qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 *
  26 */
  27#include "qemu/osdep.h"
  28#include "qapi/error.h"
  29#include "sysemu/sysemu.h"
  30#include "sysemu/numa.h"
  31#include "hw/hw.h"
  32#include "hw/fw-path-provider.h"
  33#include "elf.h"
  34#include "net/net.h"
  35#include "sysemu/device_tree.h"
  36#include "sysemu/block-backend.h"
  37#include "sysemu/cpus.h"
  38#include "sysemu/kvm.h"
  39#include "sysemu/device_tree.h"
  40#include "kvm_ppc.h"
  41#include "migration/migration.h"
  42#include "mmu-hash64.h"
  43#include "qom/cpu.h"
  44
  45#include "hw/boards.h"
  46#include "hw/ppc/ppc.h"
  47#include "hw/loader.h"
  48
  49#include "hw/ppc/spapr.h"
  50#include "hw/ppc/spapr_vio.h"
  51#include "hw/pci-host/spapr.h"
  52#include "hw/ppc/xics.h"
  53#include "hw/pci/msi.h"
  54
  55#include "hw/pci/pci.h"
  56#include "hw/scsi/scsi.h"
  57#include "hw/virtio/virtio-scsi.h"
  58
  59#include "exec/address-spaces.h"
  60#include "hw/usb.h"
  61#include "qemu/config-file.h"
  62#include "qemu/error-report.h"
  63#include "trace.h"
  64#include "hw/nmi.h"
  65
  66#include "hw/compat.h"
  67#include "qemu/cutils.h"
  68
  69#include <libfdt.h>
  70
  71/* SLOF memory layout:
  72 *
  73 * SLOF raw image loaded at 0, copies its romfs right below the flat
  74 * device-tree, then position SLOF itself 31M below that
  75 *
  76 * So we set FW_OVERHEAD to 40MB which should account for all of that
  77 * and more
  78 *
  79 * We load our kernel at 4M, leaving space for SLOF initial image
  80 */
  81#define FDT_MAX_SIZE            0x100000
  82#define RTAS_MAX_SIZE           0x10000
  83#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
  84#define FW_MAX_SIZE             0x400000
  85#define FW_FILE_NAME            "slof.bin"
  86#define FW_OVERHEAD             0x2800000
  87#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
  88
  89#define MIN_RMA_SLOF            128UL
  90
  91#define TIMEBASE_FREQ           512000000ULL
  92
  93#define PHANDLE_XICP            0x00001111
  94
  95#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
  96
  97static XICSState *try_create_xics(const char *type, int nr_servers,
  98                                  int nr_irqs, Error **errp)
  99{
 100    Error *err = NULL;
 101    DeviceState *dev;
 102
 103    dev = qdev_create(NULL, type);
 104    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
 105    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
 106    object_property_set_bool(OBJECT(dev), true, "realized", &err);
 107    if (err) {
 108        error_propagate(errp, err);
 109        object_unparent(OBJECT(dev));
 110        return NULL;
 111    }
 112    return XICS_COMMON(dev);
 113}
 114
 115static XICSState *xics_system_init(MachineState *machine,
 116                                   int nr_servers, int nr_irqs, Error **errp)
 117{
 118    XICSState *icp = NULL;
 119
 120    if (kvm_enabled()) {
 121        Error *err = NULL;
 122
 123        if (machine_kernel_irqchip_allowed(machine)) {
 124            icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
 125        }
 126        if (machine_kernel_irqchip_required(machine) && !icp) {
 127            error_reportf_err(err,
 128                              "kernel_irqchip requested but unavailable: ");
 129        } else {
 130            error_free(err);
 131        }
 132    }
 133
 134    if (!icp) {
 135        icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, errp);
 136    }
 137
 138    return icp;
 139}
 140
 141static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 142                                  int smt_threads)
 143{
 144    int i, ret = 0;
 145    uint32_t servers_prop[smt_threads];
 146    uint32_t gservers_prop[smt_threads * 2];
 147    int index = ppc_get_vcpu_dt_id(cpu);
 148
 149    if (cpu->cpu_version) {
 150        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
 151        if (ret < 0) {
 152            return ret;
 153        }
 154    }
 155
 156    /* Build interrupt servers and gservers properties */
 157    for (i = 0; i < smt_threads; i++) {
 158        servers_prop[i] = cpu_to_be32(index + i);
 159        /* Hack, direct the group queues back to cpu 0 */
 160        gservers_prop[i*2] = cpu_to_be32(index + i);
 161        gservers_prop[i*2 + 1] = 0;
 162    }
 163    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 164                      servers_prop, sizeof(servers_prop));
 165    if (ret < 0) {
 166        return ret;
 167    }
 168    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 169                      gservers_prop, sizeof(gservers_prop));
 170
 171    return ret;
 172}
 173
 174static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
 175{
 176    int ret = 0;
 177    PowerPCCPU *cpu = POWERPC_CPU(cs);
 178    int index = ppc_get_vcpu_dt_id(cpu);
 179    uint32_t associativity[] = {cpu_to_be32(0x5),
 180                                cpu_to_be32(0x0),
 181                                cpu_to_be32(0x0),
 182                                cpu_to_be32(0x0),
 183                                cpu_to_be32(cs->numa_node),
 184                                cpu_to_be32(index)};
 185
 186    /* Advertise NUMA via ibm,associativity */
 187    if (nb_numa_nodes > 1) {
 188        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 189                          sizeof(associativity));
 190    }
 191
 192    return ret;
 193}
 194
 195static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
 196{
 197    int ret = 0, offset, cpus_offset;
 198    CPUState *cs;
 199    char cpu_model[32];
 200    int smt = kvmppc_smt_threads();
 201    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 202
 203    CPU_FOREACH(cs) {
 204        PowerPCCPU *cpu = POWERPC_CPU(cs);
 205        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 206        int index = ppc_get_vcpu_dt_id(cpu);
 207
 208        if ((index % smt) != 0) {
 209            continue;
 210        }
 211
 212        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
 213
 214        cpus_offset = fdt_path_offset(fdt, "/cpus");
 215        if (cpus_offset < 0) {
 216            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
 217                                          "cpus");
 218            if (cpus_offset < 0) {
 219                return cpus_offset;
 220            }
 221        }
 222        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
 223        if (offset < 0) {
 224            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
 225            if (offset < 0) {
 226                return offset;
 227            }
 228        }
 229
 230        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
 231                          pft_size_prop, sizeof(pft_size_prop));
 232        if (ret < 0) {
 233            return ret;
 234        }
 235
 236        ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
 237        if (ret < 0) {
 238            return ret;
 239        }
 240
 241        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
 242                                     ppc_get_compat_smt_threads(cpu));
 243        if (ret < 0) {
 244            return ret;
 245        }
 246    }
 247    return ret;
 248}
 249
 250
 251static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
 252                                     size_t maxsize)
 253{
 254    size_t maxcells = maxsize / sizeof(uint32_t);
 255    int i, j, count;
 256    uint32_t *p = prop;
 257
 258    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 259        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
 260
 261        if (!sps->page_shift) {
 262            break;
 263        }
 264        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
 265            if (sps->enc[count].page_shift == 0) {
 266                break;
 267            }
 268        }
 269        if ((p - prop) >= (maxcells - 3 - count * 2)) {
 270            break;
 271        }
 272        *(p++) = cpu_to_be32(sps->page_shift);
 273        *(p++) = cpu_to_be32(sps->slb_enc);
 274        *(p++) = cpu_to_be32(count);
 275        for (j = 0; j < count; j++) {
 276            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
 277            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
 278        }
 279    }
 280
 281    return (p - prop) * sizeof(uint32_t);
 282}
 283
 284static hwaddr spapr_node0_size(void)
 285{
 286    MachineState *machine = MACHINE(qdev_get_machine());
 287
 288    if (nb_numa_nodes) {
 289        int i;
 290        for (i = 0; i < nb_numa_nodes; ++i) {
 291            if (numa_info[i].node_mem) {
 292                return MIN(pow2floor(numa_info[i].node_mem),
 293                           machine->ram_size);
 294            }
 295        }
 296    }
 297    return machine->ram_size;
 298}
 299
 300#define _FDT(exp) \
 301    do { \
 302        int ret = (exp);                                           \
 303        if (ret < 0) {                                             \
 304            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
 305                    #exp, fdt_strerror(ret));                      \
 306            exit(1);                                               \
 307        }                                                          \
 308    } while (0)
 309
 310static void add_str(GString *s, const gchar *s1)
 311{
 312    g_string_append_len(s, s1, strlen(s1) + 1);
 313}
 314
 315static void *spapr_create_fdt_skel(hwaddr initrd_base,
 316                                   hwaddr initrd_size,
 317                                   hwaddr kernel_size,
 318                                   bool little_endian,
 319                                   const char *kernel_cmdline,
 320                                   uint32_t epow_irq)
 321{
 322    void *fdt;
 323    uint32_t start_prop = cpu_to_be32(initrd_base);
 324    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
 325    GString *hypertas = g_string_sized_new(256);
 326    GString *qemu_hypertas = g_string_sized_new(256);
 327    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
 328    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
 329    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
 330    char *buf;
 331
 332    add_str(hypertas, "hcall-pft");
 333    add_str(hypertas, "hcall-term");
 334    add_str(hypertas, "hcall-dabr");
 335    add_str(hypertas, "hcall-interrupt");
 336    add_str(hypertas, "hcall-tce");
 337    add_str(hypertas, "hcall-vio");
 338    add_str(hypertas, "hcall-splpar");
 339    add_str(hypertas, "hcall-bulk");
 340    add_str(hypertas, "hcall-set-mode");
 341    add_str(qemu_hypertas, "hcall-memop1");
 342
 343    fdt = g_malloc0(FDT_MAX_SIZE);
 344    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
 345
 346    if (kernel_size) {
 347        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
 348    }
 349    if (initrd_size) {
 350        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
 351    }
 352    _FDT((fdt_finish_reservemap(fdt)));
 353
 354    /* Root node */
 355    _FDT((fdt_begin_node(fdt, "")));
 356    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
 357    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
 358    _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
 359
 360    /*
 361     * Add info to guest to indentify which host is it being run on
 362     * and what is the uuid of the guest
 363     */
 364    if (kvmppc_get_host_model(&buf)) {
 365        _FDT((fdt_property_string(fdt, "host-model", buf)));
 366        g_free(buf);
 367    }
 368    if (kvmppc_get_host_serial(&buf)) {
 369        _FDT((fdt_property_string(fdt, "host-serial", buf)));
 370        g_free(buf);
 371    }
 372
 373    buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
 374                          qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
 375                          qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
 376                          qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
 377                          qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
 378                          qemu_uuid[14], qemu_uuid[15]);
 379
 380    _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
 381    if (qemu_uuid_set) {
 382        _FDT((fdt_property_string(fdt, "system-id", buf)));
 383    }
 384    g_free(buf);
 385
 386    if (qemu_get_vm_name()) {
 387        _FDT((fdt_property_string(fdt, "ibm,partition-name",
 388                                  qemu_get_vm_name())));
 389    }
 390
 391    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
 392    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
 393
 394    /* /chosen */
 395    _FDT((fdt_begin_node(fdt, "chosen")));
 396
 397    /* Set Form1_affinity */
 398    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
 399
 400    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
 401    _FDT((fdt_property(fdt, "linux,initrd-start",
 402                       &start_prop, sizeof(start_prop))));
 403    _FDT((fdt_property(fdt, "linux,initrd-end",
 404                       &end_prop, sizeof(end_prop))));
 405    if (kernel_size) {
 406        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
 407                              cpu_to_be64(kernel_size) };
 408
 409        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
 410        if (little_endian) {
 411            _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
 412        }
 413    }
 414    if (boot_menu) {
 415        _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
 416    }
 417    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
 418    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
 419    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
 420
 421    _FDT((fdt_end_node(fdt)));
 422
 423    /* RTAS */
 424    _FDT((fdt_begin_node(fdt, "rtas")));
 425
 426    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
 427        add_str(hypertas, "hcall-multi-tce");
 428    }
 429    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
 430                       hypertas->len)));
 431    g_string_free(hypertas, TRUE);
 432    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
 433                       qemu_hypertas->len)));
 434    g_string_free(qemu_hypertas, TRUE);
 435
 436    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
 437        refpoints, sizeof(refpoints))));
 438
 439    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
 440    _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
 441                            RTAS_EVENT_SCAN_RATE)));
 442
 443    if (msi_nonbroken) {
 444        _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
 445    }
 446
 447    /*
 448     * According to PAPR, rtas ibm,os-term does not guarantee a return
 449     * back to the guest cpu.
 450     *
 451     * While an additional ibm,extended-os-term property indicates that
 452     * rtas call return will always occur. Set this property.
 453     */
 454    _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
 455
 456    _FDT((fdt_end_node(fdt)));
 457
 458    /* interrupt controller */
 459    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
 460
 461    _FDT((fdt_property_string(fdt, "device_type",
 462                              "PowerPC-External-Interrupt-Presentation")));
 463    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
 464    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
 465    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
 466                       interrupt_server_ranges_prop,
 467                       sizeof(interrupt_server_ranges_prop))));
 468    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
 469    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
 470    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
 471
 472    _FDT((fdt_end_node(fdt)));
 473
 474    /* vdevice */
 475    _FDT((fdt_begin_node(fdt, "vdevice")));
 476
 477    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
 478    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
 479    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
 480    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
 481    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
 482    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
 483
 484    _FDT((fdt_end_node(fdt)));
 485
 486    /* event-sources */
 487    spapr_events_fdt_skel(fdt, epow_irq);
 488
 489    /* /hypervisor node */
 490    if (kvm_enabled()) {
 491        uint8_t hypercall[16];
 492
 493        /* indicate KVM hypercall interface */
 494        _FDT((fdt_begin_node(fdt, "hypervisor")));
 495        _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
 496        if (kvmppc_has_cap_fixup_hcalls()) {
 497            /*
 498             * Older KVM versions with older guest kernels were broken with the
 499             * magic page, don't allow the guest to map it.
 500             */
 501            if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
 502                                      sizeof(hypercall))) {
 503                _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
 504                                   sizeof(hypercall))));
 505            }
 506        }
 507        _FDT((fdt_end_node(fdt)));
 508    }
 509
 510    _FDT((fdt_end_node(fdt))); /* close root node */
 511    _FDT((fdt_finish(fdt)));
 512
 513    return fdt;
 514}
 515
 516static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
 517                                       hwaddr size)
 518{
 519    uint32_t associativity[] = {
 520        cpu_to_be32(0x4), /* length */
 521        cpu_to_be32(0x0), cpu_to_be32(0x0),
 522        cpu_to_be32(0x0), cpu_to_be32(nodeid)
 523    };
 524    char mem_name[32];
 525    uint64_t mem_reg_property[2];
 526    int off;
 527
 528    mem_reg_property[0] = cpu_to_be64(start);
 529    mem_reg_property[1] = cpu_to_be64(size);
 530
 531    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
 532    off = fdt_add_subnode(fdt, 0, mem_name);
 533    _FDT(off);
 534    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 535    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 536                      sizeof(mem_reg_property))));
 537    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 538                      sizeof(associativity))));
 539    return off;
 540}
 541
 542static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
 543{
 544    MachineState *machine = MACHINE(spapr);
 545    hwaddr mem_start, node_size;
 546    int i, nb_nodes = nb_numa_nodes;
 547    NodeInfo *nodes = numa_info;
 548    NodeInfo ramnode;
 549
 550    /* No NUMA nodes, assume there is just one node with whole RAM */
 551    if (!nb_numa_nodes) {
 552        nb_nodes = 1;
 553        ramnode.node_mem = machine->ram_size;
 554        nodes = &ramnode;
 555    }
 556
 557    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 558        if (!nodes[i].node_mem) {
 559            continue;
 560        }
 561        if (mem_start >= machine->ram_size) {
 562            node_size = 0;
 563        } else {
 564            node_size = nodes[i].node_mem;
 565            if (node_size > machine->ram_size - mem_start) {
 566                node_size = machine->ram_size - mem_start;
 567            }
 568        }
 569        if (!mem_start) {
 570            /* ppc_spapr_init() checks for rma_size <= node0_size already */
 571            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
 572            mem_start += spapr->rma_size;
 573            node_size -= spapr->rma_size;
 574        }
 575        for ( ; node_size; ) {
 576            hwaddr sizetmp = pow2floor(node_size);
 577
 578            /* mem_start != 0 here */
 579            if (ctzl(mem_start) < ctzl(sizetmp)) {
 580                sizetmp = 1ULL << ctzl(mem_start);
 581            }
 582
 583            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
 584            node_size -= sizetmp;
 585            mem_start += sizetmp;
 586        }
 587    }
 588
 589    return 0;
 590}
 591
 592static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
 593                                  sPAPRMachineState *spapr)
 594{
 595    PowerPCCPU *cpu = POWERPC_CPU(cs);
 596    CPUPPCState *env = &cpu->env;
 597    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 598    int index = ppc_get_vcpu_dt_id(cpu);
 599    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 600                       0xffffffff, 0xffffffff};
 601    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
 602    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 603    uint32_t page_sizes_prop[64];
 604    size_t page_sizes_prop_size;
 605    uint32_t vcpus_per_socket = smp_threads * smp_cores;
 606    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 607
 608    /* Note: we keep CI large pages off for now because a 64K capable guest
 609     * provisioned with large pages might otherwise try to map a qemu
 610     * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 611     * even if that qemu runs on a 4k host.
 612     *
 613     * We can later add this bit back when we are confident this is not
 614     * an issue (!HV KVM or 64K host)
 615     */
 616    uint8_t pa_features_206[] = { 6, 0,
 617        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 618    uint8_t pa_features_207[] = { 24, 0,
 619        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 620        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 621        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 622        0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
 623    uint8_t *pa_features;
 624    size_t pa_size;
 625
 626    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 627    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 628
 629    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 630    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 631                           env->dcache_line_size)));
 632    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 633                           env->dcache_line_size)));
 634    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 635                           env->icache_line_size)));
 636    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 637                           env->icache_line_size)));
 638
 639    if (pcc->l1_dcache_size) {
 640        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 641                               pcc->l1_dcache_size)));
 642    } else {
 643        fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
 644    }
 645    if (pcc->l1_icache_size) {
 646        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 647                               pcc->l1_icache_size)));
 648    } else {
 649        fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
 650    }
 651
 652    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 653    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 654    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
 655    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
 656    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 657    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 658
 659    if (env->spr_cb[SPR_PURR].oea_read) {
 660        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
 661    }
 662
 663    if (env->mmu_model & POWERPC_MMU_1TSEG) {
 664        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 665                          segs, sizeof(segs))));
 666    }
 667
 668    /* Advertise VMX/VSX (vector extensions) if available
 669     *   0 / no property == no vector extensions
 670     *   1               == VMX / Altivec available
 671     *   2               == VSX available */
 672    if (env->insns_flags & PPC_ALTIVEC) {
 673        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
 674
 675        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
 676    }
 677
 678    /* Advertise DFP (Decimal Floating Point) if available
 679     *   0 / no property == no DFP
 680     *   1               == DFP available */
 681    if (env->insns_flags2 & PPC2_DFP) {
 682        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 683    }
 684
 685    page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
 686                                                  sizeof(page_sizes_prop));
 687    if (page_sizes_prop_size) {
 688        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 689                          page_sizes_prop, page_sizes_prop_size)));
 690    }
 691
 692    /* Do the ibm,pa-features property, adjust it for ci-large-pages */
 693    if (env->mmu_model == POWERPC_MMU_2_06) {
 694        pa_features = pa_features_206;
 695        pa_size = sizeof(pa_features_206);
 696    } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
 697        pa_features = pa_features_207;
 698        pa_size = sizeof(pa_features_207);
 699    }
 700    if (env->ci_large_pages) {
 701        pa_features[3] |= 0x20;
 702    }
 703    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 704
 705    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 706                           cs->cpu_index / vcpus_per_socket)));
 707
 708    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 709                      pft_size_prop, sizeof(pft_size_prop))));
 710
 711    _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
 712
 713    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
 714                                ppc_get_compat_smt_threads(cpu)));
 715}
 716
 717static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
 718{
 719    CPUState *cs;
 720    int cpus_offset;
 721    char *nodename;
 722    int smt = kvmppc_smt_threads();
 723
 724    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 725    _FDT(cpus_offset);
 726    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 727    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 728
 729    /*
 730     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 731     * created by fdt_add_subnode() end up in the right order in FDT
 732     * for the guest kernel the enumerate the CPUs correctly.
 733     */
 734    CPU_FOREACH_REVERSE(cs) {
 735        PowerPCCPU *cpu = POWERPC_CPU(cs);
 736        int index = ppc_get_vcpu_dt_id(cpu);
 737        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 738        int offset;
 739
 740        if ((index % smt) != 0) {
 741            continue;
 742        }
 743
 744        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 745        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 746        g_free(nodename);
 747        _FDT(offset);
 748        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
 749    }
 750
 751}
 752
 753/*
 754 * Adds ibm,dynamic-reconfiguration-memory node.
 755 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 756 * of this device tree node.
 757 */
 758static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
 759{
 760    MachineState *machine = MACHINE(spapr);
 761    int ret, i, offset;
 762    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 763    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
 764    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
 765    uint32_t *int_buf, *cur_index, buf_len;
 766    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 767
 768    /*
 769     * Don't create the node if there are no DR LMBs.
 770     */
 771    if (!nr_lmbs) {
 772        return 0;
 773    }
 774
 775    /*
 776     * Allocate enough buffer size to fit in ibm,dynamic-memory
 777     * or ibm,associativity-lookup-arrays
 778     */
 779    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
 780              * sizeof(uint32_t);
 781    cur_index = int_buf = g_malloc0(buf_len);
 782
 783    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 784
 785    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 786                    sizeof(prop_lmb_size));
 787    if (ret < 0) {
 788        goto out;
 789    }
 790
 791    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 792    if (ret < 0) {
 793        goto out;
 794    }
 795
 796    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 797    if (ret < 0) {
 798        goto out;
 799    }
 800
 801    /* ibm,dynamic-memory */
 802    int_buf[0] = cpu_to_be32(nr_lmbs);
 803    cur_index++;
 804    for (i = 0; i < nr_lmbs; i++) {
 805        sPAPRDRConnector *drc;
 806        sPAPRDRConnectorClass *drck;
 807        uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
 808        uint32_t *dynamic_memory = cur_index;
 809
 810        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
 811                                       addr/lmb_size);
 812        g_assert(drc);
 813        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 814
 815        dynamic_memory[0] = cpu_to_be32(addr >> 32);
 816        dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 817        dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
 818        dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 819        dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
 820        if (addr < machine->ram_size ||
 821                    memory_region_present(get_system_memory(), addr)) {
 822            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 823        } else {
 824            dynamic_memory[5] = cpu_to_be32(0);
 825        }
 826
 827        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 828    }
 829    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 830    if (ret < 0) {
 831        goto out;
 832    }
 833
 834    /* ibm,associativity-lookup-arrays */
 835    cur_index = int_buf;
 836    int_buf[0] = cpu_to_be32(nr_nodes);
 837    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
 838    cur_index += 2;
 839    for (i = 0; i < nr_nodes; i++) {
 840        uint32_t associativity[] = {
 841            cpu_to_be32(0x0),
 842            cpu_to_be32(0x0),
 843            cpu_to_be32(0x0),
 844            cpu_to_be32(i)
 845        };
 846        memcpy(cur_index, associativity, sizeof(associativity));
 847        cur_index += 4;
 848    }
 849    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 850            (cur_index - int_buf) * sizeof(uint32_t));
 851out:
 852    g_free(int_buf);
 853    return ret;
 854}
 855
 856int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
 857                                 target_ulong addr, target_ulong size,
 858                                 bool cpu_update, bool memory_update)
 859{
 860    void *fdt, *fdt_skel;
 861    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
 862    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
 863
 864    size -= sizeof(hdr);
 865
 866    /* Create sceleton */
 867    fdt_skel = g_malloc0(size);
 868    _FDT((fdt_create(fdt_skel, size)));
 869    _FDT((fdt_begin_node(fdt_skel, "")));
 870    _FDT((fdt_end_node(fdt_skel)));
 871    _FDT((fdt_finish(fdt_skel)));
 872    fdt = g_malloc0(size);
 873    _FDT((fdt_open_into(fdt_skel, fdt, size)));
 874    g_free(fdt_skel);
 875
 876    /* Fixup cpu nodes */
 877    if (cpu_update) {
 878        _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
 879    }
 880
 881    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 882    if (memory_update && smc->dr_lmb_enabled) {
 883        _FDT((spapr_populate_drconf_memory(spapr, fdt)));
 884    }
 885
 886    /* Pack resulting tree */
 887    _FDT((fdt_pack(fdt)));
 888
 889    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
 890        trace_spapr_cas_failed(size);
 891        return -1;
 892    }
 893
 894    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
 895    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
 896    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
 897    g_free(fdt);
 898
 899    return 0;
 900}
 901
 902static void spapr_finalize_fdt(sPAPRMachineState *spapr,
 903                               hwaddr fdt_addr,
 904                               hwaddr rtas_addr,
 905                               hwaddr rtas_size)
 906{
 907    MachineState *machine = MACHINE(qdev_get_machine());
 908    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
 909    const char *boot_device = machine->boot_order;
 910    int ret, i;
 911    size_t cb = 0;
 912    char *bootlist;
 913    void *fdt;
 914    sPAPRPHBState *phb;
 915
 916    fdt = g_malloc(FDT_MAX_SIZE);
 917
 918    /* open out the base tree into a temp buffer for the final tweaks */
 919    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
 920
 921    ret = spapr_populate_memory(spapr, fdt);
 922    if (ret < 0) {
 923        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
 924        exit(1);
 925    }
 926
 927    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
 928    if (ret < 0) {
 929        fprintf(stderr, "couldn't setup vio devices in fdt\n");
 930        exit(1);
 931    }
 932
 933    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
 934        ret = spapr_rng_populate_dt(fdt);
 935        if (ret < 0) {
 936            fprintf(stderr, "could not set up rng device in the fdt\n");
 937            exit(1);
 938        }
 939    }
 940
 941    QLIST_FOREACH(phb, &spapr->phbs, list) {
 942        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
 943        if (ret < 0) {
 944            error_report("couldn't setup PCI devices in fdt");
 945            exit(1);
 946        }
 947    }
 948
 949    /* RTAS */
 950    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
 951    if (ret < 0) {
 952        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
 953    }
 954
 955    /* cpus */
 956    spapr_populate_cpus_dt_node(fdt, spapr);
 957
 958    bootlist = get_boot_devices_list(&cb, true);
 959    if (cb && bootlist) {
 960        int offset = fdt_path_offset(fdt, "/chosen");
 961        if (offset < 0) {
 962            exit(1);
 963        }
 964        for (i = 0; i < cb; i++) {
 965            if (bootlist[i] == '\n') {
 966                bootlist[i] = ' ';
 967            }
 968
 969        }
 970        ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
 971    }
 972
 973    if (boot_device && strlen(boot_device)) {
 974        int offset = fdt_path_offset(fdt, "/chosen");
 975
 976        if (offset < 0) {
 977            exit(1);
 978        }
 979        fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
 980    }
 981
 982    if (!spapr->has_graphics) {
 983        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
 984    }
 985
 986    if (smc->dr_lmb_enabled) {
 987        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
 988    }
 989
 990    _FDT((fdt_pack(fdt)));
 991
 992    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
 993        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
 994                     fdt_totalsize(fdt), FDT_MAX_SIZE);
 995        exit(1);
 996    }
 997
 998    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
 999    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1000
1001    g_free(bootlist);
1002    g_free(fdt);
1003}
1004
1005static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1006{
1007    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1008}
1009
1010static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1011{
1012    CPUPPCState *env = &cpu->env;
1013
1014    if (msr_pr) {
1015        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1016        env->gpr[3] = H_PRIVILEGE;
1017    } else {
1018        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1019    }
1020}
1021
1022#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1023#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1024#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1025#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1026#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1027
1028/*
1029 * Get the fd to access the kernel htab, re-opening it if necessary
1030 */
1031static int get_htab_fd(sPAPRMachineState *spapr)
1032{
1033    if (spapr->htab_fd >= 0) {
1034        return spapr->htab_fd;
1035    }
1036
1037    spapr->htab_fd = kvmppc_get_htab_fd(false);
1038    if (spapr->htab_fd < 0) {
1039        error_report("Unable to open fd for reading hash table from KVM: %s",
1040                     strerror(errno));
1041    }
1042
1043    return spapr->htab_fd;
1044}
1045
1046static void close_htab_fd(sPAPRMachineState *spapr)
1047{
1048    if (spapr->htab_fd >= 0) {
1049        close(spapr->htab_fd);
1050    }
1051    spapr->htab_fd = -1;
1052}
1053
1054static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1055{
1056    int shift;
1057
1058    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1059     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1060     * that's much more than is needed for Linux guests */
1061    shift = ctz64(pow2ceil(ramsize)) - 7;
1062    shift = MAX(shift, 18); /* Minimum architected size */
1063    shift = MIN(shift, 46); /* Maximum architected size */
1064    return shift;
1065}
1066
1067static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1068                                 Error **errp)
1069{
1070    long rc;
1071
1072    /* Clean up any HPT info from a previous boot */
1073    g_free(spapr->htab);
1074    spapr->htab = NULL;
1075    spapr->htab_shift = 0;
1076    close_htab_fd(spapr);
1077
1078    rc = kvmppc_reset_htab(shift);
1079    if (rc < 0) {
1080        /* kernel-side HPT needed, but couldn't allocate one */
1081        error_setg_errno(errp, errno,
1082                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1083                         shift);
1084        /* This is almost certainly fatal, but if the caller really
1085         * wants to carry on with shift == 0, it's welcome to try */
1086    } else if (rc > 0) {
1087        /* kernel-side HPT allocated */
1088        if (rc != shift) {
1089            error_setg(errp,
1090                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1091                       shift, rc);
1092        }
1093
1094        spapr->htab_shift = shift;
1095        spapr->htab = NULL;
1096    } else {
1097        /* kernel-side HPT not needed, allocate in userspace instead */
1098        size_t size = 1ULL << shift;
1099        int i;
1100
1101        spapr->htab = qemu_memalign(size, size);
1102        if (!spapr->htab) {
1103            error_setg_errno(errp, errno,
1104                             "Could not allocate HPT of order %d", shift);
1105            return;
1106        }
1107
1108        memset(spapr->htab, 0, size);
1109        spapr->htab_shift = shift;
1110
1111        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1112            DIRTY_HPTE(HPTE(spapr->htab, i));
1113        }
1114    }
1115}
1116
1117static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1118{
1119    bool matched = false;
1120
1121    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1122        matched = true;
1123    }
1124
1125    if (!matched) {
1126        error_report("Device %s is not supported by this machine yet.",
1127                     qdev_fw_name(DEVICE(sbdev)));
1128        exit(1);
1129    }
1130
1131    return 0;
1132}
1133
1134static void ppc_spapr_reset(void)
1135{
1136    MachineState *machine = MACHINE(qdev_get_machine());
1137    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1138    PowerPCCPU *first_ppc_cpu;
1139    uint32_t rtas_limit;
1140
1141    /* Check for unknown sysbus devices */
1142    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1143
1144    /* Allocate and/or reset the hash page table */
1145    spapr_reallocate_hpt(spapr,
1146                         spapr_hpt_shift_for_ramsize(machine->maxram_size),
1147                         &error_fatal);
1148
1149    /* Update the RMA size if necessary */
1150    if (spapr->vrma_adjust) {
1151        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1152                                          spapr->htab_shift);
1153    }
1154
1155    qemu_devices_reset();
1156
1157    /*
1158     * We place the device tree and RTAS just below either the top of the RMA,
1159     * or just below 2GB, whichever is lowere, so that it can be
1160     * processed with 32-bit real mode code if necessary
1161     */
1162    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1163    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1164    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1165
1166    /* Load the fdt */
1167    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1168                       spapr->rtas_size);
1169
1170    /* Copy RTAS over */
1171    cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1172                              spapr->rtas_size);
1173
1174    /* Set up the entry state */
1175    first_ppc_cpu = POWERPC_CPU(first_cpu);
1176    first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1177    first_ppc_cpu->env.gpr[5] = 0;
1178    first_cpu->halted = 0;
1179    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1180
1181}
1182
1183static void spapr_cpu_reset(void *opaque)
1184{
1185    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1186    PowerPCCPU *cpu = opaque;
1187    CPUState *cs = CPU(cpu);
1188    CPUPPCState *env = &cpu->env;
1189
1190    cpu_reset(cs);
1191
1192    /* All CPUs start halted.  CPU0 is unhalted from the machine level
1193     * reset code and the rest are explicitly started up by the guest
1194     * using an RTAS call */
1195    cs->halted = 1;
1196
1197    env->spr[SPR_HIOR] = 0;
1198
1199    ppc_hash64_set_external_hpt(cpu, spapr->htab, spapr->htab_shift,
1200                                &error_fatal);
1201}
1202
1203static void spapr_create_nvram(sPAPRMachineState *spapr)
1204{
1205    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1206    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1207
1208    if (dinfo) {
1209        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1210                            &error_fatal);
1211    }
1212
1213    qdev_init_nofail(dev);
1214
1215    spapr->nvram = (struct sPAPRNVRAM *)dev;
1216}
1217
1218static void spapr_rtc_create(sPAPRMachineState *spapr)
1219{
1220    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1221
1222    qdev_init_nofail(dev);
1223    spapr->rtc = dev;
1224
1225    object_property_add_alias(qdev_get_machine(), "rtc-time",
1226                              OBJECT(spapr->rtc), "date", NULL);
1227}
1228
1229/* Returns whether we want to use VGA or not */
1230static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1231{
1232    switch (vga_interface_type) {
1233    case VGA_NONE:
1234        return false;
1235    case VGA_DEVICE:
1236        return true;
1237    case VGA_STD:
1238    case VGA_VIRTIO:
1239        return pci_vga_init(pci_bus) != NULL;
1240    default:
1241        error_setg(errp,
1242                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1243        return false;
1244    }
1245}
1246
1247static int spapr_post_load(void *opaque, int version_id)
1248{
1249    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1250    int err = 0;
1251
1252    /* In earlier versions, there was no separate qdev for the PAPR
1253     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1254     * So when migrating from those versions, poke the incoming offset
1255     * value into the RTC device */
1256    if (version_id < 3) {
1257        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1258    }
1259
1260    return err;
1261}
1262
1263static bool version_before_3(void *opaque, int version_id)
1264{
1265    return version_id < 3;
1266}
1267
1268static const VMStateDescription vmstate_spapr = {
1269    .name = "spapr",
1270    .version_id = 3,
1271    .minimum_version_id = 1,
1272    .post_load = spapr_post_load,
1273    .fields = (VMStateField[]) {
1274        /* used to be @next_irq */
1275        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1276
1277        /* RTC offset */
1278        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1279
1280        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1281        VMSTATE_END_OF_LIST()
1282    },
1283};
1284
1285static int htab_save_setup(QEMUFile *f, void *opaque)
1286{
1287    sPAPRMachineState *spapr = opaque;
1288
1289    /* "Iteration" header */
1290    qemu_put_be32(f, spapr->htab_shift);
1291
1292    if (spapr->htab) {
1293        spapr->htab_save_index = 0;
1294        spapr->htab_first_pass = true;
1295    } else {
1296        assert(kvm_enabled());
1297    }
1298
1299
1300    return 0;
1301}
1302
1303static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1304                                 int64_t max_ns)
1305{
1306    bool has_timeout = max_ns != -1;
1307    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1308    int index = spapr->htab_save_index;
1309    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1310
1311    assert(spapr->htab_first_pass);
1312
1313    do {
1314        int chunkstart;
1315
1316        /* Consume invalid HPTEs */
1317        while ((index < htabslots)
1318               && !HPTE_VALID(HPTE(spapr->htab, index))) {
1319            index++;
1320            CLEAN_HPTE(HPTE(spapr->htab, index));
1321        }
1322
1323        /* Consume valid HPTEs */
1324        chunkstart = index;
1325        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1326               && HPTE_VALID(HPTE(spapr->htab, index))) {
1327            index++;
1328            CLEAN_HPTE(HPTE(spapr->htab, index));
1329        }
1330
1331        if (index > chunkstart) {
1332            int n_valid = index - chunkstart;
1333
1334            qemu_put_be32(f, chunkstart);
1335            qemu_put_be16(f, n_valid);
1336            qemu_put_be16(f, 0);
1337            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1338                            HASH_PTE_SIZE_64 * n_valid);
1339
1340            if (has_timeout &&
1341                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1342                break;
1343            }
1344        }
1345    } while ((index < htabslots) && !qemu_file_rate_limit(f));
1346
1347    if (index >= htabslots) {
1348        assert(index == htabslots);
1349        index = 0;
1350        spapr->htab_first_pass = false;
1351    }
1352    spapr->htab_save_index = index;
1353}
1354
1355static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1356                                int64_t max_ns)
1357{
1358    bool final = max_ns < 0;
1359    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1360    int examined = 0, sent = 0;
1361    int index = spapr->htab_save_index;
1362    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1363
1364    assert(!spapr->htab_first_pass);
1365
1366    do {
1367        int chunkstart, invalidstart;
1368
1369        /* Consume non-dirty HPTEs */
1370        while ((index < htabslots)
1371               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1372            index++;
1373            examined++;
1374        }
1375
1376        chunkstart = index;
1377        /* Consume valid dirty HPTEs */
1378        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1379               && HPTE_DIRTY(HPTE(spapr->htab, index))
1380               && HPTE_VALID(HPTE(spapr->htab, index))) {
1381            CLEAN_HPTE(HPTE(spapr->htab, index));
1382            index++;
1383            examined++;
1384        }
1385
1386        invalidstart = index;
1387        /* Consume invalid dirty HPTEs */
1388        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1389               && HPTE_DIRTY(HPTE(spapr->htab, index))
1390               && !HPTE_VALID(HPTE(spapr->htab, index))) {
1391            CLEAN_HPTE(HPTE(spapr->htab, index));
1392            index++;
1393            examined++;
1394        }
1395
1396        if (index > chunkstart) {
1397            int n_valid = invalidstart - chunkstart;
1398            int n_invalid = index - invalidstart;
1399
1400            qemu_put_be32(f, chunkstart);
1401            qemu_put_be16(f, n_valid);
1402            qemu_put_be16(f, n_invalid);
1403            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1404                            HASH_PTE_SIZE_64 * n_valid);
1405            sent += index - chunkstart;
1406
1407            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1408                break;
1409            }
1410        }
1411
1412        if (examined >= htabslots) {
1413            break;
1414        }
1415
1416        if (index >= htabslots) {
1417            assert(index == htabslots);
1418            index = 0;
1419        }
1420    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1421
1422    if (index >= htabslots) {
1423        assert(index == htabslots);
1424        index = 0;
1425    }
1426
1427    spapr->htab_save_index = index;
1428
1429    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1430}
1431
1432#define MAX_ITERATION_NS    5000000 /* 5 ms */
1433#define MAX_KVM_BUF_SIZE    2048
1434
1435static int htab_save_iterate(QEMUFile *f, void *opaque)
1436{
1437    sPAPRMachineState *spapr = opaque;
1438    int fd;
1439    int rc = 0;
1440
1441    /* Iteration header */
1442    qemu_put_be32(f, 0);
1443
1444    if (!spapr->htab) {
1445        assert(kvm_enabled());
1446
1447        fd = get_htab_fd(spapr);
1448        if (fd < 0) {
1449            return fd;
1450        }
1451
1452        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1453        if (rc < 0) {
1454            return rc;
1455        }
1456    } else  if (spapr->htab_first_pass) {
1457        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1458    } else {
1459        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1460    }
1461
1462    /* End marker */
1463    qemu_put_be32(f, 0);
1464    qemu_put_be16(f, 0);
1465    qemu_put_be16(f, 0);
1466
1467    return rc;
1468}
1469
1470static int htab_save_complete(QEMUFile *f, void *opaque)
1471{
1472    sPAPRMachineState *spapr = opaque;
1473    int fd;
1474
1475    /* Iteration header */
1476    qemu_put_be32(f, 0);
1477
1478    if (!spapr->htab) {
1479        int rc;
1480
1481        assert(kvm_enabled());
1482
1483        fd = get_htab_fd(spapr);
1484        if (fd < 0) {
1485            return fd;
1486        }
1487
1488        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1489        if (rc < 0) {
1490            return rc;
1491        }
1492        close_htab_fd(spapr);
1493    } else {
1494        if (spapr->htab_first_pass) {
1495            htab_save_first_pass(f, spapr, -1);
1496        }
1497        htab_save_later_pass(f, spapr, -1);
1498    }
1499
1500    /* End marker */
1501    qemu_put_be32(f, 0);
1502    qemu_put_be16(f, 0);
1503    qemu_put_be16(f, 0);
1504
1505    return 0;
1506}
1507
1508static int htab_load(QEMUFile *f, void *opaque, int version_id)
1509{
1510    sPAPRMachineState *spapr = opaque;
1511    uint32_t section_hdr;
1512    int fd = -1;
1513
1514    if (version_id < 1 || version_id > 1) {
1515        error_report("htab_load() bad version");
1516        return -EINVAL;
1517    }
1518
1519    section_hdr = qemu_get_be32(f);
1520
1521    if (section_hdr) {
1522        Error *local_err = NULL;
1523
1524        /* First section gives the htab size */
1525        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1526        if (local_err) {
1527            error_report_err(local_err);
1528            return -EINVAL;
1529        }
1530        return 0;
1531    }
1532
1533    if (!spapr->htab) {
1534        assert(kvm_enabled());
1535
1536        fd = kvmppc_get_htab_fd(true);
1537        if (fd < 0) {
1538            error_report("Unable to open fd to restore KVM hash table: %s",
1539                         strerror(errno));
1540        }
1541    }
1542
1543    while (true) {
1544        uint32_t index;
1545        uint16_t n_valid, n_invalid;
1546
1547        index = qemu_get_be32(f);
1548        n_valid = qemu_get_be16(f);
1549        n_invalid = qemu_get_be16(f);
1550
1551        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1552            /* End of Stream */
1553            break;
1554        }
1555
1556        if ((index + n_valid + n_invalid) >
1557            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1558            /* Bad index in stream */
1559            error_report(
1560                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1561                index, n_valid, n_invalid, spapr->htab_shift);
1562            return -EINVAL;
1563        }
1564
1565        if (spapr->htab) {
1566            if (n_valid) {
1567                qemu_get_buffer(f, HPTE(spapr->htab, index),
1568                                HASH_PTE_SIZE_64 * n_valid);
1569            }
1570            if (n_invalid) {
1571                memset(HPTE(spapr->htab, index + n_valid), 0,
1572                       HASH_PTE_SIZE_64 * n_invalid);
1573            }
1574        } else {
1575            int rc;
1576
1577            assert(fd >= 0);
1578
1579            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1580            if (rc < 0) {
1581                return rc;
1582            }
1583        }
1584    }
1585
1586    if (!spapr->htab) {
1587        assert(fd >= 0);
1588        close(fd);
1589    }
1590
1591    return 0;
1592}
1593
1594static SaveVMHandlers savevm_htab_handlers = {
1595    .save_live_setup = htab_save_setup,
1596    .save_live_iterate = htab_save_iterate,
1597    .save_live_complete_precopy = htab_save_complete,
1598    .load_state = htab_load,
1599};
1600
1601static void spapr_boot_set(void *opaque, const char *boot_device,
1602                           Error **errp)
1603{
1604    MachineState *machine = MACHINE(qdev_get_machine());
1605    machine->boot_order = g_strdup(boot_device);
1606}
1607
1608static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu,
1609                           Error **errp)
1610{
1611    CPUPPCState *env = &cpu->env;
1612
1613    /* Set time-base frequency to 512 MHz */
1614    cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1615
1616    /* Enable PAPR mode in TCG or KVM */
1617    cpu_ppc_set_papr(cpu);
1618
1619    if (cpu->max_compat) {
1620        Error *local_err = NULL;
1621
1622        ppc_set_compat(cpu, cpu->max_compat, &local_err);
1623        if (local_err) {
1624            error_propagate(errp, local_err);
1625            return;
1626        }
1627    }
1628
1629    xics_cpu_setup(spapr->icp, cpu);
1630
1631    qemu_register_reset(spapr_cpu_reset, cpu);
1632}
1633
1634/*
1635 * Reset routine for LMB DR devices.
1636 *
1637 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1638 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1639 * when it walks all its children devices. LMB devices reset occurs
1640 * as part of spapr_ppc_reset().
1641 */
1642static void spapr_drc_reset(void *opaque)
1643{
1644    sPAPRDRConnector *drc = opaque;
1645    DeviceState *d = DEVICE(drc);
1646
1647    if (d) {
1648        device_reset(d);
1649    }
1650}
1651
1652static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1653{
1654    MachineState *machine = MACHINE(spapr);
1655    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1656    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1657    int i;
1658
1659    for (i = 0; i < nr_lmbs; i++) {
1660        sPAPRDRConnector *drc;
1661        uint64_t addr;
1662
1663        addr = i * lmb_size + spapr->hotplug_memory.base;
1664        drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1665                                     addr/lmb_size);
1666        qemu_register_reset(spapr_drc_reset, drc);
1667    }
1668}
1669
1670/*
1671 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1672 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1673 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1674 */
1675static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1676{
1677    int i;
1678
1679    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1680        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1681                   " is not aligned to %llu MiB",
1682                   machine->ram_size,
1683                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1684        return;
1685    }
1686
1687    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1688        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1689                   " is not aligned to %llu MiB",
1690                   machine->ram_size,
1691                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1692        return;
1693    }
1694
1695    for (i = 0; i < nb_numa_nodes; i++) {
1696        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1697            error_setg(errp,
1698                       "Node %d memory size 0x%" PRIx64
1699                       " is not aligned to %llu MiB",
1700                       i, numa_info[i].node_mem,
1701                       SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1702            return;
1703        }
1704    }
1705}
1706
1707/* pSeries LPAR / sPAPR hardware init */
1708static void ppc_spapr_init(MachineState *machine)
1709{
1710    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1711    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1712    const char *kernel_filename = machine->kernel_filename;
1713    const char *kernel_cmdline = machine->kernel_cmdline;
1714    const char *initrd_filename = machine->initrd_filename;
1715    PowerPCCPU *cpu;
1716    PCIHostState *phb;
1717    int i;
1718    MemoryRegion *sysmem = get_system_memory();
1719    MemoryRegion *ram = g_new(MemoryRegion, 1);
1720    MemoryRegion *rma_region;
1721    void *rma = NULL;
1722    hwaddr rma_alloc_size;
1723    hwaddr node0_size = spapr_node0_size();
1724    uint32_t initrd_base = 0;
1725    long kernel_size = 0, initrd_size = 0;
1726    long load_limit, fw_size;
1727    bool kernel_le = false;
1728    char *filename;
1729
1730    msi_nonbroken = true;
1731
1732    QLIST_INIT(&spapr->phbs);
1733
1734    cpu_ppc_hypercall = emulate_spapr_hypercall;
1735
1736    /* Allocate RMA if necessary */
1737    rma_alloc_size = kvmppc_alloc_rma(&rma);
1738
1739    if (rma_alloc_size == -1) {
1740        error_report("Unable to create RMA");
1741        exit(1);
1742    }
1743
1744    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1745        spapr->rma_size = rma_alloc_size;
1746    } else {
1747        spapr->rma_size = node0_size;
1748
1749        /* With KVM, we don't actually know whether KVM supports an
1750         * unbounded RMA (PR KVM) or is limited by the hash table size
1751         * (HV KVM using VRMA), so we always assume the latter
1752         *
1753         * In that case, we also limit the initial allocations for RTAS
1754         * etc... to 256M since we have no way to know what the VRMA size
1755         * is going to be as it depends on the size of the hash table
1756         * isn't determined yet.
1757         */
1758        if (kvm_enabled()) {
1759            spapr->vrma_adjust = 1;
1760            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1761        }
1762    }
1763
1764    if (spapr->rma_size > node0_size) {
1765        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1766                     spapr->rma_size);
1767        exit(1);
1768    }
1769
1770    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1771    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1772
1773    /* Set up Interrupt Controller before we create the VCPUs */
1774    spapr->icp = xics_system_init(machine,
1775                                  DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1776                                               smp_threads),
1777                                  XICS_IRQS, &error_fatal);
1778
1779    if (smc->dr_lmb_enabled) {
1780        spapr_validate_node_memory(machine, &error_fatal);
1781    }
1782
1783    /* init CPUs */
1784    if (machine->cpu_model == NULL) {
1785        machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1786    }
1787    for (i = 0; i < smp_cpus; i++) {
1788        cpu = cpu_ppc_init(machine->cpu_model);
1789        if (cpu == NULL) {
1790            error_report("Unable to find PowerPC CPU definition");
1791            exit(1);
1792        }
1793        spapr_cpu_init(spapr, cpu, &error_fatal);
1794    }
1795
1796    if (kvm_enabled()) {
1797        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1798        kvmppc_enable_logical_ci_hcalls();
1799        kvmppc_enable_set_mode_hcall();
1800    }
1801
1802    /* allocate RAM */
1803    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1804                                         machine->ram_size);
1805    memory_region_add_subregion(sysmem, 0, ram);
1806
1807    if (rma_alloc_size && rma) {
1808        rma_region = g_new(MemoryRegion, 1);
1809        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1810                                   rma_alloc_size, rma);
1811        vmstate_register_ram_global(rma_region);
1812        memory_region_add_subregion(sysmem, 0, rma_region);
1813    }
1814
1815    /* initialize hotplug memory address space */
1816    if (machine->ram_size < machine->maxram_size) {
1817        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1818
1819        if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
1820            error_report("Specified number of memory slots %"
1821                         PRIu64" exceeds max supported %d",
1822                         machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
1823            exit(1);
1824        }
1825
1826        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1827                                              SPAPR_HOTPLUG_MEM_ALIGN);
1828        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1829                           "hotplug-memory", hotplug_mem_size);
1830        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1831                                    &spapr->hotplug_memory.mr);
1832    }
1833
1834    if (smc->dr_lmb_enabled) {
1835        spapr_create_lmb_dr_connectors(spapr);
1836    }
1837
1838    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1839    if (!filename) {
1840        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1841        exit(1);
1842    }
1843    spapr->rtas_size = get_image_size(filename);
1844    spapr->rtas_blob = g_malloc(spapr->rtas_size);
1845    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1846        error_report("Could not load LPAR rtas '%s'", filename);
1847        exit(1);
1848    }
1849    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1850        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1851                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1852        exit(1);
1853    }
1854    g_free(filename);
1855
1856    /* Set up EPOW events infrastructure */
1857    spapr_events_init(spapr);
1858
1859    /* Set up the RTC RTAS interfaces */
1860    spapr_rtc_create(spapr);
1861
1862    /* Set up VIO bus */
1863    spapr->vio_bus = spapr_vio_bus_init();
1864
1865    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1866        if (serial_hds[i]) {
1867            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1868        }
1869    }
1870
1871    /* We always have at least the nvram device on VIO */
1872    spapr_create_nvram(spapr);
1873
1874    /* Set up PCI */
1875    spapr_pci_rtas_init();
1876
1877    phb = spapr_create_phb(spapr, 0);
1878
1879    for (i = 0; i < nb_nics; i++) {
1880        NICInfo *nd = &nd_table[i];
1881
1882        if (!nd->model) {
1883            nd->model = g_strdup("ibmveth");
1884        }
1885
1886        if (strcmp(nd->model, "ibmveth") == 0) {
1887            spapr_vlan_create(spapr->vio_bus, nd);
1888        } else {
1889            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1890        }
1891    }
1892
1893    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1894        spapr_vscsi_create(spapr->vio_bus);
1895    }
1896
1897    /* Graphics */
1898    if (spapr_vga_init(phb->bus, &error_fatal)) {
1899        spapr->has_graphics = true;
1900        machine->usb |= defaults_enabled() && !machine->usb_disabled;
1901    }
1902
1903    if (machine->usb) {
1904        if (smc->use_ohci_by_default) {
1905            pci_create_simple(phb->bus, -1, "pci-ohci");
1906        } else {
1907            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1908        }
1909
1910        if (spapr->has_graphics) {
1911            USBBus *usb_bus = usb_bus_find(-1);
1912
1913            usb_create_simple(usb_bus, "usb-kbd");
1914            usb_create_simple(usb_bus, "usb-mouse");
1915        }
1916    }
1917
1918    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1919        error_report(
1920            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1921            MIN_RMA_SLOF);
1922        exit(1);
1923    }
1924
1925    if (kernel_filename) {
1926        uint64_t lowaddr = 0;
1927
1928        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1929                               NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE,
1930                               0, 0);
1931        if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1932            kernel_size = load_elf(kernel_filename,
1933                                   translate_kernel_address, NULL,
1934                                   NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE,
1935                                   0, 0);
1936            kernel_le = kernel_size > 0;
1937        }
1938        if (kernel_size < 0) {
1939            error_report("error loading %s: %s",
1940                         kernel_filename, load_elf_strerror(kernel_size));
1941            exit(1);
1942        }
1943
1944        /* load initrd */
1945        if (initrd_filename) {
1946            /* Try to locate the initrd in the gap between the kernel
1947             * and the firmware. Add a bit of space just in case
1948             */
1949            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1950            initrd_size = load_image_targphys(initrd_filename, initrd_base,
1951                                              load_limit - initrd_base);
1952            if (initrd_size < 0) {
1953                error_report("could not load initial ram disk '%s'",
1954                             initrd_filename);
1955                exit(1);
1956            }
1957        } else {
1958            initrd_base = 0;
1959            initrd_size = 0;
1960        }
1961    }
1962
1963    if (bios_name == NULL) {
1964        bios_name = FW_FILE_NAME;
1965    }
1966    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1967    if (!filename) {
1968        error_report("Could not find LPAR firmware '%s'", bios_name);
1969        exit(1);
1970    }
1971    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1972    if (fw_size <= 0) {
1973        error_report("Could not load LPAR firmware '%s'", filename);
1974        exit(1);
1975    }
1976    g_free(filename);
1977
1978    /* FIXME: Should register things through the MachineState's qdev
1979     * interface, this is a legacy from the sPAPREnvironment structure
1980     * which predated MachineState but had a similar function */
1981    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1982    register_savevm_live(NULL, "spapr/htab", -1, 1,
1983                         &savevm_htab_handlers, spapr);
1984
1985    /* Prepare the device tree */
1986    spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1987                                            kernel_size, kernel_le,
1988                                            kernel_cmdline,
1989                                            spapr->check_exception_irq);
1990    assert(spapr->fdt_skel != NULL);
1991
1992    /* used by RTAS */
1993    QTAILQ_INIT(&spapr->ccs_list);
1994    qemu_register_reset(spapr_ccs_reset_hook, spapr);
1995
1996    qemu_register_boot_set(spapr_boot_set, spapr);
1997}
1998
1999static int spapr_kvm_type(const char *vm_type)
2000{
2001    if (!vm_type) {
2002        return 0;
2003    }
2004
2005    if (!strcmp(vm_type, "HV")) {
2006        return 1;
2007    }
2008
2009    if (!strcmp(vm_type, "PR")) {
2010        return 2;
2011    }
2012
2013    error_report("Unknown kvm-type specified '%s'", vm_type);
2014    exit(1);
2015}
2016
2017/*
2018 * Implementation of an interface to adjust firmware path
2019 * for the bootindex property handling.
2020 */
2021static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2022                                   DeviceState *dev)
2023{
2024#define CAST(type, obj, name) \
2025    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2026    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2027    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2028
2029    if (d) {
2030        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2031        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2032        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2033
2034        if (spapr) {
2035            /*
2036             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2037             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2038             * in the top 16 bits of the 64-bit LUN
2039             */
2040            unsigned id = 0x8000 | (d->id << 8) | d->lun;
2041            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2042                                   (uint64_t)id << 48);
2043        } else if (virtio) {
2044            /*
2045             * We use SRP luns of the form 01000000 | (target << 8) | lun
2046             * in the top 32 bits of the 64-bit LUN
2047             * Note: the quote above is from SLOF and it is wrong,
2048             * the actual binding is:
2049             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2050             */
2051            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2052            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2053                                   (uint64_t)id << 32);
2054        } else if (usb) {
2055            /*
2056             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2057             * in the top 32 bits of the 64-bit LUN
2058             */
2059            unsigned usb_port = atoi(usb->port->path);
2060            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2061            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2062                                   (uint64_t)id << 32);
2063        }
2064    }
2065
2066    if (phb) {
2067        /* Replace "pci" with "pci@800000020000000" */
2068        return g_strdup_printf("pci@%"PRIX64, phb->buid);
2069    }
2070
2071    return NULL;
2072}
2073
2074static char *spapr_get_kvm_type(Object *obj, Error **errp)
2075{
2076    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2077
2078    return g_strdup(spapr->kvm_type);
2079}
2080
2081static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2082{
2083    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2084
2085    g_free(spapr->kvm_type);
2086    spapr->kvm_type = g_strdup(value);
2087}
2088
2089static void spapr_machine_initfn(Object *obj)
2090{
2091    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2092
2093    spapr->htab_fd = -1;
2094    object_property_add_str(obj, "kvm-type",
2095                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2096    object_property_set_description(obj, "kvm-type",
2097                                    "Specifies the KVM virtualization mode (HV, PR)",
2098                                    NULL);
2099}
2100
2101static void spapr_machine_finalizefn(Object *obj)
2102{
2103    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2104
2105    g_free(spapr->kvm_type);
2106}
2107
2108static void ppc_cpu_do_nmi_on_cpu(void *arg)
2109{
2110    CPUState *cs = arg;
2111
2112    cpu_synchronize_state(cs);
2113    ppc_cpu_do_system_reset(cs);
2114}
2115
2116static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2117{
2118    CPUState *cs;
2119
2120    CPU_FOREACH(cs) {
2121        async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2122    }
2123}
2124
2125static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2126                           uint32_t node, Error **errp)
2127{
2128    sPAPRDRConnector *drc;
2129    sPAPRDRConnectorClass *drck;
2130    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2131    int i, fdt_offset, fdt_size;
2132    void *fdt;
2133
2134    /*
2135     * Check for DRC connectors and send hotplug notification to the
2136     * guest only in case of hotplugged memory. This allows cold plugged
2137     * memory to be specified at boot time.
2138     */
2139    if (!dev->hotplugged) {
2140        return;
2141    }
2142
2143    for (i = 0; i < nr_lmbs; i++) {
2144        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2145                addr/SPAPR_MEMORY_BLOCK_SIZE);
2146        g_assert(drc);
2147
2148        fdt = create_device_tree(&fdt_size);
2149        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2150                                                SPAPR_MEMORY_BLOCK_SIZE);
2151
2152        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2153        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2154        addr += SPAPR_MEMORY_BLOCK_SIZE;
2155    }
2156    spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
2157}
2158
2159static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2160                              uint32_t node, Error **errp)
2161{
2162    Error *local_err = NULL;
2163    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2164    PCDIMMDevice *dimm = PC_DIMM(dev);
2165    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2166    MemoryRegion *mr = ddc->get_memory_region(dimm);
2167    uint64_t align = memory_region_get_alignment(mr);
2168    uint64_t size = memory_region_size(mr);
2169    uint64_t addr;
2170
2171    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2172        error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2173                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2174        goto out;
2175    }
2176
2177    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2178    if (local_err) {
2179        goto out;
2180    }
2181
2182    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2183    if (local_err) {
2184        pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2185        goto out;
2186    }
2187
2188    spapr_add_lmbs(dev, addr, size, node, &error_abort);
2189
2190out:
2191    error_propagate(errp, local_err);
2192}
2193
2194static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2195                                      DeviceState *dev, Error **errp)
2196{
2197    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2198
2199    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2200        int node;
2201
2202        if (!smc->dr_lmb_enabled) {
2203            error_setg(errp, "Memory hotplug not supported for this machine");
2204            return;
2205        }
2206        node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2207        if (*errp) {
2208            return;
2209        }
2210        if (node < 0 || node >= MAX_NODES) {
2211            error_setg(errp, "Invaild node %d", node);
2212            return;
2213        }
2214
2215        /*
2216         * Currently PowerPC kernel doesn't allow hot-adding memory to
2217         * memory-less node, but instead will silently add the memory
2218         * to the first node that has some memory. This causes two
2219         * unexpected behaviours for the user.
2220         *
2221         * - Memory gets hotplugged to a different node than what the user
2222         *   specified.
2223         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2224         *   to memory-less node, a reboot will set things accordingly
2225         *   and the previously hotplugged memory now ends in the right node.
2226         *   This appears as if some memory moved from one node to another.
2227         *
2228         * So until kernel starts supporting memory hotplug to memory-less
2229         * nodes, just prevent such attempts upfront in QEMU.
2230         */
2231        if (nb_numa_nodes && !numa_info[node].node_mem) {
2232            error_setg(errp, "Can't hotplug memory to memory-less node %d",
2233                       node);
2234            return;
2235        }
2236
2237        spapr_memory_plug(hotplug_dev, dev, node, errp);
2238    }
2239}
2240
2241static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2242                                      DeviceState *dev, Error **errp)
2243{
2244    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2245        error_setg(errp, "Memory hot unplug not supported by sPAPR");
2246    }
2247}
2248
2249static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2250                                             DeviceState *dev)
2251{
2252    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2253        return HOTPLUG_HANDLER(machine);
2254    }
2255    return NULL;
2256}
2257
2258static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2259{
2260    /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2261     * socket means much for the paravirtualized PAPR platform) */
2262    return cpu_index / smp_threads / smp_cores;
2263}
2264
2265static void spapr_machine_class_init(ObjectClass *oc, void *data)
2266{
2267    MachineClass *mc = MACHINE_CLASS(oc);
2268    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2269    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2270    NMIClass *nc = NMI_CLASS(oc);
2271    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2272
2273    mc->desc = "pSeries Logical Partition (PAPR compliant)";
2274
2275    /*
2276     * We set up the default / latest behaviour here.  The class_init
2277     * functions for the specific versioned machine types can override
2278     * these details for backwards compatibility
2279     */
2280    mc->init = ppc_spapr_init;
2281    mc->reset = ppc_spapr_reset;
2282    mc->block_default_type = IF_SCSI;
2283    mc->max_cpus = MAX_CPUMASK_BITS;
2284    mc->no_parallel = 1;
2285    mc->default_boot_order = "";
2286    mc->default_ram_size = 512 * M_BYTE;
2287    mc->kvm_type = spapr_kvm_type;
2288    mc->has_dynamic_sysbus = true;
2289    mc->pci_allow_0_address = true;
2290    mc->get_hotplug_handler = spapr_get_hotpug_handler;
2291    hc->plug = spapr_machine_device_plug;
2292    hc->unplug = spapr_machine_device_unplug;
2293    mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2294
2295    smc->dr_lmb_enabled = true;
2296    fwc->get_dev_path = spapr_get_fw_dev_path;
2297    nc->nmi_monitor_handler = spapr_nmi;
2298}
2299
2300static const TypeInfo spapr_machine_info = {
2301    .name          = TYPE_SPAPR_MACHINE,
2302    .parent        = TYPE_MACHINE,
2303    .abstract      = true,
2304    .instance_size = sizeof(sPAPRMachineState),
2305    .instance_init = spapr_machine_initfn,
2306    .instance_finalize = spapr_machine_finalizefn,
2307    .class_size    = sizeof(sPAPRMachineClass),
2308    .class_init    = spapr_machine_class_init,
2309    .interfaces = (InterfaceInfo[]) {
2310        { TYPE_FW_PATH_PROVIDER },
2311        { TYPE_NMI },
2312        { TYPE_HOTPLUG_HANDLER },
2313        { }
2314    },
2315};
2316
2317#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
2318    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2319                                                    void *data)      \
2320    {                                                                \
2321        MachineClass *mc = MACHINE_CLASS(oc);                        \
2322        spapr_machine_##suffix##_class_options(mc);                  \
2323        if (latest) {                                                \
2324            mc->alias = "pseries";                                   \
2325            mc->is_default = 1;                                      \
2326        }                                                            \
2327    }                                                                \
2328    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
2329    {                                                                \
2330        MachineState *machine = MACHINE(obj);                        \
2331        spapr_machine_##suffix##_instance_options(machine);          \
2332    }                                                                \
2333    static const TypeInfo spapr_machine_##suffix##_info = {          \
2334        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
2335        .parent = TYPE_SPAPR_MACHINE,                                \
2336        .class_init = spapr_machine_##suffix##_class_init,           \
2337        .instance_init = spapr_machine_##suffix##_instance_init,     \
2338    };                                                               \
2339    static void spapr_machine_register_##suffix(void)                \
2340    {                                                                \
2341        type_register(&spapr_machine_##suffix##_info);               \
2342    }                                                                \
2343    type_init(spapr_machine_register_##suffix)
2344
2345/*
2346 * pseries-2.6
2347 */
2348static void spapr_machine_2_6_instance_options(MachineState *machine)
2349{
2350}
2351
2352static void spapr_machine_2_6_class_options(MachineClass *mc)
2353{
2354    /* Defaults for the latest behaviour inherited from the base class */
2355}
2356
2357DEFINE_SPAPR_MACHINE(2_6, "2.6", true);
2358
2359/*
2360 * pseries-2.5
2361 */
2362#define SPAPR_COMPAT_2_5 \
2363    HW_COMPAT_2_5 \
2364    { \
2365        .driver   = "spapr-vlan", \
2366        .property = "use-rx-buffer-pools", \
2367        .value    = "off", \
2368    },
2369
2370static void spapr_machine_2_5_instance_options(MachineState *machine)
2371{
2372}
2373
2374static void spapr_machine_2_5_class_options(MachineClass *mc)
2375{
2376    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2377
2378    spapr_machine_2_6_class_options(mc);
2379    smc->use_ohci_by_default = true;
2380    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2381}
2382
2383DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2384
2385/*
2386 * pseries-2.4
2387 */
2388#define SPAPR_COMPAT_2_4 \
2389        SPAPR_COMPAT_2_5 \
2390        HW_COMPAT_2_4
2391
2392static void spapr_machine_2_4_instance_options(MachineState *machine)
2393{
2394    spapr_machine_2_5_instance_options(machine);
2395}
2396
2397static void spapr_machine_2_4_class_options(MachineClass *mc)
2398{
2399    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2400
2401    spapr_machine_2_5_class_options(mc);
2402    smc->dr_lmb_enabled = false;
2403    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2404}
2405
2406DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2407
2408/*
2409 * pseries-2.3
2410 */
2411#define SPAPR_COMPAT_2_3 \
2412        SPAPR_COMPAT_2_4 \
2413        HW_COMPAT_2_3 \
2414        {\
2415            .driver   = "spapr-pci-host-bridge",\
2416            .property = "dynamic-reconfiguration",\
2417            .value    = "off",\
2418        },
2419
2420static void spapr_machine_2_3_instance_options(MachineState *machine)
2421{
2422    spapr_machine_2_4_instance_options(machine);
2423    savevm_skip_section_footers();
2424    global_state_set_optional();
2425    savevm_skip_configuration();
2426}
2427
2428static void spapr_machine_2_3_class_options(MachineClass *mc)
2429{
2430    spapr_machine_2_4_class_options(mc);
2431    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2432}
2433DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2434
2435/*
2436 * pseries-2.2
2437 */
2438
2439#define SPAPR_COMPAT_2_2 \
2440        SPAPR_COMPAT_2_3 \
2441        HW_COMPAT_2_2 \
2442        {\
2443            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2444            .property = "mem_win_size",\
2445            .value    = "0x20000000",\
2446        },
2447
2448static void spapr_machine_2_2_instance_options(MachineState *machine)
2449{
2450    spapr_machine_2_3_instance_options(machine);
2451    machine->suppress_vmdesc = true;
2452}
2453
2454static void spapr_machine_2_2_class_options(MachineClass *mc)
2455{
2456    spapr_machine_2_3_class_options(mc);
2457    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2458}
2459DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2460
2461/*
2462 * pseries-2.1
2463 */
2464#define SPAPR_COMPAT_2_1 \
2465        SPAPR_COMPAT_2_2 \
2466        HW_COMPAT_2_1
2467
2468static void spapr_machine_2_1_instance_options(MachineState *machine)
2469{
2470    spapr_machine_2_2_instance_options(machine);
2471}
2472
2473static void spapr_machine_2_1_class_options(MachineClass *mc)
2474{
2475    spapr_machine_2_2_class_options(mc);
2476    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2477}
2478DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2479
2480static void spapr_machine_register_types(void)
2481{
2482    type_register_static(&spapr_machine_info);
2483}
2484
2485type_init(spapr_machine_register_types)
2486