qemu/hw/block/m25p80.c
<<
>>
Prefs
   1/*
   2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
   3 * set. Known devices table current as of Jun/2012 and taken from linux.
   4 * See drivers/mtd/devices/m25p80.c.
   5 *
   6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
   7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
   8 * Copyright (C) 2012 PetaLogix
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 or
  13 * (at your option) a later version of the License.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License along
  21 * with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "hw/hw.h"
  26#include "sysemu/block-backend.h"
  27#include "sysemu/blockdev.h"
  28#include "hw/ssi/ssi.h"
  29#include "qemu/bitops.h"
  30#include "qemu/log.h"
  31
  32#ifndef M25P80_ERR_DEBUG
  33#define M25P80_ERR_DEBUG 0
  34#endif
  35
  36#define DB_PRINT_L(level, ...) do { \
  37    if (M25P80_ERR_DEBUG > (level)) { \
  38        qemu_log(": %s: ", __func__); \
  39        qemu_log(__VA_ARGS__); \
  40    } \
  41} while (0);
  42
  43/* Fields for FlashPartInfo->flags */
  44
  45/* erase capabilities */
  46#define ER_4K 1
  47#define ER_32K 2
  48/* set to allow the page program command to write 0s back to 1. Useful for
  49 * modelling EEPROM with SPI flash command set
  50 */
  51#define EEPROM 0x100
  52
  53/* 16 MiB max in 3 byte address mode */
  54#define MAX_3BYTES_SIZE 0x1000000
  55
  56#define WR_1 0x100
  57
  58#define BAR_7_4_BYTE_ADDR    (1<<7)
  59
  60typedef struct FlashPartInfo {
  61    const char *part_name;
  62    /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
  63    uint32_t jedec;
  64    /* extended jedec code */
  65    uint16_t ext_jedec;
  66    /* there is confusion between manufacturers as to what a sector is. In this
  67     * device model, a "sector" is the size that is erased by the ERASE_SECTOR
  68     * command (opcode 0xd8).
  69     */
  70    uint32_t sector_size;
  71    uint32_t n_sectors;
  72    uint32_t page_size;
  73    uint16_t flags;
  74
  75    uint8_t manf_id;
  76    uint8_t dev_id;
  77} FlashPartInfo;
  78
  79/* adapted from linux */
  80
  81#define INFO(_part_name, _jedec, _ext_jedec, _manf_id, _dev_id, _sector_size, _n_sectors, _flags)\
  82    .part_name = (_part_name),\
  83    .jedec = (_jedec),\
  84    .ext_jedec = (_ext_jedec),\
  85    .manf_id = (_manf_id), \
  86    .dev_id = (_dev_id), \
  87    .sector_size = (_sector_size),\
  88    .n_sectors = (_n_sectors),\
  89    .page_size = 256,\
  90    .flags = (_flags),\
  91
  92#define JEDEC_NUMONYX 0x20
  93#define JEDEC_WINBOND 0xEF
  94#define JEDEC_SPANSION 0x01
  95
  96/* Numonyx (Micron) Configuration register macros */
  97#define VCFG_DUMMY 0x1
  98#define VCFG_WRAP_SEQUENTIAL 0x2
  99#define NVCFG_XIP_MODE_DISABLED (7 << 9)
 100#define NVCFG_XIP_MODE_MASK (7 << 9)
 101#define VCFG_XIP_MODE_ENABLED (1 << 3)
 102#define CFG_DUMMY_CLK_LEN 4
 103#define NVCFG_DUMMY_CLK_POS 12
 104#define VCFG_DUMMY_CLK_POS 4
 105#define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
 106#define EVCFG_VPP_ACCELERATOR (1 << 3)
 107#define EVCFG_RESET_HOLD_ENABLED (1 << 4)
 108#define NVCFG_DUAL_IO_MASK (1 << 2)
 109#define EVCFG_DUAL_IO_ENABLED (1 << 6)
 110#define NVCFG_QUAD_IO_MASK (1 << 3)
 111#define EVCFG_QUAD_IO_ENABLED (1 << 7)
 112#define NVCFG_4BYTE_ADDR_MASK (1 << 0)
 113#define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
 114#define CFG_UPPER_128MB_SEG_ENABLED 0x3
 115
 116/* Numonyx (Micron) Flag Status Register macros */
 117#define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
 118#define FSR_FLASH_READY (1 << 7)
 119
 120static const FlashPartInfo known_devices[] = {
 121    /* Atmel -- some are (confusingly) marketed as "DataFlash" */
 122    { INFO("at25fs010",   0x1f6601,      0, 0x00, 0x00,  32 << 10,   4, ER_4K) },
 123    { INFO("at25fs040",   0x1f6604,      0, 0x00, 0x00,  64 << 10,   8, ER_4K) },
 124
 125    { INFO("at25df041a",  0x1f4401,      0, 0x00, 0x00,  64 << 10,   8, ER_4K) },
 126    { INFO("at25df321a",  0x1f4701,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 127    { INFO("at25df641",   0x1f4800,      0, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 128
 129    { INFO("at26f004",    0x1f0400,      0, 0x00, 0x00,  64 << 10,   8, ER_4K) },
 130    { INFO("at26df081a",  0x1f4501,      0, 0x00, 0x00,  64 << 10,  16, ER_4K) },
 131    { INFO("at26df161a",  0x1f4601,      0, 0x00, 0x00,  64 << 10,  32, ER_4K) },
 132    { INFO("at26df321",   0x1f4700,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 133
 134    { INFO("at45db081d",  0x1f2500,      0, 0x00, 0x00,  64 << 10,  16, ER_4K) },
 135
 136    /* EON -- en25xxx */
 137    { INFO("en25f32",     0x1c3116,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 138    { INFO("en25p32",     0x1c2016,      0, 0x00, 0x00,  64 << 10,  64, 0) },
 139    { INFO("en25q32b",    0x1c3016,      0, 0x00, 0x00,  64 << 10,  64, 0) },
 140    { INFO("en25p64",     0x1c2017,      0, 0x00, 0x00,  64 << 10, 128, 0) },
 141    { INFO("en25q64",     0x1c3017,      0, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 142
 143    /* GigaDevice */
 144    { INFO("gd25q32",     0xc84016,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 145    { INFO("gd25q64",     0xc84017,      0, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 146
 147    /* Intel/Numonyx -- xxxs33b */
 148    { INFO("160s33b",     0x898911,      0, 0x00, 0x00,  64 << 10,  32, 0) },
 149    { INFO("320s33b",     0x898912,      0, 0x00, 0x00,  64 << 10,  64, 0) },
 150    { INFO("640s33b",     0x898913,      0, 0x00, 0x00,  64 << 10, 128, 0) },
 151    { INFO("n25q064",     0x20ba17,      0, 0x00, 0x00,  64 << 10, 128, 0) },
 152
 153    /* Macronix */
 154    { INFO("mx25l2005a",  0xc22012,      0, 0x00, 0x00,  64 << 10,   4, ER_4K) },
 155    { INFO("mx25l4005a",  0xc22013,      0, 0x00, 0x00,  64 << 10,   8, ER_4K) },
 156    { INFO("mx25l8005",   0xc22014,      0, 0x00, 0x00,  64 << 10,  16, 0) },
 157    { INFO("mx25l1606e",  0xc22015,      0, 0x00, 0x00,  64 << 10,  32, ER_4K) },
 158    { INFO("mx25l3205d",  0xc22016,      0, 0x00, 0x00,  64 << 10,  64, 0) },
 159    { INFO("mx25l6405d",  0xc22017,      0, 0x00, 0x00,  64 << 10, 128, 0) },
 160    { INFO("mx25l12805d", 0xc22018,      0, 0x00, 0x00,  64 << 10, 256, 0) },
 161    { INFO("mx25l12855e", 0xc22618,      0, 0x00, 0x00,  64 << 10, 256, 0) },
 162    { INFO("mx25l25635e", 0xc22019,      0, 0x00, 0x00,  64 << 10, 512, 0) },
 163    { INFO("mx25l25655e", 0xc22619,      0, 0x00, 0x00,  64 << 10, 512, 0) },
 164
 165    /* Micron */
 166    { INFO("n25q032a11",  0x20bb16,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 167    { INFO("n25q032a13",  0x20ba16,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 168    { INFO("n25q064a11",  0x20bb17,      0, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 169    { INFO("n25q064a13",  0x20ba17,      0, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 170    { INFO("n25q128a11",  0x20bb18,      0, 0x00, 0x00,  64 << 10, 256, ER_4K) },
 171    { INFO("n25q128a13",  0x20ba18,      0, 0x00, 0x00,  64 << 10, 256, ER_4K) },
 172    { INFO("n25q256a11",  0x20bb19,      0, 0x00, 0x00,  64 << 10, 512, ER_4K) },
 173    { INFO("n25q256a13",  0x20ba19,      0, 0x00, 0x00,  64 << 10, 512, ER_4K) },
 174    { INFO("n25q512a11",  0x20bb20,      0, 0x00, 0x00,  64 << 10, 1024, ER_4K) },
 175    { INFO("n25q512a13",  0x20ba20,      0, 0x00, 0x00,  64 << 10, 1024, ER_4K) },
 176
 177    /* Spansion -- single (large) sector size only, at least
 178     * for the chips listed here (without boot sectors).
 179     */
 180    { INFO("s25sl032p",   0x010215, 0x4d00, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 181    { INFO("s25sl064p",   0x010216, 0x4d00, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 182    { INFO("s25fl256s0",  0x010219, 0x4d00, 0x00, 0x00, 256 << 10, 128, 0) },
 183    { INFO("s25fl256s1",  0x010219, 0x4d01, 0x00, 0x00,  64 << 10, 512, 0) },
 184    { INFO("s25fl512s",   0x010220, 0x4d00, 0x00, 0x00, 256 << 10, 256, 0) },
 185    { INFO("s70fl01gs",   0x010221, 0x4d00, 0x00, 0x00, 256 << 10, 256, 0) },
 186    { INFO("s25sl12800",  0x012018, 0x0300, 0x00, 0x00, 256 << 10,  64, 0) },
 187    { INFO("s25sl12801",  0x012018, 0x0301, 0x00, 0x00,  64 << 10, 256, 0) },
 188    { INFO("s25fl129p0",  0x012018, 0x4d00, 0x00, 0x00, 256 << 10,  64, 0) },
 189    { INFO("s25fl129p1",  0x012018, 0x4d01, 0x00, 0x00,  64 << 10, 256, 0) },
 190    { INFO("s25sl004a",   0x010212,      0, 0x00, 0x00,  64 << 10,   8, 0) },
 191    { INFO("s25sl008a",   0x010213,      0, 0x00, 0x00,  64 << 10,  16, 0) },
 192    { INFO("s25sl016a",   0x010214,      0, 0x00, 0x00,  64 << 10,  32, 0) },
 193    { INFO("s25sl032a",   0x010215,      0, 0x00, 0x00,  64 << 10,  64, 0) },
 194    { INFO("s25sl064a",   0x010216,      0, 0x00, 0x00,  64 << 10, 128, 0) },
 195    { INFO("s25fl016k",   0xef4015,      0, 0x00, 0x00,  64 << 10,  32, ER_4K | ER_32K) },
 196    { INFO("s25fl064k",   0xef4017,      0, 0x00, 0x00,  64 << 10, 128, ER_4K | ER_32K) },
 197
 198    /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
 199    { INFO("sst25vf040b", 0xbf258d,      0, 0x00, 0x00,  64 << 10,   8, ER_4K) },
 200    { INFO("sst25vf080b", 0xbf258e,      0, 0x00, 0x00,  64 << 10,  16, ER_4K) },
 201    { INFO("sst25vf016b", 0xbf2541,      0, 0x00, 0x00,  64 << 10,  32, ER_4K) },
 202    { INFO("sst25vf032b", 0xbf254a,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 203    { INFO("sst25wf512",  0xbf2501,      0, 0x00, 0x00,  64 << 10,   1, ER_4K) },
 204    { INFO("sst25wf010",  0xbf2502,      0, 0x00, 0x00,  64 << 10,   2, ER_4K) },
 205    { INFO("sst25wf020",  0xbf2503,      0, 0x00, 0x00,  64 << 10,   4, ER_4K) },
 206    { INFO("sst25wf040",  0xbf2504,      0, 0x00, 0x00,  64 << 10,   8, ER_4K) },
 207    { INFO("sst25wf080",  0xbf2505,      0, 0xbf, 0x05,  64 << 10,  16, ER_4K) },
 208
 209    /* ST Microelectronics -- newer production may have feature updates */
 210    { INFO("m25p05",      0x202010,      0, 0x00, 0x00,  32 << 10,   2, 0) },
 211    { INFO("m25p10",      0x202011,      0, 0x00, 0x00,  32 << 10,   4, 0) },
 212    { INFO("m25p20",      0x202012,      0, 0x00, 0x00,  64 << 10,   4, 0) },
 213    { INFO("m25p40",      0x202013,      0, 0x00, 0x00,  64 << 10,   8, 0) },
 214    { INFO("m25p80",      0x202014,      0, 0x00, 0x00,  64 << 10,  16, 0) },
 215    { INFO("m25p16",      0x202015,      0, 0x00, 0x00,  64 << 10,  32, 0) },
 216    { INFO("m25p32",      0x202016,      0, 0x00, 0x00,  64 << 10,  64, 0) },
 217    { INFO("m25p64",      0x202017,      0, 0x00, 0x00,  64 << 10, 128, 0) },
 218    { INFO("m25p128",     0x202018,      0, 0x00, 0x00, 256 << 10,  64, 0) },
 219    { INFO("n25q032",     0x20ba16,      0, 0x00, 0x00,  64 << 10,  64, 0) },
 220
 221    { INFO("m45pe10",     0x204011,      0, 0x00, 0x00,  64 << 10,   2, 0) },
 222    { INFO("m45pe80",     0x204014,      0, 0x00, 0x00,  64 << 10,  16, 0) },
 223    { INFO("m45pe16",     0x204015,      0, 0x00, 0x00,  64 << 10,  32, 0) },
 224
 225    { INFO("m25pe20",     0x208012,      0, 0x00, 0x00,  64 << 10,   4, 0) },
 226    { INFO("m25pe80",     0x208014,      0, 0x00, 0x00,  64 << 10,  16, 0) },
 227    { INFO("m25pe16",     0x208015,      0, 0x00, 0x00,  64 << 10,  32, ER_4K) },
 228
 229    { INFO("m25px32",     0x207116,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 230    { INFO("m25px32-s0",  0x207316,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 231    { INFO("m25px32-s1",  0x206316,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 232    { INFO("m25px64",     0x207117,      0, 0x00, 0x00,  64 << 10, 128, 0) },
 233
 234    /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
 235    { INFO("w25x10",      0xef3011,      0, 0x00, 0x00,  64 << 10,   2, ER_4K) },
 236    { INFO("w25x20",      0xef3012,      0, 0x00, 0x00,  64 << 10,   4, ER_4K) },
 237    { INFO("w25x40",      0xef3013,      0, 0x00, 0x00,  64 << 10,   8, ER_4K) },
 238    { INFO("w25x80",      0xef3014,      0, 0x00, 0x00,  64 << 10,  16, ER_4K) },
 239    { INFO("w25x16",      0xef3015,      0, 0x00, 0x00,  64 << 10,  32, ER_4K) },
 240    { INFO("w25x32",      0xef3016,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 241    { INFO("w25q32",      0xef4016,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 242    { INFO("w25q32dw",    0xef6016,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 243    { INFO("w25x64",      0xef3017,      0, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 244    { INFO("w25q64",      0xef4017,      0, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 245    { INFO("w25q80",      0xef5014,      0, 0x00, 0x00,  64 << 10,  16, ER_4K) },
 246    { INFO("w25q80bl",    0xef4014,      0, 0x00, 0x00,  64 << 10,  16, ER_4K) },
 247    { INFO("w25q256",     0xef4019,      0, 0x00, 0x00,  64 << 10, 512, ER_4K) },
 248
 249    /* Numonyx -- n25q128 */
 250    { INFO("n25q128",      0x20ba18,      0, 0x00, 0x00,  64 << 10, 256, 0) },
 251};
 252
 253typedef enum {
 254    NOP = 0,
 255    WRSR = 0x1,
 256    WRDI = 0x4,
 257    RDSR = 0x5,
 258    RDFSR = 0x70,
 259    WREN = 0x6,
 260    BRRD = 0x16,
 261    BRWR = 0x17,
 262    JEDEC_READ = 0x9f,
 263    BULK_ERASE = 0xc7,
 264    READ_FSR = 0x70,
 265
 266    READ = 0x03,
 267    READ4 = 0x13,
 268    FAST_READ = 0x0b,
 269    FAST_READ4 = 0x0c,
 270    DOR = 0x3b,
 271    DOR4 = 0x3c,
 272    QOR = 0x6b,
 273    QOR4 = 0x6c,
 274    DIOR = 0xbb,
 275    DIOR4 = 0xbc,
 276    QIOR = 0xeb,
 277    QIOR4 = 0xec,
 278
 279    PP = 0x02,
 280    PP4 = 0x12,
 281    DPP = 0xa2,
 282    QPP = 0x32,
 283    QPP4 = 0x34,
 284    RDID_90 = 0x90,
 285    RDID_AB = 0xab,
 286    AAI = 0xad,
 287
 288    ERASE_4K = 0x20,
 289    ERASE4_4K = 0x21,
 290    ERASE_32K = 0x52,
 291    ERASE_SECTOR = 0xd8,
 292    ERASE4_SECTOR = 0xdc,
 293
 294    EN_4BYTE_ADDR = 0xB7,
 295    EX_4BYTE_ADDR = 0xE9,
 296
 297    BULK_ERASE_C7 = 0xc7,
 298    BULK_ERASE_60 = 0x60,
 299
 300    EXTEND_ADDR_READ = 0xC8,
 301    EXTEND_ADDR_WRITE = 0xC5,
 302
 303    RESET_ENABLE = 0x66,
 304    RESET_MEMORY = 0x99,
 305
 306    RNVCR = 0xB5,
 307    WNVCR = 0xB1,
 308
 309    RVCR = 0x85,
 310    WVCR = 0x81,
 311
 312    REVCR = 0x65,
 313    WEVCR = 0x61,
 314} FlashCMD;
 315
 316typedef enum {
 317    STATE_IDLE,
 318    STATE_PAGE_PROGRAM,
 319    STATE_READ,
 320    STATE_COLLECTING_DATA,
 321    STATE_READING_DATA,
 322    DUMMY_CYCLE_WAIT,
 323} CMDState;
 324
 325typedef struct Flash {
 326    SSISlave parent_obj;
 327
 328    uint32_t r;
 329
 330    BlockBackend *blk;
 331
 332    uint8_t *storage;
 333    uint32_t size;
 334    int page_size;
 335
 336    uint8_t state;
 337    uint8_t data[16];
 338    uint32_t len;
 339    uint32_t pos;
 340    bool data_read_loop;
 341    uint8_t needed_bytes;
 342    uint8_t cmd_in_progress;
 343    uint64_t cur_addr;
 344    uint32_t nonvolatile_cfg;
 345    uint32_t volatile_cfg;
 346    uint32_t enh_volatile_cfg;
 347    bool write_enable;
 348    bool four_bytes_address_mode;
 349    bool reset_enable;
 350    uint8_t ear;
 351
 352    bool aai_in_progress;
 353    int64_t dirty_page;
 354
 355    uint8_t bar;
 356    uint8_t n_datalines;
 357    uint8_t n_dummy_cycles;
 358    uint8_t dummy_count;
 359    const FlashPartInfo *pi;
 360} Flash;
 361
 362typedef struct M25P80Class {
 363    SSISlaveClass parent_class;
 364    FlashPartInfo *pi;
 365} M25P80Class;
 366
 367#define TYPE_M25P80 "m25p80-generic"
 368#define M25P80(obj) \
 369     OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
 370#define M25P80_CLASS(klass) \
 371     OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
 372#define M25P80_GET_CLASS(obj) \
 373     OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
 374
 375static void blk_sync_complete(void *opaque, int ret)
 376{
 377    /* do nothing. Masters do not directly interact with the backing store,
 378     * only the working copy so no mutexing required.
 379     */
 380}
 381
 382static void flash_sync_page(Flash *s, int page)
 383{
 384    QEMUIOVector iov;
 385
 386    if (!s->blk || blk_is_read_only(s->blk)) {
 387        return;
 388    }
 389
 390    qemu_iovec_init(&iov, 1);
 391    qemu_iovec_add(&iov, s->storage + page * s->pi->page_size,
 392                   s->pi->page_size);
 393    blk_aio_writev(s->blk, page * s->pi->page_size, &iov, 0,
 394                    blk_sync_complete, NULL);
 395}
 396
 397static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
 398{
 399    QEMUIOVector iov;
 400
 401    if (!s->blk || blk_is_read_only(s->blk)) {
 402        return;
 403    }
 404
 405    assert(!(len % BDRV_SECTOR_SIZE));
 406    qemu_iovec_init(&iov, 1);
 407    qemu_iovec_add(&iov, s->storage + off, len);
 408    blk_aio_writev(s->blk, off, &iov, 0, blk_sync_complete, NULL);
 409}
 410
 411static void flash_erase(Flash *s, int offset, FlashCMD cmd)
 412{
 413    uint32_t len;
 414    uint8_t capa_to_assert = 0;
 415
 416    switch (cmd) {
 417    case ERASE_4K:
 418        len = 4 << 10;
 419        capa_to_assert = ER_4K;
 420        break;
 421    case ERASE_32K:
 422        len = 32 << 10;
 423        capa_to_assert = ER_32K;
 424        break;
 425    case ERASE_SECTOR:
 426    case ERASE4_SECTOR:
 427        len = s->pi->sector_size;
 428        break;
 429    case BULK_ERASE:
 430        len = s->size;
 431        break;
 432    default:
 433        abort();
 434    }
 435
 436    DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
 437    if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
 438        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
 439                      " device\n", len);
 440    }
 441
 442    if (!s->write_enable) {
 443        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
 444        return;
 445    }
 446    memset(s->storage + offset, 0xff, len);
 447    flash_sync_area(s, offset, len);
 448}
 449
 450static inline void flash_sync_dirty(Flash *s, int64_t newpage)
 451{
 452    if (s->dirty_page >= 0 && s->dirty_page != newpage) {
 453        flash_sync_page(s, s->dirty_page);
 454        s->dirty_page = newpage;
 455    }
 456}
 457
 458static inline
 459void flash_write8(Flash *s, uint64_t addr, uint8_t data)
 460{
 461    int64_t page = addr / s->pi->page_size;
 462    uint8_t prev = s->storage[s->cur_addr];
 463
 464    if (!s->write_enable) {
 465        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
 466    }
 467
 468    if ((prev ^ data) & data) {
 469        DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 "  %" PRIx8
 470                   " -> %" PRIx8 "\n", addr, prev, data);
 471    }
 472
 473    if (s->pi->flags & EEPROM) {
 474        s->storage[s->cur_addr] = data;
 475    } else {
 476        s->storage[s->cur_addr] &= data;
 477    }
 478
 479    flash_sync_dirty(s, page);
 480    s->dirty_page = page;
 481}
 482
 483static inline int get_addr_length(Flash *s)
 484{
 485   /* check if eeprom is in use */
 486    if (s->pi->flags == EEPROM) {
 487        return 2;
 488    }
 489
 490   switch (s->cmd_in_progress) {
 491   case PP4:
 492   case READ4:
 493   case QIOR4:
 494   case ERASE4_4K:
 495   case ERASE4_SECTOR:
 496   case FAST_READ4:
 497   case DOR4:
 498   case QOR4:
 499   case DIOR4:
 500       return 4;
 501   default:
 502       return s->four_bytes_address_mode ? 4 : 3;
 503   }
 504}
 505
 506static inline void flash_write(Flash *s, uint8_t data, int num_bits)
 507{
 508    int64_t page = (s->cur_addr >> 3) / s->pi->page_size;
 509    uint8_t prev = s->storage[s->cur_addr >> 3];
 510    uint32_t data_mask = ((1ul << num_bits) - 1) <<
 511                         (8 - (s->cur_addr & 0x7) - num_bits);
 512
 513    assert(!(data_mask & ~0xfful));
 514    data <<= 8 - (s->cur_addr & 0x7) - num_bits;
 515
 516    if (!s->write_enable) {
 517        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
 518    }
 519
 520    if (s->pi->flags & WR_1) {
 521        s->storage[s->cur_addr >> 3] = (prev & ~data_mask) | (data & data_mask);
 522    } else {
 523        if ((prev ^ data) & data & data_mask) {
 524            DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 "  %" PRIx8
 525                       " -> %" PRIx8 ", mask = %" PRIx32 "\n",
 526                       s->cur_addr >> 3, prev, data, data_mask);
 527        }
 528        s->storage[s->cur_addr >> 3] &= data | ~data_mask;
 529    }
 530
 531    flash_sync_dirty(s, page);
 532    s->dirty_page = page;
 533}
 534
 535static inline bool set_dummy_cycles(Flash *s, uint8_t num)
 536{
 537    if (s->dummy_count == 0) {
 538        /* Dummy Phase Yet to start */
 539        s->n_dummy_cycles = num * s->n_datalines;
 540        return true;
 541    } else {
 542        /* Dummy Phase done */
 543        s->dummy_count = 0;
 544        return false;
 545    }
 546}
 547
 548static void complete_collecting_data(Flash *s)
 549{
 550    int i;
 551    bool dummy_state = false;
 552
 553    s->cur_addr = 0;
 554
 555    for (i = 0; i < get_addr_length(s); ++i) {
 556        s->cur_addr <<= 8;
 557        s->cur_addr |= s->data[i];
 558    }
 559
 560    if (get_addr_length(s) == 3) {
 561        s->cur_addr += (s->ear & 0x3) * MAX_3BYTES_SIZE;
 562    }
 563
 564    s->state = STATE_IDLE;
 565
 566    switch (s->cmd_in_progress) {
 567    case DPP:
 568    case QPP:
 569    case AAI:
 570    case PP:
 571        s->state = STATE_PAGE_PROGRAM;
 572        break;
 573    case QPP4:
 574    case PP4:
 575        s->state = STATE_PAGE_PROGRAM;
 576        break;
 577    case FAST_READ:
 578    case DOR:
 579    case QOR:
 580    case DIOR:
 581    case QIOR:
 582        /* Fall through after executing dummy cycles/bytes */
 583        dummy_state = set_dummy_cycles(s, 1);
 584    case READ:
 585        if (dummy_state == true) {
 586            s->state = DUMMY_CYCLE_WAIT;
 587        } else {
 588            s->state = STATE_READ;
 589        }
 590        break;
 591    case FAST_READ4:
 592    case DOR4:
 593    case QOR4:
 594    case DIOR4:
 595    case QIOR4:
 596        /* Fall through after executing dummy cycles/bytes */
 597        dummy_state = set_dummy_cycles(s, 1);
 598    case READ4:
 599        if (dummy_state == false) {
 600            s->state = STATE_READ;
 601        } else {
 602            s->state = DUMMY_CYCLE_WAIT;
 603        }
 604        break;
 605    case ERASE_SECTOR:
 606    case ERASE_4K:
 607    case ERASE_32K:
 608        flash_erase(s, s->cur_addr, s->cmd_in_progress);
 609        break;
 610    case ERASE4_SECTOR:
 611        flash_erase(s, s->cur_addr, s->cmd_in_progress);
 612        break;
 613    case WRSR:
 614        if (s->write_enable) {
 615            s->write_enable = false;
 616        }
 617        break;
 618    case EXTEND_ADDR_WRITE:
 619        s->ear = s->data[0];
 620        break;
 621    case WNVCR:
 622        s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
 623        break;
 624    case WVCR:
 625        s->volatile_cfg = s->data[0];
 626        break;
 627    case WEVCR:
 628        s->enh_volatile_cfg = s->data[0];
 629        break;
 630    case BRWR:
 631        s->bar = s->data[0];
 632        break;
 633    default:
 634        break;
 635    }
 636
 637    s->cur_addr <<= 3;
 638}
 639
 640static void reset_memory(Flash *s)
 641{
 642    s->cmd_in_progress = NOP;
 643    s->cur_addr = 0;
 644    s->ear = 0;
 645    s->four_bytes_address_mode = false;
 646    s->len = 0;
 647    s->needed_bytes = 0;
 648    s->pos = 0;
 649    s->state = STATE_IDLE;
 650    s->write_enable = false;
 651    s->reset_enable = false;
 652
 653    if (((s->pi->jedec >> 16) & 0xFF) == JEDEC_NUMONYX) {
 654        s->volatile_cfg = 0;
 655        s->volatile_cfg |= VCFG_DUMMY;
 656        s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
 657        if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
 658                                != NVCFG_XIP_MODE_DISABLED) {
 659            s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
 660        }
 661        s->volatile_cfg |= deposit32(s->volatile_cfg,
 662                            VCFG_DUMMY_CLK_POS,
 663                            CFG_DUMMY_CLK_LEN,
 664                            extract32(s->nonvolatile_cfg,
 665                                        NVCFG_DUMMY_CLK_POS,
 666                                        CFG_DUMMY_CLK_LEN)
 667                            );
 668
 669        s->enh_volatile_cfg = 0;
 670        s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGHT_DEF;
 671        s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
 672        s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
 673        if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
 674            s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
 675        }
 676        if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
 677            s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
 678        }
 679        if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
 680            s->four_bytes_address_mode = true;
 681        }
 682        if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
 683            s->ear = CFG_UPPER_128MB_SEG_ENABLED;
 684        }
 685    }
 686
 687    DB_PRINT_L(0, "Reset done.\n");
 688}
 689
 690static void decode_new_cmd(Flash *s, uint32_t value)
 691{
 692    s->cmd_in_progress = value;
 693    DB_PRINT_L(0, "decoded new command:%x\n", value);
 694
 695    if (value != RESET_MEMORY) {
 696        s->reset_enable = false;
 697    }
 698
 699    s->needed_bytes = 0;
 700
 701    switch (value) {
 702
 703    case READ4:
 704    case ERASE4_SECTOR:
 705    case QPP4:
 706    case PP4:
 707        if (s->four_bytes_address_mode == false) {
 708            s->needed_bytes += 1;
 709        }
 710    case ERASE_4K:
 711    case ERASE_32K:
 712    case ERASE_SECTOR:
 713    case READ:
 714    case DPP:
 715    case QPP:
 716    case PP:
 717    case QOR:
 718    case FAST_READ:
 719    case DOR:
 720        if (s->four_bytes_address_mode) {
 721            s->needed_bytes += 1;
 722        }
 723        s->needed_bytes += 3;
 724        s->pos = 0;
 725        s->len = 0;
 726        s->state = STATE_COLLECTING_DATA;
 727        break;
 728
 729    case AAI:
 730        if (!s->aai_in_progress) {
 731            s->aai_in_progress = true;
 732            s->needed_bytes += 3;
 733            s->pos = 0;
 734            s->len = 0;
 735            s->state = STATE_COLLECTING_DATA;
 736        } else {
 737            s->state = STATE_PAGE_PROGRAM;
 738        }
 739        break;
 740    case FAST_READ4:
 741    case DOR4:
 742    case QOR4:
 743        s->needed_bytes += 4;
 744        s->pos = 0;
 745        s->len = 0;
 746        s->state = STATE_COLLECTING_DATA;
 747        break;
 748
 749    case DIOR4:
 750        s->needed_bytes += 1;
 751    case DIOR:
 752        switch ((s->pi->jedec >> 16) & 0xFF) {
 753        case JEDEC_WINBOND:
 754        case JEDEC_SPANSION:
 755            s->needed_bytes += 4;
 756            break;
 757        case JEDEC_NUMONYX:
 758        default:
 759            s->needed_bytes += 5;
 760        }
 761        s->pos = 0;
 762        s->len = 0;
 763        s->state = STATE_COLLECTING_DATA;
 764        break;
 765
 766    case QIOR4:
 767        s->needed_bytes += 1;
 768    case QIOR:
 769        switch ((s->pi->jedec >> 16) & 0xFF) {
 770        case JEDEC_WINBOND:
 771        case JEDEC_SPANSION:
 772            s->needed_bytes += 6;
 773            break;
 774        case JEDEC_NUMONYX:
 775        default:
 776            s->needed_bytes += 8;
 777        }
 778        s->pos = 0;
 779        s->len = 0;
 780        s->state = STATE_COLLECTING_DATA;
 781        break;
 782
 783    case WRSR:
 784        if (s->write_enable) {
 785            s->needed_bytes = 1;
 786            s->pos = 0;
 787            s->len = 0;
 788            s->state = STATE_COLLECTING_DATA;
 789        }
 790        break;
 791
 792    case BRWR:
 793        if (s->write_enable) {
 794            s->needed_bytes = 1;
 795            s->pos = 0;
 796            s->len = 0;
 797            s->state = STATE_COLLECTING_DATA;
 798        }
 799        break;
 800
 801    case WRDI:
 802        s->write_enable = false;
 803        s->aai_in_progress = false;
 804        break;
 805    case WREN:
 806        s->write_enable = true;
 807        break;
 808
 809    case RDSR:
 810        s->data[0] = (!!s->write_enable) << 1;
 811        s->pos = 0;
 812        s->len = 1;
 813        s->data_read_loop = true;
 814        s->state = STATE_READING_DATA;
 815        break;
 816
 817    case RDFSR:
 818        s->data[0] = 1 << 7;
 819        s->pos = 0;
 820        s->len = 1;
 821        s->data_read_loop = true;
 822        s->state = STATE_READING_DATA;
 823        break;
 824
 825
 826    case BRRD:
 827        s->data[0] = s->bar;
 828        s->pos = 0;
 829        s->len = 1;
 830        s->data_read_loop = false;
 831        s->state = STATE_READING_DATA;
 832        break;
 833
 834    case JEDEC_READ:
 835        DB_PRINT_L(0, "populated jedec code\n");
 836        s->data[0] = (s->pi->jedec >> 16) & 0xff;
 837        s->data[1] = (s->pi->jedec >> 8) & 0xff;
 838        s->data[2] = s->pi->jedec & 0xff;
 839        if (s->pi->ext_jedec) {
 840            s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
 841            s->data[4] = s->pi->ext_jedec & 0xff;
 842            s->len = 5;
 843        } else {
 844            s->len = 3;
 845        }
 846        s->pos = 0;
 847        s->data_read_loop = false;
 848        s->state = STATE_READING_DATA;
 849        break;
 850
 851    case RDID_90:
 852    case RDID_AB:
 853        DB_PRINT_L(0, "populated manf/dev ID\n");
 854        s->data[0] = s->pi->manf_id;
 855        s->data[1] = s->pi->dev_id;
 856        s->pos = 0;
 857        s->len = 2;
 858        s->data_read_loop = true;
 859        s->state = STATE_READING_DATA;
 860        break;
 861
 862    case BULK_ERASE_60:
 863    case BULK_ERASE_C7:
 864        if (s->write_enable) {
 865            DB_PRINT_L(0, "chip erase\n");
 866            flash_erase(s, 0, BULK_ERASE);
 867        } else {
 868            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
 869                          "protect!\n");
 870        }
 871        break;
 872    case NOP:
 873        break;
 874    case EN_4BYTE_ADDR:
 875        s->four_bytes_address_mode = true;
 876        break;
 877    case EX_4BYTE_ADDR:
 878        s->four_bytes_address_mode = false;
 879        break;
 880    case EXTEND_ADDR_READ:
 881        s->data[0] = s->ear;
 882        s->pos = 0;
 883        s->len = 1;
 884        s->state = STATE_READING_DATA;
 885        break;
 886    case EXTEND_ADDR_WRITE:
 887        if (s->write_enable) {
 888            s->needed_bytes = 1;
 889            s->pos = 0;
 890            s->len = 0;
 891            s->state = STATE_COLLECTING_DATA;
 892        }
 893        break;
 894    case RNVCR:
 895        s->data[0] = s->nonvolatile_cfg & 0xFF;
 896        s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
 897        s->pos = 0;
 898        s->len = 2;
 899        s->state = STATE_READING_DATA;
 900        break;
 901    case WNVCR:
 902        if (s->write_enable) {
 903            s->needed_bytes = 2;
 904            s->pos = 0;
 905            s->len = 0;
 906            s->state = STATE_COLLECTING_DATA;
 907        }
 908        break;
 909    case RVCR:
 910        s->data[0] = s->volatile_cfg & 0xFF;
 911        s->pos = 0;
 912        s->len = 1;
 913        s->state = STATE_READING_DATA;
 914        break;
 915    case WVCR:
 916        if (s->write_enable) {
 917            s->needed_bytes = 1;
 918            s->pos = 0;
 919            s->len = 0;
 920            s->state = STATE_COLLECTING_DATA;
 921        }
 922    case REVCR:
 923        s->data[0] = s->enh_volatile_cfg & 0xFF;
 924        s->pos = 0;
 925        s->len = 1;
 926        s->state = STATE_READING_DATA;
 927        break;
 928    case WEVCR:
 929        if (s->write_enable) {
 930            s->needed_bytes = 1;
 931            s->pos = 0;
 932            s->len = 0;
 933            s->state = STATE_COLLECTING_DATA;
 934        }
 935        break;
 936    case RESET_ENABLE:
 937        s->reset_enable = true;
 938        break;
 939    case RESET_MEMORY:
 940        if (s->reset_enable) {
 941            reset_memory(s);
 942        }
 943        break;
 944    default:
 945        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
 946        break;
 947    }
 948}
 949
 950static int m25p80_cs(SSISlave *ss, bool select)
 951{
 952    Flash *s = M25P80(ss);
 953
 954    if (select) {
 955        s->len = 0;
 956        s->pos = 0;
 957        s->state = STATE_IDLE;
 958        flash_sync_dirty(s, -1);
 959    }
 960
 961    DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
 962
 963    return 0;
 964}
 965
 966static void m25p80_num_datalines(SSISlave *ss, uint8_t lines)
 967{
 968    Flash *s = M25P80(ss);
 969    lines = lines == 0 ? 1 : lines;
 970    DB_PRINT_L(0, "Num of Data Lines change %d -> %d\n", s->n_datalines, lines);
 971    if (s->n_dummy_cycles) {
 972        s->n_dummy_cycles *= (lines / s->n_datalines);
 973    }
 974    s->n_datalines = lines;
 975}
 976
 977static uint32_t m25p80_transfer(SSISlave *ss, uint32_t tx, int num_bits)
 978{
 979    Flash *s = M25P80(ss);
 980    uint32_t r = 0;
 981
 982    if (!num_bits) {
 983        num_bits = 8;
 984    }
 985
 986    switch (s->state) {
 987
 988    case STATE_PAGE_PROGRAM:
 989        DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
 990                   s->cur_addr, (uint8_t)tx);
 991        flash_write(s, (uint8_t)tx, num_bits);
 992        s->cur_addr += num_bits;
 993        break;
 994
 995    case STATE_READ:
 996        assert((s->cur_addr & 0x7) + num_bits <= 8);
 997        r = s->storage[s->cur_addr >> 3] >>
 998            (8 - (s->cur_addr & 0x7) - num_bits);
 999        DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
1000                   (uint8_t)r);
1001        s->cur_addr = (s->cur_addr + num_bits) % (s->size * 8);
1002        break;
1003
1004    case STATE_COLLECTING_DATA:
1005        assert(num_bits == 8);
1006        s->data[s->len] = (uint8_t)tx;
1007        s->len++;
1008
1009        if (s->len == s->needed_bytes) {
1010            complete_collecting_data(s);
1011        }
1012        break;
1013
1014    case STATE_READING_DATA:
1015        assert(num_bits == 8);
1016        r = s->data[s->pos];
1017        s->pos++;
1018        if (s->pos == s->len) {
1019            s->pos = 0;
1020            if (!s->data_read_loop) {
1021                s->state = STATE_IDLE;
1022            }
1023        }
1024        break;
1025
1026    case DUMMY_CYCLE_WAIT:
1027        s->dummy_count++;
1028        DB_PRINT_L(0, "Dummy Byte/Cycle %d\n", s->dummy_count);
1029        s->n_dummy_cycles--;
1030        if (!s->n_dummy_cycles) {
1031            complete_collecting_data(s);
1032        }
1033        break;
1034    default:
1035    case STATE_IDLE:
1036        assert(num_bits == 8);
1037        decode_new_cmd(s, (uint8_t)tx);
1038        break;
1039    }
1040
1041    return r;
1042}
1043
1044static int m25p80_init(SSISlave *ss)
1045{
1046    DriveInfo *dinfo;
1047    Flash *s = M25P80(ss);
1048    M25P80Class *mc = M25P80_GET_CLASS(s);
1049
1050    /* Xilinx: Set the number of data lines to 1 by default */
1051    s->n_datalines = 1;
1052
1053    s->pi = mc->pi;
1054
1055    s->size = s->pi->sector_size * s->pi->n_sectors;
1056    s->dirty_page = -1;
1057
1058    /* FIXME use a qdev drive property instead of drive_get_next() */
1059    dinfo = drive_get_next(IF_MTD);
1060
1061    if (dinfo) {
1062        DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1063        s->blk = blk_by_legacy_dinfo(dinfo);
1064        blk_attach_dev_nofail(s->blk, s);
1065
1066        s->storage = blk_blockalign(s->blk, s->size);
1067
1068        /* FIXME: Move to late init */
1069        if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1070            fprintf(stderr, "Failed to initialize SPI flash!\n");
1071            return 1;
1072        }
1073    } else {
1074        DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1075        s->storage = blk_blockalign(NULL, s->size);
1076        memset(s->storage, 0xFF, s->size);
1077    }
1078
1079    return 0;
1080}
1081
1082static void m25p80_reset(DeviceState *d)
1083{
1084    Flash *s = M25P80(d);
1085
1086    reset_memory(s);
1087}
1088
1089static void m25p80_pre_save(void *opaque)
1090{
1091    flash_sync_dirty((Flash *)opaque, -1);
1092}
1093
1094static Property m25p80_properties[] = {
1095    DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1096    DEFINE_PROP_END_OF_LIST(),
1097};
1098
1099static const VMStateDescription vmstate_m25p80 = {
1100    .name = "xilinx_spi",
1101    .version_id = 2,
1102    .minimum_version_id = 1,
1103    .pre_save = m25p80_pre_save,
1104    .fields = (VMStateField[]) {
1105        VMSTATE_UINT8(state, Flash),
1106        VMSTATE_UINT8_ARRAY(data, Flash, 16),
1107        VMSTATE_UINT32(len, Flash),
1108        VMSTATE_UINT32(pos, Flash),
1109        VMSTATE_UINT8(needed_bytes, Flash),
1110        VMSTATE_UINT8(cmd_in_progress, Flash),
1111        VMSTATE_UINT64(cur_addr, Flash),
1112        VMSTATE_BOOL(write_enable, Flash),
1113        VMSTATE_BOOL_V(reset_enable, Flash, 2),
1114        VMSTATE_UINT8_V(ear, Flash, 2),
1115        VMSTATE_BOOL_V(four_bytes_address_mode, Flash, 2),
1116        VMSTATE_UINT32_V(nonvolatile_cfg, Flash, 2),
1117        VMSTATE_UINT32_V(volatile_cfg, Flash, 2),
1118        VMSTATE_UINT32_V(enh_volatile_cfg, Flash, 2),
1119        VMSTATE_END_OF_LIST()
1120    }
1121};
1122
1123static void m25p80_class_init(ObjectClass *klass, void *data)
1124{
1125    DeviceClass *dc = DEVICE_CLASS(klass);
1126    SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1127    M25P80Class *mc = M25P80_CLASS(klass);
1128
1129    k->init = m25p80_init;
1130    k->transfer_bits = m25p80_transfer;
1131    k->set_cs = m25p80_cs;
1132    k->set_data_lines = m25p80_num_datalines;
1133    k->cs_polarity = SSI_CS_LOW;
1134    dc->vmsd = &vmstate_m25p80;
1135    dc->props = m25p80_properties;
1136    dc->reset = m25p80_reset;
1137    mc->pi = data;
1138}
1139
1140static const TypeInfo m25p80_info = {
1141    .name           = TYPE_M25P80,
1142    .parent         = TYPE_SSI_SLAVE,
1143    .instance_size  = sizeof(Flash),
1144    .class_size     = sizeof(M25P80Class),
1145    .abstract       = true,
1146};
1147
1148static void m25p80_register_types(void)
1149{
1150    int i;
1151
1152    type_register_static(&m25p80_info);
1153    for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1154        TypeInfo ti = {
1155            .name       = known_devices[i].part_name,
1156            .parent     = TYPE_M25P80,
1157            .class_init = m25p80_class_init,
1158            .class_data = (void *)&known_devices[i],
1159        };
1160        type_register(&ti);
1161    }
1162}
1163
1164type_init(m25p80_register_types)
1165