qemu/hw/i386/intel_iommu.c
<<
>>
Prefs
   1/*
   2 * QEMU emulation of an Intel IOMMU (VT-d)
   3 *   (DMA Remapping device)
   4 *
   5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
   6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17
  18 * You should have received a copy of the GNU General Public License along
  19 * with this program; if not, see <http://www.gnu.org/licenses/>.
  20 */
  21
  22#include "qemu/osdep.h"
  23#include "hw/sysbus.h"
  24#include "exec/address-spaces.h"
  25#include "intel_iommu_internal.h"
  26#include "hw/pci/pci.h"
  27
  28/*#define DEBUG_INTEL_IOMMU*/
  29#ifdef DEBUG_INTEL_IOMMU
  30enum {
  31    DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
  32    DEBUG_CACHE,
  33};
  34#define VTD_DBGBIT(x)   (1 << DEBUG_##x)
  35static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
  36
  37#define VTD_DPRINTF(what, fmt, ...) do { \
  38    if (vtd_dbgflags & VTD_DBGBIT(what)) { \
  39        fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
  40                ## __VA_ARGS__); } \
  41    } while (0)
  42#else
  43#define VTD_DPRINTF(what, fmt, ...) do {} while (0)
  44#endif
  45
  46static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
  47                            uint64_t wmask, uint64_t w1cmask)
  48{
  49    stq_le_p(&s->csr[addr], val);
  50    stq_le_p(&s->wmask[addr], wmask);
  51    stq_le_p(&s->w1cmask[addr], w1cmask);
  52}
  53
  54static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
  55{
  56    stq_le_p(&s->womask[addr], mask);
  57}
  58
  59static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
  60                            uint32_t wmask, uint32_t w1cmask)
  61{
  62    stl_le_p(&s->csr[addr], val);
  63    stl_le_p(&s->wmask[addr], wmask);
  64    stl_le_p(&s->w1cmask[addr], w1cmask);
  65}
  66
  67static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
  68{
  69    stl_le_p(&s->womask[addr], mask);
  70}
  71
  72/* "External" get/set operations */
  73static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
  74{
  75    uint64_t oldval = ldq_le_p(&s->csr[addr]);
  76    uint64_t wmask = ldq_le_p(&s->wmask[addr]);
  77    uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
  78    stq_le_p(&s->csr[addr],
  79             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  80}
  81
  82static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
  83{
  84    uint32_t oldval = ldl_le_p(&s->csr[addr]);
  85    uint32_t wmask = ldl_le_p(&s->wmask[addr]);
  86    uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
  87    stl_le_p(&s->csr[addr],
  88             ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
  89}
  90
  91static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
  92{
  93    uint64_t val = ldq_le_p(&s->csr[addr]);
  94    uint64_t womask = ldq_le_p(&s->womask[addr]);
  95    return val & ~womask;
  96}
  97
  98static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
  99{
 100    uint32_t val = ldl_le_p(&s->csr[addr]);
 101    uint32_t womask = ldl_le_p(&s->womask[addr]);
 102    return val & ~womask;
 103}
 104
 105/* "Internal" get/set operations */
 106static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
 107{
 108    return ldq_le_p(&s->csr[addr]);
 109}
 110
 111static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
 112{
 113    return ldl_le_p(&s->csr[addr]);
 114}
 115
 116static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
 117{
 118    stq_le_p(&s->csr[addr], val);
 119}
 120
 121static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
 122                                        uint32_t clear, uint32_t mask)
 123{
 124    uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
 125    stl_le_p(&s->csr[addr], new_val);
 126    return new_val;
 127}
 128
 129static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
 130                                        uint64_t clear, uint64_t mask)
 131{
 132    uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
 133    stq_le_p(&s->csr[addr], new_val);
 134    return new_val;
 135}
 136
 137/* GHashTable functions */
 138static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
 139{
 140    return *((const uint64_t *)v1) == *((const uint64_t *)v2);
 141}
 142
 143static guint vtd_uint64_hash(gconstpointer v)
 144{
 145    return (guint)*(const uint64_t *)v;
 146}
 147
 148static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
 149                                          gpointer user_data)
 150{
 151    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 152    uint16_t domain_id = *(uint16_t *)user_data;
 153    return entry->domain_id == domain_id;
 154}
 155
 156/* The shift of an addr for a certain level of paging structure */
 157static inline uint32_t vtd_slpt_level_shift(uint32_t level)
 158{
 159    return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
 160}
 161
 162static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
 163{
 164    return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
 165}
 166
 167static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
 168                                        gpointer user_data)
 169{
 170    VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
 171    VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
 172    uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
 173    uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
 174    return (entry->domain_id == info->domain_id) &&
 175            (((entry->gfn & info->mask) == gfn) ||
 176             (entry->gfn == gfn_tlb));
 177}
 178
 179/* Reset all the gen of VTDAddressSpace to zero and set the gen of
 180 * IntelIOMMUState to 1.
 181 */
 182static void vtd_reset_context_cache(IntelIOMMUState *s)
 183{
 184    VTDAddressSpace *vtd_as;
 185    VTDBus *vtd_bus;
 186    GHashTableIter bus_it;
 187    uint32_t devfn_it;
 188
 189    g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
 190
 191    VTD_DPRINTF(CACHE, "global context_cache_gen=1");
 192    while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
 193        for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
 194            vtd_as = vtd_bus->dev_as[devfn_it];
 195            if (!vtd_as) {
 196                continue;
 197            }
 198            vtd_as->context_cache_entry.context_cache_gen = 0;
 199        }
 200    }
 201    s->context_cache_gen = 1;
 202}
 203
 204static void vtd_reset_iotlb(IntelIOMMUState *s)
 205{
 206    assert(s->iotlb);
 207    g_hash_table_remove_all(s->iotlb);
 208}
 209
 210static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint8_t source_id,
 211                                  uint32_t level)
 212{
 213    return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
 214           ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
 215}
 216
 217static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
 218{
 219    return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
 220}
 221
 222static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
 223                                       hwaddr addr)
 224{
 225    VTDIOTLBEntry *entry;
 226    uint64_t key;
 227    int level;
 228
 229    for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
 230        key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
 231                                source_id, level);
 232        entry = g_hash_table_lookup(s->iotlb, &key);
 233        if (entry) {
 234            goto out;
 235        }
 236    }
 237
 238out:
 239    return entry;
 240}
 241
 242static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
 243                             uint16_t domain_id, hwaddr addr, uint64_t slpte,
 244                             bool read_flags, bool write_flags,
 245                             uint32_t level)
 246{
 247    VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
 248    uint64_t *key = g_malloc(sizeof(*key));
 249    uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
 250
 251    VTD_DPRINTF(CACHE, "update iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
 252                " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr, slpte,
 253                domain_id);
 254    if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
 255        VTD_DPRINTF(CACHE, "iotlb exceeds size limit, forced to reset");
 256        vtd_reset_iotlb(s);
 257    }
 258
 259    entry->gfn = gfn;
 260    entry->domain_id = domain_id;
 261    entry->slpte = slpte;
 262    entry->read_flags = read_flags;
 263    entry->write_flags = write_flags;
 264    entry->mask = vtd_slpt_level_page_mask(level);
 265    *key = vtd_get_iotlb_key(gfn, source_id, level);
 266    g_hash_table_replace(s->iotlb, key, entry);
 267}
 268
 269/* Given the reg addr of both the message data and address, generate an
 270 * interrupt via MSI.
 271 */
 272static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
 273                                   hwaddr mesg_data_reg)
 274{
 275    hwaddr addr;
 276    uint32_t data;
 277
 278    assert(mesg_data_reg < DMAR_REG_SIZE);
 279    assert(mesg_addr_reg < DMAR_REG_SIZE);
 280
 281    addr = vtd_get_long_raw(s, mesg_addr_reg);
 282    data = vtd_get_long_raw(s, mesg_data_reg);
 283
 284    VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
 285    address_space_stl_le(&address_space_memory, addr, data,
 286                         MEMTXATTRS_UNSPECIFIED, NULL);
 287}
 288
 289/* Generate a fault event to software via MSI if conditions are met.
 290 * Notice that the value of FSTS_REG being passed to it should be the one
 291 * before any update.
 292 */
 293static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
 294{
 295    if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
 296        pre_fsts & VTD_FSTS_IQE) {
 297        VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
 298                    "to be serviced by software, fault event is not generated "
 299                    "(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
 300        return;
 301    }
 302    vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
 303    if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
 304        VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
 305    } else {
 306        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
 307        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
 308    }
 309}
 310
 311/* Check if the Fault (F) field of the Fault Recording Register referenced by
 312 * @index is Set.
 313 */
 314static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
 315{
 316    /* Each reg is 128-bit */
 317    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 318    addr += 8; /* Access the high 64-bit half */
 319
 320    assert(index < DMAR_FRCD_REG_NR);
 321
 322    return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
 323}
 324
 325/* Update the PPF field of Fault Status Register.
 326 * Should be called whenever change the F field of any fault recording
 327 * registers.
 328 */
 329static void vtd_update_fsts_ppf(IntelIOMMUState *s)
 330{
 331    uint32_t i;
 332    uint32_t ppf_mask = 0;
 333
 334    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 335        if (vtd_is_frcd_set(s, i)) {
 336            ppf_mask = VTD_FSTS_PPF;
 337            break;
 338        }
 339    }
 340    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
 341    VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
 342}
 343
 344static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
 345{
 346    /* Each reg is 128-bit */
 347    hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 348    addr += 8; /* Access the high 64-bit half */
 349
 350    assert(index < DMAR_FRCD_REG_NR);
 351
 352    vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
 353    vtd_update_fsts_ppf(s);
 354}
 355
 356/* Must not update F field now, should be done later */
 357static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
 358                            uint16_t source_id, hwaddr addr,
 359                            VTDFaultReason fault, bool is_write)
 360{
 361    uint64_t hi = 0, lo;
 362    hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
 363
 364    assert(index < DMAR_FRCD_REG_NR);
 365
 366    lo = VTD_FRCD_FI(addr);
 367    hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
 368    if (!is_write) {
 369        hi |= VTD_FRCD_T;
 370    }
 371    vtd_set_quad_raw(s, frcd_reg_addr, lo);
 372    vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
 373    VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
 374                ", lo 0x%"PRIx64, index, hi, lo);
 375}
 376
 377/* Try to collapse multiple pending faults from the same requester */
 378static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
 379{
 380    uint32_t i;
 381    uint64_t frcd_reg;
 382    hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
 383
 384    for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
 385        frcd_reg = vtd_get_quad_raw(s, addr);
 386        VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
 387        if ((frcd_reg & VTD_FRCD_F) &&
 388            ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
 389            return true;
 390        }
 391        addr += 16; /* 128-bit for each */
 392    }
 393    return false;
 394}
 395
 396/* Log and report an DMAR (address translation) fault to software */
 397static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
 398                                  hwaddr addr, VTDFaultReason fault,
 399                                  bool is_write)
 400{
 401    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 402
 403    assert(fault < VTD_FR_MAX);
 404
 405    if (fault == VTD_FR_RESERVED_ERR) {
 406        /* This is not a normal fault reason case. Drop it. */
 407        return;
 408    }
 409    VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
 410                ", is_write %d", source_id, fault, addr, is_write);
 411    if (fsts_reg & VTD_FSTS_PFO) {
 412        VTD_DPRINTF(FLOG, "new fault is not recorded due to "
 413                    "Primary Fault Overflow");
 414        return;
 415    }
 416    if (vtd_try_collapse_fault(s, source_id)) {
 417        VTD_DPRINTF(FLOG, "new fault is not recorded due to "
 418                    "compression of faults");
 419        return;
 420    }
 421    if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
 422        VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
 423                    "new fault is not recorded, set PFO field");
 424        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
 425        return;
 426    }
 427
 428    vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
 429
 430    if (fsts_reg & VTD_FSTS_PPF) {
 431        VTD_DPRINTF(FLOG, "there are pending faults already, "
 432                    "fault event is not generated");
 433        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
 434        s->next_frcd_reg++;
 435        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 436            s->next_frcd_reg = 0;
 437        }
 438    } else {
 439        vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
 440                                VTD_FSTS_FRI(s->next_frcd_reg));
 441        vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
 442        s->next_frcd_reg++;
 443        if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
 444            s->next_frcd_reg = 0;
 445        }
 446        /* This case actually cause the PPF to be Set.
 447         * So generate fault event (interrupt).
 448         */
 449         vtd_generate_fault_event(s, fsts_reg);
 450    }
 451}
 452
 453/* Handle Invalidation Queue Errors of queued invalidation interface error
 454 * conditions.
 455 */
 456static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
 457{
 458    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
 459
 460    vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
 461    vtd_generate_fault_event(s, fsts_reg);
 462}
 463
 464/* Set the IWC field and try to generate an invalidation completion interrupt */
 465static void vtd_generate_completion_event(IntelIOMMUState *s)
 466{
 467    VTD_DPRINTF(INV, "completes an invalidation wait command with "
 468                "Interrupt Flag");
 469    if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
 470        VTD_DPRINTF(INV, "there is a previous interrupt condition to be "
 471                    "serviced by software, "
 472                    "new invalidation event is not generated");
 473        return;
 474    }
 475    vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
 476    vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
 477    if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
 478        VTD_DPRINTF(INV, "IM filed in IECTL_REG is set, new invalidation "
 479                    "event is not generated");
 480        return;
 481    } else {
 482        /* Generate the interrupt event */
 483        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
 484        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
 485    }
 486}
 487
 488static inline bool vtd_root_entry_present(VTDRootEntry *root)
 489{
 490    return root->val & VTD_ROOT_ENTRY_P;
 491}
 492
 493static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
 494                              VTDRootEntry *re)
 495{
 496    dma_addr_t addr;
 497
 498    addr = s->root + index * sizeof(*re);
 499    if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
 500        VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
 501                    " + %"PRIu8, s->root, index);
 502        re->val = 0;
 503        return -VTD_FR_ROOT_TABLE_INV;
 504    }
 505    re->val = le64_to_cpu(re->val);
 506    return 0;
 507}
 508
 509static inline bool vtd_context_entry_present(VTDContextEntry *context)
 510{
 511    return context->lo & VTD_CONTEXT_ENTRY_P;
 512}
 513
 514static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
 515                                           VTDContextEntry *ce)
 516{
 517    dma_addr_t addr;
 518
 519    if (!vtd_root_entry_present(root)) {
 520        VTD_DPRINTF(GENERAL, "error: root-entry is not present");
 521        return -VTD_FR_ROOT_ENTRY_P;
 522    }
 523    addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
 524    if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
 525        VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
 526                    " + %"PRIu8,
 527                    (uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
 528        return -VTD_FR_CONTEXT_TABLE_INV;
 529    }
 530    ce->lo = le64_to_cpu(ce->lo);
 531    ce->hi = le64_to_cpu(ce->hi);
 532    return 0;
 533}
 534
 535static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
 536{
 537    return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
 538}
 539
 540static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
 541{
 542    return slpte & VTD_SL_PT_BASE_ADDR_MASK;
 543}
 544
 545/* Whether the pte indicates the address of the page frame */
 546static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
 547{
 548    return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
 549}
 550
 551/* Get the content of a spte located in @base_addr[@index] */
 552static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
 553{
 554    uint64_t slpte;
 555
 556    assert(index < VTD_SL_PT_ENTRY_NR);
 557
 558    if (dma_memory_read(&address_space_memory,
 559                        base_addr + index * sizeof(slpte), &slpte,
 560                        sizeof(slpte))) {
 561        slpte = (uint64_t)-1;
 562        return slpte;
 563    }
 564    slpte = le64_to_cpu(slpte);
 565    return slpte;
 566}
 567
 568/* Given a gpa and the level of paging structure, return the offset of current
 569 * level.
 570 */
 571static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
 572{
 573    return (gpa >> vtd_slpt_level_shift(level)) &
 574            ((1ULL << VTD_SL_LEVEL_BITS) - 1);
 575}
 576
 577/* Check Capability Register to see if the @level of page-table is supported */
 578static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
 579{
 580    return VTD_CAP_SAGAW_MASK & s->cap &
 581           (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
 582}
 583
 584/* Get the page-table level that hardware should use for the second-level
 585 * page-table walk from the Address Width field of context-entry.
 586 */
 587static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
 588{
 589    return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
 590}
 591
 592static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
 593{
 594    return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
 595}
 596
 597static const uint64_t vtd_paging_entry_rsvd_field[] = {
 598    [0] = ~0ULL,
 599    /* For not large page */
 600    [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 601    [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 602    [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 603    [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 604    /* For large page */
 605    [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 606    [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 607    [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 608    [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
 609};
 610
 611static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
 612{
 613    if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
 614        /* Maybe large page */
 615        return slpte & vtd_paging_entry_rsvd_field[level + 4];
 616    } else {
 617        return slpte & vtd_paging_entry_rsvd_field[level];
 618    }
 619}
 620
 621/* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
 622 * of the translation, can be used for deciding the size of large page.
 623 */
 624static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
 625                            uint64_t *slptep, uint32_t *slpte_level,
 626                            bool *reads, bool *writes)
 627{
 628    dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
 629    uint32_t level = vtd_get_level_from_context_entry(ce);
 630    uint32_t offset;
 631    uint64_t slpte;
 632    uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
 633    uint64_t access_right_check;
 634
 635    /* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
 636     * and AW in context-entry.
 637     */
 638    if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
 639        VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
 640        return -VTD_FR_ADDR_BEYOND_MGAW;
 641    }
 642
 643    /* FIXME: what is the Atomics request here? */
 644    access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
 645
 646    while (true) {
 647        offset = vtd_gpa_level_offset(gpa, level);
 648        slpte = vtd_get_slpte(addr, offset);
 649
 650        if (slpte == (uint64_t)-1) {
 651            VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
 652                        "entry at level %"PRIu32 " for gpa 0x%"PRIx64,
 653                        level, gpa);
 654            if (level == vtd_get_level_from_context_entry(ce)) {
 655                /* Invalid programming of context-entry */
 656                return -VTD_FR_CONTEXT_ENTRY_INV;
 657            } else {
 658                return -VTD_FR_PAGING_ENTRY_INV;
 659            }
 660        }
 661        *reads = (*reads) && (slpte & VTD_SL_R);
 662        *writes = (*writes) && (slpte & VTD_SL_W);
 663        if (!(slpte & access_right_check)) {
 664            VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
 665                        "gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
 666                        (is_write ? "write" : "read"), gpa, slpte);
 667            return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
 668        }
 669        if (vtd_slpte_nonzero_rsvd(slpte, level)) {
 670            VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
 671                        "level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
 672                        level, slpte);
 673            return -VTD_FR_PAGING_ENTRY_RSVD;
 674        }
 675
 676        if (vtd_is_last_slpte(slpte, level)) {
 677            *slptep = slpte;
 678            *slpte_level = level;
 679            return 0;
 680        }
 681        addr = vtd_get_slpte_addr(slpte);
 682        level--;
 683    }
 684}
 685
 686/* Map a device to its corresponding domain (context-entry) */
 687static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
 688                                    uint8_t devfn, VTDContextEntry *ce)
 689{
 690    VTDRootEntry re;
 691    int ret_fr;
 692
 693    ret_fr = vtd_get_root_entry(s, bus_num, &re);
 694    if (ret_fr) {
 695        return ret_fr;
 696    }
 697
 698    if (!vtd_root_entry_present(&re)) {
 699        VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
 700                    bus_num);
 701        return -VTD_FR_ROOT_ENTRY_P;
 702    } else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
 703        VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
 704                    "hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
 705        return -VTD_FR_ROOT_ENTRY_RSVD;
 706    }
 707
 708    ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
 709    if (ret_fr) {
 710        return ret_fr;
 711    }
 712
 713    if (!vtd_context_entry_present(ce)) {
 714        VTD_DPRINTF(GENERAL,
 715                    "error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
 716                    "is not present", devfn, bus_num);
 717        return -VTD_FR_CONTEXT_ENTRY_P;
 718    } else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
 719               (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
 720        VTD_DPRINTF(GENERAL,
 721                    "error: non-zero reserved field in context-entry "
 722                    "hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
 723        return -VTD_FR_CONTEXT_ENTRY_RSVD;
 724    }
 725    /* Check if the programming of context-entry is valid */
 726    if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
 727        VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
 728                    "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
 729                    ce->hi, ce->lo);
 730        return -VTD_FR_CONTEXT_ENTRY_INV;
 731    } else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
 732        VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
 733                    "context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
 734                    ce->hi, ce->lo);
 735        return -VTD_FR_CONTEXT_ENTRY_INV;
 736    }
 737    return 0;
 738}
 739
 740static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
 741{
 742    return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
 743}
 744
 745static const bool vtd_qualified_faults[] = {
 746    [VTD_FR_RESERVED] = false,
 747    [VTD_FR_ROOT_ENTRY_P] = false,
 748    [VTD_FR_CONTEXT_ENTRY_P] = true,
 749    [VTD_FR_CONTEXT_ENTRY_INV] = true,
 750    [VTD_FR_ADDR_BEYOND_MGAW] = true,
 751    [VTD_FR_WRITE] = true,
 752    [VTD_FR_READ] = true,
 753    [VTD_FR_PAGING_ENTRY_INV] = true,
 754    [VTD_FR_ROOT_TABLE_INV] = false,
 755    [VTD_FR_CONTEXT_TABLE_INV] = false,
 756    [VTD_FR_ROOT_ENTRY_RSVD] = false,
 757    [VTD_FR_PAGING_ENTRY_RSVD] = true,
 758    [VTD_FR_CONTEXT_ENTRY_TT] = true,
 759    [VTD_FR_RESERVED_ERR] = false,
 760    [VTD_FR_MAX] = false,
 761};
 762
 763/* To see if a fault condition is "qualified", which is reported to software
 764 * only if the FPD field in the context-entry used to process the faulting
 765 * request is 0.
 766 */
 767static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
 768{
 769    return vtd_qualified_faults[fault];
 770}
 771
 772static inline bool vtd_is_interrupt_addr(hwaddr addr)
 773{
 774    return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
 775}
 776
 777/* Map dev to context-entry then do a paging-structures walk to do a iommu
 778 * translation.
 779 *
 780 * Called from RCU critical section.
 781 *
 782 * @bus_num: The bus number
 783 * @devfn: The devfn, which is the  combined of device and function number
 784 * @is_write: The access is a write operation
 785 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
 786 */
 787static void vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
 788                                   uint8_t devfn, hwaddr addr, bool is_write,
 789                                   IOMMUTLBEntry *entry)
 790{
 791    IntelIOMMUState *s = vtd_as->iommu_state;
 792    VTDContextEntry ce;
 793    uint8_t bus_num = pci_bus_num(bus);
 794    VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
 795    uint64_t slpte, page_mask;
 796    uint32_t level;
 797    uint16_t source_id = vtd_make_source_id(bus_num, devfn);
 798    int ret_fr;
 799    bool is_fpd_set = false;
 800    bool reads = true;
 801    bool writes = true;
 802    VTDIOTLBEntry *iotlb_entry;
 803
 804    /* Check if the request is in interrupt address range */
 805    if (vtd_is_interrupt_addr(addr)) {
 806        if (is_write) {
 807            /* FIXME: since we don't know the length of the access here, we
 808             * treat Non-DWORD length write requests without PASID as
 809             * interrupt requests, too. Withoud interrupt remapping support,
 810             * we just use 1:1 mapping.
 811             */
 812            VTD_DPRINTF(MMU, "write request to interrupt address "
 813                        "gpa 0x%"PRIx64, addr);
 814            entry->iova = addr & VTD_PAGE_MASK_4K;
 815            entry->translated_addr = addr & VTD_PAGE_MASK_4K;
 816            entry->addr_mask = ~VTD_PAGE_MASK_4K;
 817            entry->perm = IOMMU_WO;
 818            return;
 819        } else {
 820            VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
 821                        "gpa 0x%"PRIx64, addr);
 822            vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
 823            return;
 824        }
 825    }
 826    /* Try to fetch slpte form IOTLB */
 827    iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
 828    if (iotlb_entry) {
 829        VTD_DPRINTF(CACHE, "hit iotlb sid 0x%"PRIx16 " gpa 0x%"PRIx64
 830                    " slpte 0x%"PRIx64 " did 0x%"PRIx16, source_id, addr,
 831                    iotlb_entry->slpte, iotlb_entry->domain_id);
 832        slpte = iotlb_entry->slpte;
 833        reads = iotlb_entry->read_flags;
 834        writes = iotlb_entry->write_flags;
 835        page_mask = iotlb_entry->mask;
 836        goto out;
 837    }
 838    /* Try to fetch context-entry from cache first */
 839    if (cc_entry->context_cache_gen == s->context_cache_gen) {
 840        VTD_DPRINTF(CACHE, "hit context-cache bus %d devfn %d "
 841                    "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 ")",
 842                    bus_num, devfn, cc_entry->context_entry.hi,
 843                    cc_entry->context_entry.lo, cc_entry->context_cache_gen);
 844        ce = cc_entry->context_entry;
 845        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
 846    } else {
 847        ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
 848        is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
 849        if (ret_fr) {
 850            ret_fr = -ret_fr;
 851            if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
 852                VTD_DPRINTF(FLOG, "fault processing is disabled for DMA "
 853                            "requests through this context-entry "
 854                            "(with FPD Set)");
 855            } else {
 856                vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
 857            }
 858            return;
 859        }
 860        /* Update context-cache */
 861        VTD_DPRINTF(CACHE, "update context-cache bus %d devfn %d "
 862                    "(hi %"PRIx64 " lo %"PRIx64 " gen %"PRIu32 "->%"PRIu32 ")",
 863                    bus_num, devfn, ce.hi, ce.lo,
 864                    cc_entry->context_cache_gen, s->context_cache_gen);
 865        cc_entry->context_entry = ce;
 866        cc_entry->context_cache_gen = s->context_cache_gen;
 867    }
 868
 869    ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
 870                              &reads, &writes);
 871    if (ret_fr) {
 872        ret_fr = -ret_fr;
 873        if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
 874            VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
 875                        "through this context-entry (with FPD Set)");
 876        } else {
 877            vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
 878        }
 879        return;
 880    }
 881
 882    page_mask = vtd_slpt_level_page_mask(level);
 883    vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
 884                     reads, writes, level);
 885out:
 886    entry->iova = addr & page_mask;
 887    entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
 888    entry->addr_mask = ~page_mask;
 889    entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
 890}
 891
 892static void vtd_root_table_setup(IntelIOMMUState *s)
 893{
 894    s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
 895    s->root_extended = s->root & VTD_RTADDR_RTT;
 896    s->root &= VTD_RTADDR_ADDR_MASK;
 897
 898    VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
 899                (s->root_extended ? "(extended)" : ""));
 900}
 901
 902static void vtd_context_global_invalidate(IntelIOMMUState *s)
 903{
 904    s->context_cache_gen++;
 905    if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
 906        vtd_reset_context_cache(s);
 907    }
 908}
 909
 910
 911/* Find the VTD address space currently associated with a given bus number,
 912 */
 913static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
 914{
 915    VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
 916    if (!vtd_bus) {
 917        /* Iterate over the registered buses to find the one
 918         * which currently hold this bus number, and update the bus_num lookup table:
 919         */
 920        GHashTableIter iter;
 921
 922        g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
 923        while (g_hash_table_iter_next (&iter, NULL, (void**)&vtd_bus)) {
 924            if (pci_bus_num(vtd_bus->bus) == bus_num) {
 925                s->vtd_as_by_bus_num[bus_num] = vtd_bus;
 926                return vtd_bus;
 927            }
 928        }
 929    }
 930    return vtd_bus;
 931}
 932
 933/* Do a context-cache device-selective invalidation.
 934 * @func_mask: FM field after shifting
 935 */
 936static void vtd_context_device_invalidate(IntelIOMMUState *s,
 937                                          uint16_t source_id,
 938                                          uint16_t func_mask)
 939{
 940    uint16_t mask;
 941    VTDBus *vtd_bus;
 942    VTDAddressSpace *vtd_as;
 943    uint16_t devfn;
 944    uint16_t devfn_it;
 945
 946    switch (func_mask & 3) {
 947    case 0:
 948        mask = 0;   /* No bits in the SID field masked */
 949        break;
 950    case 1:
 951        mask = 4;   /* Mask bit 2 in the SID field */
 952        break;
 953    case 2:
 954        mask = 6;   /* Mask bit 2:1 in the SID field */
 955        break;
 956    case 3:
 957        mask = 7;   /* Mask bit 2:0 in the SID field */
 958        break;
 959    }
 960    VTD_DPRINTF(INV, "device-selective invalidation source 0x%"PRIx16
 961                    " mask %"PRIu16, source_id, mask);
 962    vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
 963    if (vtd_bus) {
 964        devfn = VTD_SID_TO_DEVFN(source_id);
 965        for (devfn_it = 0; devfn_it < VTD_PCI_DEVFN_MAX; ++devfn_it) {
 966            vtd_as = vtd_bus->dev_as[devfn_it];
 967            if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
 968                VTD_DPRINTF(INV, "invalidate context-cahce of devfn 0x%"PRIx16,
 969                            devfn_it);
 970                vtd_as->context_cache_entry.context_cache_gen = 0;
 971            }
 972        }
 973    }
 974}
 975
 976/* Context-cache invalidation
 977 * Returns the Context Actual Invalidation Granularity.
 978 * @val: the content of the CCMD_REG
 979 */
 980static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
 981{
 982    uint64_t caig;
 983    uint64_t type = val & VTD_CCMD_CIRG_MASK;
 984
 985    switch (type) {
 986    case VTD_CCMD_DOMAIN_INVL:
 987        VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
 988                    (uint16_t)VTD_CCMD_DID(val));
 989        /* Fall through */
 990    case VTD_CCMD_GLOBAL_INVL:
 991        VTD_DPRINTF(INV, "global invalidation");
 992        caig = VTD_CCMD_GLOBAL_INVL_A;
 993        vtd_context_global_invalidate(s);
 994        break;
 995
 996    case VTD_CCMD_DEVICE_INVL:
 997        caig = VTD_CCMD_DEVICE_INVL_A;
 998        vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
 999        break;
1000
1001    default:
1002        VTD_DPRINTF(GENERAL, "error: invalid granularity");
1003        caig = 0;
1004    }
1005    return caig;
1006}
1007
1008static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1009{
1010    vtd_reset_iotlb(s);
1011}
1012
1013static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1014{
1015    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1016                                &domain_id);
1017}
1018
1019static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1020                                      hwaddr addr, uint8_t am)
1021{
1022    VTDIOTLBPageInvInfo info;
1023
1024    assert(am <= VTD_MAMV);
1025    info.domain_id = domain_id;
1026    info.addr = addr;
1027    info.mask = ~((1 << am) - 1);
1028    g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1029}
1030
1031/* Flush IOTLB
1032 * Returns the IOTLB Actual Invalidation Granularity.
1033 * @val: the content of the IOTLB_REG
1034 */
1035static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1036{
1037    uint64_t iaig;
1038    uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1039    uint16_t domain_id;
1040    hwaddr addr;
1041    uint8_t am;
1042
1043    switch (type) {
1044    case VTD_TLB_GLOBAL_FLUSH:
1045        VTD_DPRINTF(INV, "global invalidation");
1046        iaig = VTD_TLB_GLOBAL_FLUSH_A;
1047        vtd_iotlb_global_invalidate(s);
1048        break;
1049
1050    case VTD_TLB_DSI_FLUSH:
1051        domain_id = VTD_TLB_DID(val);
1052        VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1053                    domain_id);
1054        iaig = VTD_TLB_DSI_FLUSH_A;
1055        vtd_iotlb_domain_invalidate(s, domain_id);
1056        break;
1057
1058    case VTD_TLB_PSI_FLUSH:
1059        domain_id = VTD_TLB_DID(val);
1060        addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1061        am = VTD_IVA_AM(addr);
1062        addr = VTD_IVA_ADDR(addr);
1063        VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1064                    " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1065        if (am > VTD_MAMV) {
1066            VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1067                        "%"PRIu8, (uint8_t)VTD_MAMV);
1068            iaig = 0;
1069            break;
1070        }
1071        iaig = VTD_TLB_PSI_FLUSH_A;
1072        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1073        break;
1074
1075    default:
1076        VTD_DPRINTF(GENERAL, "error: invalid granularity");
1077        iaig = 0;
1078    }
1079    return iaig;
1080}
1081
1082static inline bool vtd_queued_inv_enable_check(IntelIOMMUState *s)
1083{
1084    return s->iq_tail == 0;
1085}
1086
1087static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1088{
1089    return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1090           (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1091}
1092
1093static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1094{
1095    uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1096
1097    VTD_DPRINTF(INV, "Queued Invalidation Enable %s", (en ? "on" : "off"));
1098    if (en) {
1099        if (vtd_queued_inv_enable_check(s)) {
1100            s->iq = iqa_val & VTD_IQA_IQA_MASK;
1101            /* 2^(x+8) entries */
1102            s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1103            s->qi_enabled = true;
1104            VTD_DPRINTF(INV, "DMAR_IQA_REG 0x%"PRIx64, iqa_val);
1105            VTD_DPRINTF(INV, "Invalidation Queue addr 0x%"PRIx64 " size %d",
1106                        s->iq, s->iq_size);
1107            /* Ok - report back to driver */
1108            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1109        } else {
1110            VTD_DPRINTF(GENERAL, "error: can't enable Queued Invalidation: "
1111                        "tail %"PRIu16, s->iq_tail);
1112        }
1113    } else {
1114        if (vtd_queued_inv_disable_check(s)) {
1115            /* disable Queued Invalidation */
1116            vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1117            s->iq_head = 0;
1118            s->qi_enabled = false;
1119            /* Ok - report back to driver */
1120            vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1121        } else {
1122            VTD_DPRINTF(GENERAL, "error: can't disable Queued Invalidation: "
1123                        "head %"PRIu16 ", tail %"PRIu16
1124                        ", last_descriptor %"PRIu8,
1125                        s->iq_head, s->iq_tail, s->iq_last_desc_type);
1126        }
1127    }
1128}
1129
1130/* Set Root Table Pointer */
1131static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1132{
1133    VTD_DPRINTF(CSR, "set Root Table Pointer");
1134
1135    vtd_root_table_setup(s);
1136    /* Ok - report back to driver */
1137    vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1138}
1139
1140/* Handle Translation Enable/Disable */
1141static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1142{
1143    VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
1144
1145    if (en) {
1146        s->dmar_enabled = true;
1147        /* Ok - report back to driver */
1148        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1149    } else {
1150        s->dmar_enabled = false;
1151
1152        /* Clear the index of Fault Recording Register */
1153        s->next_frcd_reg = 0;
1154        /* Ok - report back to driver */
1155        vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1156    }
1157}
1158
1159/* Handle write to Global Command Register */
1160static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1161{
1162    uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1163    uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1164    uint32_t changed = status ^ val;
1165
1166    VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
1167    if (changed & VTD_GCMD_TE) {
1168        /* Translation enable/disable */
1169        vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1170    }
1171    if (val & VTD_GCMD_SRTP) {
1172        /* Set/update the root-table pointer */
1173        vtd_handle_gcmd_srtp(s);
1174    }
1175    if (changed & VTD_GCMD_QIE) {
1176        /* Queued Invalidation Enable */
1177        vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1178    }
1179}
1180
1181/* Handle write to Context Command Register */
1182static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1183{
1184    uint64_t ret;
1185    uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1186
1187    /* Context-cache invalidation request */
1188    if (val & VTD_CCMD_ICC) {
1189        if (s->qi_enabled) {
1190            VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1191                        "should not use register-based invalidation");
1192            return;
1193        }
1194        ret = vtd_context_cache_invalidate(s, val);
1195        /* Invalidation completed. Change something to show */
1196        vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1197        ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1198                                      ret);
1199        VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
1200    }
1201}
1202
1203/* Handle write to IOTLB Invalidation Register */
1204static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1205{
1206    uint64_t ret;
1207    uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1208
1209    /* IOTLB invalidation request */
1210    if (val & VTD_TLB_IVT) {
1211        if (s->qi_enabled) {
1212            VTD_DPRINTF(GENERAL, "error: Queued Invalidation enabled, "
1213                        "should not use register-based invalidation");
1214            return;
1215        }
1216        ret = vtd_iotlb_flush(s, val);
1217        /* Invalidation completed. Change something to show */
1218        vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1219        ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1220                                      VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1221        VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
1222    }
1223}
1224
1225/* Fetch an Invalidation Descriptor from the Invalidation Queue */
1226static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1227                             VTDInvDesc *inv_desc)
1228{
1229    dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1230    if (dma_memory_read(&address_space_memory, addr, inv_desc,
1231        sizeof(*inv_desc))) {
1232        VTD_DPRINTF(GENERAL, "error: fail to fetch Invalidation Descriptor "
1233                    "base_addr 0x%"PRIx64 " offset %"PRIu32, base_addr, offset);
1234        inv_desc->lo = 0;
1235        inv_desc->hi = 0;
1236
1237        return false;
1238    }
1239    inv_desc->lo = le64_to_cpu(inv_desc->lo);
1240    inv_desc->hi = le64_to_cpu(inv_desc->hi);
1241    return true;
1242}
1243
1244static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1245{
1246    if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1247        (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1248        VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Invalidation "
1249                    "Wait Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1250                    inv_desc->hi, inv_desc->lo);
1251        return false;
1252    }
1253    if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1254        /* Status Write */
1255        uint32_t status_data = (uint32_t)(inv_desc->lo >>
1256                               VTD_INV_DESC_WAIT_DATA_SHIFT);
1257
1258        assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1259
1260        /* FIXME: need to be masked with HAW? */
1261        dma_addr_t status_addr = inv_desc->hi;
1262        VTD_DPRINTF(INV, "status data 0x%x, status addr 0x%"PRIx64,
1263                    status_data, status_addr);
1264        status_data = cpu_to_le32(status_data);
1265        if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1266                             sizeof(status_data))) {
1267            VTD_DPRINTF(GENERAL, "error: fail to perform a coherent write");
1268            return false;
1269        }
1270    } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1271        /* Interrupt flag */
1272        VTD_DPRINTF(INV, "Invalidation Wait Descriptor interrupt completion");
1273        vtd_generate_completion_event(s);
1274    } else {
1275        VTD_DPRINTF(GENERAL, "error: invalid Invalidation Wait Descriptor: "
1276                    "hi 0x%"PRIx64 " lo 0x%"PRIx64, inv_desc->hi, inv_desc->lo);
1277        return false;
1278    }
1279    return true;
1280}
1281
1282static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1283                                           VTDInvDesc *inv_desc)
1284{
1285    if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1286        VTD_DPRINTF(GENERAL, "error: non-zero reserved field in Context-cache "
1287                    "Invalidate Descriptor");
1288        return false;
1289    }
1290    switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1291    case VTD_INV_DESC_CC_DOMAIN:
1292        VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1293                    (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1294        /* Fall through */
1295    case VTD_INV_DESC_CC_GLOBAL:
1296        VTD_DPRINTF(INV, "global invalidation");
1297        vtd_context_global_invalidate(s);
1298        break;
1299
1300    case VTD_INV_DESC_CC_DEVICE:
1301        vtd_context_device_invalidate(s, VTD_INV_DESC_CC_SID(inv_desc->lo),
1302                                      VTD_INV_DESC_CC_FM(inv_desc->lo));
1303        break;
1304
1305    default:
1306        VTD_DPRINTF(GENERAL, "error: invalid granularity in Context-cache "
1307                    "Invalidate Descriptor hi 0x%"PRIx64  " lo 0x%"PRIx64,
1308                    inv_desc->hi, inv_desc->lo);
1309        return false;
1310    }
1311    return true;
1312}
1313
1314static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1315{
1316    uint16_t domain_id;
1317    uint8_t am;
1318    hwaddr addr;
1319
1320    if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1321        (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1322        VTD_DPRINTF(GENERAL, "error: non-zero reserved field in IOTLB "
1323                    "Invalidate Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1324                    inv_desc->hi, inv_desc->lo);
1325        return false;
1326    }
1327
1328    switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1329    case VTD_INV_DESC_IOTLB_GLOBAL:
1330        VTD_DPRINTF(INV, "global invalidation");
1331        vtd_iotlb_global_invalidate(s);
1332        break;
1333
1334    case VTD_INV_DESC_IOTLB_DOMAIN:
1335        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1336        VTD_DPRINTF(INV, "domain-selective invalidation domain 0x%"PRIx16,
1337                    domain_id);
1338        vtd_iotlb_domain_invalidate(s, domain_id);
1339        break;
1340
1341    case VTD_INV_DESC_IOTLB_PAGE:
1342        domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1343        addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1344        am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1345        VTD_DPRINTF(INV, "page-selective invalidation domain 0x%"PRIx16
1346                    " addr 0x%"PRIx64 " mask %"PRIu8, domain_id, addr, am);
1347        if (am > VTD_MAMV) {
1348            VTD_DPRINTF(GENERAL, "error: supported max address mask value is "
1349                        "%"PRIu8, (uint8_t)VTD_MAMV);
1350            return false;
1351        }
1352        vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1353        break;
1354
1355    default:
1356        VTD_DPRINTF(GENERAL, "error: invalid granularity in IOTLB Invalidate "
1357                    "Descriptor hi 0x%"PRIx64 " lo 0x%"PRIx64,
1358                    inv_desc->hi, inv_desc->lo);
1359        return false;
1360    }
1361    return true;
1362}
1363
1364static bool vtd_process_inv_desc(IntelIOMMUState *s)
1365{
1366    VTDInvDesc inv_desc;
1367    uint8_t desc_type;
1368
1369    VTD_DPRINTF(INV, "iq head %"PRIu16, s->iq_head);
1370    if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1371        s->iq_last_desc_type = VTD_INV_DESC_NONE;
1372        return false;
1373    }
1374    desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1375    /* FIXME: should update at first or at last? */
1376    s->iq_last_desc_type = desc_type;
1377
1378    switch (desc_type) {
1379    case VTD_INV_DESC_CC:
1380        VTD_DPRINTF(INV, "Context-cache Invalidate Descriptor hi 0x%"PRIx64
1381                    " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1382        if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1383            return false;
1384        }
1385        break;
1386
1387    case VTD_INV_DESC_IOTLB:
1388        VTD_DPRINTF(INV, "IOTLB Invalidate Descriptor hi 0x%"PRIx64
1389                    " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1390        if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1391            return false;
1392        }
1393        break;
1394
1395    case VTD_INV_DESC_WAIT:
1396        VTD_DPRINTF(INV, "Invalidation Wait Descriptor hi 0x%"PRIx64
1397                    " lo 0x%"PRIx64, inv_desc.hi, inv_desc.lo);
1398        if (!vtd_process_wait_desc(s, &inv_desc)) {
1399            return false;
1400        }
1401        break;
1402
1403    default:
1404        VTD_DPRINTF(GENERAL, "error: unkonw Invalidation Descriptor type "
1405                    "hi 0x%"PRIx64 " lo 0x%"PRIx64 " type %"PRIu8,
1406                    inv_desc.hi, inv_desc.lo, desc_type);
1407        return false;
1408    }
1409    s->iq_head++;
1410    if (s->iq_head == s->iq_size) {
1411        s->iq_head = 0;
1412    }
1413    return true;
1414}
1415
1416/* Try to fetch and process more Invalidation Descriptors */
1417static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1418{
1419    VTD_DPRINTF(INV, "fetch Invalidation Descriptors");
1420    if (s->iq_tail >= s->iq_size) {
1421        /* Detects an invalid Tail pointer */
1422        VTD_DPRINTF(GENERAL, "error: iq_tail is %"PRIu16
1423                    " while iq_size is %"PRIu16, s->iq_tail, s->iq_size);
1424        vtd_handle_inv_queue_error(s);
1425        return;
1426    }
1427    while (s->iq_head != s->iq_tail) {
1428        if (!vtd_process_inv_desc(s)) {
1429            /* Invalidation Queue Errors */
1430            vtd_handle_inv_queue_error(s);
1431            break;
1432        }
1433        /* Must update the IQH_REG in time */
1434        vtd_set_quad_raw(s, DMAR_IQH_REG,
1435                         (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1436                         VTD_IQH_QH_MASK);
1437    }
1438}
1439
1440/* Handle write to Invalidation Queue Tail Register */
1441static void vtd_handle_iqt_write(IntelIOMMUState *s)
1442{
1443    uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1444
1445    s->iq_tail = VTD_IQT_QT(val);
1446    VTD_DPRINTF(INV, "set iq tail %"PRIu16, s->iq_tail);
1447    if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1448        /* Process Invalidation Queue here */
1449        vtd_fetch_inv_desc(s);
1450    }
1451}
1452
1453static void vtd_handle_fsts_write(IntelIOMMUState *s)
1454{
1455    uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1456    uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1457    uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1458
1459    if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1460        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1461        VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
1462                    "IP field of FECTL_REG");
1463    }
1464    /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1465     * Descriptors if there are any when Queued Invalidation is enabled?
1466     */
1467}
1468
1469static void vtd_handle_fectl_write(IntelIOMMUState *s)
1470{
1471    uint32_t fectl_reg;
1472    /* FIXME: when software clears the IM field, check the IP field. But do we
1473     * need to compare the old value and the new value to conclude that
1474     * software clears the IM field? Or just check if the IM field is zero?
1475     */
1476    fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1477    if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1478        vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1479        vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1480        VTD_DPRINTF(FLOG, "IM field is cleared, generate "
1481                    "fault event interrupt");
1482    }
1483}
1484
1485static void vtd_handle_ics_write(IntelIOMMUState *s)
1486{
1487    uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1488    uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1489
1490    if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1491        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1492        VTD_DPRINTF(INV, "pending completion interrupt condition serviced, "
1493                    "clear IP field of IECTL_REG");
1494    }
1495}
1496
1497static void vtd_handle_iectl_write(IntelIOMMUState *s)
1498{
1499    uint32_t iectl_reg;
1500    /* FIXME: when software clears the IM field, check the IP field. But do we
1501     * need to compare the old value and the new value to conclude that
1502     * software clears the IM field? Or just check if the IM field is zero?
1503     */
1504    iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1505    if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1506        vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1507        vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1508        VTD_DPRINTF(INV, "IM field is cleared, generate "
1509                    "invalidation event interrupt");
1510    }
1511}
1512
1513static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1514{
1515    IntelIOMMUState *s = opaque;
1516    uint64_t val;
1517
1518    if (addr + size > DMAR_REG_SIZE) {
1519        VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1520                    ", got 0x%"PRIx64 " %d",
1521                    (uint64_t)DMAR_REG_SIZE, addr, size);
1522        return (uint64_t)-1;
1523    }
1524
1525    switch (addr) {
1526    /* Root Table Address Register, 64-bit */
1527    case DMAR_RTADDR_REG:
1528        if (size == 4) {
1529            val = s->root & ((1ULL << 32) - 1);
1530        } else {
1531            val = s->root;
1532        }
1533        break;
1534
1535    case DMAR_RTADDR_REG_HI:
1536        assert(size == 4);
1537        val = s->root >> 32;
1538        break;
1539
1540    /* Invalidation Queue Address Register, 64-bit */
1541    case DMAR_IQA_REG:
1542        val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
1543        if (size == 4) {
1544            val = val & ((1ULL << 32) - 1);
1545        }
1546        break;
1547
1548    case DMAR_IQA_REG_HI:
1549        assert(size == 4);
1550        val = s->iq >> 32;
1551        break;
1552
1553    default:
1554        if (size == 4) {
1555            val = vtd_get_long(s, addr);
1556        } else {
1557            val = vtd_get_quad(s, addr);
1558        }
1559    }
1560    VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
1561                addr, size, val);
1562    return val;
1563}
1564
1565static void vtd_mem_write(void *opaque, hwaddr addr,
1566                          uint64_t val, unsigned size)
1567{
1568    IntelIOMMUState *s = opaque;
1569
1570    if (addr + size > DMAR_REG_SIZE) {
1571        VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
1572                    ", got 0x%"PRIx64 " %d",
1573                    (uint64_t)DMAR_REG_SIZE, addr, size);
1574        return;
1575    }
1576
1577    switch (addr) {
1578    /* Global Command Register, 32-bit */
1579    case DMAR_GCMD_REG:
1580        VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
1581                    ", size %d, val 0x%"PRIx64, addr, size, val);
1582        vtd_set_long(s, addr, val);
1583        vtd_handle_gcmd_write(s);
1584        break;
1585
1586    /* Context Command Register, 64-bit */
1587    case DMAR_CCMD_REG:
1588        VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
1589                    ", size %d, val 0x%"PRIx64, addr, size, val);
1590        if (size == 4) {
1591            vtd_set_long(s, addr, val);
1592        } else {
1593            vtd_set_quad(s, addr, val);
1594            vtd_handle_ccmd_write(s);
1595        }
1596        break;
1597
1598    case DMAR_CCMD_REG_HI:
1599        VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
1600                    ", size %d, val 0x%"PRIx64, addr, size, val);
1601        assert(size == 4);
1602        vtd_set_long(s, addr, val);
1603        vtd_handle_ccmd_write(s);
1604        break;
1605
1606    /* IOTLB Invalidation Register, 64-bit */
1607    case DMAR_IOTLB_REG:
1608        VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
1609                    ", size %d, val 0x%"PRIx64, addr, size, val);
1610        if (size == 4) {
1611            vtd_set_long(s, addr, val);
1612        } else {
1613            vtd_set_quad(s, addr, val);
1614            vtd_handle_iotlb_write(s);
1615        }
1616        break;
1617
1618    case DMAR_IOTLB_REG_HI:
1619        VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
1620                    ", size %d, val 0x%"PRIx64, addr, size, val);
1621        assert(size == 4);
1622        vtd_set_long(s, addr, val);
1623        vtd_handle_iotlb_write(s);
1624        break;
1625
1626    /* Invalidate Address Register, 64-bit */
1627    case DMAR_IVA_REG:
1628        VTD_DPRINTF(INV, "DMAR_IVA_REG write addr 0x%"PRIx64
1629                    ", size %d, val 0x%"PRIx64, addr, size, val);
1630        if (size == 4) {
1631            vtd_set_long(s, addr, val);
1632        } else {
1633            vtd_set_quad(s, addr, val);
1634        }
1635        break;
1636
1637    case DMAR_IVA_REG_HI:
1638        VTD_DPRINTF(INV, "DMAR_IVA_REG_HI write addr 0x%"PRIx64
1639                    ", size %d, val 0x%"PRIx64, addr, size, val);
1640        assert(size == 4);
1641        vtd_set_long(s, addr, val);
1642        break;
1643
1644    /* Fault Status Register, 32-bit */
1645    case DMAR_FSTS_REG:
1646        VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
1647                    ", size %d, val 0x%"PRIx64, addr, size, val);
1648        assert(size == 4);
1649        vtd_set_long(s, addr, val);
1650        vtd_handle_fsts_write(s);
1651        break;
1652
1653    /* Fault Event Control Register, 32-bit */
1654    case DMAR_FECTL_REG:
1655        VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
1656                    ", size %d, val 0x%"PRIx64, addr, size, val);
1657        assert(size == 4);
1658        vtd_set_long(s, addr, val);
1659        vtd_handle_fectl_write(s);
1660        break;
1661
1662    /* Fault Event Data Register, 32-bit */
1663    case DMAR_FEDATA_REG:
1664        VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
1665                    ", size %d, val 0x%"PRIx64, addr, size, val);
1666        assert(size == 4);
1667        vtd_set_long(s, addr, val);
1668        break;
1669
1670    /* Fault Event Address Register, 32-bit */
1671    case DMAR_FEADDR_REG:
1672        VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
1673                    ", size %d, val 0x%"PRIx64, addr, size, val);
1674        assert(size == 4);
1675        vtd_set_long(s, addr, val);
1676        break;
1677
1678    /* Fault Event Upper Address Register, 32-bit */
1679    case DMAR_FEUADDR_REG:
1680        VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
1681                    ", size %d, val 0x%"PRIx64, addr, size, val);
1682        assert(size == 4);
1683        vtd_set_long(s, addr, val);
1684        break;
1685
1686    /* Protected Memory Enable Register, 32-bit */
1687    case DMAR_PMEN_REG:
1688        VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
1689                    ", size %d, val 0x%"PRIx64, addr, size, val);
1690        assert(size == 4);
1691        vtd_set_long(s, addr, val);
1692        break;
1693
1694    /* Root Table Address Register, 64-bit */
1695    case DMAR_RTADDR_REG:
1696        VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
1697                    ", size %d, val 0x%"PRIx64, addr, size, val);
1698        if (size == 4) {
1699            vtd_set_long(s, addr, val);
1700        } else {
1701            vtd_set_quad(s, addr, val);
1702        }
1703        break;
1704
1705    case DMAR_RTADDR_REG_HI:
1706        VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
1707                    ", size %d, val 0x%"PRIx64, addr, size, val);
1708        assert(size == 4);
1709        vtd_set_long(s, addr, val);
1710        break;
1711
1712    /* Invalidation Queue Tail Register, 64-bit */
1713    case DMAR_IQT_REG:
1714        VTD_DPRINTF(INV, "DMAR_IQT_REG write addr 0x%"PRIx64
1715                    ", size %d, val 0x%"PRIx64, addr, size, val);
1716        if (size == 4) {
1717            vtd_set_long(s, addr, val);
1718        } else {
1719            vtd_set_quad(s, addr, val);
1720        }
1721        vtd_handle_iqt_write(s);
1722        break;
1723
1724    case DMAR_IQT_REG_HI:
1725        VTD_DPRINTF(INV, "DMAR_IQT_REG_HI write addr 0x%"PRIx64
1726                    ", size %d, val 0x%"PRIx64, addr, size, val);
1727        assert(size == 4);
1728        vtd_set_long(s, addr, val);
1729        /* 19:63 of IQT_REG is RsvdZ, do nothing here */
1730        break;
1731
1732    /* Invalidation Queue Address Register, 64-bit */
1733    case DMAR_IQA_REG:
1734        VTD_DPRINTF(INV, "DMAR_IQA_REG write addr 0x%"PRIx64
1735                    ", size %d, val 0x%"PRIx64, addr, size, val);
1736        if (size == 4) {
1737            vtd_set_long(s, addr, val);
1738        } else {
1739            vtd_set_quad(s, addr, val);
1740        }
1741        break;
1742
1743    case DMAR_IQA_REG_HI:
1744        VTD_DPRINTF(INV, "DMAR_IQA_REG_HI write addr 0x%"PRIx64
1745                    ", size %d, val 0x%"PRIx64, addr, size, val);
1746        assert(size == 4);
1747        vtd_set_long(s, addr, val);
1748        break;
1749
1750    /* Invalidation Completion Status Register, 32-bit */
1751    case DMAR_ICS_REG:
1752        VTD_DPRINTF(INV, "DMAR_ICS_REG write addr 0x%"PRIx64
1753                    ", size %d, val 0x%"PRIx64, addr, size, val);
1754        assert(size == 4);
1755        vtd_set_long(s, addr, val);
1756        vtd_handle_ics_write(s);
1757        break;
1758
1759    /* Invalidation Event Control Register, 32-bit */
1760    case DMAR_IECTL_REG:
1761        VTD_DPRINTF(INV, "DMAR_IECTL_REG write addr 0x%"PRIx64
1762                    ", size %d, val 0x%"PRIx64, addr, size, val);
1763        assert(size == 4);
1764        vtd_set_long(s, addr, val);
1765        vtd_handle_iectl_write(s);
1766        break;
1767
1768    /* Invalidation Event Data Register, 32-bit */
1769    case DMAR_IEDATA_REG:
1770        VTD_DPRINTF(INV, "DMAR_IEDATA_REG write addr 0x%"PRIx64
1771                    ", size %d, val 0x%"PRIx64, addr, size, val);
1772        assert(size == 4);
1773        vtd_set_long(s, addr, val);
1774        break;
1775
1776    /* Invalidation Event Address Register, 32-bit */
1777    case DMAR_IEADDR_REG:
1778        VTD_DPRINTF(INV, "DMAR_IEADDR_REG write addr 0x%"PRIx64
1779                    ", size %d, val 0x%"PRIx64, addr, size, val);
1780        assert(size == 4);
1781        vtd_set_long(s, addr, val);
1782        break;
1783
1784    /* Invalidation Event Upper Address Register, 32-bit */
1785    case DMAR_IEUADDR_REG:
1786        VTD_DPRINTF(INV, "DMAR_IEUADDR_REG write addr 0x%"PRIx64
1787                    ", size %d, val 0x%"PRIx64, addr, size, val);
1788        assert(size == 4);
1789        vtd_set_long(s, addr, val);
1790        break;
1791
1792    /* Fault Recording Registers, 128-bit */
1793    case DMAR_FRCD_REG_0_0:
1794        VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
1795                    ", size %d, val 0x%"PRIx64, addr, size, val);
1796        if (size == 4) {
1797            vtd_set_long(s, addr, val);
1798        } else {
1799            vtd_set_quad(s, addr, val);
1800        }
1801        break;
1802
1803    case DMAR_FRCD_REG_0_1:
1804        VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
1805                    ", size %d, val 0x%"PRIx64, addr, size, val);
1806        assert(size == 4);
1807        vtd_set_long(s, addr, val);
1808        break;
1809
1810    case DMAR_FRCD_REG_0_2:
1811        VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
1812                    ", size %d, val 0x%"PRIx64, addr, size, val);
1813        if (size == 4) {
1814            vtd_set_long(s, addr, val);
1815        } else {
1816            vtd_set_quad(s, addr, val);
1817            /* May clear bit 127 (Fault), update PPF */
1818            vtd_update_fsts_ppf(s);
1819        }
1820        break;
1821
1822    case DMAR_FRCD_REG_0_3:
1823        VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
1824                    ", size %d, val 0x%"PRIx64, addr, size, val);
1825        assert(size == 4);
1826        vtd_set_long(s, addr, val);
1827        /* May clear bit 127 (Fault), update PPF */
1828        vtd_update_fsts_ppf(s);
1829        break;
1830
1831    default:
1832        VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
1833                    ", size %d, val 0x%"PRIx64, addr, size, val);
1834        if (size == 4) {
1835            vtd_set_long(s, addr, val);
1836        } else {
1837            vtd_set_quad(s, addr, val);
1838        }
1839    }
1840}
1841
1842static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
1843                                         bool is_write)
1844{
1845    VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
1846    IntelIOMMUState *s = vtd_as->iommu_state;
1847    IOMMUTLBEntry ret = {
1848        .target_as = &address_space_memory,
1849        .iova = addr,
1850        .translated_addr = 0,
1851        .addr_mask = ~(hwaddr)0,
1852        .perm = IOMMU_NONE,
1853    };
1854
1855    if (!s->dmar_enabled) {
1856        /* DMAR disabled, passthrough, use 4k-page*/
1857        ret.iova = addr & VTD_PAGE_MASK_4K;
1858        ret.translated_addr = addr & VTD_PAGE_MASK_4K;
1859        ret.addr_mask = ~VTD_PAGE_MASK_4K;
1860        ret.perm = IOMMU_RW;
1861        return ret;
1862    }
1863
1864    vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, addr,
1865                           is_write, &ret);
1866    VTD_DPRINTF(MMU,
1867                "bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
1868                " gpa 0x%"PRIx64 " hpa 0x%"PRIx64, pci_bus_num(vtd_as->bus),
1869                VTD_PCI_SLOT(vtd_as->devfn), VTD_PCI_FUNC(vtd_as->devfn),
1870                vtd_as->devfn, addr, ret.translated_addr);
1871    return ret;
1872}
1873
1874static const VMStateDescription vtd_vmstate = {
1875    .name = "iommu-intel",
1876    .unmigratable = 1,
1877};
1878
1879static const MemoryRegionOps vtd_mem_ops = {
1880    .read = vtd_mem_read,
1881    .write = vtd_mem_write,
1882    .endianness = DEVICE_LITTLE_ENDIAN,
1883    .impl = {
1884        .min_access_size = 4,
1885        .max_access_size = 8,
1886    },
1887    .valid = {
1888        .min_access_size = 4,
1889        .max_access_size = 8,
1890    },
1891};
1892
1893static Property vtd_properties[] = {
1894    DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
1895    DEFINE_PROP_END_OF_LIST(),
1896};
1897
1898
1899VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
1900{
1901    uintptr_t key = (uintptr_t)bus;
1902    VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
1903    VTDAddressSpace *vtd_dev_as;
1904
1905    if (!vtd_bus) {
1906        /* No corresponding free() */
1907        vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * VTD_PCI_DEVFN_MAX);
1908        vtd_bus->bus = bus;
1909        key = (uintptr_t)bus;
1910        g_hash_table_insert(s->vtd_as_by_busptr, &key, vtd_bus);
1911    }
1912
1913    vtd_dev_as = vtd_bus->dev_as[devfn];
1914
1915    if (!vtd_dev_as) {
1916        vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
1917
1918        vtd_dev_as->bus = bus;
1919        vtd_dev_as->devfn = (uint8_t)devfn;
1920        vtd_dev_as->iommu_state = s;
1921        vtd_dev_as->context_cache_entry.context_cache_gen = 0;
1922        memory_region_init_iommu(&vtd_dev_as->iommu, OBJECT(s),
1923                                 &s->iommu_ops, "intel_iommu", UINT64_MAX);
1924        address_space_init(&vtd_dev_as->as,
1925                           &vtd_dev_as->iommu, "intel_iommu");
1926    }
1927    return vtd_dev_as;
1928}
1929
1930/* Do the initialization. It will also be called when reset, so pay
1931 * attention when adding new initialization stuff.
1932 */
1933static void vtd_init(IntelIOMMUState *s)
1934{
1935    memset(s->csr, 0, DMAR_REG_SIZE);
1936    memset(s->wmask, 0, DMAR_REG_SIZE);
1937    memset(s->w1cmask, 0, DMAR_REG_SIZE);
1938    memset(s->womask, 0, DMAR_REG_SIZE);
1939
1940    s->iommu_ops.translate = vtd_iommu_translate;
1941    s->root = 0;
1942    s->root_extended = false;
1943    s->dmar_enabled = false;
1944    s->iq_head = 0;
1945    s->iq_tail = 0;
1946    s->iq = 0;
1947    s->iq_size = 0;
1948    s->qi_enabled = false;
1949    s->iq_last_desc_type = VTD_INV_DESC_NONE;
1950    s->next_frcd_reg = 0;
1951    s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
1952             VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
1953    s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
1954
1955    vtd_reset_context_cache(s);
1956    vtd_reset_iotlb(s);
1957
1958    /* Define registers with default values and bit semantics */
1959    vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
1960    vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
1961    vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
1962    vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
1963    vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
1964    vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
1965    vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
1966    vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
1967    vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
1968
1969    /* Advanced Fault Logging not supported */
1970    vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
1971    vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1972    vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
1973    vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
1974
1975    /* Treated as RsvdZ when EIM in ECAP_REG is not supported
1976     * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
1977     */
1978    vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
1979
1980    /* Treated as RO for implementations that PLMR and PHMR fields reported
1981     * as Clear in the CAP_REG.
1982     * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
1983     */
1984    vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
1985
1986    vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
1987    vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
1988    vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
1989    vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
1990    vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
1991    vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
1992    vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
1993    /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
1994    vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
1995
1996    /* IOTLB registers */
1997    vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
1998    vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
1999    vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2000
2001    /* Fault Recording Registers, 128-bit */
2002    vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2003    vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2004}
2005
2006/* Should not reset address_spaces when reset because devices will still use
2007 * the address space they got at first (won't ask the bus again).
2008 */
2009static void vtd_reset(DeviceState *dev)
2010{
2011    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2012
2013    VTD_DPRINTF(GENERAL, "");
2014    vtd_init(s);
2015}
2016
2017static void vtd_realize(DeviceState *dev, Error **errp)
2018{
2019    IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2020
2021    VTD_DPRINTF(GENERAL, "");
2022    memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
2023    memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
2024                          "intel_iommu", DMAR_REG_SIZE);
2025    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
2026    /* No corresponding destroy */
2027    s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2028                                     g_free, g_free);
2029    s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
2030                                              g_free, g_free);
2031    vtd_init(s);
2032}
2033
2034static void vtd_class_init(ObjectClass *klass, void *data)
2035{
2036    DeviceClass *dc = DEVICE_CLASS(klass);
2037
2038    dc->reset = vtd_reset;
2039    dc->realize = vtd_realize;
2040    dc->vmsd = &vtd_vmstate;
2041    dc->props = vtd_properties;
2042}
2043
2044static const TypeInfo vtd_info = {
2045    .name          = TYPE_INTEL_IOMMU_DEVICE,
2046    .parent        = TYPE_SYS_BUS_DEVICE,
2047    .instance_size = sizeof(IntelIOMMUState),
2048    .class_init    = vtd_class_init,
2049};
2050
2051static void vtd_register_types(void)
2052{
2053    VTD_DPRINTF(GENERAL, "");
2054    type_register_static(&vtd_info);
2055}
2056
2057type_init(vtd_register_types)
2058