qemu/util/qemu-thread-win32.c
<<
>>
Prefs
   1/*
   2 * Win32 implementation for mutex/cond/thread functions
   3 *
   4 * Copyright Red Hat, Inc. 2010
   5 *
   6 * Author:
   7 *  Paolo Bonzini <pbonzini@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14#include "qemu/osdep.h"
  15#include "qemu/thread.h"
  16#include "qemu/notify.h"
  17#include "qemu-thread-common.h"
  18#include <process.h>
  19
  20static bool name_threads;
  21
  22typedef HRESULT (WINAPI *pSetThreadDescription) (HANDLE hThread,
  23                                                 PCWSTR lpThreadDescription);
  24static pSetThreadDescription SetThreadDescriptionFunc;
  25static HMODULE kernel32_module;
  26
  27static bool load_set_thread_description(void)
  28{
  29    static gsize _init_once = 0;
  30
  31    if (g_once_init_enter(&_init_once)) {
  32        kernel32_module = LoadLibrary("kernel32.dll");
  33        if (kernel32_module) {
  34            SetThreadDescriptionFunc =
  35                (pSetThreadDescription)GetProcAddress(kernel32_module,
  36                                                      "SetThreadDescription");
  37            if (!SetThreadDescriptionFunc) {
  38                FreeLibrary(kernel32_module);
  39            }
  40        }
  41        g_once_init_leave(&_init_once, 1);
  42    }
  43
  44    return !!SetThreadDescriptionFunc;
  45}
  46
  47void qemu_thread_naming(bool enable)
  48{
  49    name_threads = enable;
  50
  51    if (enable && !load_set_thread_description()) {
  52        fprintf(stderr, "qemu: thread naming not supported on this host\n");
  53        name_threads = false;
  54    }
  55}
  56
  57static void error_exit(int err, const char *msg)
  58{
  59    char *pstr;
  60
  61    FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER,
  62                  NULL, err, 0, (LPTSTR)&pstr, 2, NULL);
  63    fprintf(stderr, "qemu: %s: %s\n", msg, pstr);
  64    LocalFree(pstr);
  65    abort();
  66}
  67
  68void qemu_mutex_init(QemuMutex *mutex)
  69{
  70    InitializeSRWLock(&mutex->lock);
  71    qemu_mutex_post_init(mutex);
  72}
  73
  74void qemu_mutex_destroy(QemuMutex *mutex)
  75{
  76    assert(mutex->initialized);
  77    mutex->initialized = false;
  78    InitializeSRWLock(&mutex->lock);
  79}
  80
  81void qemu_mutex_lock_impl(QemuMutex *mutex, const char *file, const int line)
  82{
  83    assert(mutex->initialized);
  84    qemu_mutex_pre_lock(mutex, file, line);
  85    AcquireSRWLockExclusive(&mutex->lock);
  86    qemu_mutex_post_lock(mutex, file, line);
  87}
  88
  89int qemu_mutex_trylock_impl(QemuMutex *mutex, const char *file, const int line)
  90{
  91    int owned;
  92
  93    assert(mutex->initialized);
  94    owned = TryAcquireSRWLockExclusive(&mutex->lock);
  95    if (owned) {
  96        qemu_mutex_post_lock(mutex, file, line);
  97        return 0;
  98    }
  99    return -EBUSY;
 100}
 101
 102void qemu_mutex_unlock_impl(QemuMutex *mutex, const char *file, const int line)
 103{
 104    assert(mutex->initialized);
 105    qemu_mutex_pre_unlock(mutex, file, line);
 106    ReleaseSRWLockExclusive(&mutex->lock);
 107}
 108
 109void qemu_rec_mutex_init(QemuRecMutex *mutex)
 110{
 111    InitializeCriticalSection(&mutex->lock);
 112    mutex->initialized = true;
 113}
 114
 115void qemu_rec_mutex_destroy(QemuRecMutex *mutex)
 116{
 117    assert(mutex->initialized);
 118    mutex->initialized = false;
 119    DeleteCriticalSection(&mutex->lock);
 120}
 121
 122void qemu_rec_mutex_lock_impl(QemuRecMutex *mutex, const char *file, int line)
 123{
 124    assert(mutex->initialized);
 125    EnterCriticalSection(&mutex->lock);
 126}
 127
 128int qemu_rec_mutex_trylock_impl(QemuRecMutex *mutex, const char *file, int line)
 129{
 130    assert(mutex->initialized);
 131    return !TryEnterCriticalSection(&mutex->lock);
 132}
 133
 134void qemu_rec_mutex_unlock_impl(QemuRecMutex *mutex, const char *file, int line)
 135{
 136    assert(mutex->initialized);
 137    LeaveCriticalSection(&mutex->lock);
 138}
 139
 140void qemu_cond_init(QemuCond *cond)
 141{
 142    memset(cond, 0, sizeof(*cond));
 143    InitializeConditionVariable(&cond->var);
 144    cond->initialized = true;
 145}
 146
 147void qemu_cond_destroy(QemuCond *cond)
 148{
 149    assert(cond->initialized);
 150    cond->initialized = false;
 151    InitializeConditionVariable(&cond->var);
 152}
 153
 154void qemu_cond_signal(QemuCond *cond)
 155{
 156    assert(cond->initialized);
 157    WakeConditionVariable(&cond->var);
 158}
 159
 160void qemu_cond_broadcast(QemuCond *cond)
 161{
 162    assert(cond->initialized);
 163    WakeAllConditionVariable(&cond->var);
 164}
 165
 166void qemu_cond_wait_impl(QemuCond *cond, QemuMutex *mutex, const char *file, const int line)
 167{
 168    assert(cond->initialized);
 169    qemu_mutex_pre_unlock(mutex, file, line);
 170    SleepConditionVariableSRW(&cond->var, &mutex->lock, INFINITE, 0);
 171    qemu_mutex_post_lock(mutex, file, line);
 172}
 173
 174bool qemu_cond_timedwait_impl(QemuCond *cond, QemuMutex *mutex, int ms,
 175                              const char *file, const int line)
 176{
 177    int rc = 0;
 178
 179    assert(cond->initialized);
 180    trace_qemu_mutex_unlock(mutex, file, line);
 181    if (!SleepConditionVariableSRW(&cond->var, &mutex->lock, ms, 0)) {
 182        rc = GetLastError();
 183    }
 184    trace_qemu_mutex_locked(mutex, file, line);
 185    if (rc && rc != ERROR_TIMEOUT) {
 186        error_exit(rc, __func__);
 187    }
 188    return rc != ERROR_TIMEOUT;
 189}
 190
 191void qemu_sem_init(QemuSemaphore *sem, int init)
 192{
 193    /* Manual reset.  */
 194    sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
 195    sem->initialized = true;
 196}
 197
 198void qemu_sem_destroy(QemuSemaphore *sem)
 199{
 200    assert(sem->initialized);
 201    sem->initialized = false;
 202    CloseHandle(sem->sema);
 203}
 204
 205void qemu_sem_post(QemuSemaphore *sem)
 206{
 207    assert(sem->initialized);
 208    ReleaseSemaphore(sem->sema, 1, NULL);
 209}
 210
 211int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
 212{
 213    int rc;
 214
 215    assert(sem->initialized);
 216    rc = WaitForSingleObject(sem->sema, ms);
 217    if (rc == WAIT_OBJECT_0) {
 218        return 0;
 219    }
 220    if (rc != WAIT_TIMEOUT) {
 221        error_exit(GetLastError(), __func__);
 222    }
 223    return -1;
 224}
 225
 226void qemu_sem_wait(QemuSemaphore *sem)
 227{
 228    assert(sem->initialized);
 229    if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
 230        error_exit(GetLastError(), __func__);
 231    }
 232}
 233
 234/* Wrap a Win32 manual-reset event with a fast userspace path.  The idea
 235 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
 236 * sequence.  Such a sequence is, indeed, how QemuEvents are used by
 237 * RCU and other subsystems!
 238 *
 239 * Valid transitions:
 240 * - free->set, when setting the event
 241 * - busy->set, when setting the event, followed by SetEvent
 242 * - set->free, when resetting the event
 243 * - free->busy, when waiting
 244 *
 245 * set->busy does not happen (it can be observed from the outside but
 246 * it really is set->free->busy).
 247 *
 248 * busy->free provably cannot happen; to enforce it, the set->free transition
 249 * is done with an OR, which becomes a no-op if the event has concurrently
 250 * transitioned to free or busy (and is faster than cmpxchg).
 251 */
 252
 253#define EV_SET         0
 254#define EV_FREE        1
 255#define EV_BUSY       -1
 256
 257void qemu_event_init(QemuEvent *ev, bool init)
 258{
 259    /* Manual reset.  */
 260    ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
 261    ev->value = (init ? EV_SET : EV_FREE);
 262    ev->initialized = true;
 263}
 264
 265void qemu_event_destroy(QemuEvent *ev)
 266{
 267    assert(ev->initialized);
 268    ev->initialized = false;
 269    CloseHandle(ev->event);
 270}
 271
 272void qemu_event_set(QemuEvent *ev)
 273{
 274    assert(ev->initialized);
 275
 276    /*
 277     * Pairs with both qemu_event_reset() and qemu_event_wait().
 278     *
 279     * qemu_event_set has release semantics, but because it *loads*
 280     * ev->value we need a full memory barrier here.
 281     */
 282    smp_mb();
 283    if (qatomic_read(&ev->value) != EV_SET) {
 284        int old = qatomic_xchg(&ev->value, EV_SET);
 285
 286        /* Pairs with memory barrier after ResetEvent.  */
 287        smp_mb__after_rmw();
 288        if (old == EV_BUSY) {
 289            /* There were waiters, wake them up.  */
 290            SetEvent(ev->event);
 291        }
 292    }
 293}
 294
 295void qemu_event_reset(QemuEvent *ev)
 296{
 297    assert(ev->initialized);
 298
 299    /*
 300     * If there was a concurrent reset (or even reset+wait),
 301     * do nothing.  Otherwise change EV_SET->EV_FREE.
 302     */
 303    qatomic_or(&ev->value, EV_FREE);
 304
 305    /*
 306     * Order reset before checking the condition in the caller.
 307     * Pairs with the first memory barrier in qemu_event_set().
 308     */
 309    smp_mb__after_rmw();
 310}
 311
 312void qemu_event_wait(QemuEvent *ev)
 313{
 314    unsigned value;
 315
 316    assert(ev->initialized);
 317
 318    /*
 319     * qemu_event_wait must synchronize with qemu_event_set even if it does
 320     * not go down the slow path, so this load-acquire is needed that
 321     * synchronizes with the first memory barrier in qemu_event_set().
 322     *
 323     * If we do go down the slow path, there is no requirement at all: we
 324     * might miss a qemu_event_set() here but ultimately the memory barrier in
 325     * qemu_futex_wait() will ensure the check is done correctly.
 326     */
 327    value = qatomic_load_acquire(&ev->value);
 328    if (value != EV_SET) {
 329        if (value == EV_FREE) {
 330            /*
 331             * Here the underlying kernel event is reset, but qemu_event_set is
 332             * not yet going to call SetEvent.  However, there will be another
 333             * check for EV_SET below when setting EV_BUSY.  At that point it
 334             * is safe to call WaitForSingleObject.
 335             */
 336            ResetEvent(ev->event);
 337
 338            /*
 339             * It is not clear whether ResetEvent provides this barrier; kernel
 340             * APIs (KeResetEvent/KeClearEvent) do not.  Better safe than sorry!
 341             */
 342            smp_mb();
 343
 344            /*
 345             * Leave the event reset and tell qemu_event_set that there are
 346             * waiters.  No need to retry, because there cannot be a concurrent
 347             * busy->free transition.  After the CAS, the event will be either
 348             * set or busy.
 349             */
 350            if (qatomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
 351                return;
 352            }
 353        }
 354
 355        /*
 356         * ev->value is now EV_BUSY.  Since we didn't observe EV_SET,
 357         * qemu_event_set() must observe EV_BUSY and call SetEvent().
 358         */
 359        WaitForSingleObject(ev->event, INFINITE);
 360    }
 361}
 362
 363struct QemuThreadData {
 364    /* Passed to win32_start_routine.  */
 365    void             *(*start_routine)(void *);
 366    void             *arg;
 367    short             mode;
 368    NotifierList      exit;
 369
 370    /* Only used for joinable threads. */
 371    bool              exited;
 372    void             *ret;
 373    CRITICAL_SECTION  cs;
 374};
 375
 376static bool atexit_registered;
 377static NotifierList main_thread_exit;
 378
 379static __thread QemuThreadData *qemu_thread_data;
 380
 381static void run_main_thread_exit(void)
 382{
 383    notifier_list_notify(&main_thread_exit, NULL);
 384}
 385
 386void qemu_thread_atexit_add(Notifier *notifier)
 387{
 388    if (!qemu_thread_data) {
 389        if (!atexit_registered) {
 390            atexit_registered = true;
 391            atexit(run_main_thread_exit);
 392        }
 393        notifier_list_add(&main_thread_exit, notifier);
 394    } else {
 395        notifier_list_add(&qemu_thread_data->exit, notifier);
 396    }
 397}
 398
 399void qemu_thread_atexit_remove(Notifier *notifier)
 400{
 401    notifier_remove(notifier);
 402}
 403
 404static unsigned __stdcall win32_start_routine(void *arg)
 405{
 406    QemuThreadData *data = (QemuThreadData *) arg;
 407    void *(*start_routine)(void *) = data->start_routine;
 408    void *thread_arg = data->arg;
 409
 410    qemu_thread_data = data;
 411    qemu_thread_exit(start_routine(thread_arg));
 412    abort();
 413}
 414
 415void qemu_thread_exit(void *arg)
 416{
 417    QemuThreadData *data = qemu_thread_data;
 418
 419    notifier_list_notify(&data->exit, NULL);
 420    if (data->mode == QEMU_THREAD_JOINABLE) {
 421        data->ret = arg;
 422        EnterCriticalSection(&data->cs);
 423        data->exited = true;
 424        LeaveCriticalSection(&data->cs);
 425    } else {
 426        g_free(data);
 427    }
 428    _endthreadex(0);
 429}
 430
 431void *qemu_thread_join(QemuThread *thread)
 432{
 433    QemuThreadData *data;
 434    void *ret;
 435    HANDLE handle;
 436
 437    data = thread->data;
 438    if (data->mode == QEMU_THREAD_DETACHED) {
 439        return NULL;
 440    }
 441
 442    /*
 443     * Because multiple copies of the QemuThread can exist via
 444     * qemu_thread_get_self, we need to store a value that cannot
 445     * leak there.  The simplest, non racy way is to store the TID,
 446     * discard the handle that _beginthreadex gives back, and
 447     * get another copy of the handle here.
 448     */
 449    handle = qemu_thread_get_handle(thread);
 450    if (handle) {
 451        WaitForSingleObject(handle, INFINITE);
 452        CloseHandle(handle);
 453    }
 454    ret = data->ret;
 455    DeleteCriticalSection(&data->cs);
 456    g_free(data);
 457    return ret;
 458}
 459
 460static bool set_thread_description(HANDLE h, const char *name)
 461{
 462    HRESULT hr;
 463    g_autofree wchar_t *namew = NULL;
 464
 465    if (!load_set_thread_description()) {
 466        return false;
 467    }
 468
 469    namew = g_utf8_to_utf16(name, -1, NULL, NULL, NULL);
 470    if (!namew) {
 471        return false;
 472    }
 473
 474    hr = SetThreadDescriptionFunc(h, namew);
 475
 476    return SUCCEEDED(hr);
 477}
 478
 479void qemu_thread_create(QemuThread *thread, const char *name,
 480                       void *(*start_routine)(void *),
 481                       void *arg, int mode)
 482{
 483    HANDLE hThread;
 484    struct QemuThreadData *data;
 485
 486    data = g_malloc(sizeof *data);
 487    data->start_routine = start_routine;
 488    data->arg = arg;
 489    data->mode = mode;
 490    data->exited = false;
 491    notifier_list_init(&data->exit);
 492
 493    if (data->mode != QEMU_THREAD_DETACHED) {
 494        InitializeCriticalSection(&data->cs);
 495    }
 496
 497    hThread = (HANDLE) _beginthreadex(NULL, 0, win32_start_routine,
 498                                      data, 0, &thread->tid);
 499    if (!hThread) {
 500        error_exit(GetLastError(), __func__);
 501    }
 502    if (name_threads && name && !set_thread_description(hThread, name)) {
 503        fprintf(stderr, "qemu: failed to set thread description: %s\n", name);
 504    }
 505    CloseHandle(hThread);
 506
 507    thread->data = data;
 508}
 509
 510int qemu_thread_set_affinity(QemuThread *thread, unsigned long *host_cpus,
 511                             unsigned long nbits)
 512{
 513    return -ENOSYS;
 514}
 515
 516int qemu_thread_get_affinity(QemuThread *thread, unsigned long **host_cpus,
 517                             unsigned long *nbits)
 518{
 519    return -ENOSYS;
 520}
 521
 522void qemu_thread_get_self(QemuThread *thread)
 523{
 524    thread->data = qemu_thread_data;
 525    thread->tid = GetCurrentThreadId();
 526}
 527
 528HANDLE qemu_thread_get_handle(QemuThread *thread)
 529{
 530    QemuThreadData *data;
 531    HANDLE handle;
 532
 533    data = thread->data;
 534    if (data->mode == QEMU_THREAD_DETACHED) {
 535        return NULL;
 536    }
 537
 538    EnterCriticalSection(&data->cs);
 539    if (!data->exited) {
 540        handle = OpenThread(SYNCHRONIZE | THREAD_SUSPEND_RESUME |
 541                            THREAD_SET_CONTEXT, FALSE, thread->tid);
 542    } else {
 543        handle = NULL;
 544    }
 545    LeaveCriticalSection(&data->cs);
 546    return handle;
 547}
 548
 549bool qemu_thread_is_self(QemuThread *thread)
 550{
 551    return GetCurrentThreadId() == thread->tid;
 552}
 553