qemu/hw/timer/slavio_timer.c
<<
>>
Prefs
   1/*
   2 * QEMU Sparc SLAVIO timer controller emulation
   3 *
   4 * Copyright (c) 2003-2005 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "hw/sparc/sun4m.h"
  27#include "qemu/timer.h"
  28#include "hw/ptimer.h"
  29#include "hw/sysbus.h"
  30#include "trace.h"
  31#include "qemu/main-loop.h"
  32
  33/*
  34 * Registers of hardware timer in sun4m.
  35 *
  36 * This is the timer/counter part of chip STP2001 (Slave I/O), also
  37 * produced as NCR89C105. See
  38 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
  39 *
  40 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
  41 * are zero. Bit 31 is 1 when count has been reached.
  42 *
  43 * Per-CPU timers interrupt local CPU, system timer uses normal
  44 * interrupt routing.
  45 *
  46 */
  47
  48#define MAX_CPUS 16
  49
  50typedef struct CPUTimerState {
  51    qemu_irq irq;
  52    ptimer_state *timer;
  53    uint32_t count, counthigh, reached;
  54    /* processor only */
  55    uint32_t run;
  56    uint64_t limit;
  57} CPUTimerState;
  58
  59#define TYPE_SLAVIO_TIMER "slavio_timer"
  60#define SLAVIO_TIMER(obj) \
  61    OBJECT_CHECK(SLAVIO_TIMERState, (obj), TYPE_SLAVIO_TIMER)
  62
  63typedef struct SLAVIO_TIMERState {
  64    SysBusDevice parent_obj;
  65
  66    uint32_t num_cpus;
  67    uint32_t cputimer_mode;
  68    CPUTimerState cputimer[MAX_CPUS + 1];
  69} SLAVIO_TIMERState;
  70
  71typedef struct TimerContext {
  72    MemoryRegion iomem;
  73    SLAVIO_TIMERState *s;
  74    unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */
  75} TimerContext;
  76
  77#define SYS_TIMER_SIZE 0x14
  78#define CPU_TIMER_SIZE 0x10
  79
  80#define TIMER_LIMIT         0
  81#define TIMER_COUNTER       1
  82#define TIMER_COUNTER_NORST 2
  83#define TIMER_STATUS        3
  84#define TIMER_MODE          4
  85
  86#define TIMER_COUNT_MASK32 0xfffffe00
  87#define TIMER_LIMIT_MASK32 0x7fffffff
  88#define TIMER_MAX_COUNT64  0x7ffffffffffffe00ULL
  89#define TIMER_MAX_COUNT32  0x7ffffe00ULL
  90#define TIMER_REACHED      0x80000000
  91#define TIMER_PERIOD       500ULL // 500ns
  92#define LIMIT_TO_PERIODS(l) (((l) >> 9) - 1)
  93#define PERIODS_TO_LIMIT(l) (((l) + 1) << 9)
  94
  95static int slavio_timer_is_user(TimerContext *tc)
  96{
  97    SLAVIO_TIMERState *s = tc->s;
  98    unsigned int timer_index = tc->timer_index;
  99
 100    return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1)));
 101}
 102
 103// Update count, set irq, update expire_time
 104// Convert from ptimer countdown units
 105static void slavio_timer_get_out(CPUTimerState *t)
 106{
 107    uint64_t count, limit;
 108
 109    if (t->limit == 0) { /* free-run system or processor counter */
 110        limit = TIMER_MAX_COUNT32;
 111    } else {
 112        limit = t->limit;
 113    }
 114    count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer));
 115
 116    trace_slavio_timer_get_out(t->limit, t->counthigh, t->count);
 117    t->count = count & TIMER_COUNT_MASK32;
 118    t->counthigh = count >> 32;
 119}
 120
 121// timer callback
 122static void slavio_timer_irq(void *opaque)
 123{
 124    TimerContext *tc = opaque;
 125    SLAVIO_TIMERState *s = tc->s;
 126    CPUTimerState *t = &s->cputimer[tc->timer_index];
 127
 128    slavio_timer_get_out(t);
 129    trace_slavio_timer_irq(t->counthigh, t->count);
 130    /* if limit is 0 (free-run), there will be no match */
 131    if (t->limit != 0) {
 132        t->reached = TIMER_REACHED;
 133    }
 134    /* there is no interrupt if user timer or free-run */
 135    if (!slavio_timer_is_user(tc) && t->limit != 0) {
 136        qemu_irq_raise(t->irq);
 137    }
 138}
 139
 140static uint64_t slavio_timer_mem_readl(void *opaque, hwaddr addr,
 141                                       unsigned size)
 142{
 143    TimerContext *tc = opaque;
 144    SLAVIO_TIMERState *s = tc->s;
 145    uint32_t saddr, ret;
 146    unsigned int timer_index = tc->timer_index;
 147    CPUTimerState *t = &s->cputimer[timer_index];
 148
 149    saddr = addr >> 2;
 150    switch (saddr) {
 151    case TIMER_LIMIT:
 152        // read limit (system counter mode) or read most signifying
 153        // part of counter (user mode)
 154        if (slavio_timer_is_user(tc)) {
 155            // read user timer MSW
 156            slavio_timer_get_out(t);
 157            ret = t->counthigh | t->reached;
 158        } else {
 159            // read limit
 160            // clear irq
 161            qemu_irq_lower(t->irq);
 162            t->reached = 0;
 163            ret = t->limit & TIMER_LIMIT_MASK32;
 164        }
 165        break;
 166    case TIMER_COUNTER:
 167        // read counter and reached bit (system mode) or read lsbits
 168        // of counter (user mode)
 169        slavio_timer_get_out(t);
 170        if (slavio_timer_is_user(tc)) { // read user timer LSW
 171            ret = t->count & TIMER_MAX_COUNT64;
 172        } else { // read limit
 173            ret = (t->count & TIMER_MAX_COUNT32) |
 174                t->reached;
 175        }
 176        break;
 177    case TIMER_STATUS:
 178        // only available in processor counter/timer
 179        // read start/stop status
 180        if (timer_index > 0) {
 181            ret = t->run;
 182        } else {
 183            ret = 0;
 184        }
 185        break;
 186    case TIMER_MODE:
 187        // only available in system counter
 188        // read user/system mode
 189        ret = s->cputimer_mode;
 190        break;
 191    default:
 192        trace_slavio_timer_mem_readl_invalid(addr);
 193        ret = 0;
 194        break;
 195    }
 196    trace_slavio_timer_mem_readl(addr, ret);
 197    return ret;
 198}
 199
 200static void slavio_timer_mem_writel(void *opaque, hwaddr addr,
 201                                    uint64_t val, unsigned size)
 202{
 203    TimerContext *tc = opaque;
 204    SLAVIO_TIMERState *s = tc->s;
 205    uint32_t saddr;
 206    unsigned int timer_index = tc->timer_index;
 207    CPUTimerState *t = &s->cputimer[timer_index];
 208
 209    trace_slavio_timer_mem_writel(addr, val);
 210    saddr = addr >> 2;
 211    switch (saddr) {
 212    case TIMER_LIMIT:
 213        if (slavio_timer_is_user(tc)) {
 214            uint64_t count;
 215
 216            // set user counter MSW, reset counter
 217            t->limit = TIMER_MAX_COUNT64;
 218            t->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
 219            t->reached = 0;
 220            count = ((uint64_t)t->counthigh << 32) | t->count;
 221            trace_slavio_timer_mem_writel_limit(timer_index, count);
 222            ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
 223        } else {
 224            // set limit, reset counter
 225            qemu_irq_lower(t->irq);
 226            t->limit = val & TIMER_MAX_COUNT32;
 227            if (t->timer) {
 228                if (t->limit == 0) { /* free-run */
 229                    ptimer_set_limit(t->timer,
 230                                     LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
 231                } else {
 232                    ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1);
 233                }
 234            }
 235        }
 236        break;
 237    case TIMER_COUNTER:
 238        if (slavio_timer_is_user(tc)) {
 239            uint64_t count;
 240
 241            // set user counter LSW, reset counter
 242            t->limit = TIMER_MAX_COUNT64;
 243            t->count = val & TIMER_MAX_COUNT64;
 244            t->reached = 0;
 245            count = ((uint64_t)t->counthigh) << 32 | t->count;
 246            trace_slavio_timer_mem_writel_limit(timer_index, count);
 247            ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
 248        } else {
 249            trace_slavio_timer_mem_writel_counter_invalid();
 250        }
 251        break;
 252    case TIMER_COUNTER_NORST:
 253        // set limit without resetting counter
 254        t->limit = val & TIMER_MAX_COUNT32;
 255        if (t->limit == 0) { /* free-run */
 256            ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
 257        } else {
 258            ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0);
 259        }
 260        break;
 261    case TIMER_STATUS:
 262        if (slavio_timer_is_user(tc)) {
 263            // start/stop user counter
 264            if (val & 1) {
 265                trace_slavio_timer_mem_writel_status_start(timer_index);
 266                ptimer_run(t->timer, 0);
 267            } else {
 268                trace_slavio_timer_mem_writel_status_stop(timer_index);
 269                ptimer_stop(t->timer);
 270            }
 271        }
 272        t->run = val & 1;
 273        break;
 274    case TIMER_MODE:
 275        if (timer_index == 0) {
 276            unsigned int i;
 277
 278            for (i = 0; i < s->num_cpus; i++) {
 279                unsigned int processor = 1 << i;
 280                CPUTimerState *curr_timer = &s->cputimer[i + 1];
 281
 282                // check for a change in timer mode for this processor
 283                if ((val & processor) != (s->cputimer_mode & processor)) {
 284                    if (val & processor) { // counter -> user timer
 285                        qemu_irq_lower(curr_timer->irq);
 286                        // counters are always running
 287                        if (!curr_timer->run) {
 288                            ptimer_stop(curr_timer->timer);
 289                        }
 290                        // user timer limit is always the same
 291                        curr_timer->limit = TIMER_MAX_COUNT64;
 292                        ptimer_set_limit(curr_timer->timer,
 293                                         LIMIT_TO_PERIODS(curr_timer->limit),
 294                                         1);
 295                        // set this processors user timer bit in config
 296                        // register
 297                        s->cputimer_mode |= processor;
 298                        trace_slavio_timer_mem_writel_mode_user(timer_index);
 299                    } else { // user timer -> counter
 300                        // start the counter
 301                        ptimer_run(curr_timer->timer, 0);
 302                        // clear this processors user timer bit in config
 303                        // register
 304                        s->cputimer_mode &= ~processor;
 305                        trace_slavio_timer_mem_writel_mode_counter(timer_index);
 306                    }
 307                }
 308            }
 309        } else {
 310            trace_slavio_timer_mem_writel_mode_invalid();
 311        }
 312        break;
 313    default:
 314        trace_slavio_timer_mem_writel_invalid(addr);
 315        break;
 316    }
 317}
 318
 319static const MemoryRegionOps slavio_timer_mem_ops = {
 320    .read = slavio_timer_mem_readl,
 321    .write = slavio_timer_mem_writel,
 322    .endianness = DEVICE_NATIVE_ENDIAN,
 323    .valid = {
 324        .min_access_size = 4,
 325        .max_access_size = 4,
 326    },
 327};
 328
 329static const VMStateDescription vmstate_timer = {
 330    .name ="timer",
 331    .version_id = 3,
 332    .minimum_version_id = 3,
 333    .fields = (VMStateField[]) {
 334        VMSTATE_UINT64(limit, CPUTimerState),
 335        VMSTATE_UINT32(count, CPUTimerState),
 336        VMSTATE_UINT32(counthigh, CPUTimerState),
 337        VMSTATE_UINT32(reached, CPUTimerState),
 338        VMSTATE_UINT32(run    , CPUTimerState),
 339        VMSTATE_PTIMER(timer, CPUTimerState),
 340        VMSTATE_END_OF_LIST()
 341    }
 342};
 343
 344static const VMStateDescription vmstate_slavio_timer = {
 345    .name ="slavio_timer",
 346    .version_id = 3,
 347    .minimum_version_id = 3,
 348    .fields = (VMStateField[]) {
 349        VMSTATE_STRUCT_ARRAY(cputimer, SLAVIO_TIMERState, MAX_CPUS + 1, 3,
 350                             vmstate_timer, CPUTimerState),
 351        VMSTATE_END_OF_LIST()
 352    }
 353};
 354
 355static void slavio_timer_reset(DeviceState *d)
 356{
 357    SLAVIO_TIMERState *s = SLAVIO_TIMER(d);
 358    unsigned int i;
 359    CPUTimerState *curr_timer;
 360
 361    for (i = 0; i <= MAX_CPUS; i++) {
 362        curr_timer = &s->cputimer[i];
 363        curr_timer->limit = 0;
 364        curr_timer->count = 0;
 365        curr_timer->reached = 0;
 366        if (i <= s->num_cpus) {
 367            ptimer_set_limit(curr_timer->timer,
 368                             LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
 369            ptimer_run(curr_timer->timer, 0);
 370            curr_timer->run = 1;
 371        }
 372    }
 373    s->cputimer_mode = 0;
 374}
 375
 376static int slavio_timer_init1(SysBusDevice *dev)
 377{
 378    SLAVIO_TIMERState *s = SLAVIO_TIMER(dev);
 379    QEMUBH *bh;
 380    unsigned int i;
 381    TimerContext *tc;
 382
 383    for (i = 0; i <= MAX_CPUS; i++) {
 384        uint64_t size;
 385        char timer_name[20];
 386
 387        tc = g_malloc0(sizeof(TimerContext));
 388        tc->s = s;
 389        tc->timer_index = i;
 390
 391        bh = qemu_bh_new(slavio_timer_irq, tc);
 392        s->cputimer[i].timer = ptimer_init(bh);
 393        ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD);
 394
 395        size = i == 0 ? SYS_TIMER_SIZE : CPU_TIMER_SIZE;
 396        snprintf(timer_name, sizeof(timer_name), "timer-%i", i);
 397        memory_region_init_io(&tc->iomem, OBJECT(s), &slavio_timer_mem_ops, tc,
 398                              timer_name, size);
 399        sysbus_init_mmio(dev, &tc->iomem);
 400
 401        sysbus_init_irq(dev, &s->cputimer[i].irq);
 402    }
 403
 404    return 0;
 405}
 406
 407static Property slavio_timer_properties[] = {
 408    DEFINE_PROP_UINT32("num_cpus",  SLAVIO_TIMERState, num_cpus,  0),
 409    DEFINE_PROP_END_OF_LIST(),
 410};
 411
 412static void slavio_timer_class_init(ObjectClass *klass, void *data)
 413{
 414    DeviceClass *dc = DEVICE_CLASS(klass);
 415    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
 416
 417    k->init = slavio_timer_init1;
 418    dc->reset = slavio_timer_reset;
 419    dc->vmsd = &vmstate_slavio_timer;
 420    dc->props = slavio_timer_properties;
 421}
 422
 423static const TypeInfo slavio_timer_info = {
 424    .name          = TYPE_SLAVIO_TIMER,
 425    .parent        = TYPE_SYS_BUS_DEVICE,
 426    .instance_size = sizeof(SLAVIO_TIMERState),
 427    .class_init    = slavio_timer_class_init,
 428};
 429
 430static void slavio_timer_register_types(void)
 431{
 432    type_register_static(&slavio_timer_info);
 433}
 434
 435type_init(slavio_timer_register_types)
 436