qemu/hw/net/mcf_fec.c
<<
>>
Prefs
   1/*
   2 * ColdFire Fast Ethernet Controller emulation.
   3 *
   4 * Copyright (c) 2007 CodeSourcery.
   5 *
   6 * This code is licensed under the GPL
   7 */
   8#include "qemu/osdep.h"
   9#include "hw/hw.h"
  10#include "net/net.h"
  11#include "hw/m68k/mcf.h"
  12#include "hw/net/mii.h"
  13/* For crc32 */
  14#include <zlib.h>
  15#include "exec/address-spaces.h"
  16
  17//#define DEBUG_FEC 1
  18
  19#ifdef DEBUG_FEC
  20#define DPRINTF(fmt, ...) \
  21do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
  22#else
  23#define DPRINTF(fmt, ...) do {} while(0)
  24#endif
  25
  26#define FEC_MAX_FRAME_SIZE 2032
  27
  28typedef struct {
  29    MemoryRegion *sysmem;
  30    MemoryRegion iomem;
  31    qemu_irq *irq;
  32    NICState *nic;
  33    NICConf conf;
  34    uint32_t irq_state;
  35    uint32_t eir;
  36    uint32_t eimr;
  37    int rx_enabled;
  38    uint32_t rx_descriptor;
  39    uint32_t tx_descriptor;
  40    uint32_t ecr;
  41    uint32_t mmfr;
  42    uint32_t mscr;
  43    uint32_t rcr;
  44    uint32_t tcr;
  45    uint32_t tfwr;
  46    uint32_t rfsr;
  47    uint32_t erdsr;
  48    uint32_t etdsr;
  49    uint32_t emrbr;
  50} mcf_fec_state;
  51
  52#define FEC_INT_HB   0x80000000
  53#define FEC_INT_BABR 0x40000000
  54#define FEC_INT_BABT 0x20000000
  55#define FEC_INT_GRA  0x10000000
  56#define FEC_INT_TXF  0x08000000
  57#define FEC_INT_TXB  0x04000000
  58#define FEC_INT_RXF  0x02000000
  59#define FEC_INT_RXB  0x01000000
  60#define FEC_INT_MII  0x00800000
  61#define FEC_INT_EB   0x00400000
  62#define FEC_INT_LC   0x00200000
  63#define FEC_INT_RL   0x00100000
  64#define FEC_INT_UN   0x00080000
  65
  66#define FEC_EN      2
  67#define FEC_RESET   1
  68
  69/* Map interrupt flags onto IRQ lines.  */
  70#define FEC_NUM_IRQ 13
  71static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
  72    FEC_INT_TXF,
  73    FEC_INT_TXB,
  74    FEC_INT_UN,
  75    FEC_INT_RL,
  76    FEC_INT_RXF,
  77    FEC_INT_RXB,
  78    FEC_INT_MII,
  79    FEC_INT_LC,
  80    FEC_INT_HB,
  81    FEC_INT_GRA,
  82    FEC_INT_EB,
  83    FEC_INT_BABT,
  84    FEC_INT_BABR
  85};
  86
  87/* Buffer Descriptor.  */
  88typedef struct {
  89    uint16_t flags;
  90    uint16_t length;
  91    uint32_t data;
  92} mcf_fec_bd;
  93
  94#define FEC_BD_R    0x8000
  95#define FEC_BD_E    0x8000
  96#define FEC_BD_O1   0x4000
  97#define FEC_BD_W    0x2000
  98#define FEC_BD_O2   0x1000
  99#define FEC_BD_L    0x0800
 100#define FEC_BD_TC   0x0400
 101#define FEC_BD_ABC  0x0200
 102#define FEC_BD_M    0x0100
 103#define FEC_BD_BC   0x0080
 104#define FEC_BD_MC   0x0040
 105#define FEC_BD_LG   0x0020
 106#define FEC_BD_NO   0x0010
 107#define FEC_BD_CR   0x0004
 108#define FEC_BD_OV   0x0002
 109#define FEC_BD_TR   0x0001
 110
 111static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
 112{
 113    cpu_physical_memory_read(addr, bd, sizeof(*bd));
 114    be16_to_cpus(&bd->flags);
 115    be16_to_cpus(&bd->length);
 116    be32_to_cpus(&bd->data);
 117}
 118
 119static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
 120{
 121    mcf_fec_bd tmp;
 122    tmp.flags = cpu_to_be16(bd->flags);
 123    tmp.length = cpu_to_be16(bd->length);
 124    tmp.data = cpu_to_be32(bd->data);
 125    cpu_physical_memory_write(addr, &tmp, sizeof(tmp));
 126}
 127
 128static void mcf_fec_update(mcf_fec_state *s)
 129{
 130    uint32_t active;
 131    uint32_t changed;
 132    uint32_t mask;
 133    int i;
 134
 135    active = s->eir & s->eimr;
 136    changed = active ^s->irq_state;
 137    for (i = 0; i < FEC_NUM_IRQ; i++) {
 138        mask = mcf_fec_irq_map[i];
 139        if (changed & mask) {
 140            DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
 141            qemu_set_irq(s->irq[i], (active & mask) != 0);
 142        }
 143    }
 144    s->irq_state = active;
 145}
 146
 147static void mcf_fec_do_tx(mcf_fec_state *s)
 148{
 149    uint32_t addr;
 150    mcf_fec_bd bd;
 151    int frame_size;
 152    int len;
 153    uint8_t frame[FEC_MAX_FRAME_SIZE];
 154    uint8_t *ptr;
 155
 156    DPRINTF("do_tx\n");
 157    ptr = frame;
 158    frame_size = 0;
 159    addr = s->tx_descriptor;
 160    while (1) {
 161        mcf_fec_read_bd(&bd, addr);
 162        DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
 163                addr, bd.flags, bd.length, bd.data);
 164        if ((bd.flags & FEC_BD_R) == 0) {
 165            /* Run out of descriptors to transmit.  */
 166            break;
 167        }
 168        len = bd.length;
 169        if (frame_size + len > FEC_MAX_FRAME_SIZE) {
 170            len = FEC_MAX_FRAME_SIZE - frame_size;
 171            s->eir |= FEC_INT_BABT;
 172        }
 173        cpu_physical_memory_read(bd.data, ptr, len);
 174        ptr += len;
 175        frame_size += len;
 176        if (bd.flags & FEC_BD_L) {
 177            /* Last buffer in frame.  */
 178            DPRINTF("Sending packet\n");
 179            qemu_send_packet(qemu_get_queue(s->nic), frame, len);
 180            ptr = frame;
 181            frame_size = 0;
 182            s->eir |= FEC_INT_TXF;
 183        }
 184        s->eir |= FEC_INT_TXB;
 185        bd.flags &= ~FEC_BD_R;
 186        /* Write back the modified descriptor.  */
 187        mcf_fec_write_bd(&bd, addr);
 188        /* Advance to the next descriptor.  */
 189        if ((bd.flags & FEC_BD_W) != 0) {
 190            addr = s->etdsr;
 191        } else {
 192            addr += 8;
 193        }
 194    }
 195    s->tx_descriptor = addr;
 196}
 197
 198static void mcf_fec_enable_rx(mcf_fec_state *s)
 199{
 200    NetClientState *nc = qemu_get_queue(s->nic);
 201    mcf_fec_bd bd;
 202
 203    mcf_fec_read_bd(&bd, s->rx_descriptor);
 204    s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
 205    if (s->rx_enabled) {
 206        qemu_flush_queued_packets(nc);
 207    }
 208}
 209
 210static void mcf_fec_reset(mcf_fec_state *s)
 211{
 212    s->eir = 0;
 213    s->eimr = 0;
 214    s->rx_enabled = 0;
 215    s->ecr = 0;
 216    s->mscr = 0;
 217    s->rcr = 0x05ee0001;
 218    s->tcr = 0;
 219    s->tfwr = 0;
 220    s->rfsr = 0x500;
 221}
 222
 223#define MMFR_WRITE_OP   (1 << 28)
 224#define MMFR_READ_OP    (2 << 28)
 225#define MMFR_PHYADDR(v) (((v) >> 23) & 0x1f)
 226#define MMFR_REGNUM(v)  (((v) >> 18) & 0x1f)
 227
 228static uint64_t mcf_fec_read_mdio(mcf_fec_state *s)
 229{
 230    uint64_t v;
 231
 232    if (s->mmfr & MMFR_WRITE_OP)
 233        return s->mmfr;
 234    if (MMFR_PHYADDR(s->mmfr) != 1)
 235        return s->mmfr |= 0xffff;
 236
 237    switch (MMFR_REGNUM(s->mmfr)) {
 238    case MII_BMCR:
 239        v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD;
 240        break;
 241    case MII_BMSR:
 242        v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
 243            MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP |
 244            MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
 245        break;
 246    case MII_PHYID1:
 247        v = DP83848_PHYID1;
 248        break;
 249    case MII_PHYID2:
 250        v = DP83848_PHYID2;
 251        break;
 252    case MII_ANAR:
 253        v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
 254            MII_ANAR_10 | MII_ANAR_CSMACD;
 255        break;
 256    case MII_ANLPAR:
 257        v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX |
 258            MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD;
 259        break;
 260    default:
 261        v = 0xffff;
 262        break;
 263    }
 264    s->mmfr = (s->mmfr & ~0xffff) | v;
 265    return s->mmfr;
 266}
 267
 268static uint64_t mcf_fec_read(void *opaque, hwaddr addr,
 269                             unsigned size)
 270{
 271    mcf_fec_state *s = (mcf_fec_state *)opaque;
 272    switch (addr & 0x3ff) {
 273    case 0x004: return s->eir;
 274    case 0x008: return s->eimr;
 275    case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
 276    case 0x014: return 0; /* TDAR */
 277    case 0x024: return s->ecr;
 278    case 0x040: return mcf_fec_read_mdio(s);
 279    case 0x044: return s->mscr;
 280    case 0x064: return 0; /* MIBC */
 281    case 0x084: return s->rcr;
 282    case 0x0c4: return s->tcr;
 283    case 0x0e4: /* PALR */
 284        return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
 285              | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
 286        break;
 287    case 0x0e8: /* PAUR */
 288        return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
 289    case 0x0ec: return 0x10000; /* OPD */
 290    case 0x118: return 0;
 291    case 0x11c: return 0;
 292    case 0x120: return 0;
 293    case 0x124: return 0;
 294    case 0x144: return s->tfwr;
 295    case 0x14c: return 0x600;
 296    case 0x150: return s->rfsr;
 297    case 0x180: return s->erdsr;
 298    case 0x184: return s->etdsr;
 299    case 0x188: return s->emrbr;
 300    default:
 301        hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr);
 302        return 0;
 303    }
 304}
 305
 306static void mcf_fec_write(void *opaque, hwaddr addr,
 307                          uint64_t value, unsigned size)
 308{
 309    mcf_fec_state *s = (mcf_fec_state *)opaque;
 310    switch (addr & 0x3ff) {
 311    case 0x004:
 312        s->eir &= ~value;
 313        break;
 314    case 0x008:
 315        s->eimr = value;
 316        break;
 317    case 0x010: /* RDAR */
 318        if ((s->ecr & FEC_EN) && !s->rx_enabled) {
 319            DPRINTF("RX enable\n");
 320            mcf_fec_enable_rx(s);
 321        }
 322        break;
 323    case 0x014: /* TDAR */
 324        if (s->ecr & FEC_EN) {
 325            mcf_fec_do_tx(s);
 326        }
 327        break;
 328    case 0x024:
 329        s->ecr = value;
 330        if (value & FEC_RESET) {
 331            DPRINTF("Reset\n");
 332            mcf_fec_reset(s);
 333        }
 334        if ((s->ecr & FEC_EN) == 0) {
 335            s->rx_enabled = 0;
 336        }
 337        break;
 338    case 0x040:
 339        s->mmfr = value;
 340        s->eir |= FEC_INT_MII;
 341        break;
 342    case 0x044:
 343        s->mscr = value & 0xfe;
 344        break;
 345    case 0x064:
 346        /* TODO: Implement MIB.  */
 347        break;
 348    case 0x084:
 349        s->rcr = value & 0x07ff003f;
 350        /* TODO: Implement LOOP mode.  */
 351        break;
 352    case 0x0c4: /* TCR */
 353        /* We transmit immediately, so raise GRA immediately.  */
 354        s->tcr = value;
 355        if (value & 1)
 356            s->eir |= FEC_INT_GRA;
 357        break;
 358    case 0x0e4: /* PALR */
 359        s->conf.macaddr.a[0] = value >> 24;
 360        s->conf.macaddr.a[1] = value >> 16;
 361        s->conf.macaddr.a[2] = value >> 8;
 362        s->conf.macaddr.a[3] = value;
 363        break;
 364    case 0x0e8: /* PAUR */
 365        s->conf.macaddr.a[4] = value >> 24;
 366        s->conf.macaddr.a[5] = value >> 16;
 367        break;
 368    case 0x0ec:
 369        /* OPD */
 370        break;
 371    case 0x118:
 372    case 0x11c:
 373    case 0x120:
 374    case 0x124:
 375        /* TODO: implement MAC hash filtering.  */
 376        break;
 377    case 0x144:
 378        s->tfwr = value & 3;
 379        break;
 380    case 0x14c:
 381        /* FRBR writes ignored.  */
 382        break;
 383    case 0x150:
 384        s->rfsr = (value & 0x3fc) | 0x400;
 385        break;
 386    case 0x180:
 387        s->erdsr = value & ~3;
 388        s->rx_descriptor = s->erdsr;
 389        break;
 390    case 0x184:
 391        s->etdsr = value & ~3;
 392        s->tx_descriptor = s->etdsr;
 393        break;
 394    case 0x188:
 395        s->emrbr = value & 0x7f0;
 396        break;
 397    default:
 398        hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr);
 399    }
 400    mcf_fec_update(s);
 401}
 402
 403static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want)
 404{
 405    mcf_fec_bd bd;
 406    uint32_t addr;
 407
 408    /* Walk descriptor list to determine if we have enough buffer */
 409    addr = s->rx_descriptor;
 410    while (want > 0) {
 411        mcf_fec_read_bd(&bd, addr);
 412        if ((bd.flags & FEC_BD_E) == 0) {
 413            return 0;
 414        }
 415        if (want < s->emrbr) {
 416            return 1;
 417        }
 418        want -= s->emrbr;
 419        /* Advance to the next descriptor.  */
 420        if ((bd.flags & FEC_BD_W) != 0) {
 421            addr = s->erdsr;
 422        } else {
 423            addr += 8;
 424        }
 425    }
 426    return 0;
 427}
 428
 429static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size)
 430{
 431    mcf_fec_state *s = qemu_get_nic_opaque(nc);
 432    mcf_fec_bd bd;
 433    uint32_t flags = 0;
 434    uint32_t addr;
 435    uint32_t crc;
 436    uint32_t buf_addr;
 437    uint8_t *crc_ptr;
 438    unsigned int buf_len;
 439    size_t retsize;
 440
 441    DPRINTF("do_rx len %d\n", size);
 442    if (!s->rx_enabled) {
 443        return -1;
 444    }
 445    /* 4 bytes for the CRC.  */
 446    size += 4;
 447    crc = cpu_to_be32(crc32(~0, buf, size));
 448    crc_ptr = (uint8_t *)&crc;
 449    /* Huge frames are truncted.  */
 450    if (size > FEC_MAX_FRAME_SIZE) {
 451        size = FEC_MAX_FRAME_SIZE;
 452        flags |= FEC_BD_TR | FEC_BD_LG;
 453    }
 454    /* Frames larger than the user limit just set error flags.  */
 455    if (size > (s->rcr >> 16)) {
 456        flags |= FEC_BD_LG;
 457    }
 458    /* Check if we have enough space in current descriptors */
 459    if (!mcf_fec_have_receive_space(s, size)) {
 460        return 0;
 461    }
 462    addr = s->rx_descriptor;
 463    retsize = size;
 464    while (size > 0) {
 465        mcf_fec_read_bd(&bd, addr);
 466        buf_len = (size <= s->emrbr) ? size: s->emrbr;
 467        bd.length = buf_len;
 468        size -= buf_len;
 469        DPRINTF("rx_bd %x length %d\n", addr, bd.length);
 470        /* The last 4 bytes are the CRC.  */
 471        if (size < 4)
 472            buf_len += size - 4;
 473        buf_addr = bd.data;
 474        cpu_physical_memory_write(buf_addr, buf, buf_len);
 475        buf += buf_len;
 476        if (size < 4) {
 477            cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
 478            crc_ptr += 4 - size;
 479        }
 480        bd.flags &= ~FEC_BD_E;
 481        if (size == 0) {
 482            /* Last buffer in frame.  */
 483            bd.flags |= flags | FEC_BD_L;
 484            DPRINTF("rx frame flags %04x\n", bd.flags);
 485            s->eir |= FEC_INT_RXF;
 486        } else {
 487            s->eir |= FEC_INT_RXB;
 488        }
 489        mcf_fec_write_bd(&bd, addr);
 490        /* Advance to the next descriptor.  */
 491        if ((bd.flags & FEC_BD_W) != 0) {
 492            addr = s->erdsr;
 493        } else {
 494            addr += 8;
 495        }
 496    }
 497    s->rx_descriptor = addr;
 498    mcf_fec_enable_rx(s);
 499    mcf_fec_update(s);
 500    return retsize;
 501}
 502
 503static const MemoryRegionOps mcf_fec_ops = {
 504    .read = mcf_fec_read,
 505    .write = mcf_fec_write,
 506    .endianness = DEVICE_NATIVE_ENDIAN,
 507};
 508
 509static NetClientInfo net_mcf_fec_info = {
 510    .type = NET_CLIENT_OPTIONS_KIND_NIC,
 511    .size = sizeof(NICState),
 512    .receive = mcf_fec_receive,
 513};
 514
 515void mcf_fec_init(MemoryRegion *sysmem, NICInfo *nd,
 516                  hwaddr base, qemu_irq *irq)
 517{
 518    mcf_fec_state *s;
 519
 520    qemu_check_nic_model(nd, "mcf_fec");
 521
 522    s = (mcf_fec_state *)g_malloc0(sizeof(mcf_fec_state));
 523    s->sysmem = sysmem;
 524    s->irq = irq;
 525
 526    memory_region_init_io(&s->iomem, NULL, &mcf_fec_ops, s, "fec", 0x400);
 527    memory_region_add_subregion(sysmem, base, &s->iomem);
 528
 529    s->conf.macaddr = nd->macaddr;
 530    s->conf.peers.ncs[0] = nd->netdev;
 531
 532    s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf, nd->model, nd->name, s);
 533
 534    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
 535}
 536