qemu/hw/core/ptimer.c
<<
>>
Prefs
   1/*
   2 * General purpose implementation of a simple periodic countdown timer.
   3 *
   4 * Copyright (c) 2007 CodeSourcery.
   5 *
   6 * This code is licensed under the GNU LGPL.
   7 */
   8#include "qemu/osdep.h"
   9#include "hw/hw.h"
  10#include "qemu/timer.h"
  11#include "hw/ptimer.h"
  12#include "qemu/host-utils.h"
  13#include "sysemu/replay.h"
  14
  15struct ptimer_state
  16{
  17    uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
  18    uint64_t limit;
  19    uint64_t delta;
  20    uint32_t period_frac;
  21    int64_t period;
  22    int64_t last_event;
  23    int64_t next_event;
  24    QEMUBH *bh;
  25    QEMUTimer *timer;
  26};
  27
  28/* Use a bottom-half routine to avoid reentrancy issues.  */
  29static void ptimer_trigger(ptimer_state *s)
  30{
  31    if (s->bh) {
  32        replay_bh_schedule_event(s->bh);
  33    }
  34}
  35
  36static void ptimer_reload(ptimer_state *s)
  37{
  38    if (s->delta == 0) {
  39        ptimer_trigger(s);
  40        s->delta = s->limit;
  41    }
  42    if (s->delta == 0 || s->period == 0) {
  43        fprintf(stderr, "Timer with period zero, disabling\n");
  44        s->enabled = 0;
  45        return;
  46    }
  47
  48    s->last_event = s->next_event;
  49    s->next_event = s->last_event + s->delta * s->period;
  50    if (s->period_frac) {
  51        s->next_event += ((int64_t)s->period_frac * s->delta) >> 32;
  52    }
  53    timer_mod(s->timer, s->next_event);
  54}
  55
  56static void ptimer_tick(void *opaque)
  57{
  58    ptimer_state *s = (ptimer_state *)opaque;
  59    ptimer_trigger(s);
  60    s->delta = 0;
  61    if (s->enabled == 2) {
  62        s->enabled = 0;
  63    } else {
  64        ptimer_reload(s);
  65    }
  66}
  67
  68uint64_t ptimer_get_count(ptimer_state *s)
  69{
  70    int64_t now;
  71    uint64_t counter;
  72
  73    if (s->enabled) {
  74        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  75        /* Figure out the current counter value.  */
  76        if (now - s->next_event > 0
  77            || s->period == 0) {
  78            /* Prevent timer underflowing if it should already have
  79               triggered.  */
  80            counter = 0;
  81        } else {
  82            uint64_t rem;
  83            uint64_t div;
  84            int clz1, clz2;
  85            int shift;
  86
  87            /* We need to divide time by period, where time is stored in
  88               rem (64-bit integer) and period is stored in period/period_frac
  89               (64.32 fixed point).
  90              
  91               Doing full precision division is hard, so scale values and
  92               do a 64-bit division.  The result should be rounded down,
  93               so that the rounding error never causes the timer to go
  94               backwards.
  95            */
  96
  97            rem = s->next_event - now;
  98            div = s->period;
  99
 100            clz1 = clz64(rem);
 101            clz2 = clz64(div);
 102            shift = clz1 < clz2 ? clz1 : clz2;
 103
 104            rem <<= shift;
 105            div <<= shift;
 106            if (shift >= 32) {
 107                div |= ((uint64_t)s->period_frac << (shift - 32));
 108            } else {
 109                if (shift != 0)
 110                    div |= (s->period_frac >> (32 - shift));
 111                /* Look at remaining bits of period_frac and round div up if 
 112                   necessary.  */
 113                if ((uint32_t)(s->period_frac << shift))
 114                    div += 1;
 115            }
 116            counter = rem / div;
 117        }
 118    } else {
 119        counter = s->delta;
 120    }
 121    return counter;
 122}
 123
 124void ptimer_set_count(ptimer_state *s, uint64_t count)
 125{
 126    s->delta = count;
 127    if (s->enabled) {
 128        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 129        ptimer_reload(s);
 130    }
 131}
 132
 133void ptimer_run(ptimer_state *s, int oneshot)
 134{
 135    if (s->enabled) {
 136        return;
 137    }
 138    if (s->period == 0) {
 139        fprintf(stderr, "Timer with period zero, disabling\n");
 140        return;
 141    }
 142    s->enabled = oneshot ? 2 : 1;
 143    s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 144    ptimer_reload(s);
 145}
 146
 147/* Pause a timer.  Note that this may cause it to "lose" time, even if it
 148   is immediately restarted.  */
 149void ptimer_stop(ptimer_state *s)
 150{
 151    if (!s->enabled)
 152        return;
 153
 154    s->delta = ptimer_get_count(s);
 155    timer_del(s->timer);
 156    s->enabled = 0;
 157}
 158
 159/* Set counter increment interval in nanoseconds.  */
 160void ptimer_set_period(ptimer_state *s, int64_t period)
 161{
 162    s->period = period;
 163    s->period_frac = 0;
 164    if (s->enabled) {
 165        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 166        ptimer_reload(s);
 167    }
 168}
 169
 170/* Set counter frequency in Hz.  */
 171void ptimer_set_freq(ptimer_state *s, uint32_t freq)
 172{
 173    s->period = 1000000000ll / freq;
 174    s->period_frac = (1000000000ll << 32) / freq;
 175    if (s->enabled) {
 176        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 177        ptimer_reload(s);
 178    }
 179}
 180
 181/* Set the initial countdown value.  If reload is nonzero then also set
 182   count = limit.  */
 183void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
 184{
 185    /*
 186     * Artificially limit timeout rate to something
 187     * achievable under QEMU.  Otherwise, QEMU spends all
 188     * its time generating timer interrupts, and there
 189     * is no forward progress.
 190     * About ten microseconds is the fastest that really works
 191     * on the current generation of host machines.
 192     */
 193
 194    if (!use_icount && limit * s->period < 10000 && s->period) {
 195        limit = 10000 / s->period;
 196    }
 197
 198    s->limit = limit;
 199    if (reload)
 200        s->delta = limit;
 201    if (s->enabled && reload) {
 202        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 203        ptimer_reload(s);
 204    }
 205}
 206
 207const VMStateDescription vmstate_ptimer = {
 208    .name = "ptimer",
 209    .version_id = 1,
 210    .minimum_version_id = 1,
 211    .fields = (VMStateField[]) {
 212        VMSTATE_UINT8(enabled, ptimer_state),
 213        VMSTATE_UINT64(limit, ptimer_state),
 214        VMSTATE_UINT64(delta, ptimer_state),
 215        VMSTATE_UINT32(period_frac, ptimer_state),
 216        VMSTATE_INT64(period, ptimer_state),
 217        VMSTATE_INT64(last_event, ptimer_state),
 218        VMSTATE_INT64(next_event, ptimer_state),
 219        VMSTATE_TIMER_PTR(timer, ptimer_state),
 220        VMSTATE_END_OF_LIST()
 221    }
 222};
 223
 224ptimer_state *ptimer_init(QEMUBH *bh)
 225{
 226    ptimer_state *s;
 227
 228    s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
 229    s->bh = bh;
 230    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
 231    return s;
 232}
 233