qemu/hw/audio/fmopl.c
<<
>>
Prefs
   1/*
   2**
   3** File: fmopl.c -- software implementation of FM sound generator
   4**
   5** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
   6**
   7** Version 0.37a
   8**
   9*/
  10
  11/*
  12        preliminary :
  13        Problem :
  14        note:
  15*/
  16
  17/* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
  18 *
  19 * This library is free software; you can redistribute it and/or
  20 * modify it under the terms of the GNU Lesser General Public
  21 * License as published by the Free Software Foundation; either
  22 * version 2.1 of the License, or (at your option) any later version.
  23 *
  24 * This library is distributed in the hope that it will be useful,
  25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  27 * Lesser General Public License for more details.
  28 *
  29 * You should have received a copy of the GNU Lesser General Public
  30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  31 */
  32
  33#define HAS_YM3812      1
  34
  35#include "qemu/osdep.h"
  36#include <math.h>
  37//#include "driver.h"           /* use M.A.M.E. */
  38#include "fmopl.h"
  39
  40#ifndef PI
  41#define PI 3.14159265358979323846
  42#endif
  43
  44#ifndef ARRAY_SIZE
  45#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
  46#endif
  47
  48/* -------------------- for debug --------------------- */
  49/* #define OPL_OUTPUT_LOG */
  50#ifdef OPL_OUTPUT_LOG
  51static FILE *opl_dbg_fp = NULL;
  52static FM_OPL *opl_dbg_opl[16];
  53static int opl_dbg_maxchip,opl_dbg_chip;
  54#endif
  55
  56/* -------------------- preliminary define section --------------------- */
  57/* attack/decay rate time rate */
  58#define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
  59#define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
  60
  61#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
  62
  63#define FREQ_BITS 24                    /* frequency turn          */
  64
  65/* counter bits = 20 , octerve 7 */
  66#define FREQ_RATE   (1<<(FREQ_BITS-20))
  67#define TL_BITS    (FREQ_BITS+2)
  68
  69/* final output shift , limit minimum and maximum */
  70#define OPL_OUTSB   (TL_BITS+3-16)              /* OPL output final shift 16bit */
  71#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
  72#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
  73
  74/* -------------------- quality selection --------------------- */
  75
  76/* sinwave entries */
  77/* used static memory = SIN_ENT * 4 (byte) */
  78#define SIN_ENT 2048
  79
  80/* output level entries (envelope,sinwave) */
  81/* envelope counter lower bits */
  82#define ENV_BITS 16
  83/* envelope output entries */
  84#define EG_ENT   4096
  85/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
  86/* used static  memory = EG_ENT*4 (byte)                     */
  87
  88#define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
  89#define EG_DED   EG_OFF
  90#define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
  91#define EG_AED   EG_DST
  92#define EG_AST   0                       /* ATTACK START */
  93
  94#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
  95
  96/* LFO table entries */
  97#define VIB_ENT 512
  98#define VIB_SHIFT (32-9)
  99#define AMS_ENT 512
 100#define AMS_SHIFT (32-9)
 101
 102#define VIB_RATE 256
 103
 104/* -------------------- local defines , macros --------------------- */
 105
 106/* register number to channel number , slot offset */
 107#define SLOT1 0
 108#define SLOT2 1
 109
 110/* envelope phase */
 111#define ENV_MOD_RR  0x00
 112#define ENV_MOD_DR  0x01
 113#define ENV_MOD_AR  0x02
 114
 115/* -------------------- tables --------------------- */
 116static const int slot_array[32]=
 117{
 118         0, 2, 4, 1, 3, 5,-1,-1,
 119         6, 8,10, 7, 9,11,-1,-1,
 120        12,14,16,13,15,17,-1,-1,
 121        -1,-1,-1,-1,-1,-1,-1,-1
 122};
 123
 124/* key scale level */
 125/* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
 126#define DV (EG_STEP/2)
 127static const UINT32 KSL_TABLE[8*16]=
 128{
 129        /* OCT 0 */
 130         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 131         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 132         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 133         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 134        /* OCT 1 */
 135         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 136         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 137         0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
 138         1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
 139        /* OCT 2 */
 140         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
 141         0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
 142         3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
 143         4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
 144        /* OCT 3 */
 145         0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
 146         3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
 147         6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
 148         7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
 149        /* OCT 4 */
 150         0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
 151         6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
 152         9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
 153        10.875/DV,11.250/DV,11.625/DV,12.000/DV,
 154        /* OCT 5 */
 155         0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
 156         9.000/DV,10.125/DV,10.875/DV,11.625/DV,
 157        12.000/DV,12.750/DV,13.125/DV,13.500/DV,
 158        13.875/DV,14.250/DV,14.625/DV,15.000/DV,
 159        /* OCT 6 */
 160         0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
 161        12.000/DV,13.125/DV,13.875/DV,14.625/DV,
 162        15.000/DV,15.750/DV,16.125/DV,16.500/DV,
 163        16.875/DV,17.250/DV,17.625/DV,18.000/DV,
 164        /* OCT 7 */
 165         0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
 166        15.000/DV,16.125/DV,16.875/DV,17.625/DV,
 167        18.000/DV,18.750/DV,19.125/DV,19.500/DV,
 168        19.875/DV,20.250/DV,20.625/DV,21.000/DV
 169};
 170#undef DV
 171
 172/* sustain lebel table (3db per step) */
 173/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
 174#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
 175static const INT32 SL_TABLE[16]={
 176 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
 177 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
 178};
 179#undef SC
 180
 181#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
 182/* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
 183/* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
 184/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
 185static INT32 *TL_TABLE;
 186
 187/* pointers to TL_TABLE with sinwave output offset */
 188static INT32 **SIN_TABLE;
 189
 190/* LFO table */
 191static INT32 *AMS_TABLE;
 192static INT32 *VIB_TABLE;
 193
 194/* envelope output curve table */
 195/* attack + decay + OFF */
 196static INT32 ENV_CURVE[2*EG_ENT+1];
 197
 198/* multiple table */
 199#define ML 2
 200static const UINT32 MUL_TABLE[16]= {
 201/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
 202   0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
 203   8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
 204};
 205#undef ML
 206
 207/* dummy attack / decay rate ( when rate == 0 ) */
 208static INT32 RATE_0[16]=
 209{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 210
 211/* -------------------- static state --------------------- */
 212
 213/* lock level of common table */
 214static int num_lock = 0;
 215
 216/* work table */
 217static void *cur_chip = NULL;   /* current chip point */
 218/* currenct chip state */
 219/* static OPLSAMPLE  *bufL,*bufR; */
 220static OPL_CH *S_CH;
 221static OPL_CH *E_CH;
 222static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
 223
 224static INT32 outd[1];
 225static INT32 ams;
 226static INT32 vib;
 227static INT32 *ams_table;
 228static INT32 *vib_table;
 229static INT32 amsIncr;
 230static INT32 vibIncr;
 231static INT32 feedback2;         /* connect for SLOT 2 */
 232
 233/* log output level */
 234#define LOG_ERR  3      /* ERROR       */
 235#define LOG_WAR  2      /* WARNING     */
 236#define LOG_INF  1      /* INFORMATION */
 237
 238//#define LOG_LEVEL LOG_INF
 239#define LOG_LEVEL       LOG_ERR
 240
 241//#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
 242#define LOG(n,x)
 243
 244/* --------------------- subroutines  --------------------- */
 245
 246static inline int Limit( int val, int max, int min ) {
 247        if ( val > max )
 248                val = max;
 249        else if ( val < min )
 250                val = min;
 251
 252        return val;
 253}
 254
 255/* status set and IRQ handling */
 256static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
 257{
 258        /* set status flag */
 259        OPL->status |= flag;
 260        if(!(OPL->status & 0x80))
 261        {
 262                if(OPL->status & OPL->statusmask)
 263                {       /* IRQ on */
 264                        OPL->status |= 0x80;
 265                        /* callback user interrupt handler (IRQ is OFF to ON) */
 266                        if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
 267                }
 268        }
 269}
 270
 271/* status reset and IRQ handling */
 272static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
 273{
 274        /* reset status flag */
 275        OPL->status &=~flag;
 276        if((OPL->status & 0x80))
 277        {
 278                if (!(OPL->status & OPL->statusmask) )
 279                {
 280                        OPL->status &= 0x7f;
 281                        /* callback user interrupt handler (IRQ is ON to OFF) */
 282                        if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
 283                }
 284        }
 285}
 286
 287/* IRQ mask set */
 288static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
 289{
 290        OPL->statusmask = flag;
 291        /* IRQ handling check */
 292        OPL_STATUS_SET(OPL,0);
 293        OPL_STATUS_RESET(OPL,0);
 294}
 295
 296/* ----- key on  ----- */
 297static inline void OPL_KEYON(OPL_SLOT *SLOT)
 298{
 299        /* sin wave restart */
 300        SLOT->Cnt = 0;
 301        /* set attack */
 302        SLOT->evm = ENV_MOD_AR;
 303        SLOT->evs = SLOT->evsa;
 304        SLOT->evc = EG_AST;
 305        SLOT->eve = EG_AED;
 306}
 307/* ----- key off ----- */
 308static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
 309{
 310        if( SLOT->evm > ENV_MOD_RR)
 311        {
 312                /* set envelope counter from envleope output */
 313                SLOT->evm = ENV_MOD_RR;
 314                if( !(SLOT->evc&EG_DST) )
 315                        //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
 316                        SLOT->evc = EG_DST;
 317                SLOT->eve = EG_DED;
 318                SLOT->evs = SLOT->evsr;
 319        }
 320}
 321
 322/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
 323/* return : envelope output */
 324static inline UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
 325{
 326        /* calcrate envelope generator */
 327        if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
 328        {
 329                switch( SLOT->evm ){
 330                case ENV_MOD_AR: /* ATTACK -> DECAY1 */
 331                        /* next DR */
 332                        SLOT->evm = ENV_MOD_DR;
 333                        SLOT->evc = EG_DST;
 334                        SLOT->eve = SLOT->SL;
 335                        SLOT->evs = SLOT->evsd;
 336                        break;
 337                case ENV_MOD_DR: /* DECAY -> SL or RR */
 338                        SLOT->evc = SLOT->SL;
 339                        SLOT->eve = EG_DED;
 340                        if(SLOT->eg_typ)
 341                        {
 342                                SLOT->evs = 0;
 343                        }
 344                        else
 345                        {
 346                                SLOT->evm = ENV_MOD_RR;
 347                                SLOT->evs = SLOT->evsr;
 348                        }
 349                        break;
 350                case ENV_MOD_RR: /* RR -> OFF */
 351                        SLOT->evc = EG_OFF;
 352                        SLOT->eve = EG_OFF+1;
 353                        SLOT->evs = 0;
 354                        break;
 355                }
 356        }
 357        /* calcrate envelope */
 358        return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
 359}
 360
 361/* set algorithm connection */
 362static void set_algorithm( OPL_CH *CH)
 363{
 364        INT32 *carrier = &outd[0];
 365        CH->connect1 = CH->CON ? carrier : &feedback2;
 366        CH->connect2 = carrier;
 367}
 368
 369/* ---------- frequency counter for operater update ---------- */
 370static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
 371{
 372        int ksr;
 373
 374        /* frequency step counter */
 375        SLOT->Incr = CH->fc * SLOT->mul;
 376        ksr = CH->kcode >> SLOT->KSR;
 377
 378        if( SLOT->ksr != ksr )
 379        {
 380                SLOT->ksr = ksr;
 381                /* attack , decay rate recalcration */
 382                SLOT->evsa = SLOT->AR[ksr];
 383                SLOT->evsd = SLOT->DR[ksr];
 384                SLOT->evsr = SLOT->RR[ksr];
 385        }
 386        SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
 387}
 388
 389/* set multi,am,vib,EG-TYP,KSR,mul */
 390static inline void set_mul(FM_OPL *OPL,int slot,int v)
 391{
 392        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 393        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 394
 395        SLOT->mul    = MUL_TABLE[v&0x0f];
 396        SLOT->KSR    = (v&0x10) ? 0 : 2;
 397        SLOT->eg_typ = (v&0x20)>>5;
 398        SLOT->vib    = (v&0x40);
 399        SLOT->ams    = (v&0x80);
 400        CALC_FCSLOT(CH,SLOT);
 401}
 402
 403/* set ksl & tl */
 404static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
 405{
 406        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 407        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 408        int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
 409
 410        SLOT->ksl = ksl ? 3-ksl : 31;
 411        SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
 412
 413        if( !(OPL->mode&0x80) )
 414        {       /* not CSM latch total level */
 415                SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
 416        }
 417}
 418
 419/* set attack rate & decay rate  */
 420static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
 421{
 422        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 423        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 424        int ar = v>>4;
 425        int dr = v&0x0f;
 426
 427        SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
 428        SLOT->evsa = SLOT->AR[SLOT->ksr];
 429        if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
 430
 431        SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
 432        SLOT->evsd = SLOT->DR[SLOT->ksr];
 433        if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
 434}
 435
 436/* set sustain level & release rate */
 437static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
 438{
 439        OPL_CH   *CH   = &OPL->P_CH[slot/2];
 440        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
 441        int sl = v>>4;
 442        int rr = v & 0x0f;
 443
 444        SLOT->SL = SL_TABLE[sl];
 445        if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
 446        SLOT->RR = &OPL->DR_TABLE[rr<<2];
 447        SLOT->evsr = SLOT->RR[SLOT->ksr];
 448        if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
 449}
 450
 451/* operator output calcrator */
 452#define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
 453/* ---------- calcrate one of channel ---------- */
 454static inline void OPL_CALC_CH( OPL_CH *CH )
 455{
 456        UINT32 env_out;
 457        OPL_SLOT *SLOT;
 458
 459        feedback2 = 0;
 460        /* SLOT 1 */
 461        SLOT = &CH->SLOT[SLOT1];
 462        env_out=OPL_CALC_SLOT(SLOT);
 463        if( env_out < EG_ENT-1 )
 464        {
 465                /* PG */
 466                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 467                else          SLOT->Cnt += SLOT->Incr;
 468                /* connectoion */
 469                if(CH->FB)
 470                {
 471                        int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
 472                        CH->op1_out[1] = CH->op1_out[0];
 473                        *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
 474                }
 475                else
 476                {
 477                        *CH->connect1 += OP_OUT(SLOT,env_out,0);
 478                }
 479        }else
 480        {
 481                CH->op1_out[1] = CH->op1_out[0];
 482                CH->op1_out[0] = 0;
 483        }
 484        /* SLOT 2 */
 485        SLOT = &CH->SLOT[SLOT2];
 486        env_out=OPL_CALC_SLOT(SLOT);
 487        if( env_out < EG_ENT-1 )
 488        {
 489                /* PG */
 490                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 491                else          SLOT->Cnt += SLOT->Incr;
 492                /* connectoion */
 493                outd[0] += OP_OUT(SLOT,env_out, feedback2);
 494        }
 495}
 496
 497/* ---------- calcrate rhythm block ---------- */
 498#define WHITE_NOISE_db 6.0
 499static inline void OPL_CALC_RH( OPL_CH *CH )
 500{
 501        UINT32 env_tam,env_sd,env_top,env_hh;
 502        int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
 503        INT32 tone8;
 504
 505        OPL_SLOT *SLOT;
 506        int env_out;
 507
 508        /* BD : same as FM serial mode and output level is large */
 509        feedback2 = 0;
 510        /* SLOT 1 */
 511        SLOT = &CH[6].SLOT[SLOT1];
 512        env_out=OPL_CALC_SLOT(SLOT);
 513        if( env_out < EG_ENT-1 )
 514        {
 515                /* PG */
 516                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 517                else          SLOT->Cnt += SLOT->Incr;
 518                /* connectoion */
 519                if(CH[6].FB)
 520                {
 521                        int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
 522                        CH[6].op1_out[1] = CH[6].op1_out[0];
 523                        feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
 524                }
 525                else
 526                {
 527                        feedback2 = OP_OUT(SLOT,env_out,0);
 528                }
 529        }else
 530        {
 531                feedback2 = 0;
 532                CH[6].op1_out[1] = CH[6].op1_out[0];
 533                CH[6].op1_out[0] = 0;
 534        }
 535        /* SLOT 2 */
 536        SLOT = &CH[6].SLOT[SLOT2];
 537        env_out=OPL_CALC_SLOT(SLOT);
 538        if( env_out < EG_ENT-1 )
 539        {
 540                /* PG */
 541                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
 542                else          SLOT->Cnt += SLOT->Incr;
 543                /* connectoion */
 544                outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
 545        }
 546
 547        // SD  (17) = mul14[fnum7] + white noise
 548        // TAM (15) = mul15[fnum8]
 549        // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
 550        // HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
 551        env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
 552        env_tam=OPL_CALC_SLOT(SLOT8_1);
 553        env_top=OPL_CALC_SLOT(SLOT8_2);
 554        env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
 555
 556        /* PG */
 557        if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
 558        else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
 559        if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
 560        else             SLOT7_2->Cnt += (CH[7].fc*8);
 561        if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
 562        else             SLOT8_1->Cnt += SLOT8_1->Incr;
 563        if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
 564        else             SLOT8_2->Cnt += (CH[8].fc*48);
 565
 566        tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
 567
 568        /* SD */
 569        if( env_sd < EG_ENT-1 )
 570                outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
 571        /* TAM */
 572        if( env_tam < EG_ENT-1 )
 573                outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
 574        /* TOP-CY */
 575        if( env_top < EG_ENT-1 )
 576                outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
 577        /* HH */
 578        if( env_hh  < EG_ENT-1 )
 579                outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
 580}
 581
 582/* ----------- initialize time tabls ----------- */
 583static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
 584{
 585        int i;
 586        double rate;
 587
 588        /* make attack rate & decay rate tables */
 589        for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
 590        for (i = 4;i <= 60;i++){
 591                rate  = OPL->freqbase;                                          /* frequency rate */
 592                if( i < 60 ) rate *= 1.0+(i&3)*0.25;            /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
 593                rate *= 1<<((i>>2)-1);                                          /* b2-5 : shift bit */
 594                rate *= (double)(EG_ENT<<ENV_BITS);
 595                OPL->AR_TABLE[i] = rate / ARRATE;
 596                OPL->DR_TABLE[i] = rate / DRRATE;
 597        }
 598        for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
 599        {
 600                OPL->AR_TABLE[i] = EG_AED-1;
 601                OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
 602        }
 603#if 0
 604        for (i = 0;i < 64 ;i++){        /* make for overflow area */
 605                LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
 606                        ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
 607                        ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
 608        }
 609#endif
 610}
 611
 612/* ---------- generic table initialize ---------- */
 613static int OPLOpenTable( void )
 614{
 615        int s,t;
 616        double rate;
 617        int i,j;
 618        double pom;
 619
 620        /* allocate dynamic tables */
 621        if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
 622                return 0;
 623        if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
 624        {
 625                free(TL_TABLE);
 626                return 0;
 627        }
 628        if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
 629        {
 630                free(TL_TABLE);
 631                free(SIN_TABLE);
 632                return 0;
 633        }
 634        if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
 635        {
 636                free(TL_TABLE);
 637                free(SIN_TABLE);
 638                free(AMS_TABLE);
 639                return 0;
 640        }
 641        /* make total level table */
 642        for (t = 0;t < EG_ENT-1 ;t++){
 643                rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);   /* dB -> voltage */
 644                TL_TABLE[       t] =  (int)rate;
 645                TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
 646/*              LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
 647        }
 648        /* fill volume off area */
 649        for ( t = EG_ENT-1; t < TL_MAX ;t++){
 650                TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
 651        }
 652
 653        /* make sinwave table (total level offet) */
 654        /* degree 0 = degree 180                   = off */
 655        SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
 656        for (s = 1;s <= SIN_ENT/4;s++){
 657                pom = sin(2*PI*s/SIN_ENT); /* sin     */
 658                pom = 20*log10(1/pom);     /* decibel */
 659                j = pom / EG_STEP;         /* TL_TABLE steps */
 660
 661        /* degree 0   -  90    , degree 180 -  90 : plus section */
 662                SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
 663        /* degree 180 - 270    , degree 360 - 270 : minus section */
 664                SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
 665/*              LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
 666        }
 667        for (s = 0;s < SIN_ENT;s++)
 668        {
 669                SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
 670                SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
 671                SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
 672        }
 673
 674        /* envelope counter -> envelope output table */
 675        for (i=0; i<EG_ENT; i++)
 676        {
 677                /* ATTACK curve */
 678                pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
 679                /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
 680                ENV_CURVE[i] = (int)pom;
 681                /* DECAY ,RELEASE curve */
 682                ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
 683        }
 684        /* off */
 685        ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
 686        /* make LFO ams table */
 687        for (i=0; i<AMS_ENT; i++)
 688        {
 689                pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
 690                AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
 691                AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
 692        }
 693        /* make LFO vibrate table */
 694        for (i=0; i<VIB_ENT; i++)
 695        {
 696                /* 100cent = 1seminote = 6% ?? */
 697                pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
 698                VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
 699                VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
 700                /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
 701        }
 702        return 1;
 703}
 704
 705
 706static void OPLCloseTable( void )
 707{
 708        free(TL_TABLE);
 709        free(SIN_TABLE);
 710        free(AMS_TABLE);
 711        free(VIB_TABLE);
 712}
 713
 714/* CSM Key Control */
 715static inline void CSMKeyControll(OPL_CH *CH)
 716{
 717        OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
 718        OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
 719        /* all key off */
 720        OPL_KEYOFF(slot1);
 721        OPL_KEYOFF(slot2);
 722        /* total level latch */
 723        slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
 724        slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
 725        /* key on */
 726        CH->op1_out[0] = CH->op1_out[1] = 0;
 727        OPL_KEYON(slot1);
 728        OPL_KEYON(slot2);
 729}
 730
 731/* ---------- opl initialize ---------- */
 732static void OPL_initialize(FM_OPL *OPL)
 733{
 734        int fn;
 735
 736        /* frequency base */
 737        OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
 738        /* Timer base time */
 739        OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
 740        /* make time tables */
 741        init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
 742        /* make fnumber -> increment counter table */
 743        for( fn=0 ; fn < 1024 ; fn++ )
 744        {
 745                OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
 746        }
 747        /* LFO freq.table */
 748        OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
 749        OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
 750}
 751
 752/* ---------- write a OPL registers ---------- */
 753static void OPLWriteReg(FM_OPL *OPL, int r, int v)
 754{
 755        OPL_CH *CH;
 756        int slot;
 757        int block_fnum;
 758
 759        switch(r&0xe0)
 760        {
 761        case 0x00: /* 00-1f:control */
 762                switch(r&0x1f)
 763                {
 764                case 0x01:
 765                        /* wave selector enable */
 766                        if(OPL->type&OPL_TYPE_WAVESEL)
 767                        {
 768                                OPL->wavesel = v&0x20;
 769                                if(!OPL->wavesel)
 770                                {
 771                                        /* preset compatible mode */
 772                                        int c;
 773                                        for(c=0;c<OPL->max_ch;c++)
 774                                        {
 775                                                OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
 776                                                OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
 777                                        }
 778                                }
 779                        }
 780                        return;
 781                case 0x02:      /* Timer 1 */
 782                        OPL->T[0] = (256-v)*4;
 783                        break;
 784                case 0x03:      /* Timer 2 */
 785                        OPL->T[1] = (256-v)*16;
 786                        return;
 787                case 0x04:      /* IRQ clear / mask and Timer enable */
 788                        if(v&0x80)
 789                        {       /* IRQ flag clear */
 790                                OPL_STATUS_RESET(OPL,0x7f);
 791                        }
 792                        else
 793                        {       /* set IRQ mask ,timer enable*/
 794                                UINT8 st1 = v&1;
 795                                UINT8 st2 = (v>>1)&1;
 796                                /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
 797                                OPL_STATUS_RESET(OPL,v&0x78);
 798                                OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
 799                                /* timer 2 */
 800                                if(OPL->st[1] != st2)
 801                                {
 802                                        double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
 803                                        OPL->st[1] = st2;
 804                                        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
 805                                }
 806                                /* timer 1 */
 807                                if(OPL->st[0] != st1)
 808                                {
 809                                        double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
 810                                        OPL->st[0] = st1;
 811                                        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
 812                                }
 813                        }
 814                        return;
 815#if BUILD_Y8950
 816                case 0x06:              /* Key Board OUT */
 817                        if(OPL->type&OPL_TYPE_KEYBOARD)
 818                        {
 819                                if(OPL->keyboardhandler_w)
 820                                        OPL->keyboardhandler_w(OPL->keyboard_param,v);
 821                                else
 822                                        LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
 823                        }
 824                        return;
 825                case 0x07:      /* DELTA-T control : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
 826                        if(OPL->type&OPL_TYPE_ADPCM)
 827                                YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
 828                        return;
 829                case 0x08:      /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
 830                        OPL->mode = v;
 831                        v&=0x1f;        /* for DELTA-T unit */
 832                case 0x09:              /* START ADD */
 833                case 0x0a:
 834                case 0x0b:              /* STOP ADD  */
 835                case 0x0c:
 836                case 0x0d:              /* PRESCALE   */
 837                case 0x0e:
 838                case 0x0f:              /* ADPCM data */
 839                case 0x10:              /* DELTA-N    */
 840                case 0x11:              /* DELTA-N    */
 841                case 0x12:              /* EG-CTRL    */
 842                        if(OPL->type&OPL_TYPE_ADPCM)
 843                                YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
 844                        return;
 845#if 0
 846                case 0x15:              /* DAC data    */
 847                case 0x16:
 848                case 0x17:              /* SHIFT    */
 849                        return;
 850                case 0x18:              /* I/O CTRL (Direction) */
 851                        if(OPL->type&OPL_TYPE_IO)
 852                                OPL->portDirection = v&0x0f;
 853                        return;
 854                case 0x19:              /* I/O DATA */
 855                        if(OPL->type&OPL_TYPE_IO)
 856                        {
 857                                OPL->portLatch = v;
 858                                if(OPL->porthandler_w)
 859                                        OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
 860                        }
 861                        return;
 862                case 0x1a:              /* PCM data */
 863                        return;
 864#endif
 865#endif
 866                }
 867                break;
 868        case 0x20:      /* am,vib,ksr,eg type,mul */
 869                slot = slot_array[r&0x1f];
 870                if(slot == -1) return;
 871                set_mul(OPL,slot,v);
 872                return;
 873        case 0x40:
 874                slot = slot_array[r&0x1f];
 875                if(slot == -1) return;
 876                set_ksl_tl(OPL,slot,v);
 877                return;
 878        case 0x60:
 879                slot = slot_array[r&0x1f];
 880                if(slot == -1) return;
 881                set_ar_dr(OPL,slot,v);
 882                return;
 883        case 0x80:
 884                slot = slot_array[r&0x1f];
 885                if(slot == -1) return;
 886                set_sl_rr(OPL,slot,v);
 887                return;
 888        case 0xa0:
 889                switch(r)
 890                {
 891                case 0xbd:
 892                        /* amsep,vibdep,r,bd,sd,tom,tc,hh */
 893                        {
 894                        UINT8 rkey = OPL->rhythm^v;
 895                        OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
 896                        OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
 897                        OPL->rhythm  = v&0x3f;
 898                        if(OPL->rhythm&0x20)
 899                        {
 900#if 0
 901                                usrintf_showmessage("OPL Rhythm mode select");
 902#endif
 903                                /* BD key on/off */
 904                                if(rkey&0x10)
 905                                {
 906                                        if(v&0x10)
 907                                        {
 908                                                OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
 909                                                OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
 910                                                OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
 911                                        }
 912                                        else
 913                                        {
 914                                                OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
 915                                                OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
 916                                        }
 917                                }
 918                                /* SD key on/off */
 919                                if(rkey&0x08)
 920                                {
 921                                        if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
 922                                        else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
 923                                }/* TAM key on/off */
 924                                if(rkey&0x04)
 925                                {
 926                                        if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
 927                                        else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
 928                                }
 929                                /* TOP-CY key on/off */
 930                                if(rkey&0x02)
 931                                {
 932                                        if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
 933                                        else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
 934                                }
 935                                /* HH key on/off */
 936                                if(rkey&0x01)
 937                                {
 938                                        if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
 939                                        else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
 940                                }
 941                        }
 942                        }
 943                        return;
 944                }
 945                /* keyon,block,fnum */
 946                if( (r&0x0f) > 8) return;
 947                CH = &OPL->P_CH[r&0x0f];
 948                if(!(r&0x10))
 949                {       /* a0-a8 */
 950                        block_fnum  = (CH->block_fnum&0x1f00) | v;
 951                }
 952                else
 953                {       /* b0-b8 */
 954                        int keyon = (v>>5)&1;
 955                        block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
 956                        if(CH->keyon != keyon)
 957                        {
 958                                if( (CH->keyon=keyon) )
 959                                {
 960                                        CH->op1_out[0] = CH->op1_out[1] = 0;
 961                                        OPL_KEYON(&CH->SLOT[SLOT1]);
 962                                        OPL_KEYON(&CH->SLOT[SLOT2]);
 963                                }
 964                                else
 965                                {
 966                                        OPL_KEYOFF(&CH->SLOT[SLOT1]);
 967                                        OPL_KEYOFF(&CH->SLOT[SLOT2]);
 968                                }
 969                        }
 970                }
 971                /* update */
 972                if(CH->block_fnum != block_fnum)
 973                {
 974                        int blockRv = 7-(block_fnum>>10);
 975                        int fnum   = block_fnum&0x3ff;
 976                        CH->block_fnum = block_fnum;
 977
 978                        CH->ksl_base = KSL_TABLE[block_fnum>>6];
 979                        CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
 980                        CH->kcode = CH->block_fnum>>9;
 981                        if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
 982                        CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
 983                        CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
 984                }
 985                return;
 986        case 0xc0:
 987                /* FB,C */
 988                if( (r&0x0f) > 8) return;
 989                CH = &OPL->P_CH[r&0x0f];
 990                {
 991                int feedback = (v>>1)&7;
 992                CH->FB   = feedback ? (8+1) - feedback : 0;
 993                CH->CON = v&1;
 994                set_algorithm(CH);
 995                }
 996                return;
 997        case 0xe0: /* wave type */
 998                slot = slot_array[r&0x1f];
 999                if(slot == -1) return;
1000                CH = &OPL->P_CH[slot/2];
1001                if(OPL->wavesel)
1002                {
1003                        /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1004                        CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
1005                }
1006                return;
1007        }
1008}
1009
1010/* lock/unlock for common table */
1011static int OPL_LockTable(void)
1012{
1013        num_lock++;
1014        if(num_lock>1) return 0;
1015        /* first time */
1016        cur_chip = NULL;
1017        /* allocate total level table (128kb space) */
1018        if( !OPLOpenTable() )
1019        {
1020                num_lock--;
1021                return -1;
1022        }
1023        return 0;
1024}
1025
1026static void OPL_UnLockTable(void)
1027{
1028        if(num_lock) num_lock--;
1029        if(num_lock) return;
1030        /* last time */
1031        cur_chip = NULL;
1032        OPLCloseTable();
1033}
1034
1035#if (BUILD_YM3812 || BUILD_YM3526)
1036/*******************************************************************************/
1037/*              YM3812 local section                                                   */
1038/*******************************************************************************/
1039
1040/* ---------- update one of chip ----------- */
1041void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1042{
1043    int i;
1044        int data;
1045        OPLSAMPLE *buf = buffer;
1046        UINT32 amsCnt  = OPL->amsCnt;
1047        UINT32 vibCnt  = OPL->vibCnt;
1048        UINT8 rhythm = OPL->rhythm&0x20;
1049        OPL_CH *CH,*R_CH;
1050
1051        if( (void *)OPL != cur_chip ){
1052                cur_chip = (void *)OPL;
1053                /* channel pointers */
1054                S_CH = OPL->P_CH;
1055                E_CH = &S_CH[9];
1056                /* rhythm slot */
1057                SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1058                SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1059                SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1060                SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1061                /* LFO state */
1062                amsIncr = OPL->amsIncr;
1063                vibIncr = OPL->vibIncr;
1064                ams_table = OPL->ams_table;
1065                vib_table = OPL->vib_table;
1066        }
1067        R_CH = rhythm ? &S_CH[6] : E_CH;
1068    for( i=0; i < length ; i++ )
1069        {
1070                /*            channel A         channel B         channel C      */
1071                /* LFO */
1072                ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1073                vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1074                outd[0] = 0;
1075                /* FM part */
1076                for(CH=S_CH ; CH < R_CH ; CH++)
1077                        OPL_CALC_CH(CH);
1078                /* Rythn part */
1079                if(rhythm)
1080                        OPL_CALC_RH(S_CH);
1081                /* limit check */
1082                data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1083                /* store to sound buffer */
1084                buf[i] = data >> OPL_OUTSB;
1085        }
1086
1087        OPL->amsCnt = amsCnt;
1088        OPL->vibCnt = vibCnt;
1089#ifdef OPL_OUTPUT_LOG
1090        if(opl_dbg_fp)
1091        {
1092                for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1093                        if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1094                fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1095        }
1096#endif
1097}
1098#endif /* (BUILD_YM3812 || BUILD_YM3526) */
1099
1100#if BUILD_Y8950
1101
1102void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1103{
1104    int i;
1105        int data;
1106        OPLSAMPLE *buf = buffer;
1107        UINT32 amsCnt  = OPL->amsCnt;
1108        UINT32 vibCnt  = OPL->vibCnt;
1109        UINT8 rhythm = OPL->rhythm&0x20;
1110        OPL_CH *CH,*R_CH;
1111        YM_DELTAT *DELTAT = OPL->deltat;
1112
1113        /* setup DELTA-T unit */
1114        YM_DELTAT_DECODE_PRESET(DELTAT);
1115
1116        if( (void *)OPL != cur_chip ){
1117                cur_chip = (void *)OPL;
1118                /* channel pointers */
1119                S_CH = OPL->P_CH;
1120                E_CH = &S_CH[9];
1121                /* rhythm slot */
1122                SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1123                SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1124                SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1125                SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1126                /* LFO state */
1127                amsIncr = OPL->amsIncr;
1128                vibIncr = OPL->vibIncr;
1129                ams_table = OPL->ams_table;
1130                vib_table = OPL->vib_table;
1131        }
1132        R_CH = rhythm ? &S_CH[6] : E_CH;
1133    for( i=0; i < length ; i++ )
1134        {
1135                /*            channel A         channel B         channel C      */
1136                /* LFO */
1137                ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1138                vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1139                outd[0] = 0;
1140                /* deltaT ADPCM */
1141                if( DELTAT->portstate )
1142                        YM_DELTAT_ADPCM_CALC(DELTAT);
1143                /* FM part */
1144                for(CH=S_CH ; CH < R_CH ; CH++)
1145                        OPL_CALC_CH(CH);
1146                /* Rythn part */
1147                if(rhythm)
1148                        OPL_CALC_RH(S_CH);
1149                /* limit check */
1150                data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1151                /* store to sound buffer */
1152                buf[i] = data >> OPL_OUTSB;
1153        }
1154        OPL->amsCnt = amsCnt;
1155        OPL->vibCnt = vibCnt;
1156        /* deltaT START flag */
1157        if( !DELTAT->portstate )
1158                OPL->status &= 0xfe;
1159}
1160#endif
1161
1162/* ---------- reset one of chip ---------- */
1163void OPLResetChip(FM_OPL *OPL)
1164{
1165        int c,s;
1166        int i;
1167
1168        /* reset chip */
1169        OPL->mode   = 0;        /* normal mode */
1170        OPL_STATUS_RESET(OPL,0x7f);
1171        /* reset with register write */
1172        OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1173        OPLWriteReg(OPL,0x02,0); /* Timer1 */
1174        OPLWriteReg(OPL,0x03,0); /* Timer2 */
1175        OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1176        for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1177        /* reset operator parameter */
1178        for( c = 0 ; c < OPL->max_ch ; c++ )
1179        {
1180                OPL_CH *CH = &OPL->P_CH[c];
1181                /* OPL->P_CH[c].PAN = OPN_CENTER; */
1182                for(s = 0 ; s < 2 ; s++ )
1183                {
1184                        /* wave table */
1185                        CH->SLOT[s].wavetable = &SIN_TABLE[0];
1186                        /* CH->SLOT[s].evm = ENV_MOD_RR; */
1187                        CH->SLOT[s].evc = EG_OFF;
1188                        CH->SLOT[s].eve = EG_OFF+1;
1189                        CH->SLOT[s].evs = 0;
1190                }
1191        }
1192#if BUILD_Y8950
1193        if(OPL->type&OPL_TYPE_ADPCM)
1194        {
1195                YM_DELTAT *DELTAT = OPL->deltat;
1196
1197                DELTAT->freqbase = OPL->freqbase;
1198                DELTAT->output_pointer = outd;
1199                DELTAT->portshift = 5;
1200                DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1201                YM_DELTAT_ADPCM_Reset(DELTAT,0);
1202        }
1203#endif
1204}
1205
1206/* ----------  Create one of vietual YM3812 ----------       */
1207/* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1208FM_OPL *OPLCreate(int type, int clock, int rate)
1209{
1210        char *ptr;
1211        FM_OPL *OPL;
1212        int state_size;
1213        int max_ch = 9; /* normaly 9 channels */
1214
1215        if( OPL_LockTable() ==-1) return NULL;
1216        /* allocate OPL state space */
1217        state_size  = sizeof(FM_OPL);
1218        state_size += sizeof(OPL_CH)*max_ch;
1219#if BUILD_Y8950
1220        if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1221#endif
1222        /* allocate memory block */
1223        ptr = malloc(state_size);
1224        if(ptr==NULL) return NULL;
1225        /* clear */
1226        memset(ptr,0,state_size);
1227        OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1228        OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1229#if BUILD_Y8950
1230        if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1231#endif
1232        /* set channel state pointer */
1233        OPL->type  = type;
1234        OPL->clock = clock;
1235        OPL->rate  = rate;
1236        OPL->max_ch = max_ch;
1237        /* init grobal tables */
1238        OPL_initialize(OPL);
1239        /* reset chip */
1240        OPLResetChip(OPL);
1241#ifdef OPL_OUTPUT_LOG
1242        if(!opl_dbg_fp)
1243        {
1244                opl_dbg_fp = fopen("opllog.opl","wb");
1245                opl_dbg_maxchip = 0;
1246        }
1247        if(opl_dbg_fp)
1248        {
1249                opl_dbg_opl[opl_dbg_maxchip] = OPL;
1250                fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1251                        type,
1252                        clock&0xff,
1253                        (clock/0x100)&0xff,
1254                        (clock/0x10000)&0xff,
1255                        (clock/0x1000000)&0xff);
1256                opl_dbg_maxchip++;
1257        }
1258#endif
1259        return OPL;
1260}
1261
1262/* ----------  Destroy one of vietual YM3812 ----------       */
1263void OPLDestroy(FM_OPL *OPL)
1264{
1265#ifdef OPL_OUTPUT_LOG
1266        if(opl_dbg_fp)
1267        {
1268                fclose(opl_dbg_fp);
1269                opl_dbg_fp = NULL;
1270        }
1271#endif
1272        OPL_UnLockTable();
1273        free(OPL);
1274}
1275
1276/* ----------  Option handlers ----------       */
1277
1278void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1279{
1280        OPL->TimerHandler   = TimerHandler;
1281        OPL->TimerParam = channelOffset;
1282}
1283void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1284{
1285        OPL->IRQHandler     = IRQHandler;
1286        OPL->IRQParam = param;
1287}
1288void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1289{
1290        OPL->UpdateHandler = UpdateHandler;
1291        OPL->UpdateParam = param;
1292}
1293#if BUILD_Y8950
1294void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1295{
1296        OPL->porthandler_w = PortHandler_w;
1297        OPL->porthandler_r = PortHandler_r;
1298        OPL->port_param = param;
1299}
1300
1301void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1302{
1303        OPL->keyboardhandler_w = KeyboardHandler_w;
1304        OPL->keyboardhandler_r = KeyboardHandler_r;
1305        OPL->keyboard_param = param;
1306}
1307#endif
1308/* ---------- YM3812 I/O interface ---------- */
1309int OPLWrite(FM_OPL *OPL,int a,int v)
1310{
1311        if( !(a&1) )
1312        {       /* address port */
1313                OPL->address = v & 0xff;
1314        }
1315        else
1316        {       /* data port */
1317                if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1318#ifdef OPL_OUTPUT_LOG
1319        if(opl_dbg_fp)
1320        {
1321                for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1322                        if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1323                fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1324        }
1325#endif
1326                OPLWriteReg(OPL,OPL->address,v);
1327        }
1328        return OPL->status>>7;
1329}
1330
1331unsigned char OPLRead(FM_OPL *OPL,int a)
1332{
1333        if( !(a&1) )
1334        {       /* status port */
1335                return OPL->status & (OPL->statusmask|0x80);
1336        }
1337        /* data port */
1338        switch(OPL->address)
1339        {
1340        case 0x05: /* KeyBoard IN */
1341                if(OPL->type&OPL_TYPE_KEYBOARD)
1342                {
1343                        if(OPL->keyboardhandler_r)
1344                                return OPL->keyboardhandler_r(OPL->keyboard_param);
1345                        else {
1346                                LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1347                        }
1348                }
1349                return 0;
1350#if 0
1351        case 0x0f: /* ADPCM-DATA  */
1352                return 0;
1353#endif
1354        case 0x19: /* I/O DATA    */
1355                if(OPL->type&OPL_TYPE_IO)
1356                {
1357                        if(OPL->porthandler_r)
1358                                return OPL->porthandler_r(OPL->port_param);
1359                        else {
1360                                LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1361                        }
1362                }
1363                return 0;
1364        case 0x1a: /* PCM-DATA    */
1365                return 0;
1366        }
1367        return 0;
1368}
1369
1370int OPLTimerOver(FM_OPL *OPL,int c)
1371{
1372        if( c )
1373        {       /* Timer B */
1374                OPL_STATUS_SET(OPL,0x20);
1375        }
1376        else
1377        {       /* Timer A */
1378                OPL_STATUS_SET(OPL,0x40);
1379                /* CSM mode key,TL control */
1380                if( OPL->mode & 0x80 )
1381                {       /* CSM mode total level latch and auto key on */
1382                        int ch;
1383                        if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1384                        for(ch=0;ch<9;ch++)
1385                                CSMKeyControll( &OPL->P_CH[ch] );
1386                }
1387        }
1388        /* reload timer */
1389        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1390        return OPL->status>>7;
1391}
1392