qemu/linux-user/qemu.h
<<
>>
Prefs
   1#ifndef QEMU_H
   2#define QEMU_H
   3
   4
   5#include "cpu.h"
   6#include "exec/exec-all.h"
   7#include "exec/cpu_ldst.h"
   8
   9#undef DEBUG_REMAP
  10#ifdef DEBUG_REMAP
  11#endif /* DEBUG_REMAP */
  12
  13#include "exec/user/abitypes.h"
  14
  15#include "exec/user/thunk.h"
  16#include "syscall_defs.h"
  17#include "target_syscall.h"
  18#include "exec/gdbstub.h"
  19#include "qemu/queue.h"
  20
  21#define THREAD __thread
  22
  23/* This struct is used to hold certain information about the image.
  24 * Basically, it replicates in user space what would be certain
  25 * task_struct fields in the kernel
  26 */
  27struct image_info {
  28        abi_ulong       load_bias;
  29        abi_ulong       load_addr;
  30        abi_ulong       start_code;
  31        abi_ulong       end_code;
  32        abi_ulong       start_data;
  33        abi_ulong       end_data;
  34        abi_ulong       start_brk;
  35        abi_ulong       brk;
  36        abi_ulong       start_mmap;
  37        abi_ulong       start_stack;
  38        abi_ulong       stack_limit;
  39        abi_ulong       entry;
  40        abi_ulong       code_offset;
  41        abi_ulong       data_offset;
  42        abi_ulong       saved_auxv;
  43        abi_ulong       auxv_len;
  44        abi_ulong       arg_start;
  45        abi_ulong       arg_end;
  46        uint32_t        elf_flags;
  47        int             personality;
  48#ifdef CONFIG_USE_FDPIC
  49        abi_ulong       loadmap_addr;
  50        uint16_t        nsegs;
  51        void           *loadsegs;
  52        abi_ulong       pt_dynamic_addr;
  53        struct image_info *other_info;
  54#endif
  55};
  56
  57#ifdef TARGET_I386
  58/* Information about the current linux thread */
  59struct vm86_saved_state {
  60    uint32_t eax; /* return code */
  61    uint32_t ebx;
  62    uint32_t ecx;
  63    uint32_t edx;
  64    uint32_t esi;
  65    uint32_t edi;
  66    uint32_t ebp;
  67    uint32_t esp;
  68    uint32_t eflags;
  69    uint32_t eip;
  70    uint16_t cs, ss, ds, es, fs, gs;
  71};
  72#endif
  73
  74#if defined(TARGET_ARM) && defined(TARGET_ABI32)
  75/* FPU emulator */
  76#include "nwfpe/fpa11.h"
  77#endif
  78
  79#define MAX_SIGQUEUE_SIZE 1024
  80
  81struct sigqueue {
  82    struct sigqueue *next;
  83    target_siginfo_t info;
  84};
  85
  86struct emulated_sigtable {
  87    int pending; /* true if signal is pending */
  88    struct sigqueue *first;
  89    struct sigqueue info; /* in order to always have memory for the
  90                             first signal, we put it here */
  91};
  92
  93/* NOTE: we force a big alignment so that the stack stored after is
  94   aligned too */
  95typedef struct TaskState {
  96    pid_t ts_tid;     /* tid (or pid) of this task */
  97#ifdef TARGET_ARM
  98# ifdef TARGET_ABI32
  99    /* FPA state */
 100    FPA11 fpa;
 101# endif
 102    int swi_errno;
 103#endif
 104#ifdef TARGET_UNICORE32
 105    int swi_errno;
 106#endif
 107#if defined(TARGET_I386) && !defined(TARGET_X86_64)
 108    abi_ulong target_v86;
 109    struct vm86_saved_state vm86_saved_regs;
 110    struct target_vm86plus_struct vm86plus;
 111    uint32_t v86flags;
 112    uint32_t v86mask;
 113#endif
 114    abi_ulong child_tidptr;
 115#ifdef TARGET_M68K
 116    int sim_syscalls;
 117    abi_ulong tp_value;
 118#endif
 119#if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
 120    /* Extra fields for semihosted binaries.  */
 121    uint32_t heap_base;
 122    uint32_t heap_limit;
 123#endif
 124    uint32_t stack_base;
 125    int used; /* non zero if used */
 126    bool sigsegv_blocked; /* SIGSEGV blocked by guest */
 127    struct image_info *info;
 128    struct linux_binprm *bprm;
 129
 130    struct emulated_sigtable sigtab[TARGET_NSIG];
 131    struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
 132    struct sigqueue *first_free; /* first free siginfo queue entry */
 133    int signal_pending; /* non zero if a signal may be pending */
 134} __attribute__((aligned(16))) TaskState;
 135
 136extern char *exec_path;
 137void init_task_state(TaskState *ts);
 138void task_settid(TaskState *);
 139void stop_all_tasks(void);
 140extern const char *qemu_uname_release;
 141extern unsigned long mmap_min_addr;
 142
 143/* ??? See if we can avoid exposing so much of the loader internals.  */
 144
 145/* Read a good amount of data initially, to hopefully get all the
 146   program headers loaded.  */
 147#define BPRM_BUF_SIZE  1024
 148
 149/*
 150 * This structure is used to hold the arguments that are
 151 * used when loading binaries.
 152 */
 153struct linux_binprm {
 154        char buf[BPRM_BUF_SIZE] __attribute__((aligned));
 155        abi_ulong p;
 156        int fd;
 157        int e_uid, e_gid;
 158        int argc, envc;
 159        char **argv;
 160        char **envp;
 161        char * filename;        /* Name of binary */
 162        int (*core_dump)(int, const CPUArchState *); /* coredump routine */
 163};
 164
 165void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
 166abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
 167                              abi_ulong stringp, int push_ptr);
 168int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
 169             struct target_pt_regs * regs, struct image_info *infop,
 170             struct linux_binprm *);
 171
 172int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
 173int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
 174
 175abi_long memcpy_to_target(abi_ulong dest, const void *src,
 176                          unsigned long len);
 177void target_set_brk(abi_ulong new_brk);
 178abi_long do_brk(abi_ulong new_brk);
 179void syscall_init(void);
 180abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
 181                    abi_long arg2, abi_long arg3, abi_long arg4,
 182                    abi_long arg5, abi_long arg6, abi_long arg7,
 183                    abi_long arg8);
 184void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
 185extern THREAD CPUState *thread_cpu;
 186void cpu_loop(CPUArchState *env);
 187char *target_strerror(int err);
 188int get_osversion(void);
 189void init_qemu_uname_release(void);
 190void fork_start(void);
 191void fork_end(int child);
 192
 193/* Creates the initial guest address space in the host memory space using
 194 * the given host start address hint and size.  The guest_start parameter
 195 * specifies the start address of the guest space.  guest_base will be the
 196 * difference between the host start address computed by this function and
 197 * guest_start.  If fixed is specified, then the mapped address space must
 198 * start at host_start.  The real start address of the mapped memory space is
 199 * returned or -1 if there was an error.
 200 */
 201unsigned long init_guest_space(unsigned long host_start,
 202                               unsigned long host_size,
 203                               unsigned long guest_start,
 204                               bool fixed);
 205
 206#include "qemu/log.h"
 207
 208/* syscall.c */
 209int host_to_target_waitstatus(int status);
 210
 211/* strace.c */
 212void print_syscall(int num,
 213                   abi_long arg1, abi_long arg2, abi_long arg3,
 214                   abi_long arg4, abi_long arg5, abi_long arg6);
 215void print_syscall_ret(int num, abi_long arg1);
 216extern int do_strace;
 217
 218/* signal.c */
 219void process_pending_signals(CPUArchState *cpu_env);
 220void signal_init(void);
 221int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
 222void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
 223void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
 224int target_to_host_signal(int sig);
 225int host_to_target_signal(int sig);
 226long do_sigreturn(CPUArchState *env);
 227long do_rt_sigreturn(CPUArchState *env);
 228abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
 229int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
 230
 231#ifdef TARGET_I386
 232/* vm86.c */
 233void save_v86_state(CPUX86State *env);
 234void handle_vm86_trap(CPUX86State *env, int trapno);
 235void handle_vm86_fault(CPUX86State *env);
 236int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
 237#elif defined(TARGET_SPARC64)
 238void sparc64_set_context(CPUSPARCState *env);
 239void sparc64_get_context(CPUSPARCState *env);
 240#endif
 241
 242/* mmap.c */
 243int target_mprotect(abi_ulong start, abi_ulong len, int prot);
 244abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
 245                     int flags, int fd, abi_ulong offset);
 246int target_munmap(abi_ulong start, abi_ulong len);
 247abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
 248                       abi_ulong new_size, unsigned long flags,
 249                       abi_ulong new_addr);
 250int target_msync(abi_ulong start, abi_ulong len, int flags);
 251extern unsigned long last_brk;
 252extern abi_ulong mmap_next_start;
 253abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
 254void cpu_list_lock(void);
 255void cpu_list_unlock(void);
 256void mmap_fork_start(void);
 257void mmap_fork_end(int child);
 258
 259/* main.c */
 260extern unsigned long guest_stack_size;
 261
 262/* user access */
 263
 264#define VERIFY_READ 0
 265#define VERIFY_WRITE 1 /* implies read access */
 266
 267static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
 268{
 269    return page_check_range((target_ulong)addr, size,
 270                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
 271}
 272
 273/* NOTE __get_user and __put_user use host pointers and don't check access.
 274   These are usually used to access struct data members once the struct has
 275   been locked - usually with lock_user_struct.  */
 276
 277/* Tricky points:
 278   - Use __builtin_choose_expr to avoid type promotion from ?:,
 279   - Invalid sizes result in a compile time error stemming from
 280     the fact that abort has no parameters.
 281   - It's easier to use the endian-specific unaligned load/store
 282     functions than host-endian unaligned load/store plus tswapN.  */
 283
 284#define __put_user_e(x, hptr, e)                                        \
 285  (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                   \
 286   __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,             \
 287   __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,             \
 288   __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))   \
 289     ((hptr), (x)), (void)0)
 290
 291#define __get_user_e(x, hptr, e)                                        \
 292  ((x) = (typeof(*hptr))(                                               \
 293   __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                  \
 294   __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,            \
 295   __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,             \
 296   __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))   \
 297     (hptr)), (void)0)
 298
 299#ifdef TARGET_WORDS_BIGENDIAN
 300# define __put_user(x, hptr)  __put_user_e(x, hptr, be)
 301# define __get_user(x, hptr)  __get_user_e(x, hptr, be)
 302#else
 303# define __put_user(x, hptr)  __put_user_e(x, hptr, le)
 304# define __get_user(x, hptr)  __get_user_e(x, hptr, le)
 305#endif
 306
 307/* put_user()/get_user() take a guest address and check access */
 308/* These are usually used to access an atomic data type, such as an int,
 309 * that has been passed by address.  These internally perform locking
 310 * and unlocking on the data type.
 311 */
 312#define put_user(x, gaddr, target_type)                                 \
 313({                                                                      \
 314    abi_ulong __gaddr = (gaddr);                                        \
 315    target_type *__hptr;                                                \
 316    abi_long __ret = 0;                                                 \
 317    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
 318        __put_user((x), __hptr);                                \
 319        unlock_user(__hptr, __gaddr, sizeof(target_type));              \
 320    } else                                                              \
 321        __ret = -TARGET_EFAULT;                                         \
 322    __ret;                                                              \
 323})
 324
 325#define get_user(x, gaddr, target_type)                                 \
 326({                                                                      \
 327    abi_ulong __gaddr = (gaddr);                                        \
 328    target_type *__hptr;                                                \
 329    abi_long __ret = 0;                                                 \
 330    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
 331        __get_user((x), __hptr);                                \
 332        unlock_user(__hptr, __gaddr, 0);                                \
 333    } else {                                                            \
 334        /* avoid warning */                                             \
 335        (x) = 0;                                                        \
 336        __ret = -TARGET_EFAULT;                                         \
 337    }                                                                   \
 338    __ret;                                                              \
 339})
 340
 341#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
 342#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
 343#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
 344#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
 345#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
 346#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
 347#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
 348#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
 349#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
 350#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
 351
 352#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
 353#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
 354#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
 355#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
 356#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
 357#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
 358#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
 359#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
 360#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
 361#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
 362
 363/* copy_from_user() and copy_to_user() are usually used to copy data
 364 * buffers between the target and host.  These internally perform
 365 * locking/unlocking of the memory.
 366 */
 367abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
 368abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
 369
 370/* Functions for accessing guest memory.  The tget and tput functions
 371   read/write single values, byteswapping as necessary.  The lock_user function
 372   gets a pointer to a contiguous area of guest memory, but does not perform
 373   any byteswapping.  lock_user may return either a pointer to the guest
 374   memory, or a temporary buffer.  */
 375
 376/* Lock an area of guest memory into the host.  If copy is true then the
 377   host area will have the same contents as the guest.  */
 378static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
 379{
 380    if (!access_ok(type, guest_addr, len))
 381        return NULL;
 382#ifdef DEBUG_REMAP
 383    {
 384        void *addr;
 385        addr = malloc(len);
 386        if (copy)
 387            memcpy(addr, g2h(guest_addr), len);
 388        else
 389            memset(addr, 0, len);
 390        return addr;
 391    }
 392#else
 393    return g2h(guest_addr);
 394#endif
 395}
 396
 397/* Unlock an area of guest memory.  The first LEN bytes must be
 398   flushed back to guest memory. host_ptr = NULL is explicitly
 399   allowed and does nothing. */
 400static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
 401                               long len)
 402{
 403
 404#ifdef DEBUG_REMAP
 405    if (!host_ptr)
 406        return;
 407    if (host_ptr == g2h(guest_addr))
 408        return;
 409    if (len > 0)
 410        memcpy(g2h(guest_addr), host_ptr, len);
 411    free(host_ptr);
 412#endif
 413}
 414
 415/* Return the length of a string in target memory or -TARGET_EFAULT if
 416   access error. */
 417abi_long target_strlen(abi_ulong gaddr);
 418
 419/* Like lock_user but for null terminated strings.  */
 420static inline void *lock_user_string(abi_ulong guest_addr)
 421{
 422    abi_long len;
 423    len = target_strlen(guest_addr);
 424    if (len < 0)
 425        return NULL;
 426    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
 427}
 428
 429/* Helper macros for locking/unlocking a target struct.  */
 430#define lock_user_struct(type, host_ptr, guest_addr, copy)      \
 431    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
 432#define unlock_user_struct(host_ptr, guest_addr, copy)          \
 433    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
 434
 435#include <pthread.h>
 436
 437/* Include target-specific struct and function definitions;
 438 * they may need access to the target-independent structures
 439 * above, so include them last.
 440 */
 441#include "target_cpu.h"
 442#include "target_signal.h"
 443#include "target_structs.h"
 444
 445#endif /* QEMU_H */
 446