qemu/target/ppc/kvm.c
<<
>>
Prefs
   1/*
   2 * PowerPC implementation of KVM hooks
   3 *
   4 * Copyright IBM Corp. 2007
   5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
   6 *
   7 * Authors:
   8 *  Jerone Young <jyoung5@us.ibm.com>
   9 *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
  10 *  Hollis Blanchard <hollisb@us.ibm.com>
  11 *
  12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  13 * See the COPYING file in the top-level directory.
  14 *
  15 */
  16
  17#include "qemu/osdep.h"
  18#include <dirent.h>
  19#include <sys/ioctl.h>
  20#include <sys/vfs.h>
  21
  22#include <linux/kvm.h>
  23
  24#include "qapi/error.h"
  25#include "qemu/error-report.h"
  26#include "cpu.h"
  27#include "cpu-models.h"
  28#include "qemu/timer.h"
  29#include "sysemu/hw_accel.h"
  30#include "kvm_ppc.h"
  31#include "sysemu/cpus.h"
  32#include "sysemu/device_tree.h"
  33#include "mmu-hash64.h"
  34
  35#include "hw/ppc/spapr.h"
  36#include "hw/ppc/spapr_cpu_core.h"
  37#include "hw/hw.h"
  38#include "hw/ppc/ppc.h"
  39#include "migration/qemu-file-types.h"
  40#include "sysemu/watchdog.h"
  41#include "trace.h"
  42#include "exec/gdbstub.h"
  43#include "exec/memattrs.h"
  44#include "exec/ram_addr.h"
  45#include "sysemu/hostmem.h"
  46#include "qemu/cutils.h"
  47#include "qemu/main-loop.h"
  48#include "qemu/mmap-alloc.h"
  49#include "elf.h"
  50#include "sysemu/kvm_int.h"
  51
  52#define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
  53
  54#define DEBUG_RETURN_GUEST 0
  55#define DEBUG_RETURN_GDB   1
  56
  57const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  58    KVM_CAP_LAST_INFO
  59};
  60
  61static int cap_interrupt_unset;
  62static int cap_segstate;
  63static int cap_booke_sregs;
  64static int cap_ppc_smt;
  65static int cap_ppc_smt_possible;
  66static int cap_spapr_tce;
  67static int cap_spapr_tce_64;
  68static int cap_spapr_multitce;
  69static int cap_spapr_vfio;
  70static int cap_hior;
  71static int cap_one_reg;
  72static int cap_epr;
  73static int cap_ppc_watchdog;
  74static int cap_papr;
  75static int cap_htab_fd;
  76static int cap_fixup_hcalls;
  77static int cap_htm;             /* Hardware transactional memory support */
  78static int cap_mmu_radix;
  79static int cap_mmu_hash_v3;
  80static int cap_xive;
  81static int cap_resize_hpt;
  82static int cap_ppc_pvr_compat;
  83static int cap_ppc_safe_cache;
  84static int cap_ppc_safe_bounds_check;
  85static int cap_ppc_safe_indirect_branch;
  86static int cap_ppc_count_cache_flush_assist;
  87static int cap_ppc_nested_kvm_hv;
  88static int cap_large_decr;
  89static int cap_fwnmi;
  90static int cap_rpt_invalidate;
  91static int cap_ail_mode_3;
  92
  93static uint32_t debug_inst_opcode;
  94
  95/*
  96 * Check whether we are running with KVM-PR (instead of KVM-HV).  This
  97 * should only be used for fallback tests - generally we should use
  98 * explicit capabilities for the features we want, rather than
  99 * assuming what is/isn't available depending on the KVM variant.
 100 */
 101static bool kvmppc_is_pr(KVMState *ks)
 102{
 103    /* Assume KVM-PR if the GET_PVINFO capability is available */
 104    return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
 105}
 106
 107static int kvm_ppc_register_host_cpu_type(void);
 108static void kvmppc_get_cpu_characteristics(KVMState *s);
 109static int kvmppc_get_dec_bits(void);
 110
 111int kvm_arch_get_default_type(MachineState *ms)
 112{
 113    return 0;
 114}
 115
 116int kvm_arch_init(MachineState *ms, KVMState *s)
 117{
 118    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
 119    cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
 120    cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
 121    cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
 122    cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
 123    cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
 124    cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
 125    cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
 126    cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
 127    cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
 128    cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
 129    cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
 130    /*
 131     * Note: we don't set cap_papr here, because this capability is
 132     * only activated after this by kvmppc_set_papr()
 133     */
 134    cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
 135    cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
 136    cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
 137    cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
 138    cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
 139    cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
 140    cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
 141    cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
 142    kvmppc_get_cpu_characteristics(s);
 143    cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
 144    cap_large_decr = kvmppc_get_dec_bits();
 145    cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
 146    /*
 147     * Note: setting it to false because there is not such capability
 148     * in KVM at this moment.
 149     *
 150     * TODO: call kvm_vm_check_extension() with the right capability
 151     * after the kernel starts implementing it.
 152     */
 153    cap_ppc_pvr_compat = false;
 154
 155    if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
 156        error_report("KVM: Host kernel doesn't have level irq capability");
 157        exit(1);
 158    }
 159
 160    cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
 161    cap_ail_mode_3 = kvm_vm_check_extension(s, KVM_CAP_PPC_AIL_MODE_3);
 162    kvm_ppc_register_host_cpu_type();
 163
 164    return 0;
 165}
 166
 167int kvm_arch_irqchip_create(KVMState *s)
 168{
 169    return 0;
 170}
 171
 172static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
 173{
 174    CPUPPCState *cenv = &cpu->env;
 175    CPUState *cs = CPU(cpu);
 176    struct kvm_sregs sregs;
 177    int ret;
 178
 179    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
 180        /*
 181         * What we're really trying to say is "if we're on BookE, we
 182         * use the native PVR for now". This is the only sane way to
 183         * check it though, so we potentially confuse users that they
 184         * can run BookE guests on BookS. Let's hope nobody dares
 185         * enough :)
 186         */
 187        return 0;
 188    } else {
 189        if (!cap_segstate) {
 190            fprintf(stderr, "kvm error: missing PVR setting capability\n");
 191            return -ENOSYS;
 192        }
 193    }
 194
 195    ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
 196    if (ret) {
 197        return ret;
 198    }
 199
 200    sregs.pvr = cenv->spr[SPR_PVR];
 201    return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
 202}
 203
 204/* Set up a shared TLB array with KVM */
 205static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
 206{
 207    CPUPPCState *env = &cpu->env;
 208    CPUState *cs = CPU(cpu);
 209    struct kvm_book3e_206_tlb_params params = {};
 210    struct kvm_config_tlb cfg = {};
 211    unsigned int entries = 0;
 212    int ret, i;
 213
 214    if (!kvm_enabled() ||
 215        !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
 216        return 0;
 217    }
 218
 219    assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
 220
 221    for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
 222        params.tlb_sizes[i] = booke206_tlb_size(env, i);
 223        params.tlb_ways[i] = booke206_tlb_ways(env, i);
 224        entries += params.tlb_sizes[i];
 225    }
 226
 227    assert(entries == env->nb_tlb);
 228    assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
 229
 230    env->tlb_dirty = true;
 231
 232    cfg.array = (uintptr_t)env->tlb.tlbm;
 233    cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
 234    cfg.params = (uintptr_t)&params;
 235    cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
 236
 237    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
 238    if (ret < 0) {
 239        fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
 240                __func__, strerror(-ret));
 241        return ret;
 242    }
 243
 244    env->kvm_sw_tlb = true;
 245    return 0;
 246}
 247
 248
 249#if defined(TARGET_PPC64)
 250static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
 251{
 252    int ret;
 253
 254    assert(kvm_state != NULL);
 255
 256    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
 257        error_setg(errp, "KVM doesn't expose the MMU features it supports");
 258        error_append_hint(errp, "Consider switching to a newer KVM\n");
 259        return;
 260    }
 261
 262    ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
 263    if (ret == 0) {
 264        return;
 265    }
 266
 267    error_setg_errno(errp, -ret,
 268                     "KVM failed to provide the MMU features it supports");
 269}
 270
 271struct ppc_radix_page_info *kvm_get_radix_page_info(void)
 272{
 273    KVMState *s = KVM_STATE(current_accel());
 274    struct ppc_radix_page_info *radix_page_info;
 275    struct kvm_ppc_rmmu_info rmmu_info = { };
 276    int i;
 277
 278    if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
 279        return NULL;
 280    }
 281    if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
 282        return NULL;
 283    }
 284    radix_page_info = g_malloc0(sizeof(*radix_page_info));
 285    radix_page_info->count = 0;
 286    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 287        if (rmmu_info.ap_encodings[i]) {
 288            radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
 289            radix_page_info->count++;
 290        }
 291    }
 292    return radix_page_info;
 293}
 294
 295target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
 296                                     bool radix, bool gtse,
 297                                     uint64_t proc_tbl)
 298{
 299    CPUState *cs = CPU(cpu);
 300    int ret;
 301    uint64_t flags = 0;
 302    struct kvm_ppc_mmuv3_cfg cfg = {
 303        .process_table = proc_tbl,
 304    };
 305
 306    if (radix) {
 307        flags |= KVM_PPC_MMUV3_RADIX;
 308    }
 309    if (gtse) {
 310        flags |= KVM_PPC_MMUV3_GTSE;
 311    }
 312    cfg.flags = flags;
 313    ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
 314    switch (ret) {
 315    case 0:
 316        return H_SUCCESS;
 317    case -EINVAL:
 318        return H_PARAMETER;
 319    case -ENODEV:
 320        return H_NOT_AVAILABLE;
 321    default:
 322        return H_HARDWARE;
 323    }
 324}
 325
 326bool kvmppc_hpt_needs_host_contiguous_pages(void)
 327{
 328    static struct kvm_ppc_smmu_info smmu_info;
 329
 330    if (!kvm_enabled()) {
 331        return false;
 332    }
 333
 334    kvm_get_smmu_info(&smmu_info, &error_fatal);
 335    return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
 336}
 337
 338void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
 339{
 340    struct kvm_ppc_smmu_info smmu_info;
 341    int iq, ik, jq, jk;
 342    Error *local_err = NULL;
 343
 344    /* For now, we only have anything to check on hash64 MMUs */
 345    if (!cpu->hash64_opts || !kvm_enabled()) {
 346        return;
 347    }
 348
 349    kvm_get_smmu_info(&smmu_info, &local_err);
 350    if (local_err) {
 351        error_propagate(errp, local_err);
 352        return;
 353    }
 354
 355    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
 356        && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
 357        error_setg(errp,
 358                   "KVM does not support 1TiB segments which guest expects");
 359        return;
 360    }
 361
 362    if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
 363        error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
 364                   smmu_info.slb_size, cpu->hash64_opts->slb_size);
 365        return;
 366    }
 367
 368    /*
 369     * Verify that every pagesize supported by the cpu model is
 370     * supported by KVM with the same encodings
 371     */
 372    for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
 373        PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
 374        struct kvm_ppc_one_seg_page_size *ksps;
 375
 376        for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
 377            if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
 378                break;
 379            }
 380        }
 381        if (ik >= ARRAY_SIZE(smmu_info.sps)) {
 382            error_setg(errp, "KVM doesn't support for base page shift %u",
 383                       qsps->page_shift);
 384            return;
 385        }
 386
 387        ksps = &smmu_info.sps[ik];
 388        if (ksps->slb_enc != qsps->slb_enc) {
 389            error_setg(errp,
 390"KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
 391                       ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
 392            return;
 393        }
 394
 395        for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
 396            for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
 397                if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
 398                    break;
 399                }
 400            }
 401
 402            if (jk >= ARRAY_SIZE(ksps->enc)) {
 403                error_setg(errp, "KVM doesn't support page shift %u/%u",
 404                           qsps->enc[jq].page_shift, qsps->page_shift);
 405                return;
 406            }
 407            if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
 408                error_setg(errp,
 409"KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
 410                           ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
 411                           qsps->page_shift, qsps->enc[jq].pte_enc);
 412                return;
 413            }
 414        }
 415    }
 416
 417    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
 418        /*
 419         * Mostly what guest pagesizes we can use are related to the
 420         * host pages used to map guest RAM, which is handled in the
 421         * platform code. Cache-Inhibited largepages (64k) however are
 422         * used for I/O, so if they're mapped to the host at all it
 423         * will be a normal mapping, not a special hugepage one used
 424         * for RAM.
 425         */
 426        if (qemu_real_host_page_size() < 0x10000) {
 427            error_setg(errp,
 428                       "KVM can't supply 64kiB CI pages, which guest expects");
 429        }
 430    }
 431}
 432#endif /* !defined (TARGET_PPC64) */
 433
 434unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 435{
 436    return POWERPC_CPU(cpu)->vcpu_id;
 437}
 438
 439/*
 440 * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
 441 * only 1 watchpoint, so array size of 4 is sufficient for now.
 442 */
 443#define MAX_HW_BKPTS 4
 444
 445static struct HWBreakpoint {
 446    target_ulong addr;
 447    int type;
 448} hw_debug_points[MAX_HW_BKPTS];
 449
 450static CPUWatchpoint hw_watchpoint;
 451
 452/* Default there is no breakpoint and watchpoint supported */
 453static int max_hw_breakpoint;
 454static int max_hw_watchpoint;
 455static int nb_hw_breakpoint;
 456static int nb_hw_watchpoint;
 457
 458static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
 459{
 460    if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
 461        max_hw_breakpoint = 2;
 462        max_hw_watchpoint = 2;
 463    }
 464
 465    if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
 466        fprintf(stderr, "Error initializing h/w breakpoints\n");
 467        return;
 468    }
 469}
 470
 471int kvm_arch_init_vcpu(CPUState *cs)
 472{
 473    PowerPCCPU *cpu = POWERPC_CPU(cs);
 474    CPUPPCState *cenv = &cpu->env;
 475    int ret;
 476
 477    /* Synchronize sregs with kvm */
 478    ret = kvm_arch_sync_sregs(cpu);
 479    if (ret) {
 480        if (ret == -EINVAL) {
 481            error_report("Register sync failed... If you're using kvm-hv.ko,"
 482                         " only \"-cpu host\" is possible");
 483        }
 484        return ret;
 485    }
 486
 487    switch (cenv->mmu_model) {
 488    case POWERPC_MMU_BOOKE206:
 489        /* This target supports access to KVM's guest TLB */
 490        ret = kvm_booke206_tlb_init(cpu);
 491        break;
 492    case POWERPC_MMU_2_07:
 493        if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
 494            /*
 495             * KVM-HV has transactional memory on POWER8 also without
 496             * the KVM_CAP_PPC_HTM extension, so enable it here
 497             * instead as long as it's available to userspace on the
 498             * host.
 499             */
 500            if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
 501                cap_htm = true;
 502            }
 503        }
 504        break;
 505    default:
 506        break;
 507    }
 508
 509    kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
 510    kvmppc_hw_debug_points_init(cenv);
 511
 512    return ret;
 513}
 514
 515int kvm_arch_destroy_vcpu(CPUState *cs)
 516{
 517    return 0;
 518}
 519
 520static void kvm_sw_tlb_put(PowerPCCPU *cpu)
 521{
 522    CPUPPCState *env = &cpu->env;
 523    CPUState *cs = CPU(cpu);
 524    struct kvm_dirty_tlb dirty_tlb;
 525    unsigned char *bitmap;
 526    int ret;
 527
 528    if (!env->kvm_sw_tlb) {
 529        return;
 530    }
 531
 532    bitmap = g_malloc((env->nb_tlb + 7) / 8);
 533    memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
 534
 535    dirty_tlb.bitmap = (uintptr_t)bitmap;
 536    dirty_tlb.num_dirty = env->nb_tlb;
 537
 538    ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
 539    if (ret) {
 540        fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
 541                __func__, strerror(-ret));
 542    }
 543
 544    g_free(bitmap);
 545}
 546
 547static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
 548{
 549    PowerPCCPU *cpu = POWERPC_CPU(cs);
 550    CPUPPCState *env = &cpu->env;
 551    /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
 552    union {
 553        uint32_t u32;
 554        uint64_t u64;
 555    } val = { };
 556    struct kvm_one_reg reg = {
 557        .id = id,
 558        .addr = (uintptr_t) &val,
 559    };
 560    int ret;
 561
 562    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 563    if (ret != 0) {
 564        trace_kvm_failed_spr_get(spr, strerror(errno));
 565    } else {
 566        switch (id & KVM_REG_SIZE_MASK) {
 567        case KVM_REG_SIZE_U32:
 568            env->spr[spr] = val.u32;
 569            break;
 570
 571        case KVM_REG_SIZE_U64:
 572            env->spr[spr] = val.u64;
 573            break;
 574
 575        default:
 576            /* Don't handle this size yet */
 577            abort();
 578        }
 579    }
 580}
 581
 582static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
 583{
 584    PowerPCCPU *cpu = POWERPC_CPU(cs);
 585    CPUPPCState *env = &cpu->env;
 586    union {
 587        uint32_t u32;
 588        uint64_t u64;
 589    } val;
 590    struct kvm_one_reg reg = {
 591        .id = id,
 592        .addr = (uintptr_t) &val,
 593    };
 594    int ret;
 595
 596    switch (id & KVM_REG_SIZE_MASK) {
 597    case KVM_REG_SIZE_U32:
 598        val.u32 = env->spr[spr];
 599        break;
 600
 601    case KVM_REG_SIZE_U64:
 602        val.u64 = env->spr[spr];
 603        break;
 604
 605    default:
 606        /* Don't handle this size yet */
 607        abort();
 608    }
 609
 610    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 611    if (ret != 0) {
 612        trace_kvm_failed_spr_set(spr, strerror(errno));
 613    }
 614}
 615
 616static int kvm_put_fp(CPUState *cs)
 617{
 618    PowerPCCPU *cpu = POWERPC_CPU(cs);
 619    CPUPPCState *env = &cpu->env;
 620    struct kvm_one_reg reg;
 621    int i;
 622    int ret;
 623
 624    if (env->insns_flags & PPC_FLOAT) {
 625        uint64_t fpscr = env->fpscr;
 626        bool vsx = !!(env->insns_flags2 & PPC2_VSX);
 627
 628        reg.id = KVM_REG_PPC_FPSCR;
 629        reg.addr = (uintptr_t)&fpscr;
 630        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 631        if (ret < 0) {
 632            trace_kvm_failed_fpscr_set(strerror(errno));
 633            return ret;
 634        }
 635
 636        for (i = 0; i < 32; i++) {
 637            uint64_t vsr[2];
 638            uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
 639            uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
 640
 641#if HOST_BIG_ENDIAN
 642            vsr[0] = float64_val(*fpr);
 643            vsr[1] = *vsrl;
 644#else
 645            vsr[0] = *vsrl;
 646            vsr[1] = float64_val(*fpr);
 647#endif
 648            reg.addr = (uintptr_t) &vsr;
 649            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
 650
 651            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 652            if (ret < 0) {
 653                trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
 654                                        strerror(errno));
 655                return ret;
 656            }
 657        }
 658    }
 659
 660    if (env->insns_flags & PPC_ALTIVEC) {
 661        reg.id = KVM_REG_PPC_VSCR;
 662        reg.addr = (uintptr_t)&env->vscr;
 663        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 664        if (ret < 0) {
 665            trace_kvm_failed_vscr_set(strerror(errno));
 666            return ret;
 667        }
 668
 669        for (i = 0; i < 32; i++) {
 670            reg.id = KVM_REG_PPC_VR(i);
 671            reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
 672            ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 673            if (ret < 0) {
 674                trace_kvm_failed_vr_set(i, strerror(errno));
 675                return ret;
 676            }
 677        }
 678    }
 679
 680    return 0;
 681}
 682
 683static int kvm_get_fp(CPUState *cs)
 684{
 685    PowerPCCPU *cpu = POWERPC_CPU(cs);
 686    CPUPPCState *env = &cpu->env;
 687    struct kvm_one_reg reg;
 688    int i;
 689    int ret;
 690
 691    if (env->insns_flags & PPC_FLOAT) {
 692        uint64_t fpscr;
 693        bool vsx = !!(env->insns_flags2 & PPC2_VSX);
 694
 695        reg.id = KVM_REG_PPC_FPSCR;
 696        reg.addr = (uintptr_t)&fpscr;
 697        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 698        if (ret < 0) {
 699            trace_kvm_failed_fpscr_get(strerror(errno));
 700            return ret;
 701        } else {
 702            env->fpscr = fpscr;
 703        }
 704
 705        for (i = 0; i < 32; i++) {
 706            uint64_t vsr[2];
 707            uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
 708            uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
 709
 710            reg.addr = (uintptr_t) &vsr;
 711            reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
 712
 713            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 714            if (ret < 0) {
 715                trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
 716                                        strerror(errno));
 717                return ret;
 718            } else {
 719#if HOST_BIG_ENDIAN
 720                *fpr = vsr[0];
 721                if (vsx) {
 722                    *vsrl = vsr[1];
 723                }
 724#else
 725                *fpr = vsr[1];
 726                if (vsx) {
 727                    *vsrl = vsr[0];
 728                }
 729#endif
 730            }
 731        }
 732    }
 733
 734    if (env->insns_flags & PPC_ALTIVEC) {
 735        reg.id = KVM_REG_PPC_VSCR;
 736        reg.addr = (uintptr_t)&env->vscr;
 737        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 738        if (ret < 0) {
 739            trace_kvm_failed_vscr_get(strerror(errno));
 740            return ret;
 741        }
 742
 743        for (i = 0; i < 32; i++) {
 744            reg.id = KVM_REG_PPC_VR(i);
 745            reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
 746            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 747            if (ret < 0) {
 748                trace_kvm_failed_vr_get(i, strerror(errno));
 749                return ret;
 750            }
 751        }
 752    }
 753
 754    return 0;
 755}
 756
 757#if defined(TARGET_PPC64)
 758static int kvm_get_vpa(CPUState *cs)
 759{
 760    PowerPCCPU *cpu = POWERPC_CPU(cs);
 761    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 762    struct kvm_one_reg reg;
 763    int ret;
 764
 765    reg.id = KVM_REG_PPC_VPA_ADDR;
 766    reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
 767    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 768    if (ret < 0) {
 769        trace_kvm_failed_vpa_addr_get(strerror(errno));
 770        return ret;
 771    }
 772
 773    assert((uintptr_t)&spapr_cpu->slb_shadow_size
 774           == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
 775    reg.id = KVM_REG_PPC_VPA_SLB;
 776    reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
 777    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 778    if (ret < 0) {
 779        trace_kvm_failed_slb_get(strerror(errno));
 780        return ret;
 781    }
 782
 783    assert((uintptr_t)&spapr_cpu->dtl_size
 784           == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
 785    reg.id = KVM_REG_PPC_VPA_DTL;
 786    reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
 787    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 788    if (ret < 0) {
 789        trace_kvm_failed_dtl_get(strerror(errno));
 790        return ret;
 791    }
 792
 793    return 0;
 794}
 795
 796static int kvm_put_vpa(CPUState *cs)
 797{
 798    PowerPCCPU *cpu = POWERPC_CPU(cs);
 799    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 800    struct kvm_one_reg reg;
 801    int ret;
 802
 803    /*
 804     * SLB shadow or DTL can't be registered unless a master VPA is
 805     * registered.  That means when restoring state, if a VPA *is*
 806     * registered, we need to set that up first.  If not, we need to
 807     * deregister the others before deregistering the master VPA
 808     */
 809    assert(spapr_cpu->vpa_addr
 810           || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
 811
 812    if (spapr_cpu->vpa_addr) {
 813        reg.id = KVM_REG_PPC_VPA_ADDR;
 814        reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
 815        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 816        if (ret < 0) {
 817            trace_kvm_failed_vpa_addr_set(strerror(errno));
 818            return ret;
 819        }
 820    }
 821
 822    assert((uintptr_t)&spapr_cpu->slb_shadow_size
 823           == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
 824    reg.id = KVM_REG_PPC_VPA_SLB;
 825    reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
 826    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 827    if (ret < 0) {
 828        trace_kvm_failed_slb_set(strerror(errno));
 829        return ret;
 830    }
 831
 832    assert((uintptr_t)&spapr_cpu->dtl_size
 833           == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
 834    reg.id = KVM_REG_PPC_VPA_DTL;
 835    reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
 836    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 837    if (ret < 0) {
 838        trace_kvm_failed_dtl_set(strerror(errno));
 839        return ret;
 840    }
 841
 842    if (!spapr_cpu->vpa_addr) {
 843        reg.id = KVM_REG_PPC_VPA_ADDR;
 844        reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
 845        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 846        if (ret < 0) {
 847            trace_kvm_failed_null_vpa_addr_set(strerror(errno));
 848            return ret;
 849        }
 850    }
 851
 852    return 0;
 853}
 854#endif /* TARGET_PPC64 */
 855
 856int kvmppc_put_books_sregs(PowerPCCPU *cpu)
 857{
 858    CPUPPCState *env = &cpu->env;
 859    struct kvm_sregs sregs = { };
 860    int i;
 861
 862    sregs.pvr = env->spr[SPR_PVR];
 863
 864    if (cpu->vhyp) {
 865        PPCVirtualHypervisorClass *vhc =
 866            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 867        sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
 868    } else {
 869        sregs.u.s.sdr1 = env->spr[SPR_SDR1];
 870    }
 871
 872    /* Sync SLB */
 873#ifdef TARGET_PPC64
 874    for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
 875        sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
 876        if (env->slb[i].esid & SLB_ESID_V) {
 877            sregs.u.s.ppc64.slb[i].slbe |= i;
 878        }
 879        sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
 880    }
 881#endif
 882
 883    /* Sync SRs */
 884    for (i = 0; i < 16; i++) {
 885        sregs.u.s.ppc32.sr[i] = env->sr[i];
 886    }
 887
 888    /* Sync BATs */
 889    for (i = 0; i < 8; i++) {
 890        /* Beware. We have to swap upper and lower bits here */
 891        sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
 892            | env->DBAT[1][i];
 893        sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
 894            | env->IBAT[1][i];
 895    }
 896
 897    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
 898}
 899
 900int kvm_arch_put_registers(CPUState *cs, int level)
 901{
 902    PowerPCCPU *cpu = POWERPC_CPU(cs);
 903    CPUPPCState *env = &cpu->env;
 904    struct kvm_regs regs;
 905    int ret;
 906    int i;
 907
 908    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
 909    if (ret < 0) {
 910        return ret;
 911    }
 912
 913    regs.ctr = env->ctr;
 914    regs.lr  = env->lr;
 915    regs.xer = cpu_read_xer(env);
 916    regs.msr = env->msr;
 917    regs.pc = env->nip;
 918
 919    regs.srr0 = env->spr[SPR_SRR0];
 920    regs.srr1 = env->spr[SPR_SRR1];
 921
 922    regs.sprg0 = env->spr[SPR_SPRG0];
 923    regs.sprg1 = env->spr[SPR_SPRG1];
 924    regs.sprg2 = env->spr[SPR_SPRG2];
 925    regs.sprg3 = env->spr[SPR_SPRG3];
 926    regs.sprg4 = env->spr[SPR_SPRG4];
 927    regs.sprg5 = env->spr[SPR_SPRG5];
 928    regs.sprg6 = env->spr[SPR_SPRG6];
 929    regs.sprg7 = env->spr[SPR_SPRG7];
 930
 931    regs.pid = env->spr[SPR_BOOKE_PID];
 932
 933    for (i = 0; i < 32; i++) {
 934        regs.gpr[i] = env->gpr[i];
 935    }
 936
 937    regs.cr = ppc_get_cr(env);
 938
 939    ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
 940    if (ret < 0) {
 941        return ret;
 942    }
 943
 944    kvm_put_fp(cs);
 945
 946    if (env->tlb_dirty) {
 947        kvm_sw_tlb_put(cpu);
 948        env->tlb_dirty = false;
 949    }
 950
 951    if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
 952        ret = kvmppc_put_books_sregs(cpu);
 953        if (ret < 0) {
 954            return ret;
 955        }
 956    }
 957
 958    if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
 959        kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
 960    }
 961
 962    if (cap_one_reg) {
 963        int i;
 964
 965        /*
 966         * We deliberately ignore errors here, for kernels which have
 967         * the ONE_REG calls, but don't support the specific
 968         * registers, there's a reasonable chance things will still
 969         * work, at least until we try to migrate.
 970         */
 971        for (i = 0; i < 1024; i++) {
 972            uint64_t id = env->spr_cb[i].one_reg_id;
 973
 974            if (id != 0) {
 975                kvm_put_one_spr(cs, id, i);
 976            }
 977        }
 978
 979#ifdef TARGET_PPC64
 980        if (FIELD_EX64(env->msr, MSR, TS)) {
 981            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
 982                kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
 983            }
 984            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
 985                kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
 986            }
 987            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
 988            kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
 989            kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
 990            kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
 991            kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
 992            kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
 993            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
 994            kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
 995            kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
 996            kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
 997        }
 998
 999        if (cap_papr) {
1000            if (kvm_put_vpa(cs) < 0) {
1001                trace_kvm_failed_put_vpa();
1002            }
1003        }
1004
1005        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1006
1007        if (level > KVM_PUT_RUNTIME_STATE) {
1008            kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1009        }
1010#endif /* TARGET_PPC64 */
1011    }
1012
1013    return ret;
1014}
1015
1016static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1017{
1018     env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1019}
1020
1021static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1022{
1023    CPUPPCState *env = &cpu->env;
1024    struct kvm_sregs sregs;
1025    int ret;
1026
1027    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1028    if (ret < 0) {
1029        return ret;
1030    }
1031
1032    if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1033        env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1034        env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1035        env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1036        env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1037        env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1038        env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1039        env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1040        env->spr[SPR_DECR] = sregs.u.e.dec;
1041        env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1042        env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1043        env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1044    }
1045
1046    if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1047        env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1048        env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1049        env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1050        env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1051        env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1052    }
1053
1054    if (sregs.u.e.features & KVM_SREGS_E_64) {
1055        env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1056    }
1057
1058    if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1059        env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1060    }
1061
1062    if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1063        env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1064        kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
1065        env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1066        kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
1067        env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1068        kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
1069        env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1070        kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
1071        env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1072        kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
1073        env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1074        kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
1075        env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1076        kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
1077        env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1078        kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
1079        env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1080        kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
1081        env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1082        kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
1083        env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1084        kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
1085        env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1086        kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
1087        env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1088        kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
1089        env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1090        kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
1091        env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1092        kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
1093        env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1094        kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
1095
1096        if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1097            env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1098            kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
1099            env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1100            kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
1101            env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1102            kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
1103        }
1104
1105        if (sregs.u.e.features & KVM_SREGS_E_PM) {
1106            env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1107            kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
1108        }
1109
1110        if (sregs.u.e.features & KVM_SREGS_E_PC) {
1111            env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1112            kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
1113            env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1114            kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1115        }
1116    }
1117
1118    if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1119        env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1120        env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1121        env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1122        env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1123        env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1124        env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1125        env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1126        env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1127        env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1128        env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1129    }
1130
1131    if (sregs.u.e.features & KVM_SREGS_EXP) {
1132        env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1133    }
1134
1135    if (sregs.u.e.features & KVM_SREGS_E_PD) {
1136        env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1137        env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1138    }
1139
1140    if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1141        env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1142        env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1143        env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1144
1145        if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1146            env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1147            env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1148        }
1149    }
1150
1151    return 0;
1152}
1153
1154static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1155{
1156    CPUPPCState *env = &cpu->env;
1157    struct kvm_sregs sregs;
1158    int ret;
1159    int i;
1160
1161    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1162    if (ret < 0) {
1163        return ret;
1164    }
1165
1166    if (!cpu->vhyp) {
1167        ppc_store_sdr1(env, sregs.u.s.sdr1);
1168    }
1169
1170    /* Sync SLB */
1171#ifdef TARGET_PPC64
1172    /*
1173     * The packed SLB array we get from KVM_GET_SREGS only contains
1174     * information about valid entries. So we flush our internal copy
1175     * to get rid of stale ones, then put all valid SLB entries back
1176     * in.
1177     */
1178    memset(env->slb, 0, sizeof(env->slb));
1179    for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1180        target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1181        target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1182        /*
1183         * Only restore valid entries
1184         */
1185        if (rb & SLB_ESID_V) {
1186            ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1187        }
1188    }
1189#endif
1190
1191    /* Sync SRs */
1192    for (i = 0; i < 16; i++) {
1193        env->sr[i] = sregs.u.s.ppc32.sr[i];
1194    }
1195
1196    /* Sync BATs */
1197    for (i = 0; i < 8; i++) {
1198        env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1199        env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1200        env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1201        env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1202    }
1203
1204    return 0;
1205}
1206
1207int kvm_arch_get_registers(CPUState *cs)
1208{
1209    PowerPCCPU *cpu = POWERPC_CPU(cs);
1210    CPUPPCState *env = &cpu->env;
1211    struct kvm_regs regs;
1212    int i, ret;
1213
1214    ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1215    if (ret < 0) {
1216        return ret;
1217    }
1218
1219    ppc_set_cr(env, regs.cr);
1220    env->ctr = regs.ctr;
1221    env->lr = regs.lr;
1222    cpu_write_xer(env, regs.xer);
1223    env->msr = regs.msr;
1224    env->nip = regs.pc;
1225
1226    env->spr[SPR_SRR0] = regs.srr0;
1227    env->spr[SPR_SRR1] = regs.srr1;
1228
1229    env->spr[SPR_SPRG0] = regs.sprg0;
1230    env->spr[SPR_SPRG1] = regs.sprg1;
1231    env->spr[SPR_SPRG2] = regs.sprg2;
1232    env->spr[SPR_SPRG3] = regs.sprg3;
1233    env->spr[SPR_SPRG4] = regs.sprg4;
1234    env->spr[SPR_SPRG5] = regs.sprg5;
1235    env->spr[SPR_SPRG6] = regs.sprg6;
1236    env->spr[SPR_SPRG7] = regs.sprg7;
1237
1238    env->spr[SPR_BOOKE_PID] = regs.pid;
1239
1240    for (i = 0; i < 32; i++) {
1241        env->gpr[i] = regs.gpr[i];
1242    }
1243
1244    kvm_get_fp(cs);
1245
1246    if (cap_booke_sregs) {
1247        ret = kvmppc_get_booke_sregs(cpu);
1248        if (ret < 0) {
1249            return ret;
1250        }
1251    }
1252
1253    if (cap_segstate) {
1254        ret = kvmppc_get_books_sregs(cpu);
1255        if (ret < 0) {
1256            return ret;
1257        }
1258    }
1259
1260    if (cap_hior) {
1261        kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1262    }
1263
1264    if (cap_one_reg) {
1265        int i;
1266
1267        /*
1268         * We deliberately ignore errors here, for kernels which have
1269         * the ONE_REG calls, but don't support the specific
1270         * registers, there's a reasonable chance things will still
1271         * work, at least until we try to migrate.
1272         */
1273        for (i = 0; i < 1024; i++) {
1274            uint64_t id = env->spr_cb[i].one_reg_id;
1275
1276            if (id != 0) {
1277                kvm_get_one_spr(cs, id, i);
1278            }
1279        }
1280
1281#ifdef TARGET_PPC64
1282        if (FIELD_EX64(env->msr, MSR, TS)) {
1283            for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1284                kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1285            }
1286            for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1287                kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1288            }
1289            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1290            kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1291            kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1292            kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1293            kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1294            kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1295            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1296            kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1297            kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1298            kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1299        }
1300
1301        if (cap_papr) {
1302            if (kvm_get_vpa(cs) < 0) {
1303                trace_kvm_failed_get_vpa();
1304            }
1305        }
1306
1307        kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1308        kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1309#endif
1310    }
1311
1312    return 0;
1313}
1314
1315int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1316{
1317    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1318
1319    if (irq != PPC_INTERRUPT_EXT) {
1320        return 0;
1321    }
1322
1323    if (!kvm_enabled() || !cap_interrupt_unset) {
1324        return 0;
1325    }
1326
1327    kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1328
1329    return 0;
1330}
1331
1332void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1333{
1334    return;
1335}
1336
1337MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1338{
1339    return MEMTXATTRS_UNSPECIFIED;
1340}
1341
1342int kvm_arch_process_async_events(CPUState *cs)
1343{
1344    return cs->halted;
1345}
1346
1347static int kvmppc_handle_halt(PowerPCCPU *cpu)
1348{
1349    CPUState *cs = CPU(cpu);
1350    CPUPPCState *env = &cpu->env;
1351
1352    if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1353        FIELD_EX64(env->msr, MSR, EE)) {
1354        cs->halted = 1;
1355        cs->exception_index = EXCP_HLT;
1356    }
1357
1358    return 0;
1359}
1360
1361/* map dcr access to existing qemu dcr emulation */
1362static int kvmppc_handle_dcr_read(CPUPPCState *env,
1363                                  uint32_t dcrn, uint32_t *data)
1364{
1365    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1366        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1367    }
1368
1369    return 0;
1370}
1371
1372static int kvmppc_handle_dcr_write(CPUPPCState *env,
1373                                   uint32_t dcrn, uint32_t data)
1374{
1375    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1376        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1377    }
1378
1379    return 0;
1380}
1381
1382int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1383{
1384    /* Mixed endian case is not handled */
1385    uint32_t sc = debug_inst_opcode;
1386
1387    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1388                            sizeof(sc), 0) ||
1389        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1390        return -EINVAL;
1391    }
1392
1393    return 0;
1394}
1395
1396int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1397{
1398    uint32_t sc;
1399
1400    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1401        sc != debug_inst_opcode ||
1402        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1403                            sizeof(sc), 1)) {
1404        return -EINVAL;
1405    }
1406
1407    return 0;
1408}
1409
1410static int find_hw_breakpoint(target_ulong addr, int type)
1411{
1412    int n;
1413
1414    assert((nb_hw_breakpoint + nb_hw_watchpoint)
1415           <= ARRAY_SIZE(hw_debug_points));
1416
1417    for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1418        if (hw_debug_points[n].addr == addr &&
1419             hw_debug_points[n].type == type) {
1420            return n;
1421        }
1422    }
1423
1424    return -1;
1425}
1426
1427static int find_hw_watchpoint(target_ulong addr, int *flag)
1428{
1429    int n;
1430
1431    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1432    if (n >= 0) {
1433        *flag = BP_MEM_ACCESS;
1434        return n;
1435    }
1436
1437    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1438    if (n >= 0) {
1439        *flag = BP_MEM_WRITE;
1440        return n;
1441    }
1442
1443    n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1444    if (n >= 0) {
1445        *flag = BP_MEM_READ;
1446        return n;
1447    }
1448
1449    return -1;
1450}
1451
1452int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1453                                  target_ulong len, int type)
1454{
1455    if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1456        return -ENOBUFS;
1457    }
1458
1459    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1460    hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1461
1462    switch (type) {
1463    case GDB_BREAKPOINT_HW:
1464        if (nb_hw_breakpoint >= max_hw_breakpoint) {
1465            return -ENOBUFS;
1466        }
1467
1468        if (find_hw_breakpoint(addr, type) >= 0) {
1469            return -EEXIST;
1470        }
1471
1472        nb_hw_breakpoint++;
1473        break;
1474
1475    case GDB_WATCHPOINT_WRITE:
1476    case GDB_WATCHPOINT_READ:
1477    case GDB_WATCHPOINT_ACCESS:
1478        if (nb_hw_watchpoint >= max_hw_watchpoint) {
1479            return -ENOBUFS;
1480        }
1481
1482        if (find_hw_breakpoint(addr, type) >= 0) {
1483            return -EEXIST;
1484        }
1485
1486        nb_hw_watchpoint++;
1487        break;
1488
1489    default:
1490        return -ENOSYS;
1491    }
1492
1493    return 0;
1494}
1495
1496int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1497                                  target_ulong len, int type)
1498{
1499    int n;
1500
1501    n = find_hw_breakpoint(addr, type);
1502    if (n < 0) {
1503        return -ENOENT;
1504    }
1505
1506    switch (type) {
1507    case GDB_BREAKPOINT_HW:
1508        nb_hw_breakpoint--;
1509        break;
1510
1511    case GDB_WATCHPOINT_WRITE:
1512    case GDB_WATCHPOINT_READ:
1513    case GDB_WATCHPOINT_ACCESS:
1514        nb_hw_watchpoint--;
1515        break;
1516
1517    default:
1518        return -ENOSYS;
1519    }
1520    hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1521
1522    return 0;
1523}
1524
1525void kvm_arch_remove_all_hw_breakpoints(void)
1526{
1527    nb_hw_breakpoint = nb_hw_watchpoint = 0;
1528}
1529
1530void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1531{
1532    int n;
1533
1534    /* Software Breakpoint updates */
1535    if (kvm_sw_breakpoints_active(cs)) {
1536        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1537    }
1538
1539    assert((nb_hw_breakpoint + nb_hw_watchpoint)
1540           <= ARRAY_SIZE(hw_debug_points));
1541    assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1542
1543    if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1544        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1545        memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1546        for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1547            switch (hw_debug_points[n].type) {
1548            case GDB_BREAKPOINT_HW:
1549                dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1550                break;
1551            case GDB_WATCHPOINT_WRITE:
1552                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1553                break;
1554            case GDB_WATCHPOINT_READ:
1555                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1556                break;
1557            case GDB_WATCHPOINT_ACCESS:
1558                dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1559                                        KVMPPC_DEBUG_WATCH_READ;
1560                break;
1561            default:
1562                cpu_abort(cs, "Unsupported breakpoint type\n");
1563            }
1564            dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1565        }
1566    }
1567}
1568
1569static int kvm_handle_hw_breakpoint(CPUState *cs,
1570                                    struct kvm_debug_exit_arch *arch_info)
1571{
1572    int handle = DEBUG_RETURN_GUEST;
1573    int n;
1574    int flag = 0;
1575
1576    if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1577        if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1578            n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1579            if (n >= 0) {
1580                handle = DEBUG_RETURN_GDB;
1581            }
1582        } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1583                                        KVMPPC_DEBUG_WATCH_WRITE)) {
1584            n = find_hw_watchpoint(arch_info->address,  &flag);
1585            if (n >= 0) {
1586                handle = DEBUG_RETURN_GDB;
1587                cs->watchpoint_hit = &hw_watchpoint;
1588                hw_watchpoint.vaddr = hw_debug_points[n].addr;
1589                hw_watchpoint.flags = flag;
1590            }
1591        }
1592    }
1593    return handle;
1594}
1595
1596static int kvm_handle_singlestep(void)
1597{
1598    return DEBUG_RETURN_GDB;
1599}
1600
1601static int kvm_handle_sw_breakpoint(void)
1602{
1603    return DEBUG_RETURN_GDB;
1604}
1605
1606static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1607{
1608    CPUState *cs = CPU(cpu);
1609    CPUPPCState *env = &cpu->env;
1610    struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1611
1612    if (cs->singlestep_enabled) {
1613        return kvm_handle_singlestep();
1614    }
1615
1616    if (arch_info->status) {
1617        return kvm_handle_hw_breakpoint(cs, arch_info);
1618    }
1619
1620    if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1621        return kvm_handle_sw_breakpoint();
1622    }
1623
1624    /*
1625     * QEMU is not able to handle debug exception, so inject
1626     * program exception to guest;
1627     * Yes program exception NOT debug exception !!
1628     * When QEMU is using debug resources then debug exception must
1629     * be always set. To achieve this we set MSR_DE and also set
1630     * MSRP_DEP so guest cannot change MSR_DE.
1631     * When emulating debug resource for guest we want guest
1632     * to control MSR_DE (enable/disable debug interrupt on need).
1633     * Supporting both configurations are NOT possible.
1634     * So the result is that we cannot share debug resources
1635     * between QEMU and Guest on BOOKE architecture.
1636     * In the current design QEMU gets the priority over guest,
1637     * this means that if QEMU is using debug resources then guest
1638     * cannot use them;
1639     * For software breakpoint QEMU uses a privileged instruction;
1640     * So there cannot be any reason that we are here for guest
1641     * set debug exception, only possibility is guest executed a
1642     * privileged / illegal instruction and that's why we are
1643     * injecting a program interrupt.
1644     */
1645    cpu_synchronize_state(cs);
1646    /*
1647     * env->nip is PC, so increment this by 4 to use
1648     * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1649     */
1650    env->nip += 4;
1651    cs->exception_index = POWERPC_EXCP_PROGRAM;
1652    env->error_code = POWERPC_EXCP_INVAL;
1653    ppc_cpu_do_interrupt(cs);
1654
1655    return DEBUG_RETURN_GUEST;
1656}
1657
1658int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1659{
1660    PowerPCCPU *cpu = POWERPC_CPU(cs);
1661    CPUPPCState *env = &cpu->env;
1662    int ret;
1663
1664    qemu_mutex_lock_iothread();
1665
1666    switch (run->exit_reason) {
1667    case KVM_EXIT_DCR:
1668        if (run->dcr.is_write) {
1669            trace_kvm_handle_dcr_write();
1670            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1671        } else {
1672            trace_kvm_handle_dcr_read();
1673            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1674        }
1675        break;
1676    case KVM_EXIT_HLT:
1677        trace_kvm_handle_halt();
1678        ret = kvmppc_handle_halt(cpu);
1679        break;
1680#if defined(TARGET_PPC64)
1681    case KVM_EXIT_PAPR_HCALL:
1682        trace_kvm_handle_papr_hcall(run->papr_hcall.nr);
1683        run->papr_hcall.ret = spapr_hypercall(cpu,
1684                                              run->papr_hcall.nr,
1685                                              run->papr_hcall.args);
1686        ret = 0;
1687        break;
1688#endif
1689    case KVM_EXIT_EPR:
1690        trace_kvm_handle_epr();
1691        run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1692        ret = 0;
1693        break;
1694    case KVM_EXIT_WATCHDOG:
1695        trace_kvm_handle_watchdog_expiry();
1696        watchdog_perform_action();
1697        ret = 0;
1698        break;
1699
1700    case KVM_EXIT_DEBUG:
1701        trace_kvm_handle_debug_exception();
1702        if (kvm_handle_debug(cpu, run)) {
1703            ret = EXCP_DEBUG;
1704            break;
1705        }
1706        /* re-enter, this exception was guest-internal */
1707        ret = 0;
1708        break;
1709
1710#if defined(TARGET_PPC64)
1711    case KVM_EXIT_NMI:
1712        trace_kvm_handle_nmi_exception();
1713        ret = kvm_handle_nmi(cpu, run);
1714        break;
1715#endif
1716
1717    default:
1718        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1719        ret = -1;
1720        break;
1721    }
1722
1723    qemu_mutex_unlock_iothread();
1724    return ret;
1725}
1726
1727int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1728{
1729    CPUState *cs = CPU(cpu);
1730    uint32_t bits = tsr_bits;
1731    struct kvm_one_reg reg = {
1732        .id = KVM_REG_PPC_OR_TSR,
1733        .addr = (uintptr_t) &bits,
1734    };
1735
1736    if (!kvm_enabled()) {
1737        return 0;
1738    }
1739
1740    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1741}
1742
1743int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1744{
1745
1746    CPUState *cs = CPU(cpu);
1747    uint32_t bits = tsr_bits;
1748    struct kvm_one_reg reg = {
1749        .id = KVM_REG_PPC_CLEAR_TSR,
1750        .addr = (uintptr_t) &bits,
1751    };
1752
1753    if (!kvm_enabled()) {
1754        return 0;
1755    }
1756
1757    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1758}
1759
1760int kvmppc_set_tcr(PowerPCCPU *cpu)
1761{
1762    CPUState *cs = CPU(cpu);
1763    CPUPPCState *env = &cpu->env;
1764    uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1765
1766    struct kvm_one_reg reg = {
1767        .id = KVM_REG_PPC_TCR,
1768        .addr = (uintptr_t) &tcr,
1769    };
1770
1771    if (!kvm_enabled()) {
1772        return 0;
1773    }
1774
1775    return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1776}
1777
1778int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1779{
1780    CPUState *cs = CPU(cpu);
1781    int ret;
1782
1783    if (!kvm_enabled()) {
1784        return -1;
1785    }
1786
1787    if (!cap_ppc_watchdog) {
1788        printf("warning: KVM does not support watchdog");
1789        return -1;
1790    }
1791
1792    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1793    if (ret < 0) {
1794        fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1795                __func__, strerror(-ret));
1796        return ret;
1797    }
1798
1799    return ret;
1800}
1801
1802static int read_cpuinfo(const char *field, char *value, int len)
1803{
1804    FILE *f;
1805    int ret = -1;
1806    int field_len = strlen(field);
1807    char line[512];
1808
1809    f = fopen("/proc/cpuinfo", "r");
1810    if (!f) {
1811        return -1;
1812    }
1813
1814    do {
1815        if (!fgets(line, sizeof(line), f)) {
1816            break;
1817        }
1818        if (!strncmp(line, field, field_len)) {
1819            pstrcpy(value, len, line);
1820            ret = 0;
1821            break;
1822        }
1823    } while (*line);
1824
1825    fclose(f);
1826
1827    return ret;
1828}
1829
1830static uint32_t kvmppc_get_tbfreq_procfs(void)
1831{
1832    char line[512];
1833    char *ns;
1834    uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
1835    uint32_t tbfreq_procfs;
1836
1837    if (read_cpuinfo("timebase", line, sizeof(line))) {
1838        return tbfreq_fallback;
1839    }
1840
1841    ns = strchr(line, ':');
1842    if (!ns) {
1843        return tbfreq_fallback;
1844    }
1845
1846    tbfreq_procfs = atoi(++ns);
1847
1848    /* 0 is certainly not acceptable by the guest, return fallback value */
1849    return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
1850}
1851
1852uint32_t kvmppc_get_tbfreq(void)
1853{
1854    static uint32_t cached_tbfreq;
1855
1856    if (!cached_tbfreq) {
1857        cached_tbfreq = kvmppc_get_tbfreq_procfs();
1858    }
1859
1860    return cached_tbfreq;
1861}
1862
1863bool kvmppc_get_host_serial(char **value)
1864{
1865    return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1866                               NULL);
1867}
1868
1869bool kvmppc_get_host_model(char **value)
1870{
1871    return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1872}
1873
1874/* Try to find a device tree node for a CPU with clock-frequency property */
1875static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1876{
1877    struct dirent *dirp;
1878    DIR *dp;
1879
1880    dp = opendir(PROC_DEVTREE_CPU);
1881    if (!dp) {
1882        printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1883        return -1;
1884    }
1885
1886    buf[0] = '\0';
1887    while ((dirp = readdir(dp)) != NULL) {
1888        FILE *f;
1889
1890        /* Don't accidentally read from the current and parent directories */
1891        if (strcmp(dirp->d_name, ".") == 0 || strcmp(dirp->d_name, "..") == 0) {
1892            continue;
1893        }
1894
1895        snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1896                 dirp->d_name);
1897        f = fopen(buf, "r");
1898        if (f) {
1899            snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1900            fclose(f);
1901            break;
1902        }
1903        buf[0] = '\0';
1904    }
1905    closedir(dp);
1906    if (buf[0] == '\0') {
1907        printf("Unknown host!\n");
1908        return -1;
1909    }
1910
1911    return 0;
1912}
1913
1914static uint64_t kvmppc_read_int_dt(const char *filename)
1915{
1916    union {
1917        uint32_t v32;
1918        uint64_t v64;
1919    } u;
1920    FILE *f;
1921    int len;
1922
1923    f = fopen(filename, "rb");
1924    if (!f) {
1925        return -1;
1926    }
1927
1928    len = fread(&u, 1, sizeof(u), f);
1929    fclose(f);
1930    switch (len) {
1931    case 4:
1932        /* property is a 32-bit quantity */
1933        return be32_to_cpu(u.v32);
1934    case 8:
1935        return be64_to_cpu(u.v64);
1936    }
1937
1938    return 0;
1939}
1940
1941/*
1942 * Read a CPU node property from the host device tree that's a single
1943 * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
1944 * (can't find or open the property, or doesn't understand the format)
1945 */
1946static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1947{
1948    char buf[PATH_MAX], *tmp;
1949    uint64_t val;
1950
1951    if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1952        return -1;
1953    }
1954
1955    tmp = g_strdup_printf("%s/%s", buf, propname);
1956    val = kvmppc_read_int_dt(tmp);
1957    g_free(tmp);
1958
1959    return val;
1960}
1961
1962uint64_t kvmppc_get_clockfreq(void)
1963{
1964    return kvmppc_read_int_cpu_dt("clock-frequency");
1965}
1966
1967static int kvmppc_get_dec_bits(void)
1968{
1969    int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1970
1971    if (nr_bits > 0) {
1972        return nr_bits;
1973    }
1974    return 0;
1975}
1976
1977static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1978{
1979    CPUState *cs = env_cpu(env);
1980
1981    if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1982        !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1983        return 0;
1984    }
1985
1986    return 1;
1987}
1988
1989int kvmppc_get_hasidle(CPUPPCState *env)
1990{
1991    struct kvm_ppc_pvinfo pvinfo;
1992
1993    if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1994        (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1995        return 1;
1996    }
1997
1998    return 0;
1999}
2000
2001int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
2002{
2003    uint32_t *hc = (uint32_t *)buf;
2004    struct kvm_ppc_pvinfo pvinfo;
2005
2006    if (!kvmppc_get_pvinfo(env, &pvinfo)) {
2007        memcpy(buf, pvinfo.hcall, buf_len);
2008        return 0;
2009    }
2010
2011    /*
2012     * Fallback to always fail hypercalls regardless of endianness:
2013     *
2014     *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2015     *     li r3, -1
2016     *     b .+8       (becomes nop in wrong endian)
2017     *     bswap32(li r3, -1)
2018     */
2019
2020    hc[0] = cpu_to_be32(0x08000048);
2021    hc[1] = cpu_to_be32(0x3860ffff);
2022    hc[2] = cpu_to_be32(0x48000008);
2023    hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2024
2025    return 1;
2026}
2027
2028static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2029{
2030    return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2031}
2032
2033void kvmppc_enable_logical_ci_hcalls(void)
2034{
2035    /*
2036     * FIXME: it would be nice if we could detect the cases where
2037     * we're using a device which requires the in kernel
2038     * implementation of these hcalls, but the kernel lacks them and
2039     * produce a warning.
2040     */
2041    kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2042    kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2043}
2044
2045void kvmppc_enable_set_mode_hcall(void)
2046{
2047    kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2048}
2049
2050void kvmppc_enable_clear_ref_mod_hcalls(void)
2051{
2052    kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2053    kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2054}
2055
2056void kvmppc_enable_h_page_init(void)
2057{
2058    kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2059}
2060
2061void kvmppc_enable_h_rpt_invalidate(void)
2062{
2063    kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
2064}
2065
2066void kvmppc_set_papr(PowerPCCPU *cpu)
2067{
2068    CPUState *cs = CPU(cpu);
2069    int ret;
2070
2071    if (!kvm_enabled()) {
2072        return;
2073    }
2074
2075    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2076    if (ret) {
2077        error_report("This vCPU type or KVM version does not support PAPR");
2078        exit(1);
2079    }
2080
2081    /*
2082     * Update the capability flag so we sync the right information
2083     * with kvm
2084     */
2085    cap_papr = 1;
2086}
2087
2088int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2089{
2090    return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2091}
2092
2093void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2094{
2095    CPUState *cs = CPU(cpu);
2096    int ret;
2097
2098    ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2099    if (ret && mpic_proxy) {
2100        error_report("This KVM version does not support EPR");
2101        exit(1);
2102    }
2103}
2104
2105bool kvmppc_get_fwnmi(void)
2106{
2107    return cap_fwnmi;
2108}
2109
2110int kvmppc_set_fwnmi(PowerPCCPU *cpu)
2111{
2112    CPUState *cs = CPU(cpu);
2113
2114    return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2115}
2116
2117int kvmppc_smt_threads(void)
2118{
2119    return cap_ppc_smt ? cap_ppc_smt : 1;
2120}
2121
2122int kvmppc_set_smt_threads(int smt)
2123{
2124    int ret;
2125
2126    ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2127    if (!ret) {
2128        cap_ppc_smt = smt;
2129    }
2130    return ret;
2131}
2132
2133void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2134{
2135    int i;
2136    GString *g;
2137    char *s;
2138
2139    assert(kvm_enabled());
2140    if (cap_ppc_smt_possible) {
2141        g = g_string_new("Available VSMT modes:");
2142        for (i = 63; i >= 0; i--) {
2143            if ((1UL << i) & cap_ppc_smt_possible) {
2144                g_string_append_printf(g, " %lu", (1UL << i));
2145            }
2146        }
2147        s = g_string_free(g, false);
2148        error_append_hint(errp, "%s.\n", s);
2149        g_free(s);
2150    } else {
2151        error_append_hint(errp,
2152                          "This KVM seems to be too old to support VSMT.\n");
2153    }
2154}
2155
2156
2157#ifdef TARGET_PPC64
2158uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
2159{
2160    struct kvm_ppc_smmu_info info;
2161    long rampagesize, best_page_shift;
2162    int i;
2163
2164    /*
2165     * Find the largest hardware supported page size that's less than
2166     * or equal to the (logical) backing page size of guest RAM
2167     */
2168    kvm_get_smmu_info(&info, &error_fatal);
2169    rampagesize = qemu_minrampagesize();
2170    best_page_shift = 0;
2171
2172    for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2173        struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2174
2175        if (!sps->page_shift) {
2176            continue;
2177        }
2178
2179        if ((sps->page_shift > best_page_shift)
2180            && ((1UL << sps->page_shift) <= rampagesize)) {
2181            best_page_shift = sps->page_shift;
2182        }
2183    }
2184
2185    return 1ULL << (best_page_shift + hash_shift - 7);
2186}
2187#endif
2188
2189bool kvmppc_spapr_use_multitce(void)
2190{
2191    return cap_spapr_multitce;
2192}
2193
2194int kvmppc_spapr_enable_inkernel_multitce(void)
2195{
2196    int ret;
2197
2198    ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2199                            H_PUT_TCE_INDIRECT, 1);
2200    if (!ret) {
2201        ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2202                                H_STUFF_TCE, 1);
2203    }
2204
2205    return ret;
2206}
2207
2208void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2209                              uint64_t bus_offset, uint32_t nb_table,
2210                              int *pfd, bool need_vfio)
2211{
2212    long len;
2213    int fd;
2214    void *table;
2215
2216    /*
2217     * Must set fd to -1 so we don't try to munmap when called for
2218     * destroying the table, which the upper layers -will- do
2219     */
2220    *pfd = -1;
2221    if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2222        return NULL;
2223    }
2224
2225    if (cap_spapr_tce_64) {
2226        struct kvm_create_spapr_tce_64 args = {
2227            .liobn = liobn,
2228            .page_shift = page_shift,
2229            .offset = bus_offset >> page_shift,
2230            .size = nb_table,
2231            .flags = 0
2232        };
2233        fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2234        if (fd < 0) {
2235            fprintf(stderr,
2236                    "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2237                    liobn);
2238            return NULL;
2239        }
2240    } else if (cap_spapr_tce) {
2241        uint64_t window_size = (uint64_t) nb_table << page_shift;
2242        struct kvm_create_spapr_tce args = {
2243            .liobn = liobn,
2244            .window_size = window_size,
2245        };
2246        if ((window_size != args.window_size) || bus_offset) {
2247            return NULL;
2248        }
2249        fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2250        if (fd < 0) {
2251            fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2252                    liobn);
2253            return NULL;
2254        }
2255    } else {
2256        return NULL;
2257    }
2258
2259    len = nb_table * sizeof(uint64_t);
2260    /* FIXME: round this up to page size */
2261
2262    table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2263    if (table == MAP_FAILED) {
2264        fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2265                liobn);
2266        close(fd);
2267        return NULL;
2268    }
2269
2270    *pfd = fd;
2271    return table;
2272}
2273
2274int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2275{
2276    long len;
2277
2278    if (fd < 0) {
2279        return -1;
2280    }
2281
2282    len = nb_table * sizeof(uint64_t);
2283    if ((munmap(table, len) < 0) ||
2284        (close(fd) < 0)) {
2285        fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2286                strerror(errno));
2287        /* Leak the table */
2288    }
2289
2290    return 0;
2291}
2292
2293int kvmppc_reset_htab(int shift_hint)
2294{
2295    uint32_t shift = shift_hint;
2296
2297    if (!kvm_enabled()) {
2298        /* Full emulation, tell caller to allocate htab itself */
2299        return 0;
2300    }
2301    if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2302        int ret;
2303        ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2304        if (ret == -ENOTTY) {
2305            /*
2306             * At least some versions of PR KVM advertise the
2307             * capability, but don't implement the ioctl().  Oops.
2308             * Return 0 so that we allocate the htab in qemu, as is
2309             * correct for PR.
2310             */
2311            return 0;
2312        } else if (ret < 0) {
2313            return ret;
2314        }
2315        return shift;
2316    }
2317
2318    /*
2319     * We have a kernel that predates the htab reset calls.  For PR
2320     * KVM, we need to allocate the htab ourselves, for an HV KVM of
2321     * this era, it has allocated a 16MB fixed size hash table
2322     * already.
2323     */
2324    if (kvmppc_is_pr(kvm_state)) {
2325        /* PR - tell caller to allocate htab */
2326        return 0;
2327    } else {
2328        /* HV - assume 16MB kernel allocated htab */
2329        return 24;
2330    }
2331}
2332
2333static inline uint32_t mfpvr(void)
2334{
2335    uint32_t pvr;
2336
2337    asm ("mfpvr %0"
2338         : "=r"(pvr));
2339    return pvr;
2340}
2341
2342static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2343{
2344    if (on) {
2345        *word |= flags;
2346    } else {
2347        *word &= ~flags;
2348    }
2349}
2350
2351static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2352{
2353    PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2354    uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2355    uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2356
2357    /* Now fix up the class with information we can query from the host */
2358    pcc->pvr = mfpvr();
2359
2360    alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2361                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2362    alter_insns(&pcc->insns_flags2, PPC2_VSX,
2363                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2364    alter_insns(&pcc->insns_flags2, PPC2_DFP,
2365                qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2366
2367    if (dcache_size != -1) {
2368        pcc->l1_dcache_size = dcache_size;
2369    }
2370
2371    if (icache_size != -1) {
2372        pcc->l1_icache_size = icache_size;
2373    }
2374
2375#if defined(TARGET_PPC64)
2376    pcc->radix_page_info = kvm_get_radix_page_info();
2377
2378    if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2379        /*
2380         * POWER9 DD1 has some bugs which make it not really ISA 3.00
2381         * compliant.  More importantly, advertising ISA 3.00
2382         * architected mode may prevent guests from activating
2383         * necessary DD1 workarounds.
2384         */
2385        pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2386                                | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2387    }
2388#endif /* defined(TARGET_PPC64) */
2389}
2390
2391bool kvmppc_has_cap_epr(void)
2392{
2393    return cap_epr;
2394}
2395
2396bool kvmppc_has_cap_fixup_hcalls(void)
2397{
2398    return cap_fixup_hcalls;
2399}
2400
2401bool kvmppc_has_cap_htm(void)
2402{
2403    return cap_htm;
2404}
2405
2406bool kvmppc_has_cap_mmu_radix(void)
2407{
2408    return cap_mmu_radix;
2409}
2410
2411bool kvmppc_has_cap_mmu_hash_v3(void)
2412{
2413    return cap_mmu_hash_v3;
2414}
2415
2416static bool kvmppc_power8_host(void)
2417{
2418    bool ret = false;
2419#ifdef TARGET_PPC64
2420    {
2421        uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2422        ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2423              (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2424              (base_pvr == CPU_POWERPC_POWER8_BASE);
2425    }
2426#endif /* TARGET_PPC64 */
2427    return ret;
2428}
2429
2430static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2431{
2432    bool l1d_thread_priv_req = !kvmppc_power8_host();
2433
2434    if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2435        return 2;
2436    } else if ((!l1d_thread_priv_req ||
2437                c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2438               (c.character & c.character_mask
2439                & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2440        return 1;
2441    }
2442
2443    return 0;
2444}
2445
2446static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2447{
2448    if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2449        return 2;
2450    } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2451        return 1;
2452    }
2453
2454    return 0;
2455}
2456
2457static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2458{
2459    if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2460        (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2461        (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2462        return SPAPR_CAP_FIXED_NA;
2463    } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2464        return SPAPR_CAP_WORKAROUND;
2465    } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2466        return  SPAPR_CAP_FIXED_CCD;
2467    } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2468        return SPAPR_CAP_FIXED_IBS;
2469    }
2470
2471    return 0;
2472}
2473
2474static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2475{
2476    if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2477        return 1;
2478    }
2479    return 0;
2480}
2481
2482bool kvmppc_has_cap_xive(void)
2483{
2484    return cap_xive;
2485}
2486
2487static void kvmppc_get_cpu_characteristics(KVMState *s)
2488{
2489    struct kvm_ppc_cpu_char c;
2490    int ret;
2491
2492    /* Assume broken */
2493    cap_ppc_safe_cache = 0;
2494    cap_ppc_safe_bounds_check = 0;
2495    cap_ppc_safe_indirect_branch = 0;
2496
2497    ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2498    if (!ret) {
2499        return;
2500    }
2501    ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2502    if (ret < 0) {
2503        return;
2504    }
2505
2506    cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2507    cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2508    cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2509    cap_ppc_count_cache_flush_assist =
2510        parse_cap_ppc_count_cache_flush_assist(c);
2511}
2512
2513int kvmppc_get_cap_safe_cache(void)
2514{
2515    return cap_ppc_safe_cache;
2516}
2517
2518int kvmppc_get_cap_safe_bounds_check(void)
2519{
2520    return cap_ppc_safe_bounds_check;
2521}
2522
2523int kvmppc_get_cap_safe_indirect_branch(void)
2524{
2525    return cap_ppc_safe_indirect_branch;
2526}
2527
2528int kvmppc_get_cap_count_cache_flush_assist(void)
2529{
2530    return cap_ppc_count_cache_flush_assist;
2531}
2532
2533bool kvmppc_has_cap_nested_kvm_hv(void)
2534{
2535    return !!cap_ppc_nested_kvm_hv;
2536}
2537
2538int kvmppc_set_cap_nested_kvm_hv(int enable)
2539{
2540    return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2541}
2542
2543bool kvmppc_has_cap_spapr_vfio(void)
2544{
2545    return cap_spapr_vfio;
2546}
2547
2548int kvmppc_get_cap_large_decr(void)
2549{
2550    return cap_large_decr;
2551}
2552
2553int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2554{
2555    CPUState *cs = CPU(cpu);
2556    uint64_t lpcr = 0;
2557
2558    kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2559    /* Do we need to modify the LPCR? */
2560    if (!!(lpcr & LPCR_LD) != !!enable) {
2561        if (enable) {
2562            lpcr |= LPCR_LD;
2563        } else {
2564            lpcr &= ~LPCR_LD;
2565        }
2566        kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2567        kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2568
2569        if (!!(lpcr & LPCR_LD) != !!enable) {
2570            return -1;
2571        }
2572    }
2573
2574    return 0;
2575}
2576
2577int kvmppc_has_cap_rpt_invalidate(void)
2578{
2579    return cap_rpt_invalidate;
2580}
2581
2582bool kvmppc_supports_ail_3(void)
2583{
2584    return cap_ail_mode_3;
2585}
2586
2587PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2588{
2589    uint32_t host_pvr = mfpvr();
2590    PowerPCCPUClass *pvr_pcc;
2591
2592    pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2593    if (pvr_pcc == NULL) {
2594        pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2595    }
2596
2597    return pvr_pcc;
2598}
2599
2600static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2601{
2602    MachineClass *mc = MACHINE_CLASS(oc);
2603
2604    mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2605}
2606
2607static int kvm_ppc_register_host_cpu_type(void)
2608{
2609    TypeInfo type_info = {
2610        .name = TYPE_HOST_POWERPC_CPU,
2611        .class_init = kvmppc_host_cpu_class_init,
2612    };
2613    PowerPCCPUClass *pvr_pcc;
2614    ObjectClass *oc;
2615    DeviceClass *dc;
2616    int i;
2617
2618    pvr_pcc = kvm_ppc_get_host_cpu_class();
2619    if (pvr_pcc == NULL) {
2620        return -1;
2621    }
2622    type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2623    type_register(&type_info);
2624    /* override TCG default cpu type with 'host' cpu model */
2625    object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2626                         false, NULL);
2627
2628    oc = object_class_by_name(type_info.name);
2629    g_assert(oc);
2630
2631    /*
2632     * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2633     * we want "POWER8" to be a "family" alias that points to the current
2634     * host CPU type, too)
2635     */
2636    dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2637    for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2638        if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2639            char *suffix;
2640
2641            ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2642            suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2643            if (suffix) {
2644                *suffix = 0;
2645            }
2646            break;
2647        }
2648    }
2649
2650    return 0;
2651}
2652
2653int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2654{
2655    struct kvm_rtas_token_args args = {
2656        .token = token,
2657    };
2658
2659    if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2660        return -ENOENT;
2661    }
2662
2663    strncpy(args.name, function, sizeof(args.name) - 1);
2664
2665    return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2666}
2667
2668int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2669{
2670    struct kvm_get_htab_fd s = {
2671        .flags = write ? KVM_GET_HTAB_WRITE : 0,
2672        .start_index = index,
2673    };
2674    int ret;
2675
2676    if (!cap_htab_fd) {
2677        error_setg(errp, "KVM version doesn't support %s the HPT",
2678                   write ? "writing" : "reading");
2679        return -ENOTSUP;
2680    }
2681
2682    ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2683    if (ret < 0) {
2684        error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2685                   write ? "writing" : "reading", write ? "to" : "from",
2686                   strerror(errno));
2687        return -errno;
2688    }
2689
2690    return ret;
2691}
2692
2693int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2694{
2695    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2696    uint8_t buf[bufsize];
2697    ssize_t rc;
2698
2699    do {
2700        rc = read(fd, buf, bufsize);
2701        if (rc < 0) {
2702            fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2703                    strerror(errno));
2704            return rc;
2705        } else if (rc) {
2706            uint8_t *buffer = buf;
2707            ssize_t n = rc;
2708            while (n) {
2709                struct kvm_get_htab_header *head =
2710                    (struct kvm_get_htab_header *) buffer;
2711                size_t chunksize = sizeof(*head) +
2712                     HASH_PTE_SIZE_64 * head->n_valid;
2713
2714                qemu_put_be32(f, head->index);
2715                qemu_put_be16(f, head->n_valid);
2716                qemu_put_be16(f, head->n_invalid);
2717                qemu_put_buffer(f, (void *)(head + 1),
2718                                HASH_PTE_SIZE_64 * head->n_valid);
2719
2720                buffer += chunksize;
2721                n -= chunksize;
2722            }
2723        }
2724    } while ((rc != 0)
2725             && ((max_ns < 0) ||
2726                 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2727
2728    return (rc == 0) ? 1 : 0;
2729}
2730
2731int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2732                           uint16_t n_valid, uint16_t n_invalid, Error **errp)
2733{
2734    struct kvm_get_htab_header *buf;
2735    size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2736    ssize_t rc;
2737
2738    buf = alloca(chunksize);
2739    buf->index = index;
2740    buf->n_valid = n_valid;
2741    buf->n_invalid = n_invalid;
2742
2743    qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2744
2745    rc = write(fd, buf, chunksize);
2746    if (rc < 0) {
2747        error_setg_errno(errp, errno, "Error writing the KVM hash table");
2748        return -errno;
2749    }
2750    if (rc != chunksize) {
2751        /* We should never get a short write on a single chunk */
2752        error_setg(errp, "Short write while restoring the KVM hash table");
2753        return -ENOSPC;
2754    }
2755    return 0;
2756}
2757
2758bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2759{
2760    return true;
2761}
2762
2763void kvm_arch_init_irq_routing(KVMState *s)
2764{
2765}
2766
2767void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2768{
2769    int fd, rc;
2770    int i;
2771
2772    fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2773
2774    i = 0;
2775    while (i < n) {
2776        struct kvm_get_htab_header *hdr;
2777        int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2778        char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2779
2780        rc = read(fd, buf, sizeof(buf));
2781        if (rc < 0) {
2782            hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2783        }
2784
2785        hdr = (struct kvm_get_htab_header *)buf;
2786        while ((i < n) && ((char *)hdr < (buf + rc))) {
2787            int invalid = hdr->n_invalid, valid = hdr->n_valid;
2788
2789            if (hdr->index != (ptex + i)) {
2790                hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2791                         " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2792            }
2793
2794            if (n - i < valid) {
2795                valid = n - i;
2796            }
2797            memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2798            i += valid;
2799
2800            if ((n - i) < invalid) {
2801                invalid = n - i;
2802            }
2803            memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2804            i += invalid;
2805
2806            hdr = (struct kvm_get_htab_header *)
2807                ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2808        }
2809    }
2810
2811    close(fd);
2812}
2813
2814void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2815{
2816    int fd, rc;
2817    struct {
2818        struct kvm_get_htab_header hdr;
2819        uint64_t pte0;
2820        uint64_t pte1;
2821    } buf;
2822
2823    fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2824
2825    buf.hdr.n_valid = 1;
2826    buf.hdr.n_invalid = 0;
2827    buf.hdr.index = ptex;
2828    buf.pte0 = cpu_to_be64(pte0);
2829    buf.pte1 = cpu_to_be64(pte1);
2830
2831    rc = write(fd, &buf, sizeof(buf));
2832    if (rc != sizeof(buf)) {
2833        hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2834    }
2835    close(fd);
2836}
2837
2838int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2839                             uint64_t address, uint32_t data, PCIDevice *dev)
2840{
2841    return 0;
2842}
2843
2844int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2845                                int vector, PCIDevice *dev)
2846{
2847    return 0;
2848}
2849
2850int kvm_arch_release_virq_post(int virq)
2851{
2852    return 0;
2853}
2854
2855int kvm_arch_msi_data_to_gsi(uint32_t data)
2856{
2857    return data & 0xffff;
2858}
2859
2860#if defined(TARGET_PPC64)
2861int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2862{
2863    uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
2864
2865    cpu_synchronize_state(CPU(cpu));
2866
2867    spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
2868
2869    return 0;
2870}
2871#endif
2872
2873int kvmppc_enable_hwrng(void)
2874{
2875    if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2876        return -1;
2877    }
2878
2879    return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2880}
2881
2882void kvmppc_check_papr_resize_hpt(Error **errp)
2883{
2884    if (!kvm_enabled()) {
2885        return; /* No KVM, we're good */
2886    }
2887
2888    if (cap_resize_hpt) {
2889        return; /* Kernel has explicit support, we're good */
2890    }
2891
2892    /* Otherwise fallback on looking for PR KVM */
2893    if (kvmppc_is_pr(kvm_state)) {
2894        return;
2895    }
2896
2897    error_setg(errp,
2898               "Hash page table resizing not available with this KVM version");
2899}
2900
2901int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2902{
2903    CPUState *cs = CPU(cpu);
2904    struct kvm_ppc_resize_hpt rhpt = {
2905        .flags = flags,
2906        .shift = shift,
2907    };
2908
2909    if (!cap_resize_hpt) {
2910        return -ENOSYS;
2911    }
2912
2913    return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2914}
2915
2916int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2917{
2918    CPUState *cs = CPU(cpu);
2919    struct kvm_ppc_resize_hpt rhpt = {
2920        .flags = flags,
2921        .shift = shift,
2922    };
2923
2924    if (!cap_resize_hpt) {
2925        return -ENOSYS;
2926    }
2927
2928    return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2929}
2930
2931/*
2932 * This is a helper function to detect a post migration scenario
2933 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2934 * the guest kernel can't handle a PVR value other than the actual host
2935 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2936 *
2937 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2938 * (so, we're HV), return true. The workaround itself is done in
2939 * cpu_post_load.
2940 *
2941 * The order here is important: we'll only check for KVM PR as a
2942 * fallback if the guest kernel can't handle the situation itself.
2943 * We need to avoid as much as possible querying the running KVM type
2944 * in QEMU level.
2945 */
2946bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2947{
2948    CPUState *cs = CPU(cpu);
2949
2950    if (!kvm_enabled()) {
2951        return false;
2952    }
2953
2954    if (cap_ppc_pvr_compat) {
2955        return false;
2956    }
2957
2958    return !kvmppc_is_pr(cs->kvm_state);
2959}
2960
2961void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2962{
2963    CPUState *cs = CPU(cpu);
2964
2965    if (kvm_enabled()) {
2966        kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2967    }
2968}
2969
2970void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2971{
2972    CPUState *cs = CPU(cpu);
2973
2974    if (kvm_enabled()) {
2975        kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2976    }
2977}
2978
2979bool kvm_arch_cpu_check_are_resettable(void)
2980{
2981    return true;
2982}
2983
2984void kvm_arch_accel_class_init(ObjectClass *oc)
2985{
2986}
2987