for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) {
3592            if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) {
3593                if (acc) {
3594                    muladd(at, a, b, i, j, op_flags, excp_ptr);
3595                } else {
3596                    mul(at, a, b, i, j, op_flags, excp_ptr);
3597                }
3598            } else {
3599                zero(at, i, j);
3600            }
3601        }
3602    }
3603    vsxger_excp(env, GETPC());
3604}
3605
3606QEMU_FLATTEN
3607void helper_XVBF16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3608                       ppc_acc_t *at, uint32_t mask)
3609{
3610    vsxger16(env, a, b, at, mask, false, false, false, extract_bf16);
3611}
3612
3613QEMU_FLATTEN
3614void helper_XVBF16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3615                         ppc_acc_t *at, uint32_t mask)
3616{
3617    vsxger16(env, a, b, at, mask, true, false, false, extract_bf16);
3618}
3619
3620QEMU_FLATTEN
3621void helper_XVBF16GER2PN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3622                         ppc_acc_t *at, uint32_t mask)
3623{
3624    vsxger16(env, a, b, at, mask, true, false, true, extract_bf16);
3625}
3626
3627QEMU_FLATTEN
3628void helper_XVBF16GER2NP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3629                         ppc_acc_t *at, uint32_t mask)
3630{
3631    vsxger16(env, a, b, at, mask, true, true, false, extract_bf16);
3632}
3633
3634QEMU_FLATTEN
3635void helper_XVBF16GER2NN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3636                         ppc_acc_t *at, uint32_t mask)
3637{
3638    vsxger16(env, a, b, at, mask, true, true, true, extract_bf16);
3639}
3640
3641QEMU_FLATTEN
3642void helper_XVF16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3643                     ppc_acc_t *at, uint32_t mask)
3644{
3645    vsxger16(env, a, b, at, mask, false, false, false, extract_hf16);
3646}
3647
3648QEMU_FLATTEN
3649void helper_XVF16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3650                        ppc_acc_t *at, uint32_t mask)
3651{
3652    vsxger16(env, a, b, at, mask, true, false, false, extract_hf16);
3653}
3654
3655QEMU_FLATTEN
3656void helper_XVF16GER2PN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3657                        ppc_acc_t *at, uint32_t mask)
3658{
3659    vsxger16(env, a, b, at, mask, true, false, true, extract_hf16);
3660}
3661
3662QEMU_FLATTEN
3663void helper_XVF16GER2NP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3664                        ppc_acc_t *at, uint32_t mask)
3665{
3666    vsxger16(env, a, b, at, mask, true, true, false, extract_hf16);
3667}
3668
3669QEMU_FLATTEN
3670void helper_XVF16GER2NN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3671                        ppc_acc_t *at, uint32_t mask)
3672{
3673    vsxger16(env, a, b, at, mask, true, true, true, extract_hf16);
3674}
3675
3676QEMU_FLATTEN
3677void helper_XVF32GER(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3678                     ppc_acc_t *at, uint32_t mask)
3679{
3680    vsxger(env, a, b, at, mask, false, false, false, vsxger_mul32,
3681           vsxger_muladd32, vsxger_zero32);
3682}
3683
3684QEMU_FLATTEN
3685void helper_XVF32GERPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3686                       ppc_acc_t *at, uint32_t mask)
3687{
3688    vsxger(env, a, b, at, mask, true, false, false, vsxger_mul32,
3689           vsxger_muladd32, vsxger_zero32);
3690}
3691
3692QEMU_FLATTEN
3693void helper_XVF32GERPN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3694                       ppc_acc_t *at, uint32_t mask)
3695{
3696    vsxger(env, a, b, at, mask, true, false, true, vsxger_mul32,
3697           vsxger_muladd32, vsxger_zero32);
3698}
3699
3700QEMU_FLATTEN
3701void helper_XVF32GERNP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3702                       ppc_acc_t *at, uint32_t mask)
3703{
3704    vsxger(env, a, b, at, mask, true, true, false, vsxger_mul32,
3705           vsxger_muladd32, vsxger_zero32);
3706}
3707
3708QEMU_FLATTEN
3709void helper_XVF32GERNN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3710                       ppc_acc_t *at, uint32_t mask)
3711{
3712    vsxger(env, a, b, at, mask, true, true, true, vsxger_mul32,
3713           vsxger_muladd32, vsxger_zero32);
3714}
3715
3716QEMU_FLATTEN
3717void helper_XVF64GER(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3718                     ppc_acc_t *at, uint32_t mask)
3719{
3720    vsxger(env, a, b, at, mask, false, false, false, vsxger_mul64,
3721           vsxger_muladd64, vsxger_zero64);
3722}
3723
3724QEMU_FLATTEN
3725void helper_XVF64GERPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3726                       ppc_acc_t *at, uint32_t mask)
3727{
3728    vsxger(env, a, b, at, mask, true, false, false, vsxger_mul64,
3729           vsxger_muladd64, vsxger_zero64);
3730}
3731
3732QEMU_FLATTEN
3733void helper_XVF64GERPN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3734                       ppc_acc_t *at, uint32_t mask)
3735{
3736    vsxger(env, a, b, at, mask, true, false, true, vsxger_mul64,
3737           vsxger_muladd64, vsxger_zero64);
3738}
3739
3740QEMU_FLATTEN
3741void helper_XVF64GERNP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3742                       ppc_acc_t *at, uint32_t mask)
3743{
3744    vsxger(env, a, b, at, mask, true, true, false, vsxger_mul64,
3745           vsxger_muladd64, vsxger_zero64);
3746}
3747
3748QEMU_FLATTEN
3749void helper_XVF64GERNN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3750                       ppc_acc_t *at, uint32_t mask)
3751{
3752    vsxger(env, a, b, at, mask, true, true, true, vsxger_mul64,
3753           vsxger_muladd64, vsxger_zero64);
3754}
3755