qemu/target-i386/monitor.c
<<
>>
Prefs
   1/*
   2 * QEMU monitor
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24#include "qemu/osdep.h"
  25#include "cpu.h"
  26#include "monitor/monitor.h"
  27#include "monitor/hmp-target.h"
  28#include "hw/i386/pc.h"
  29#include "sysemu/kvm.h"
  30#include "hmp.h"
  31
  32
  33static void print_pte(Monitor *mon, hwaddr addr,
  34                      hwaddr pte,
  35                      hwaddr mask)
  36{
  37#ifdef TARGET_X86_64
  38    if (addr & (1ULL << 47)) {
  39        addr |= -1LL << 48;
  40    }
  41#endif
  42    monitor_printf(mon, TARGET_FMT_plx ": " TARGET_FMT_plx
  43                   " %c%c%c%c%c%c%c%c%c\n",
  44                   addr,
  45                   pte & mask,
  46                   pte & PG_NX_MASK ? 'X' : '-',
  47                   pte & PG_GLOBAL_MASK ? 'G' : '-',
  48                   pte & PG_PSE_MASK ? 'P' : '-',
  49                   pte & PG_DIRTY_MASK ? 'D' : '-',
  50                   pte & PG_ACCESSED_MASK ? 'A' : '-',
  51                   pte & PG_PCD_MASK ? 'C' : '-',
  52                   pte & PG_PWT_MASK ? 'T' : '-',
  53                   pte & PG_USER_MASK ? 'U' : '-',
  54                   pte & PG_RW_MASK ? 'W' : '-');
  55}
  56
  57static void tlb_info_32(Monitor *mon, CPUArchState *env)
  58{
  59    unsigned int l1, l2;
  60    uint32_t pgd, pde, pte;
  61
  62    pgd = env->cr[3] & ~0xfff;
  63    for(l1 = 0; l1 < 1024; l1++) {
  64        cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
  65        pde = le32_to_cpu(pde);
  66        if (pde & PG_PRESENT_MASK) {
  67            if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
  68                /* 4M pages */
  69                print_pte(mon, (l1 << 22), pde, ~((1 << 21) - 1));
  70            } else {
  71                for(l2 = 0; l2 < 1024; l2++) {
  72                    cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
  73                    pte = le32_to_cpu(pte);
  74                    if (pte & PG_PRESENT_MASK) {
  75                        print_pte(mon, (l1 << 22) + (l2 << 12),
  76                                  pte & ~PG_PSE_MASK,
  77                                  ~0xfff);
  78                    }
  79                }
  80            }
  81        }
  82    }
  83}
  84
  85static void tlb_info_pae32(Monitor *mon, CPUArchState *env)
  86{
  87    unsigned int l1, l2, l3;
  88    uint64_t pdpe, pde, pte;
  89    uint64_t pdp_addr, pd_addr, pt_addr;
  90
  91    pdp_addr = env->cr[3] & ~0x1f;
  92    for (l1 = 0; l1 < 4; l1++) {
  93        cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
  94        pdpe = le64_to_cpu(pdpe);
  95        if (pdpe & PG_PRESENT_MASK) {
  96            pd_addr = pdpe & 0x3fffffffff000ULL;
  97            for (l2 = 0; l2 < 512; l2++) {
  98                cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
  99                pde = le64_to_cpu(pde);
 100                if (pde & PG_PRESENT_MASK) {
 101                    if (pde & PG_PSE_MASK) {
 102                        /* 2M pages with PAE, CR4.PSE is ignored */
 103                        print_pte(mon, (l1 << 30 ) + (l2 << 21), pde,
 104                                  ~((hwaddr)(1 << 20) - 1));
 105                    } else {
 106                        pt_addr = pde & 0x3fffffffff000ULL;
 107                        for (l3 = 0; l3 < 512; l3++) {
 108                            cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
 109                            pte = le64_to_cpu(pte);
 110                            if (pte & PG_PRESENT_MASK) {
 111                                print_pte(mon, (l1 << 30 ) + (l2 << 21)
 112                                          + (l3 << 12),
 113                                          pte & ~PG_PSE_MASK,
 114                                          ~(hwaddr)0xfff);
 115                            }
 116                        }
 117                    }
 118                }
 119            }
 120        }
 121    }
 122}
 123
 124#ifdef TARGET_X86_64
 125static void tlb_info_64(Monitor *mon, CPUArchState *env)
 126{
 127    uint64_t l1, l2, l3, l4;
 128    uint64_t pml4e, pdpe, pde, pte;
 129    uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr;
 130
 131    pml4_addr = env->cr[3] & 0x3fffffffff000ULL;
 132    for (l1 = 0; l1 < 512; l1++) {
 133        cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
 134        pml4e = le64_to_cpu(pml4e);
 135        if (pml4e & PG_PRESENT_MASK) {
 136            pdp_addr = pml4e & 0x3fffffffff000ULL;
 137            for (l2 = 0; l2 < 512; l2++) {
 138                cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
 139                pdpe = le64_to_cpu(pdpe);
 140                if (pdpe & PG_PRESENT_MASK) {
 141                    if (pdpe & PG_PSE_MASK) {
 142                        /* 1G pages, CR4.PSE is ignored */
 143                        print_pte(mon, (l1 << 39) + (l2 << 30), pdpe,
 144                                  0x3ffffc0000000ULL);
 145                    } else {
 146                        pd_addr = pdpe & 0x3fffffffff000ULL;
 147                        for (l3 = 0; l3 < 512; l3++) {
 148                            cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
 149                            pde = le64_to_cpu(pde);
 150                            if (pde & PG_PRESENT_MASK) {
 151                                if (pde & PG_PSE_MASK) {
 152                                    /* 2M pages, CR4.PSE is ignored */
 153                                    print_pte(mon, (l1 << 39) + (l2 << 30) +
 154                                              (l3 << 21), pde,
 155                                              0x3ffffffe00000ULL);
 156                                } else {
 157                                    pt_addr = pde & 0x3fffffffff000ULL;
 158                                    for (l4 = 0; l4 < 512; l4++) {
 159                                        cpu_physical_memory_read(pt_addr
 160                                                                 + l4 * 8,
 161                                                                 &pte, 8);
 162                                        pte = le64_to_cpu(pte);
 163                                        if (pte & PG_PRESENT_MASK) {
 164                                            print_pte(mon, (l1 << 39) +
 165                                                      (l2 << 30) +
 166                                                      (l3 << 21) + (l4 << 12),
 167                                                      pte & ~PG_PSE_MASK,
 168                                                      0x3fffffffff000ULL);
 169                                        }
 170                                    }
 171                                }
 172                            }
 173                        }
 174                    }
 175                }
 176            }
 177        }
 178    }
 179}
 180#endif /* TARGET_X86_64 */
 181
 182void hmp_info_tlb(Monitor *mon, const QDict *qdict)
 183{
 184    CPUArchState *env;
 185
 186    env = mon_get_cpu_env();
 187
 188    if (!(env->cr[0] & CR0_PG_MASK)) {
 189        monitor_printf(mon, "PG disabled\n");
 190        return;
 191    }
 192    if (env->cr[4] & CR4_PAE_MASK) {
 193#ifdef TARGET_X86_64
 194        if (env->hflags & HF_LMA_MASK) {
 195            tlb_info_64(mon, env);
 196        } else
 197#endif
 198        {
 199            tlb_info_pae32(mon, env);
 200        }
 201    } else {
 202        tlb_info_32(mon, env);
 203    }
 204}
 205
 206static void mem_print(Monitor *mon, hwaddr *pstart,
 207                      int *plast_prot,
 208                      hwaddr end, int prot)
 209{
 210    int prot1;
 211    prot1 = *plast_prot;
 212    if (prot != prot1) {
 213        if (*pstart != -1) {
 214            monitor_printf(mon, TARGET_FMT_plx "-" TARGET_FMT_plx " "
 215                           TARGET_FMT_plx " %c%c%c\n",
 216                           *pstart, end, end - *pstart,
 217                           prot1 & PG_USER_MASK ? 'u' : '-',
 218                           'r',
 219                           prot1 & PG_RW_MASK ? 'w' : '-');
 220        }
 221        if (prot != 0)
 222            *pstart = end;
 223        else
 224            *pstart = -1;
 225        *plast_prot = prot;
 226    }
 227}
 228
 229static void mem_info_32(Monitor *mon, CPUArchState *env)
 230{
 231    unsigned int l1, l2;
 232    int prot, last_prot;
 233    uint32_t pgd, pde, pte;
 234    hwaddr start, end;
 235
 236    pgd = env->cr[3] & ~0xfff;
 237    last_prot = 0;
 238    start = -1;
 239    for(l1 = 0; l1 < 1024; l1++) {
 240        cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
 241        pde = le32_to_cpu(pde);
 242        end = l1 << 22;
 243        if (pde & PG_PRESENT_MASK) {
 244            if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
 245                prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
 246                mem_print(mon, &start, &last_prot, end, prot);
 247            } else {
 248                for(l2 = 0; l2 < 1024; l2++) {
 249                    cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
 250                    pte = le32_to_cpu(pte);
 251                    end = (l1 << 22) + (l2 << 12);
 252                    if (pte & PG_PRESENT_MASK) {
 253                        prot = pte & pde &
 254                            (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
 255                    } else {
 256                        prot = 0;
 257                    }
 258                    mem_print(mon, &start, &last_prot, end, prot);
 259                }
 260            }
 261        } else {
 262            prot = 0;
 263            mem_print(mon, &start, &last_prot, end, prot);
 264        }
 265    }
 266    /* Flush last range */
 267    mem_print(mon, &start, &last_prot, (hwaddr)1 << 32, 0);
 268}
 269
 270static void mem_info_pae32(Monitor *mon, CPUArchState *env)
 271{
 272    unsigned int l1, l2, l3;
 273    int prot, last_prot;
 274    uint64_t pdpe, pde, pte;
 275    uint64_t pdp_addr, pd_addr, pt_addr;
 276    hwaddr start, end;
 277
 278    pdp_addr = env->cr[3] & ~0x1f;
 279    last_prot = 0;
 280    start = -1;
 281    for (l1 = 0; l1 < 4; l1++) {
 282        cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
 283        pdpe = le64_to_cpu(pdpe);
 284        end = l1 << 30;
 285        if (pdpe & PG_PRESENT_MASK) {
 286            pd_addr = pdpe & 0x3fffffffff000ULL;
 287            for (l2 = 0; l2 < 512; l2++) {
 288                cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
 289                pde = le64_to_cpu(pde);
 290                end = (l1 << 30) + (l2 << 21);
 291                if (pde & PG_PRESENT_MASK) {
 292                    if (pde & PG_PSE_MASK) {
 293                        prot = pde & (PG_USER_MASK | PG_RW_MASK |
 294                                      PG_PRESENT_MASK);
 295                        mem_print(mon, &start, &last_prot, end, prot);
 296                    } else {
 297                        pt_addr = pde & 0x3fffffffff000ULL;
 298                        for (l3 = 0; l3 < 512; l3++) {
 299                            cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
 300                            pte = le64_to_cpu(pte);
 301                            end = (l1 << 30) + (l2 << 21) + (l3 << 12);
 302                            if (pte & PG_PRESENT_MASK) {
 303                                prot = pte & pde & (PG_USER_MASK | PG_RW_MASK |
 304                                                    PG_PRESENT_MASK);
 305                            } else {
 306                                prot = 0;
 307                            }
 308                            mem_print(mon, &start, &last_prot, end, prot);
 309                        }
 310                    }
 311                } else {
 312                    prot = 0;
 313                    mem_print(mon, &start, &last_prot, end, prot);
 314                }
 315            }
 316        } else {
 317            prot = 0;
 318            mem_print(mon, &start, &last_prot, end, prot);
 319        }
 320    }
 321    /* Flush last range */
 322    mem_print(mon, &start, &last_prot, (hwaddr)1 << 32, 0);
 323}
 324
 325
 326#ifdef TARGET_X86_64
 327static void mem_info_64(Monitor *mon, CPUArchState *env)
 328{
 329    int prot, last_prot;
 330    uint64_t l1, l2, l3, l4;
 331    uint64_t pml4e, pdpe, pde, pte;
 332    uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr, start, end;
 333
 334    pml4_addr = env->cr[3] & 0x3fffffffff000ULL;
 335    last_prot = 0;
 336    start = -1;
 337    for (l1 = 0; l1 < 512; l1++) {
 338        cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
 339        pml4e = le64_to_cpu(pml4e);
 340        end = l1 << 39;
 341        if (pml4e & PG_PRESENT_MASK) {
 342            pdp_addr = pml4e & 0x3fffffffff000ULL;
 343            for (l2 = 0; l2 < 512; l2++) {
 344                cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
 345                pdpe = le64_to_cpu(pdpe);
 346                end = (l1 << 39) + (l2 << 30);
 347                if (pdpe & PG_PRESENT_MASK) {
 348                    if (pdpe & PG_PSE_MASK) {
 349                        prot = pdpe & (PG_USER_MASK | PG_RW_MASK |
 350                                       PG_PRESENT_MASK);
 351                        prot &= pml4e;
 352                        mem_print(mon, &start, &last_prot, end, prot);
 353                    } else {
 354                        pd_addr = pdpe & 0x3fffffffff000ULL;
 355                        for (l3 = 0; l3 < 512; l3++) {
 356                            cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
 357                            pde = le64_to_cpu(pde);
 358                            end = (l1 << 39) + (l2 << 30) + (l3 << 21);
 359                            if (pde & PG_PRESENT_MASK) {
 360                                if (pde & PG_PSE_MASK) {
 361                                    prot = pde & (PG_USER_MASK | PG_RW_MASK |
 362                                                  PG_PRESENT_MASK);
 363                                    prot &= pml4e & pdpe;
 364                                    mem_print(mon, &start, &last_prot, end, prot);
 365                                } else {
 366                                    pt_addr = pde & 0x3fffffffff000ULL;
 367                                    for (l4 = 0; l4 < 512; l4++) {
 368                                        cpu_physical_memory_read(pt_addr
 369                                                                 + l4 * 8,
 370                                                                 &pte, 8);
 371                                        pte = le64_to_cpu(pte);
 372                                        end = (l1 << 39) + (l2 << 30) +
 373                                            (l3 << 21) + (l4 << 12);
 374                                        if (pte & PG_PRESENT_MASK) {
 375                                            prot = pte & (PG_USER_MASK | PG_RW_MASK |
 376                                                          PG_PRESENT_MASK);
 377                                            prot &= pml4e & pdpe & pde;
 378                                        } else {
 379                                            prot = 0;
 380                                        }
 381                                        mem_print(mon, &start, &last_prot, end, prot);
 382                                    }
 383                                }
 384                            } else {
 385                                prot = 0;
 386                                mem_print(mon, &start, &last_prot, end, prot);
 387                            }
 388                        }
 389                    }
 390                } else {
 391                    prot = 0;
 392                    mem_print(mon, &start, &last_prot, end, prot);
 393                }
 394            }
 395        } else {
 396            prot = 0;
 397            mem_print(mon, &start, &last_prot, end, prot);
 398        }
 399    }
 400    /* Flush last range */
 401    mem_print(mon, &start, &last_prot, (hwaddr)1 << 48, 0);
 402}
 403#endif /* TARGET_X86_64 */
 404
 405void hmp_info_mem(Monitor *mon, const QDict *qdict)
 406{
 407    CPUArchState *env;
 408
 409    env = mon_get_cpu_env();
 410
 411    if (!(env->cr[0] & CR0_PG_MASK)) {
 412        monitor_printf(mon, "PG disabled\n");
 413        return;
 414    }
 415    if (env->cr[4] & CR4_PAE_MASK) {
 416#ifdef TARGET_X86_64
 417        if (env->hflags & HF_LMA_MASK) {
 418            mem_info_64(mon, env);
 419        } else
 420#endif
 421        {
 422            mem_info_pae32(mon, env);
 423        }
 424    } else {
 425        mem_info_32(mon, env);
 426    }
 427}
 428
 429void hmp_mce(Monitor *mon, const QDict *qdict)
 430{
 431    X86CPU *cpu;
 432    CPUState *cs;
 433    int cpu_index = qdict_get_int(qdict, "cpu_index");
 434    int bank = qdict_get_int(qdict, "bank");
 435    uint64_t status = qdict_get_int(qdict, "status");
 436    uint64_t mcg_status = qdict_get_int(qdict, "mcg_status");
 437    uint64_t addr = qdict_get_int(qdict, "addr");
 438    uint64_t misc = qdict_get_int(qdict, "misc");
 439    int flags = MCE_INJECT_UNCOND_AO;
 440
 441    if (qdict_get_try_bool(qdict, "broadcast", false)) {
 442        flags |= MCE_INJECT_BROADCAST;
 443    }
 444    cs = qemu_get_cpu(cpu_index);
 445    if (cs != NULL) {
 446        cpu = X86_CPU(cs);
 447        cpu_x86_inject_mce(mon, cpu, bank, status, mcg_status, addr, misc,
 448                           flags);
 449    }
 450}
 451
 452static target_long monitor_get_pc(const struct MonitorDef *md, int val)
 453{
 454    CPUArchState *env = mon_get_cpu_env();
 455    return env->eip + env->segs[R_CS].base;
 456}
 457
 458const MonitorDef monitor_defs[] = {
 459#define SEG(name, seg) \
 460    { name, offsetof(CPUX86State, segs[seg].selector), NULL, MD_I32 },\
 461    { name ".base", offsetof(CPUX86State, segs[seg].base) },\
 462    { name ".limit", offsetof(CPUX86State, segs[seg].limit), NULL, MD_I32 },
 463
 464    { "eax", offsetof(CPUX86State, regs[0]) },
 465    { "ecx", offsetof(CPUX86State, regs[1]) },
 466    { "edx", offsetof(CPUX86State, regs[2]) },
 467    { "ebx", offsetof(CPUX86State, regs[3]) },
 468    { "esp|sp", offsetof(CPUX86State, regs[4]) },
 469    { "ebp|fp", offsetof(CPUX86State, regs[5]) },
 470    { "esi", offsetof(CPUX86State, regs[6]) },
 471    { "edi", offsetof(CPUX86State, regs[7]) },
 472#ifdef TARGET_X86_64
 473    { "r8", offsetof(CPUX86State, regs[8]) },
 474    { "r9", offsetof(CPUX86State, regs[9]) },
 475    { "r10", offsetof(CPUX86State, regs[10]) },
 476    { "r11", offsetof(CPUX86State, regs[11]) },
 477    { "r12", offsetof(CPUX86State, regs[12]) },
 478    { "r13", offsetof(CPUX86State, regs[13]) },
 479    { "r14", offsetof(CPUX86State, regs[14]) },
 480    { "r15", offsetof(CPUX86State, regs[15]) },
 481#endif
 482    { "eflags", offsetof(CPUX86State, eflags) },
 483    { "eip", offsetof(CPUX86State, eip) },
 484    SEG("cs", R_CS)
 485    SEG("ds", R_DS)
 486    SEG("es", R_ES)
 487    SEG("ss", R_SS)
 488    SEG("fs", R_FS)
 489    SEG("gs", R_GS)
 490    { "pc", 0, monitor_get_pc, },
 491    { NULL },
 492};
 493
 494const MonitorDef *target_monitor_defs(void)
 495{
 496    return monitor_defs;
 497}
 498
 499void hmp_info_local_apic(Monitor *mon, const QDict *qdict)
 500{
 501    x86_cpu_dump_local_apic_state(mon_get_cpu(), (FILE *)mon, monitor_fprintf,
 502                                  CPU_DUMP_FPU);
 503}
 504
 505void hmp_info_io_apic(Monitor *mon, const QDict *qdict)
 506{
 507    if (kvm_irqchip_in_kernel()) {
 508        kvm_ioapic_dump_state(mon, qdict);
 509    } else {
 510        ioapic_dump_state(mon, qdict);
 511    }
 512}
 513