qemu/target-arm/helper-a64.c
<<
>>
Prefs
   1/*
   2 *  AArch64 specific helpers
   3 *
   4 *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "exec/gdbstub.h"
  23#include "exec/helper-proto.h"
  24#include "qemu/host-utils.h"
  25#include "qemu/log.h"
  26#include "sysemu/sysemu.h"
  27#include "qemu/bitops.h"
  28#include "internals.h"
  29#include "qemu/crc32c.h"
  30#include <zlib.h> /* For crc32 */
  31
  32/* C2.4.7 Multiply and divide */
  33/* special cases for 0 and LLONG_MIN are mandated by the standard */
  34uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
  35{
  36    if (den == 0) {
  37        return 0;
  38    }
  39    return num / den;
  40}
  41
  42int64_t HELPER(sdiv64)(int64_t num, int64_t den)
  43{
  44    if (den == 0) {
  45        return 0;
  46    }
  47    if (num == LLONG_MIN && den == -1) {
  48        return LLONG_MIN;
  49    }
  50    return num / den;
  51}
  52
  53uint64_t HELPER(clz64)(uint64_t x)
  54{
  55    return clz64(x);
  56}
  57
  58uint64_t HELPER(cls64)(uint64_t x)
  59{
  60    return clrsb64(x);
  61}
  62
  63uint32_t HELPER(cls32)(uint32_t x)
  64{
  65    return clrsb32(x);
  66}
  67
  68uint32_t HELPER(clz32)(uint32_t x)
  69{
  70    return clz32(x);
  71}
  72
  73uint64_t HELPER(rbit64)(uint64_t x)
  74{
  75    return revbit64(x);
  76}
  77
  78/* Convert a softfloat float_relation_ (as returned by
  79 * the float*_compare functions) to the correct ARM
  80 * NZCV flag state.
  81 */
  82static inline uint32_t float_rel_to_flags(int res)
  83{
  84    uint64_t flags;
  85    switch (res) {
  86    case float_relation_equal:
  87        flags = PSTATE_Z | PSTATE_C;
  88        break;
  89    case float_relation_less:
  90        flags = PSTATE_N;
  91        break;
  92    case float_relation_greater:
  93        flags = PSTATE_C;
  94        break;
  95    case float_relation_unordered:
  96    default:
  97        flags = PSTATE_C | PSTATE_V;
  98        break;
  99    }
 100    return flags;
 101}
 102
 103uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
 104{
 105    return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
 106}
 107
 108uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
 109{
 110    return float_rel_to_flags(float32_compare(x, y, fp_status));
 111}
 112
 113uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
 114{
 115    return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
 116}
 117
 118uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
 119{
 120    return float_rel_to_flags(float64_compare(x, y, fp_status));
 121}
 122
 123float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
 124{
 125    float_status *fpst = fpstp;
 126
 127    a = float32_squash_input_denormal(a, fpst);
 128    b = float32_squash_input_denormal(b, fpst);
 129
 130    if ((float32_is_zero(a) && float32_is_infinity(b)) ||
 131        (float32_is_infinity(a) && float32_is_zero(b))) {
 132        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 133        return make_float32((1U << 30) |
 134                            ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
 135    }
 136    return float32_mul(a, b, fpst);
 137}
 138
 139float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
 140{
 141    float_status *fpst = fpstp;
 142
 143    a = float64_squash_input_denormal(a, fpst);
 144    b = float64_squash_input_denormal(b, fpst);
 145
 146    if ((float64_is_zero(a) && float64_is_infinity(b)) ||
 147        (float64_is_infinity(a) && float64_is_zero(b))) {
 148        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 149        return make_float64((1ULL << 62) |
 150                            ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
 151    }
 152    return float64_mul(a, b, fpst);
 153}
 154
 155uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
 156                          uint32_t rn, uint32_t numregs)
 157{
 158    /* Helper function for SIMD TBL and TBX. We have to do the table
 159     * lookup part for the 64 bits worth of indices we're passed in.
 160     * result is the initial results vector (either zeroes for TBL
 161     * or some guest values for TBX), rn the register number where
 162     * the table starts, and numregs the number of registers in the table.
 163     * We return the results of the lookups.
 164     */
 165    int shift;
 166
 167    for (shift = 0; shift < 64; shift += 8) {
 168        int index = extract64(indices, shift, 8);
 169        if (index < 16 * numregs) {
 170            /* Convert index (a byte offset into the virtual table
 171             * which is a series of 128-bit vectors concatenated)
 172             * into the correct vfp.regs[] element plus a bit offset
 173             * into that element, bearing in mind that the table
 174             * can wrap around from V31 to V0.
 175             */
 176            int elt = (rn * 2 + (index >> 3)) % 64;
 177            int bitidx = (index & 7) * 8;
 178            uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8);
 179
 180            result = deposit64(result, shift, 8, val);
 181        }
 182    }
 183    return result;
 184}
 185
 186/* 64bit/double versions of the neon float compare functions */
 187uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
 188{
 189    float_status *fpst = fpstp;
 190    return -float64_eq_quiet(a, b, fpst);
 191}
 192
 193uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
 194{
 195    float_status *fpst = fpstp;
 196    return -float64_le(b, a, fpst);
 197}
 198
 199uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
 200{
 201    float_status *fpst = fpstp;
 202    return -float64_lt(b, a, fpst);
 203}
 204
 205/* Reciprocal step and sqrt step. Note that unlike the A32/T32
 206 * versions, these do a fully fused multiply-add or
 207 * multiply-add-and-halve.
 208 */
 209#define float32_two make_float32(0x40000000)
 210#define float32_three make_float32(0x40400000)
 211#define float32_one_point_five make_float32(0x3fc00000)
 212
 213#define float64_two make_float64(0x4000000000000000ULL)
 214#define float64_three make_float64(0x4008000000000000ULL)
 215#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
 216
 217float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
 218{
 219    float_status *fpst = fpstp;
 220
 221    a = float32_squash_input_denormal(a, fpst);
 222    b = float32_squash_input_denormal(b, fpst);
 223
 224    a = float32_chs(a);
 225    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
 226        (float32_is_infinity(b) && float32_is_zero(a))) {
 227        return float32_two;
 228    }
 229    return float32_muladd(a, b, float32_two, 0, fpst);
 230}
 231
 232float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
 233{
 234    float_status *fpst = fpstp;
 235
 236    a = float64_squash_input_denormal(a, fpst);
 237    b = float64_squash_input_denormal(b, fpst);
 238
 239    a = float64_chs(a);
 240    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
 241        (float64_is_infinity(b) && float64_is_zero(a))) {
 242        return float64_two;
 243    }
 244    return float64_muladd(a, b, float64_two, 0, fpst);
 245}
 246
 247float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
 248{
 249    float_status *fpst = fpstp;
 250
 251    a = float32_squash_input_denormal(a, fpst);
 252    b = float32_squash_input_denormal(b, fpst);
 253
 254    a = float32_chs(a);
 255    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
 256        (float32_is_infinity(b) && float32_is_zero(a))) {
 257        return float32_one_point_five;
 258    }
 259    return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
 260}
 261
 262float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
 263{
 264    float_status *fpst = fpstp;
 265
 266    a = float64_squash_input_denormal(a, fpst);
 267    b = float64_squash_input_denormal(b, fpst);
 268
 269    a = float64_chs(a);
 270    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
 271        (float64_is_infinity(b) && float64_is_zero(a))) {
 272        return float64_one_point_five;
 273    }
 274    return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
 275}
 276
 277/* Pairwise long add: add pairs of adjacent elements into
 278 * double-width elements in the result (eg _s8 is an 8x8->16 op)
 279 */
 280uint64_t HELPER(neon_addlp_s8)(uint64_t a)
 281{
 282    uint64_t nsignmask = 0x0080008000800080ULL;
 283    uint64_t wsignmask = 0x8000800080008000ULL;
 284    uint64_t elementmask = 0x00ff00ff00ff00ffULL;
 285    uint64_t tmp1, tmp2;
 286    uint64_t res, signres;
 287
 288    /* Extract odd elements, sign extend each to a 16 bit field */
 289    tmp1 = a & elementmask;
 290    tmp1 ^= nsignmask;
 291    tmp1 |= wsignmask;
 292    tmp1 = (tmp1 - nsignmask) ^ wsignmask;
 293    /* Ditto for the even elements */
 294    tmp2 = (a >> 8) & elementmask;
 295    tmp2 ^= nsignmask;
 296    tmp2 |= wsignmask;
 297    tmp2 = (tmp2 - nsignmask) ^ wsignmask;
 298
 299    /* calculate the result by summing bits 0..14, 16..22, etc,
 300     * and then adjusting the sign bits 15, 23, etc manually.
 301     * This ensures the addition can't overflow the 16 bit field.
 302     */
 303    signres = (tmp1 ^ tmp2) & wsignmask;
 304    res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
 305    res ^= signres;
 306
 307    return res;
 308}
 309
 310uint64_t HELPER(neon_addlp_u8)(uint64_t a)
 311{
 312    uint64_t tmp;
 313
 314    tmp = a & 0x00ff00ff00ff00ffULL;
 315    tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
 316    return tmp;
 317}
 318
 319uint64_t HELPER(neon_addlp_s16)(uint64_t a)
 320{
 321    int32_t reslo, reshi;
 322
 323    reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
 324    reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
 325
 326    return (uint32_t)reslo | (((uint64_t)reshi) << 32);
 327}
 328
 329uint64_t HELPER(neon_addlp_u16)(uint64_t a)
 330{
 331    uint64_t tmp;
 332
 333    tmp = a & 0x0000ffff0000ffffULL;
 334    tmp += (a >> 16) & 0x0000ffff0000ffffULL;
 335    return tmp;
 336}
 337
 338/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
 339float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
 340{
 341    float_status *fpst = fpstp;
 342    uint32_t val32, sbit;
 343    int32_t exp;
 344
 345    if (float32_is_any_nan(a)) {
 346        float32 nan = a;
 347        if (float32_is_signaling_nan(a)) {
 348            float_raise(float_flag_invalid, fpst);
 349            nan = float32_maybe_silence_nan(a);
 350        }
 351        if (fpst->default_nan_mode) {
 352            nan = float32_default_nan;
 353        }
 354        return nan;
 355    }
 356
 357    val32 = float32_val(a);
 358    sbit = 0x80000000ULL & val32;
 359    exp = extract32(val32, 23, 8);
 360
 361    if (exp == 0) {
 362        return make_float32(sbit | (0xfe << 23));
 363    } else {
 364        return make_float32(sbit | (~exp & 0xff) << 23);
 365    }
 366}
 367
 368float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
 369{
 370    float_status *fpst = fpstp;
 371    uint64_t val64, sbit;
 372    int64_t exp;
 373
 374    if (float64_is_any_nan(a)) {
 375        float64 nan = a;
 376        if (float64_is_signaling_nan(a)) {
 377            float_raise(float_flag_invalid, fpst);
 378            nan = float64_maybe_silence_nan(a);
 379        }
 380        if (fpst->default_nan_mode) {
 381            nan = float64_default_nan;
 382        }
 383        return nan;
 384    }
 385
 386    val64 = float64_val(a);
 387    sbit = 0x8000000000000000ULL & val64;
 388    exp = extract64(float64_val(a), 52, 11);
 389
 390    if (exp == 0) {
 391        return make_float64(sbit | (0x7feULL << 52));
 392    } else {
 393        return make_float64(sbit | (~exp & 0x7ffULL) << 52);
 394    }
 395}
 396
 397float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
 398{
 399    /* Von Neumann rounding is implemented by using round-to-zero
 400     * and then setting the LSB of the result if Inexact was raised.
 401     */
 402    float32 r;
 403    float_status *fpst = &env->vfp.fp_status;
 404    float_status tstat = *fpst;
 405    int exflags;
 406
 407    set_float_rounding_mode(float_round_to_zero, &tstat);
 408    set_float_exception_flags(0, &tstat);
 409    r = float64_to_float32(a, &tstat);
 410    r = float32_maybe_silence_nan(r);
 411    exflags = get_float_exception_flags(&tstat);
 412    if (exflags & float_flag_inexact) {
 413        r = make_float32(float32_val(r) | 1);
 414    }
 415    exflags |= get_float_exception_flags(fpst);
 416    set_float_exception_flags(exflags, fpst);
 417    return r;
 418}
 419
 420/* 64-bit versions of the CRC helpers. Note that although the operation
 421 * (and the prototypes of crc32c() and crc32() mean that only the bottom
 422 * 32 bits of the accumulator and result are used, we pass and return
 423 * uint64_t for convenience of the generated code. Unlike the 32-bit
 424 * instruction set versions, val may genuinely have 64 bits of data in it.
 425 * The upper bytes of val (above the number specified by 'bytes') must have
 426 * been zeroed out by the caller.
 427 */
 428uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
 429{
 430    uint8_t buf[8];
 431
 432    stq_le_p(buf, val);
 433
 434    /* zlib crc32 converts the accumulator and output to one's complement.  */
 435    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
 436}
 437
 438uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
 439{
 440    uint8_t buf[8];
 441
 442    stq_le_p(buf, val);
 443
 444    /* Linux crc32c converts the output to one's complement.  */
 445    return crc32c(acc, buf, bytes) ^ 0xffffffff;
 446}
 447