qemu/target-arm/kvm32.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks, 32 bit specific code.
   3 *
   4 * Copyright Christoffer Dall 2009-2010
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include <sys/ioctl.h>
  13#include <sys/mman.h>
  14
  15#include <linux/kvm.h>
  16
  17#include "qemu-common.h"
  18#include "cpu.h"
  19#include "qemu/timer.h"
  20#include "sysemu/sysemu.h"
  21#include "sysemu/kvm.h"
  22#include "kvm_arm.h"
  23#include "internals.h"
  24#include "hw/arm/arm.h"
  25#include "qemu/log.h"
  26
  27static inline void set_feature(uint64_t *features, int feature)
  28{
  29    *features |= 1ULL << feature;
  30}
  31
  32bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
  33{
  34    /* Identify the feature bits corresponding to the host CPU, and
  35     * fill out the ARMHostCPUClass fields accordingly. To do this
  36     * we have to create a scratch VM, create a single CPU inside it,
  37     * and then query that CPU for the relevant ID registers.
  38     */
  39    int i, ret, fdarray[3];
  40    uint32_t midr, id_pfr0, id_isar0, mvfr1;
  41    uint64_t features = 0;
  42    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
  43     * we know these will only support creating one kind of guest CPU,
  44     * which is its preferred CPU type.
  45     */
  46    static const uint32_t cpus_to_try[] = {
  47        QEMU_KVM_ARM_TARGET_CORTEX_A15,
  48        QEMU_KVM_ARM_TARGET_NONE
  49    };
  50    struct kvm_vcpu_init init;
  51    struct kvm_one_reg idregs[] = {
  52        {
  53            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
  54            | ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0),
  55            .addr = (uintptr_t)&midr,
  56        },
  57        {
  58            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
  59            | ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0),
  60            .addr = (uintptr_t)&id_pfr0,
  61        },
  62        {
  63            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
  64            | ENCODE_CP_REG(15, 0, 0, 0, 2, 0, 0),
  65            .addr = (uintptr_t)&id_isar0,
  66        },
  67        {
  68            .id = KVM_REG_ARM | KVM_REG_SIZE_U32
  69            | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1,
  70            .addr = (uintptr_t)&mvfr1,
  71        },
  72    };
  73
  74    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
  75        return false;
  76    }
  77
  78    ahcc->target = init.target;
  79
  80    /* This is not strictly blessed by the device tree binding docs yet,
  81     * but in practice the kernel does not care about this string so
  82     * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
  83     */
  84    ahcc->dtb_compatible = "arm,arm-v7";
  85
  86    for (i = 0; i < ARRAY_SIZE(idregs); i++) {
  87        ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]);
  88        if (ret) {
  89            break;
  90        }
  91    }
  92
  93    kvm_arm_destroy_scratch_host_vcpu(fdarray);
  94
  95    if (ret) {
  96        return false;
  97    }
  98
  99    /* Now we've retrieved all the register information we can
 100     * set the feature bits based on the ID register fields.
 101     * We can assume any KVM supporting CPU is at least a v7
 102     * with VFPv3, LPAE and the generic timers; this in turn implies
 103     * most of the other feature bits, but a few must be tested.
 104     */
 105    set_feature(&features, ARM_FEATURE_V7);
 106    set_feature(&features, ARM_FEATURE_VFP3);
 107    set_feature(&features, ARM_FEATURE_LPAE);
 108    set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
 109
 110    switch (extract32(id_isar0, 24, 4)) {
 111    case 1:
 112        set_feature(&features, ARM_FEATURE_THUMB_DIV);
 113        break;
 114    case 2:
 115        set_feature(&features, ARM_FEATURE_ARM_DIV);
 116        set_feature(&features, ARM_FEATURE_THUMB_DIV);
 117        break;
 118    default:
 119        break;
 120    }
 121
 122    if (extract32(id_pfr0, 12, 4) == 1) {
 123        set_feature(&features, ARM_FEATURE_THUMB2EE);
 124    }
 125    if (extract32(mvfr1, 20, 4) == 1) {
 126        set_feature(&features, ARM_FEATURE_VFP_FP16);
 127    }
 128    if (extract32(mvfr1, 12, 4) == 1) {
 129        set_feature(&features, ARM_FEATURE_NEON);
 130    }
 131    if (extract32(mvfr1, 28, 4) == 1) {
 132        /* FMAC support implies VFPv4 */
 133        set_feature(&features, ARM_FEATURE_VFP4);
 134    }
 135
 136    ahcc->features = features;
 137
 138    return true;
 139}
 140
 141bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
 142{
 143    /* Return true if the regidx is a register we should synchronize
 144     * via the cpreg_tuples array (ie is not a core reg we sync by
 145     * hand in kvm_arch_get/put_registers())
 146     */
 147    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
 148    case KVM_REG_ARM_CORE:
 149    case KVM_REG_ARM_VFP:
 150        return false;
 151    default:
 152        return true;
 153    }
 154}
 155
 156typedef struct CPRegStateLevel {
 157    uint64_t regidx;
 158    int level;
 159} CPRegStateLevel;
 160
 161/* All coprocessor registers not listed in the following table are assumed to
 162 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
 163 * often, you must add it to this table with a state of either
 164 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
 165 */
 166static const CPRegStateLevel non_runtime_cpregs[] = {
 167    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
 168};
 169
 170int kvm_arm_cpreg_level(uint64_t regidx)
 171{
 172    int i;
 173
 174    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
 175        const CPRegStateLevel *l = &non_runtime_cpregs[i];
 176        if (l->regidx == regidx) {
 177            return l->level;
 178        }
 179    }
 180
 181    return KVM_PUT_RUNTIME_STATE;
 182}
 183
 184#define ARM_CPU_ID_MPIDR       0, 0, 0, 5
 185
 186int kvm_arch_init_vcpu(CPUState *cs)
 187{
 188    int ret;
 189    uint64_t v;
 190    uint32_t mpidr;
 191    struct kvm_one_reg r;
 192    ARMCPU *cpu = ARM_CPU(cs);
 193
 194    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
 195        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
 196        return -EINVAL;
 197    }
 198
 199    /* Determine init features for this CPU */
 200    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
 201    if (cpu->start_powered_off) {
 202        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
 203    }
 204    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
 205        cpu->psci_version = 2;
 206        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
 207    }
 208
 209    /* Do KVM_ARM_VCPU_INIT ioctl */
 210    ret = kvm_arm_vcpu_init(cs);
 211    if (ret) {
 212        return ret;
 213    }
 214
 215    /* Query the kernel to make sure it supports 32 VFP
 216     * registers: QEMU's "cortex-a15" CPU is always a
 217     * VFP-D32 core. The simplest way to do this is just
 218     * to attempt to read register d31.
 219     */
 220    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
 221    r.addr = (uintptr_t)(&v);
 222    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 223    if (ret == -ENOENT) {
 224        return -EINVAL;
 225    }
 226
 227    /*
 228     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
 229     * Currently KVM has its own idea about MPIDR assignment, so we
 230     * override our defaults with what we get from KVM.
 231     */
 232    ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
 233    if (ret) {
 234        return ret;
 235    }
 236    cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK;
 237
 238    return kvm_arm_init_cpreg_list(cpu);
 239}
 240
 241typedef struct Reg {
 242    uint64_t id;
 243    int offset;
 244} Reg;
 245
 246#define COREREG(KERNELNAME, QEMUFIELD)                       \
 247    {                                                        \
 248        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
 249        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
 250        offsetof(CPUARMState, QEMUFIELD)                     \
 251    }
 252
 253#define VFPSYSREG(R)                                       \
 254    {                                                      \
 255        KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
 256        KVM_REG_ARM_VFP_##R,                               \
 257        offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R])      \
 258    }
 259
 260/* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
 261#define COREREG64(KERNELNAME, QEMUFIELD)                     \
 262    {                                                        \
 263        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
 264        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
 265        offsetoflow32(CPUARMState, QEMUFIELD)                \
 266    }
 267
 268static const Reg regs[] = {
 269    /* R0_usr .. R14_usr */
 270    COREREG(usr_regs.uregs[0], regs[0]),
 271    COREREG(usr_regs.uregs[1], regs[1]),
 272    COREREG(usr_regs.uregs[2], regs[2]),
 273    COREREG(usr_regs.uregs[3], regs[3]),
 274    COREREG(usr_regs.uregs[4], regs[4]),
 275    COREREG(usr_regs.uregs[5], regs[5]),
 276    COREREG(usr_regs.uregs[6], regs[6]),
 277    COREREG(usr_regs.uregs[7], regs[7]),
 278    COREREG(usr_regs.uregs[8], usr_regs[0]),
 279    COREREG(usr_regs.uregs[9], usr_regs[1]),
 280    COREREG(usr_regs.uregs[10], usr_regs[2]),
 281    COREREG(usr_regs.uregs[11], usr_regs[3]),
 282    COREREG(usr_regs.uregs[12], usr_regs[4]),
 283    COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]),
 284    COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]),
 285    /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
 286    COREREG(svc_regs[0], banked_r13[BANK_SVC]),
 287    COREREG(svc_regs[1], banked_r14[BANK_SVC]),
 288    COREREG64(svc_regs[2], banked_spsr[BANK_SVC]),
 289    COREREG(abt_regs[0], banked_r13[BANK_ABT]),
 290    COREREG(abt_regs[1], banked_r14[BANK_ABT]),
 291    COREREG64(abt_regs[2], banked_spsr[BANK_ABT]),
 292    COREREG(und_regs[0], banked_r13[BANK_UND]),
 293    COREREG(und_regs[1], banked_r14[BANK_UND]),
 294    COREREG64(und_regs[2], banked_spsr[BANK_UND]),
 295    COREREG(irq_regs[0], banked_r13[BANK_IRQ]),
 296    COREREG(irq_regs[1], banked_r14[BANK_IRQ]),
 297    COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]),
 298    /* R8_fiq .. R14_fiq and SPSR_fiq */
 299    COREREG(fiq_regs[0], fiq_regs[0]),
 300    COREREG(fiq_regs[1], fiq_regs[1]),
 301    COREREG(fiq_regs[2], fiq_regs[2]),
 302    COREREG(fiq_regs[3], fiq_regs[3]),
 303    COREREG(fiq_regs[4], fiq_regs[4]),
 304    COREREG(fiq_regs[5], banked_r13[BANK_FIQ]),
 305    COREREG(fiq_regs[6], banked_r14[BANK_FIQ]),
 306    COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]),
 307    /* R15 */
 308    COREREG(usr_regs.uregs[15], regs[15]),
 309    /* VFP system registers */
 310    VFPSYSREG(FPSID),
 311    VFPSYSREG(MVFR1),
 312    VFPSYSREG(MVFR0),
 313    VFPSYSREG(FPEXC),
 314    VFPSYSREG(FPINST),
 315    VFPSYSREG(FPINST2),
 316};
 317
 318int kvm_arch_put_registers(CPUState *cs, int level)
 319{
 320    ARMCPU *cpu = ARM_CPU(cs);
 321    CPUARMState *env = &cpu->env;
 322    struct kvm_one_reg r;
 323    int mode, bn;
 324    int ret, i;
 325    uint32_t cpsr, fpscr;
 326
 327    /* Make sure the banked regs are properly set */
 328    mode = env->uncached_cpsr & CPSR_M;
 329    bn = bank_number(mode);
 330    if (mode == ARM_CPU_MODE_FIQ) {
 331        memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
 332    } else {
 333        memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
 334    }
 335    env->banked_r13[bn] = env->regs[13];
 336    env->banked_r14[bn] = env->regs[14];
 337    env->banked_spsr[bn] = env->spsr;
 338
 339    /* Now we can safely copy stuff down to the kernel */
 340    for (i = 0; i < ARRAY_SIZE(regs); i++) {
 341        r.id = regs[i].id;
 342        r.addr = (uintptr_t)(env) + regs[i].offset;
 343        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 344        if (ret) {
 345            return ret;
 346        }
 347    }
 348
 349    /* Special cases which aren't a single CPUARMState field */
 350    cpsr = cpsr_read(env);
 351    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
 352        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
 353    r.addr = (uintptr_t)(&cpsr);
 354    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 355    if (ret) {
 356        return ret;
 357    }
 358
 359    /* VFP registers */
 360    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
 361    for (i = 0; i < 32; i++) {
 362        r.addr = (uintptr_t)(&env->vfp.regs[i]);
 363        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 364        if (ret) {
 365            return ret;
 366        }
 367        r.id++;
 368    }
 369
 370    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
 371        KVM_REG_ARM_VFP_FPSCR;
 372    fpscr = vfp_get_fpscr(env);
 373    r.addr = (uintptr_t)&fpscr;
 374    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 375    if (ret) {
 376        return ret;
 377    }
 378
 379    /* Note that we do not call write_cpustate_to_list()
 380     * here, so we are only writing the tuple list back to
 381     * KVM. This is safe because nothing can change the
 382     * CPUARMState cp15 fields (in particular gdb accesses cannot)
 383     * and so there are no changes to sync. In fact syncing would
 384     * be wrong at this point: for a constant register where TCG and
 385     * KVM disagree about its value, the preceding write_list_to_cpustate()
 386     * would not have had any effect on the CPUARMState value (since the
 387     * register is read-only), and a write_cpustate_to_list() here would
 388     * then try to write the TCG value back into KVM -- this would either
 389     * fail or incorrectly change the value the guest sees.
 390     *
 391     * If we ever want to allow the user to modify cp15 registers via
 392     * the gdb stub, we would need to be more clever here (for instance
 393     * tracking the set of registers kvm_arch_get_registers() successfully
 394     * managed to update the CPUARMState with, and only allowing those
 395     * to be written back up into the kernel).
 396     */
 397    if (!write_list_to_kvmstate(cpu, level)) {
 398        return EINVAL;
 399    }
 400
 401    kvm_arm_sync_mpstate_to_kvm(cpu);
 402
 403    return ret;
 404}
 405
 406int kvm_arch_get_registers(CPUState *cs)
 407{
 408    ARMCPU *cpu = ARM_CPU(cs);
 409    CPUARMState *env = &cpu->env;
 410    struct kvm_one_reg r;
 411    int mode, bn;
 412    int ret, i;
 413    uint32_t cpsr, fpscr;
 414
 415    for (i = 0; i < ARRAY_SIZE(regs); i++) {
 416        r.id = regs[i].id;
 417        r.addr = (uintptr_t)(env) + regs[i].offset;
 418        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 419        if (ret) {
 420            return ret;
 421        }
 422    }
 423
 424    /* Special cases which aren't a single CPUARMState field */
 425    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
 426        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
 427    r.addr = (uintptr_t)(&cpsr);
 428    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 429    if (ret) {
 430        return ret;
 431    }
 432    cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw);
 433
 434    /* Make sure the current mode regs are properly set */
 435    mode = env->uncached_cpsr & CPSR_M;
 436    bn = bank_number(mode);
 437    if (mode == ARM_CPU_MODE_FIQ) {
 438        memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
 439    } else {
 440        memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
 441    }
 442    env->regs[13] = env->banked_r13[bn];
 443    env->regs[14] = env->banked_r14[bn];
 444    env->spsr = env->banked_spsr[bn];
 445
 446    /* VFP registers */
 447    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
 448    for (i = 0; i < 32; i++) {
 449        r.addr = (uintptr_t)(&env->vfp.regs[i]);
 450        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 451        if (ret) {
 452            return ret;
 453        }
 454        r.id++;
 455    }
 456
 457    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
 458        KVM_REG_ARM_VFP_FPSCR;
 459    r.addr = (uintptr_t)&fpscr;
 460    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 461    if (ret) {
 462        return ret;
 463    }
 464    vfp_set_fpscr(env, fpscr);
 465
 466    if (!write_kvmstate_to_list(cpu)) {
 467        return EINVAL;
 468    }
 469    /* Note that it's OK to have registers which aren't in CPUState,
 470     * so we can ignore a failure return here.
 471     */
 472    write_list_to_cpustate(cpu);
 473
 474    kvm_arm_sync_mpstate_to_qemu(cpu);
 475
 476    return 0;
 477}
 478
 479int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 480{
 481    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
 482    return -EINVAL;
 483}
 484
 485int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 486{
 487    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
 488    return -EINVAL;
 489}
 490
 491bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
 492{
 493    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
 494    return false;
 495}
 496
 497int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 498                                  target_ulong len, int type)
 499{
 500    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 501    return -EINVAL;
 502}
 503
 504int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 505                                  target_ulong len, int type)
 506{
 507    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 508    return -EINVAL;
 509}
 510
 511void kvm_arch_remove_all_hw_breakpoints(void)
 512{
 513    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 514}
 515
 516void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
 517{
 518    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 519}
 520
 521bool kvm_arm_hw_debug_active(CPUState *cs)
 522{
 523    return false;
 524}
 525