qemu/hw/acpi/nvdimm.c
<<
>>
Prefs
   1/*
   2 * NVDIMM ACPI Implementation
   3 *
   4 * Copyright(C) 2015 Intel Corporation.
   5 *
   6 * Author:
   7 *  Xiao Guangrong <guangrong.xiao@linux.intel.com>
   8 *
   9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
  10 * and the DSM specification can be found at:
  11 *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
  12 *
  13 * Currently, it only supports PMEM Virtualization.
  14 *
  15 * This library is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU Lesser General Public
  17 * License as published by the Free Software Foundation; either
  18 * version 2 of the License, or (at your option) any later version.
  19 *
  20 * This library is distributed in the hope that it will be useful,
  21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  23 * Lesser General Public License for more details.
  24 *
  25 * You should have received a copy of the GNU Lesser General Public
  26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
  27 */
  28
  29#include "qemu/osdep.h"
  30#include "hw/acpi/acpi.h"
  31#include "hw/acpi/aml-build.h"
  32#include "hw/acpi/bios-linker-loader.h"
  33#include "hw/nvram/fw_cfg.h"
  34#include "hw/mem/nvdimm.h"
  35
  36static int nvdimm_plugged_device_list(Object *obj, void *opaque)
  37{
  38    GSList **list = opaque;
  39
  40    if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
  41        DeviceState *dev = DEVICE(obj);
  42
  43        if (dev->realized) { /* only realized NVDIMMs matter */
  44            *list = g_slist_append(*list, DEVICE(obj));
  45        }
  46    }
  47
  48    object_child_foreach(obj, nvdimm_plugged_device_list, opaque);
  49    return 0;
  50}
  51
  52/*
  53 * inquire plugged NVDIMM devices and link them into the list which is
  54 * returned to the caller.
  55 *
  56 * Note: it is the caller's responsibility to free the list to avoid
  57 * memory leak.
  58 */
  59static GSList *nvdimm_get_plugged_device_list(void)
  60{
  61    GSList *list = NULL;
  62
  63    object_child_foreach(qdev_get_machine(), nvdimm_plugged_device_list,
  64                         &list);
  65    return list;
  66}
  67
  68#define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7)             \
  69   { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
  70     (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff,          \
  71     (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
  72
  73/*
  74 * define Byte Addressable Persistent Memory (PM) Region according to
  75 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
  76 */
  77static const uint8_t nvdimm_nfit_spa_uuid[] =
  78      NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
  79                     0x18, 0xb7, 0x8c, 0xdb);
  80
  81/*
  82 * NVDIMM Firmware Interface Table
  83 * @signature: "NFIT"
  84 *
  85 * It provides information that allows OSPM to enumerate NVDIMM present in
  86 * the platform and associate system physical address ranges created by the
  87 * NVDIMMs.
  88 *
  89 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
  90 */
  91struct NvdimmNfitHeader {
  92    ACPI_TABLE_HEADER_DEF
  93    uint32_t reserved;
  94} QEMU_PACKED;
  95typedef struct NvdimmNfitHeader NvdimmNfitHeader;
  96
  97/*
  98 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
  99 * Interface Table (NFIT).
 100 */
 101
 102/*
 103 * System Physical Address Range Structure
 104 *
 105 * It describes the system physical address ranges occupied by NVDIMMs and
 106 * the types of the regions.
 107 */
 108struct NvdimmNfitSpa {
 109    uint16_t type;
 110    uint16_t length;
 111    uint16_t spa_index;
 112    uint16_t flags;
 113    uint32_t reserved;
 114    uint32_t proximity_domain;
 115    uint8_t type_guid[16];
 116    uint64_t spa_base;
 117    uint64_t spa_length;
 118    uint64_t mem_attr;
 119} QEMU_PACKED;
 120typedef struct NvdimmNfitSpa NvdimmNfitSpa;
 121
 122/*
 123 * Memory Device to System Physical Address Range Mapping Structure
 124 *
 125 * It enables identifying each NVDIMM region and the corresponding SPA
 126 * describing the memory interleave
 127 */
 128struct NvdimmNfitMemDev {
 129    uint16_t type;
 130    uint16_t length;
 131    uint32_t nfit_handle;
 132    uint16_t phys_id;
 133    uint16_t region_id;
 134    uint16_t spa_index;
 135    uint16_t dcr_index;
 136    uint64_t region_len;
 137    uint64_t region_offset;
 138    uint64_t region_dpa;
 139    uint16_t interleave_index;
 140    uint16_t interleave_ways;
 141    uint16_t flags;
 142    uint16_t reserved;
 143} QEMU_PACKED;
 144typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
 145
 146/*
 147 * NVDIMM Control Region Structure
 148 *
 149 * It describes the NVDIMM and if applicable, Block Control Window.
 150 */
 151struct NvdimmNfitControlRegion {
 152    uint16_t type;
 153    uint16_t length;
 154    uint16_t dcr_index;
 155    uint16_t vendor_id;
 156    uint16_t device_id;
 157    uint16_t revision_id;
 158    uint16_t sub_vendor_id;
 159    uint16_t sub_device_id;
 160    uint16_t sub_revision_id;
 161    uint8_t reserved[6];
 162    uint32_t serial_number;
 163    uint16_t fic;
 164    uint16_t num_bcw;
 165    uint64_t bcw_size;
 166    uint64_t cmd_offset;
 167    uint64_t cmd_size;
 168    uint64_t status_offset;
 169    uint64_t status_size;
 170    uint16_t flags;
 171    uint8_t reserved2[6];
 172} QEMU_PACKED;
 173typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
 174
 175/*
 176 * Module serial number is a unique number for each device. We use the
 177 * slot id of NVDIMM device to generate this number so that each device
 178 * associates with a different number.
 179 *
 180 * 0x123456 is a magic number we arbitrarily chose.
 181 */
 182static uint32_t nvdimm_slot_to_sn(int slot)
 183{
 184    return 0x123456 + slot;
 185}
 186
 187/*
 188 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
 189 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
 190 * by ACPI device _ADR method.
 191 *
 192 * We generate the handle with the slot id of NVDIMM device and reserve
 193 * 0 for NVDIMM root device.
 194 */
 195static uint32_t nvdimm_slot_to_handle(int slot)
 196{
 197    return slot + 1;
 198}
 199
 200/*
 201 * index uniquely identifies the structure, 0 is reserved which indicates
 202 * that the structure is not valid or the associated structure is not
 203 * present.
 204 *
 205 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
 206 * nfit_dc which are generated by the slot id of NVDIMM device.
 207 */
 208static uint16_t nvdimm_slot_to_spa_index(int slot)
 209{
 210    return (slot + 1) << 1;
 211}
 212
 213/* See the comments of nvdimm_slot_to_spa_index(). */
 214static uint32_t nvdimm_slot_to_dcr_index(int slot)
 215{
 216    return nvdimm_slot_to_spa_index(slot) + 1;
 217}
 218
 219/* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
 220static void
 221nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
 222{
 223    NvdimmNfitSpa *nfit_spa;
 224    uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
 225                                            NULL);
 226    uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
 227                                            NULL);
 228    uint32_t node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP,
 229                                            NULL);
 230    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 231                                            NULL);
 232
 233    nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
 234
 235    nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
 236                                      Structure */);
 237    nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
 238    nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
 239
 240    /*
 241     * Control region is strict as all the device info, such as SN, index,
 242     * is associated with slot id.
 243     */
 244    nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
 245                                       management during hot add/online
 246                                       operation */ |
 247                                  2 /* Data in Proximity Domain field is
 248                                       valid*/);
 249
 250    /* NUMA node. */
 251    nfit_spa->proximity_domain = cpu_to_le32(node);
 252    /* the region reported as PMEM. */
 253    memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
 254           sizeof(nvdimm_nfit_spa_uuid));
 255
 256    nfit_spa->spa_base = cpu_to_le64(addr);
 257    nfit_spa->spa_length = cpu_to_le64(size);
 258
 259    /* It is the PMEM and can be cached as writeback. */
 260    nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
 261                                     0x8000ULL /* EFI_MEMORY_NV */);
 262}
 263
 264/*
 265 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
 266 * Structure
 267 */
 268static void
 269nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
 270{
 271    NvdimmNfitMemDev *nfit_memdev;
 272    uint64_t addr = object_property_get_int(OBJECT(dev), PC_DIMM_ADDR_PROP,
 273                                            NULL);
 274    uint64_t size = object_property_get_int(OBJECT(dev), PC_DIMM_SIZE_PROP,
 275                                            NULL);
 276    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 277                                            NULL);
 278    uint32_t handle = nvdimm_slot_to_handle(slot);
 279
 280    nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
 281
 282    nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
 283                                         Range Map Structure*/);
 284    nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
 285    nfit_memdev->nfit_handle = cpu_to_le32(handle);
 286
 287    /*
 288     * associate memory device with System Physical Address Range
 289     * Structure.
 290     */
 291    nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
 292    /* associate memory device with Control Region Structure. */
 293    nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
 294
 295    /* The memory region on the device. */
 296    nfit_memdev->region_len = cpu_to_le64(size);
 297    nfit_memdev->region_dpa = cpu_to_le64(addr);
 298
 299    /* Only one interleave for PMEM. */
 300    nfit_memdev->interleave_ways = cpu_to_le16(1);
 301}
 302
 303/*
 304 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
 305 */
 306static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
 307{
 308    NvdimmNfitControlRegion *nfit_dcr;
 309    int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 310                                       NULL);
 311    uint32_t sn = nvdimm_slot_to_sn(slot);
 312
 313    nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
 314
 315    nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
 316    nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
 317    nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
 318
 319    /* vendor: Intel. */
 320    nfit_dcr->vendor_id = cpu_to_le16(0x8086);
 321    nfit_dcr->device_id = cpu_to_le16(1);
 322
 323    /* The _DSM method is following Intel's DSM specification. */
 324    nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
 325                                             in ACPI 6.0 is 1. */);
 326    nfit_dcr->serial_number = cpu_to_le32(sn);
 327    nfit_dcr->fic = cpu_to_le16(0x201 /* Format Interface Code. See Chapter
 328                                         2: NVDIMM Device Specific Method
 329                                         (DSM) in DSM Spec Rev1.*/);
 330}
 331
 332static GArray *nvdimm_build_device_structure(GSList *device_list)
 333{
 334    GArray *structures = g_array_new(false, true /* clear */, 1);
 335
 336    for (; device_list; device_list = device_list->next) {
 337        DeviceState *dev = device_list->data;
 338
 339        /* build System Physical Address Range Structure. */
 340        nvdimm_build_structure_spa(structures, dev);
 341
 342        /*
 343         * build Memory Device to System Physical Address Range Mapping
 344         * Structure.
 345         */
 346        nvdimm_build_structure_memdev(structures, dev);
 347
 348        /* build NVDIMM Control Region Structure. */
 349        nvdimm_build_structure_dcr(structures, dev);
 350    }
 351
 352    return structures;
 353}
 354
 355static void nvdimm_build_nfit(GSList *device_list, GArray *table_offsets,
 356                              GArray *table_data, GArray *linker)
 357{
 358    GArray *structures = nvdimm_build_device_structure(device_list);
 359    unsigned int header;
 360
 361    acpi_add_table(table_offsets, table_data);
 362
 363    /* NFIT header. */
 364    header = table_data->len;
 365    acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
 366    /* NVDIMM device structures. */
 367    g_array_append_vals(table_data, structures->data, structures->len);
 368
 369    build_header(linker, table_data,
 370                 (void *)(table_data->data + header), "NFIT",
 371                 sizeof(NvdimmNfitHeader) + structures->len, 1, NULL, NULL);
 372    g_array_free(structures, true);
 373}
 374
 375struct NvdimmDsmIn {
 376    uint32_t handle;
 377    uint32_t revision;
 378    uint32_t function;
 379    /* the remaining size in the page is used by arg3. */
 380    union {
 381        uint8_t arg3[0];
 382    };
 383} QEMU_PACKED;
 384typedef struct NvdimmDsmIn NvdimmDsmIn;
 385
 386struct NvdimmDsmOut {
 387    /* the size of buffer filled by QEMU. */
 388    uint32_t len;
 389    uint8_t data[0];
 390} QEMU_PACKED;
 391typedef struct NvdimmDsmOut NvdimmDsmOut;
 392
 393struct NvdimmDsmFunc0Out {
 394    /* the size of buffer filled by QEMU. */
 395     uint32_t len;
 396     uint32_t supported_func;
 397} QEMU_PACKED;
 398typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
 399
 400struct NvdimmDsmFuncNoPayloadOut {
 401    /* the size of buffer filled by QEMU. */
 402     uint32_t len;
 403     uint32_t func_ret_status;
 404} QEMU_PACKED;
 405typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
 406
 407static uint64_t
 408nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
 409{
 410    nvdimm_debug("BUG: we never read _DSM IO Port.\n");
 411    return 0;
 412}
 413
 414static void
 415nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
 416{
 417    NvdimmDsmIn *in;
 418    hwaddr dsm_mem_addr = val;
 419
 420    nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
 421
 422    /*
 423     * The DSM memory is mapped to guest address space so an evil guest
 424     * can change its content while we are doing DSM emulation. Avoid
 425     * this by copying DSM memory to QEMU local memory.
 426     */
 427    in = g_malloc(TARGET_PAGE_SIZE);
 428    cpu_physical_memory_read(dsm_mem_addr, in, TARGET_PAGE_SIZE);
 429
 430    le32_to_cpus(&in->revision);
 431    le32_to_cpus(&in->function);
 432    le32_to_cpus(&in->handle);
 433
 434    nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
 435                 in->handle, in->function);
 436
 437    /*
 438     * function 0 is called to inquire which functions are supported by
 439     * OSPM
 440     */
 441    if (in->function == 0) {
 442        NvdimmDsmFunc0Out func0 = {
 443            .len = cpu_to_le32(sizeof(func0)),
 444             /* No function supported other than function 0 */
 445            .supported_func = cpu_to_le32(0),
 446        };
 447        cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof func0);
 448    } else {
 449        /* No function except function 0 is supported yet. */
 450        NvdimmDsmFuncNoPayloadOut out = {
 451            .len = cpu_to_le32(sizeof(out)),
 452            .func_ret_status = cpu_to_le32(1)  /* Not Supported */,
 453        };
 454        cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
 455    }
 456
 457    g_free(in);
 458}
 459
 460static const MemoryRegionOps nvdimm_dsm_ops = {
 461    .read = nvdimm_dsm_read,
 462    .write = nvdimm_dsm_write,
 463    .endianness = DEVICE_LITTLE_ENDIAN,
 464    .valid = {
 465        .min_access_size = 4,
 466        .max_access_size = 4,
 467    },
 468};
 469
 470void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
 471                            FWCfgState *fw_cfg, Object *owner)
 472{
 473    memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
 474                          "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
 475    memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
 476
 477    state->dsm_mem = g_array_new(false, true /* clear */, 1);
 478    acpi_data_push(state->dsm_mem, TARGET_PAGE_SIZE);
 479    fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
 480                    state->dsm_mem->len);
 481}
 482
 483#define NVDIMM_COMMON_DSM      "NCAL"
 484#define NVDIMM_ACPI_MEM_ADDR   "MEMA"
 485
 486static void nvdimm_build_common_dsm(Aml *dev)
 487{
 488    Aml *method, *ifctx, *function, *dsm_mem, *unpatched, *result_size;
 489    uint8_t byte_list[1];
 490
 491    method = aml_method(NVDIMM_COMMON_DSM, 4, AML_SERIALIZED);
 492    function = aml_arg(2);
 493    dsm_mem = aml_name(NVDIMM_ACPI_MEM_ADDR);
 494
 495    /*
 496     * do not support any method if DSM memory address has not been
 497     * patched.
 498     */
 499    unpatched = aml_if(aml_equal(dsm_mem, aml_int(0x0)));
 500
 501    /*
 502     * function 0 is called to inquire what functions are supported by
 503     * OSPM
 504     */
 505    ifctx = aml_if(aml_equal(function, aml_int(0)));
 506    byte_list[0] = 0 /* No function Supported */;
 507    aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
 508    aml_append(unpatched, ifctx);
 509
 510    /* No function is supported yet. */
 511    byte_list[0] = 1 /* Not Supported */;
 512    aml_append(unpatched, aml_return(aml_buffer(1, byte_list)));
 513    aml_append(method, unpatched);
 514
 515    /*
 516     * The HDLE indicates the DSM function is issued from which device,
 517     * it is not used at this time as no function is supported yet.
 518     * Currently we make it always be 0 for all the devices and will set
 519     * the appropriate value once real function is implemented.
 520     */
 521    aml_append(method, aml_store(aml_int(0x0), aml_name("HDLE")));
 522    aml_append(method, aml_store(aml_arg(1), aml_name("REVS")));
 523    aml_append(method, aml_store(aml_arg(2), aml_name("FUNC")));
 524
 525    /*
 526     * tell QEMU about the real address of DSM memory, then QEMU
 527     * gets the control and fills the result in DSM memory.
 528     */
 529    aml_append(method, aml_store(dsm_mem, aml_name("NTFI")));
 530
 531    result_size = aml_local(1);
 532    aml_append(method, aml_store(aml_name("RLEN"), result_size));
 533    aml_append(method, aml_store(aml_shiftleft(result_size, aml_int(3)),
 534                                 result_size));
 535    aml_append(method, aml_create_field(aml_name("ODAT"), aml_int(0),
 536                                        result_size, "OBUF"));
 537    aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
 538                                       aml_arg(6)));
 539    aml_append(method, aml_return(aml_arg(6)));
 540    aml_append(dev, method);
 541}
 542
 543static void nvdimm_build_device_dsm(Aml *dev)
 544{
 545    Aml *method;
 546
 547    method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
 548    aml_append(method, aml_return(aml_call4(NVDIMM_COMMON_DSM, aml_arg(0),
 549                                  aml_arg(1), aml_arg(2), aml_arg(3))));
 550    aml_append(dev, method);
 551}
 552
 553static void nvdimm_build_nvdimm_devices(GSList *device_list, Aml *root_dev)
 554{
 555    for (; device_list; device_list = device_list->next) {
 556        DeviceState *dev = device_list->data;
 557        int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
 558                                           NULL);
 559        uint32_t handle = nvdimm_slot_to_handle(slot);
 560        Aml *nvdimm_dev;
 561
 562        nvdimm_dev = aml_device("NV%02X", slot);
 563
 564        /*
 565         * ACPI 6.0: 9.20 NVDIMM Devices:
 566         *
 567         * _ADR object that is used to supply OSPM with unique address
 568         * of the NVDIMM device. This is done by returning the NFIT Device
 569         * handle that is used to identify the associated entries in ACPI
 570         * table NFIT or _FIT.
 571         */
 572        aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
 573
 574        nvdimm_build_device_dsm(nvdimm_dev);
 575        aml_append(root_dev, nvdimm_dev);
 576    }
 577}
 578
 579static void nvdimm_build_ssdt(GSList *device_list, GArray *table_offsets,
 580                              GArray *table_data, GArray *linker)
 581{
 582    Aml *ssdt, *sb_scope, *dev, *field;
 583    int mem_addr_offset, nvdimm_ssdt;
 584
 585    acpi_add_table(table_offsets, table_data);
 586
 587    ssdt = init_aml_allocator();
 588    acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
 589
 590    sb_scope = aml_scope("\\_SB");
 591
 592    dev = aml_device("NVDR");
 593
 594    /*
 595     * ACPI 6.0: 9.20 NVDIMM Devices:
 596     *
 597     * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
 598     * NVDIMM interface device. Platform firmware is required to contain one
 599     * such device in _SB scope if NVDIMMs support is exposed by platform to
 600     * OSPM.
 601     * For each NVDIMM present or intended to be supported by platform,
 602     * platform firmware also exposes an ACPI Namespace Device under the
 603     * root device.
 604     */
 605    aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
 606
 607    /* map DSM memory and IO into ACPI namespace. */
 608    aml_append(dev, aml_operation_region("NPIO", AML_SYSTEM_IO,
 609               aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
 610    aml_append(dev, aml_operation_region("NRAM", AML_SYSTEM_MEMORY,
 611               aml_name(NVDIMM_ACPI_MEM_ADDR), TARGET_PAGE_SIZE));
 612
 613    /*
 614     * DSM notifier:
 615     * NTFI: write the address of DSM memory and notify QEMU to emulate
 616     *       the access.
 617     *
 618     * It is the IO port so that accessing them will cause VM-exit, the
 619     * control will be transferred to QEMU.
 620     */
 621    field = aml_field("NPIO", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
 622    aml_append(field, aml_named_field("NTFI",
 623               sizeof(uint32_t) * BITS_PER_BYTE));
 624    aml_append(dev, field);
 625
 626    /*
 627     * DSM input:
 628     * HDLE: store device's handle, it's zero if the _DSM call happens
 629     *       on NVDIMM Root Device.
 630     * REVS: store the Arg1 of _DSM call.
 631     * FUNC: store the Arg2 of _DSM call.
 632     * ARG3: store the Arg3 of _DSM call.
 633     *
 634     * They are RAM mapping on host so that these accesses never cause
 635     * VM-EXIT.
 636     */
 637    field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
 638    aml_append(field, aml_named_field("HDLE",
 639               sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
 640    aml_append(field, aml_named_field("REVS",
 641               sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
 642    aml_append(field, aml_named_field("FUNC",
 643               sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
 644    aml_append(field, aml_named_field("ARG3",
 645               (TARGET_PAGE_SIZE - offsetof(NvdimmDsmIn, arg3)) *
 646                BITS_PER_BYTE));
 647    aml_append(dev, field);
 648
 649    /*
 650     * DSM output:
 651     * RLEN: the size of the buffer filled by QEMU.
 652     * ODAT: the buffer QEMU uses to store the result.
 653     *
 654     * Since the page is reused by both input and out, the input data
 655     * will be lost after storing new result into ODAT so we should fetch
 656     * all the input data before writing the result.
 657     */
 658    field = aml_field("NRAM", AML_DWORD_ACC, AML_NOLOCK, AML_PRESERVE);
 659    aml_append(field, aml_named_field("RLEN",
 660               sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
 661    aml_append(field, aml_named_field("ODAT",
 662               (TARGET_PAGE_SIZE - offsetof(NvdimmDsmOut, data)) *
 663                     BITS_PER_BYTE));
 664    aml_append(dev, field);
 665
 666    nvdimm_build_common_dsm(dev);
 667    nvdimm_build_device_dsm(dev);
 668
 669    nvdimm_build_nvdimm_devices(device_list, dev);
 670
 671    aml_append(sb_scope, dev);
 672    aml_append(ssdt, sb_scope);
 673
 674    nvdimm_ssdt = table_data->len;
 675
 676    /* copy AML table into ACPI tables blob and patch header there */
 677    g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
 678    mem_addr_offset = build_append_named_dword(table_data,
 679                                               NVDIMM_ACPI_MEM_ADDR);
 680
 681    bios_linker_loader_alloc(linker, NVDIMM_DSM_MEM_FILE, TARGET_PAGE_SIZE,
 682                             false /* high memory */);
 683    bios_linker_loader_add_pointer(linker, ACPI_BUILD_TABLE_FILE,
 684                                   NVDIMM_DSM_MEM_FILE, table_data,
 685                                   table_data->data + mem_addr_offset,
 686                                   sizeof(uint32_t));
 687    build_header(linker, table_data,
 688        (void *)(table_data->data + nvdimm_ssdt),
 689        "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
 690    free_aml_allocator();
 691}
 692
 693void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
 694                       GArray *linker)
 695{
 696    GSList *device_list;
 697
 698    /* no NVDIMM device is plugged. */
 699    device_list = nvdimm_get_plugged_device_list();
 700    if (!device_list) {
 701        return;
 702    }
 703    nvdimm_build_nfit(device_list, table_offsets, table_data, linker);
 704    nvdimm_build_ssdt(device_list, table_offsets, table_data, linker);
 705    g_slist_free(device_list);
 706}
 707