qemu/target-ppc/fpu_helper.c
<<
>>
Prefs
   1/*
   2 *  PowerPC floating point and SPE emulation helpers for QEMU.
   3 *
   4 *  Copyright (c) 2003-2007 Jocelyn Mayer
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20#include "cpu.h"
  21#include "exec/helper-proto.h"
  22
  23#define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
  24#define float32_snan_to_qnan(x) ((x) | 0x00400000)
  25
  26/*****************************************************************************/
  27/* Floating point operations helpers */
  28uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
  29{
  30    CPU_FloatU f;
  31    CPU_DoubleU d;
  32
  33    f.l = arg;
  34    d.d = float32_to_float64(f.f, &env->fp_status);
  35    return d.ll;
  36}
  37
  38uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
  39{
  40    CPU_FloatU f;
  41    CPU_DoubleU d;
  42
  43    d.ll = arg;
  44    f.f = float64_to_float32(d.d, &env->fp_status);
  45    return f.l;
  46}
  47
  48static inline int isden(float64 d)
  49{
  50    CPU_DoubleU u;
  51
  52    u.d = d;
  53
  54    return ((u.ll >> 52) & 0x7FF) == 0;
  55}
  56
  57static inline int ppc_float32_get_unbiased_exp(float32 f)
  58{
  59    return ((f >> 23) & 0xFF) - 127;
  60}
  61
  62static inline int ppc_float64_get_unbiased_exp(float64 f)
  63{
  64    return ((f >> 52) & 0x7FF) - 1023;
  65}
  66
  67void helper_compute_fprf(CPUPPCState *env, uint64_t arg)
  68{
  69    CPU_DoubleU farg;
  70    int isneg;
  71    int fprf;
  72
  73    farg.ll = arg;
  74    isneg = float64_is_neg(farg.d);
  75    if (unlikely(float64_is_any_nan(farg.d))) {
  76        if (float64_is_signaling_nan(farg.d)) {
  77            /* Signaling NaN: flags are undefined */
  78            fprf = 0x00;
  79        } else {
  80            /* Quiet NaN */
  81            fprf = 0x11;
  82        }
  83    } else if (unlikely(float64_is_infinity(farg.d))) {
  84        /* +/- infinity */
  85        if (isneg) {
  86            fprf = 0x09;
  87        } else {
  88            fprf = 0x05;
  89        }
  90    } else {
  91        if (float64_is_zero(farg.d)) {
  92            /* +/- zero */
  93            if (isneg) {
  94                fprf = 0x12;
  95            } else {
  96                fprf = 0x02;
  97            }
  98        } else {
  99            if (isden(farg.d)) {
 100                /* Denormalized numbers */
 101                fprf = 0x10;
 102            } else {
 103                /* Normalized numbers */
 104                fprf = 0x00;
 105            }
 106            if (isneg) {
 107                fprf |= 0x08;
 108            } else {
 109                fprf |= 0x04;
 110            }
 111        }
 112    }
 113    /* We update FPSCR_FPRF */
 114    env->fpscr &= ~(0x1F << FPSCR_FPRF);
 115    env->fpscr |= fprf << FPSCR_FPRF;
 116}
 117
 118/* Floating-point invalid operations exception */
 119static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op,
 120                                             int set_fpcc)
 121{
 122    CPUState *cs = CPU(ppc_env_get_cpu(env));
 123    uint64_t ret = 0;
 124    int ve;
 125
 126    ve = fpscr_ve;
 127    switch (op) {
 128    case POWERPC_EXCP_FP_VXSNAN:
 129        env->fpscr |= 1 << FPSCR_VXSNAN;
 130        break;
 131    case POWERPC_EXCP_FP_VXSOFT:
 132        env->fpscr |= 1 << FPSCR_VXSOFT;
 133        break;
 134    case POWERPC_EXCP_FP_VXISI:
 135        /* Magnitude subtraction of infinities */
 136        env->fpscr |= 1 << FPSCR_VXISI;
 137        goto update_arith;
 138    case POWERPC_EXCP_FP_VXIDI:
 139        /* Division of infinity by infinity */
 140        env->fpscr |= 1 << FPSCR_VXIDI;
 141        goto update_arith;
 142    case POWERPC_EXCP_FP_VXZDZ:
 143        /* Division of zero by zero */
 144        env->fpscr |= 1 << FPSCR_VXZDZ;
 145        goto update_arith;
 146    case POWERPC_EXCP_FP_VXIMZ:
 147        /* Multiplication of zero by infinity */
 148        env->fpscr |= 1 << FPSCR_VXIMZ;
 149        goto update_arith;
 150    case POWERPC_EXCP_FP_VXVC:
 151        /* Ordered comparison of NaN */
 152        env->fpscr |= 1 << FPSCR_VXVC;
 153        if (set_fpcc) {
 154            env->fpscr &= ~(0xF << FPSCR_FPCC);
 155            env->fpscr |= 0x11 << FPSCR_FPCC;
 156        }
 157        /* We must update the target FPR before raising the exception */
 158        if (ve != 0) {
 159            cs->exception_index = POWERPC_EXCP_PROGRAM;
 160            env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
 161            /* Update the floating-point enabled exception summary */
 162            env->fpscr |= 1 << FPSCR_FEX;
 163            /* Exception is differed */
 164            ve = 0;
 165        }
 166        break;
 167    case POWERPC_EXCP_FP_VXSQRT:
 168        /* Square root of a negative number */
 169        env->fpscr |= 1 << FPSCR_VXSQRT;
 170    update_arith:
 171        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 172        if (ve == 0) {
 173            /* Set the result to quiet NaN */
 174            ret = 0x7FF8000000000000ULL;
 175            if (set_fpcc) {
 176                env->fpscr &= ~(0xF << FPSCR_FPCC);
 177                env->fpscr |= 0x11 << FPSCR_FPCC;
 178            }
 179        }
 180        break;
 181    case POWERPC_EXCP_FP_VXCVI:
 182        /* Invalid conversion */
 183        env->fpscr |= 1 << FPSCR_VXCVI;
 184        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 185        if (ve == 0) {
 186            /* Set the result to quiet NaN */
 187            ret = 0x7FF8000000000000ULL;
 188            if (set_fpcc) {
 189                env->fpscr &= ~(0xF << FPSCR_FPCC);
 190                env->fpscr |= 0x11 << FPSCR_FPCC;
 191            }
 192        }
 193        break;
 194    }
 195    /* Update the floating-point invalid operation summary */
 196    env->fpscr |= 1 << FPSCR_VX;
 197    /* Update the floating-point exception summary */
 198    env->fpscr |= FP_FX;
 199    if (ve != 0) {
 200        /* Update the floating-point enabled exception summary */
 201        env->fpscr |= 1 << FPSCR_FEX;
 202        if (msr_fe0 != 0 || msr_fe1 != 0) {
 203            helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 204                                       POWERPC_EXCP_FP | op);
 205        }
 206    }
 207    return ret;
 208}
 209
 210static inline void float_zero_divide_excp(CPUPPCState *env)
 211{
 212    env->fpscr |= 1 << FPSCR_ZX;
 213    env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 214    /* Update the floating-point exception summary */
 215    env->fpscr |= FP_FX;
 216    if (fpscr_ze != 0) {
 217        /* Update the floating-point enabled exception summary */
 218        env->fpscr |= 1 << FPSCR_FEX;
 219        if (msr_fe0 != 0 || msr_fe1 != 0) {
 220            helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 221                                       POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
 222        }
 223    }
 224}
 225
 226static inline void float_overflow_excp(CPUPPCState *env)
 227{
 228    CPUState *cs = CPU(ppc_env_get_cpu(env));
 229
 230    env->fpscr |= 1 << FPSCR_OX;
 231    /* Update the floating-point exception summary */
 232    env->fpscr |= FP_FX;
 233    if (fpscr_oe != 0) {
 234        /* XXX: should adjust the result */
 235        /* Update the floating-point enabled exception summary */
 236        env->fpscr |= 1 << FPSCR_FEX;
 237        /* We must update the target FPR before raising the exception */
 238        cs->exception_index = POWERPC_EXCP_PROGRAM;
 239        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
 240    } else {
 241        env->fpscr |= 1 << FPSCR_XX;
 242        env->fpscr |= 1 << FPSCR_FI;
 243    }
 244}
 245
 246static inline void float_underflow_excp(CPUPPCState *env)
 247{
 248    CPUState *cs = CPU(ppc_env_get_cpu(env));
 249
 250    env->fpscr |= 1 << FPSCR_UX;
 251    /* Update the floating-point exception summary */
 252    env->fpscr |= FP_FX;
 253    if (fpscr_ue != 0) {
 254        /* XXX: should adjust the result */
 255        /* Update the floating-point enabled exception summary */
 256        env->fpscr |= 1 << FPSCR_FEX;
 257        /* We must update the target FPR before raising the exception */
 258        cs->exception_index = POWERPC_EXCP_PROGRAM;
 259        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
 260    }
 261}
 262
 263static inline void float_inexact_excp(CPUPPCState *env)
 264{
 265    CPUState *cs = CPU(ppc_env_get_cpu(env));
 266
 267    env->fpscr |= 1 << FPSCR_XX;
 268    /* Update the floating-point exception summary */
 269    env->fpscr |= FP_FX;
 270    if (fpscr_xe != 0) {
 271        /* Update the floating-point enabled exception summary */
 272        env->fpscr |= 1 << FPSCR_FEX;
 273        /* We must update the target FPR before raising the exception */
 274        cs->exception_index = POWERPC_EXCP_PROGRAM;
 275        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
 276    }
 277}
 278
 279static inline void fpscr_set_rounding_mode(CPUPPCState *env)
 280{
 281    int rnd_type;
 282
 283    /* Set rounding mode */
 284    switch (fpscr_rn) {
 285    case 0:
 286        /* Best approximation (round to nearest) */
 287        rnd_type = float_round_nearest_even;
 288        break;
 289    case 1:
 290        /* Smaller magnitude (round toward zero) */
 291        rnd_type = float_round_to_zero;
 292        break;
 293    case 2:
 294        /* Round toward +infinite */
 295        rnd_type = float_round_up;
 296        break;
 297    default:
 298    case 3:
 299        /* Round toward -infinite */
 300        rnd_type = float_round_down;
 301        break;
 302    }
 303    set_float_rounding_mode(rnd_type, &env->fp_status);
 304}
 305
 306void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
 307{
 308    int prev;
 309
 310    prev = (env->fpscr >> bit) & 1;
 311    env->fpscr &= ~(1 << bit);
 312    if (prev == 1) {
 313        switch (bit) {
 314        case FPSCR_RN1:
 315        case FPSCR_RN:
 316            fpscr_set_rounding_mode(env);
 317            break;
 318        default:
 319            break;
 320        }
 321    }
 322}
 323
 324void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
 325{
 326    CPUState *cs = CPU(ppc_env_get_cpu(env));
 327    int prev;
 328
 329    prev = (env->fpscr >> bit) & 1;
 330    env->fpscr |= 1 << bit;
 331    if (prev == 0) {
 332        switch (bit) {
 333        case FPSCR_VX:
 334            env->fpscr |= FP_FX;
 335            if (fpscr_ve) {
 336                goto raise_ve;
 337            }
 338            break;
 339        case FPSCR_OX:
 340            env->fpscr |= FP_FX;
 341            if (fpscr_oe) {
 342                goto raise_oe;
 343            }
 344            break;
 345        case FPSCR_UX:
 346            env->fpscr |= FP_FX;
 347            if (fpscr_ue) {
 348                goto raise_ue;
 349            }
 350            break;
 351        case FPSCR_ZX:
 352            env->fpscr |= FP_FX;
 353            if (fpscr_ze) {
 354                goto raise_ze;
 355            }
 356            break;
 357        case FPSCR_XX:
 358            env->fpscr |= FP_FX;
 359            if (fpscr_xe) {
 360                goto raise_xe;
 361            }
 362            break;
 363        case FPSCR_VXSNAN:
 364        case FPSCR_VXISI:
 365        case FPSCR_VXIDI:
 366        case FPSCR_VXZDZ:
 367        case FPSCR_VXIMZ:
 368        case FPSCR_VXVC:
 369        case FPSCR_VXSOFT:
 370        case FPSCR_VXSQRT:
 371        case FPSCR_VXCVI:
 372            env->fpscr |= 1 << FPSCR_VX;
 373            env->fpscr |= FP_FX;
 374            if (fpscr_ve != 0) {
 375                goto raise_ve;
 376            }
 377            break;
 378        case FPSCR_VE:
 379            if (fpscr_vx != 0) {
 380            raise_ve:
 381                env->error_code = POWERPC_EXCP_FP;
 382                if (fpscr_vxsnan) {
 383                    env->error_code |= POWERPC_EXCP_FP_VXSNAN;
 384                }
 385                if (fpscr_vxisi) {
 386                    env->error_code |= POWERPC_EXCP_FP_VXISI;
 387                }
 388                if (fpscr_vxidi) {
 389                    env->error_code |= POWERPC_EXCP_FP_VXIDI;
 390                }
 391                if (fpscr_vxzdz) {
 392                    env->error_code |= POWERPC_EXCP_FP_VXZDZ;
 393                }
 394                if (fpscr_vximz) {
 395                    env->error_code |= POWERPC_EXCP_FP_VXIMZ;
 396                }
 397                if (fpscr_vxvc) {
 398                    env->error_code |= POWERPC_EXCP_FP_VXVC;
 399                }
 400                if (fpscr_vxsoft) {
 401                    env->error_code |= POWERPC_EXCP_FP_VXSOFT;
 402                }
 403                if (fpscr_vxsqrt) {
 404                    env->error_code |= POWERPC_EXCP_FP_VXSQRT;
 405                }
 406                if (fpscr_vxcvi) {
 407                    env->error_code |= POWERPC_EXCP_FP_VXCVI;
 408                }
 409                goto raise_excp;
 410            }
 411            break;
 412        case FPSCR_OE:
 413            if (fpscr_ox != 0) {
 414            raise_oe:
 415                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
 416                goto raise_excp;
 417            }
 418            break;
 419        case FPSCR_UE:
 420            if (fpscr_ux != 0) {
 421            raise_ue:
 422                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
 423                goto raise_excp;
 424            }
 425            break;
 426        case FPSCR_ZE:
 427            if (fpscr_zx != 0) {
 428            raise_ze:
 429                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
 430                goto raise_excp;
 431            }
 432            break;
 433        case FPSCR_XE:
 434            if (fpscr_xx != 0) {
 435            raise_xe:
 436                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
 437                goto raise_excp;
 438            }
 439            break;
 440        case FPSCR_RN1:
 441        case FPSCR_RN:
 442            fpscr_set_rounding_mode(env);
 443            break;
 444        default:
 445            break;
 446        raise_excp:
 447            /* Update the floating-point enabled exception summary */
 448            env->fpscr |= 1 << FPSCR_FEX;
 449            /* We have to update Rc1 before raising the exception */
 450            cs->exception_index = POWERPC_EXCP_PROGRAM;
 451            break;
 452        }
 453    }
 454}
 455
 456void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
 457{
 458    CPUState *cs = CPU(ppc_env_get_cpu(env));
 459    target_ulong prev, new;
 460    int i;
 461
 462    prev = env->fpscr;
 463    new = (target_ulong)arg;
 464    new &= ~0x60000000LL;
 465    new |= prev & 0x60000000LL;
 466    for (i = 0; i < sizeof(target_ulong) * 2; i++) {
 467        if (mask & (1 << i)) {
 468            env->fpscr &= ~(0xFLL << (4 * i));
 469            env->fpscr |= new & (0xFLL << (4 * i));
 470        }
 471    }
 472    /* Update VX and FEX */
 473    if (fpscr_ix != 0) {
 474        env->fpscr |= 1 << FPSCR_VX;
 475    } else {
 476        env->fpscr &= ~(1 << FPSCR_VX);
 477    }
 478    if ((fpscr_ex & fpscr_eex) != 0) {
 479        env->fpscr |= 1 << FPSCR_FEX;
 480        cs->exception_index = POWERPC_EXCP_PROGRAM;
 481        /* XXX: we should compute it properly */
 482        env->error_code = POWERPC_EXCP_FP;
 483    } else {
 484        env->fpscr &= ~(1 << FPSCR_FEX);
 485    }
 486    fpscr_set_rounding_mode(env);
 487}
 488
 489void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
 490{
 491    helper_store_fpscr(env, arg, mask);
 492}
 493
 494void helper_float_check_status(CPUPPCState *env)
 495{
 496    CPUState *cs = CPU(ppc_env_get_cpu(env));
 497    int status = get_float_exception_flags(&env->fp_status);
 498
 499    if (status & float_flag_divbyzero) {
 500        float_zero_divide_excp(env);
 501    } else if (status & float_flag_overflow) {
 502        float_overflow_excp(env);
 503    } else if (status & float_flag_underflow) {
 504        float_underflow_excp(env);
 505    } else if (status & float_flag_inexact) {
 506        float_inexact_excp(env);
 507    }
 508
 509    if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
 510        (env->error_code & POWERPC_EXCP_FP)) {
 511        /* Differred floating-point exception after target FPR update */
 512        if (msr_fe0 != 0 || msr_fe1 != 0) {
 513            helper_raise_exception_err(env, cs->exception_index,
 514                                       env->error_code);
 515        }
 516    }
 517}
 518
 519void helper_reset_fpstatus(CPUPPCState *env)
 520{
 521    set_float_exception_flags(0, &env->fp_status);
 522}
 523
 524/* fadd - fadd. */
 525uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 526{
 527    CPU_DoubleU farg1, farg2;
 528
 529    farg1.ll = arg1;
 530    farg2.ll = arg2;
 531
 532    if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
 533                 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
 534        /* Magnitude subtraction of infinities */
 535        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 536    } else {
 537        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 538                     float64_is_signaling_nan(farg2.d))) {
 539            /* sNaN addition */
 540            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 541        }
 542        farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
 543    }
 544
 545    return farg1.ll;
 546}
 547
 548/* fsub - fsub. */
 549uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 550{
 551    CPU_DoubleU farg1, farg2;
 552
 553    farg1.ll = arg1;
 554    farg2.ll = arg2;
 555
 556    if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
 557                 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
 558        /* Magnitude subtraction of infinities */
 559        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 560    } else {
 561        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 562                     float64_is_signaling_nan(farg2.d))) {
 563            /* sNaN subtraction */
 564            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 565        }
 566        farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
 567    }
 568
 569    return farg1.ll;
 570}
 571
 572/* fmul - fmul. */
 573uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 574{
 575    CPU_DoubleU farg1, farg2;
 576
 577    farg1.ll = arg1;
 578    farg2.ll = arg2;
 579
 580    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 581                 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 582        /* Multiplication of zero by infinity */
 583        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 584    } else {
 585        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 586                     float64_is_signaling_nan(farg2.d))) {
 587            /* sNaN multiplication */
 588            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 589        }
 590        farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
 591    }
 592
 593    return farg1.ll;
 594}
 595
 596/* fdiv - fdiv. */
 597uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 598{
 599    CPU_DoubleU farg1, farg2;
 600
 601    farg1.ll = arg1;
 602    farg2.ll = arg2;
 603
 604    if (unlikely(float64_is_infinity(farg1.d) &&
 605                 float64_is_infinity(farg2.d))) {
 606        /* Division of infinity by infinity */
 607        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
 608    } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
 609        /* Division of zero by zero */
 610        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
 611    } else {
 612        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 613                     float64_is_signaling_nan(farg2.d))) {
 614            /* sNaN division */
 615            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 616        }
 617        farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
 618    }
 619
 620    return farg1.ll;
 621}
 622
 623
 624#define FPU_FCTI(op, cvt, nanval)                                      \
 625uint64_t helper_##op(CPUPPCState *env, uint64_t arg)                   \
 626{                                                                      \
 627    CPU_DoubleU farg;                                                  \
 628                                                                       \
 629    farg.ll = arg;                                                     \
 630    farg.ll = float64_to_##cvt(farg.d, &env->fp_status);               \
 631                                                                       \
 632    if (unlikely(env->fp_status.float_exception_flags)) {              \
 633        if (float64_is_any_nan(arg)) {                                 \
 634            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
 635            if (float64_is_signaling_nan(arg)) {                       \
 636                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
 637            }                                                          \
 638            farg.ll = nanval;                                          \
 639        } else if (env->fp_status.float_exception_flags &              \
 640                   float_flag_invalid) {                               \
 641            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
 642        }                                                              \
 643        helper_float_check_status(env);                                \
 644    }                                                                  \
 645    return farg.ll;                                                    \
 646 }
 647
 648FPU_FCTI(fctiw, int32, 0x80000000U)
 649FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
 650FPU_FCTI(fctiwu, uint32, 0x00000000U)
 651FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
 652FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
 653FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
 654FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
 655FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
 656
 657#define FPU_FCFI(op, cvtr, is_single)                      \
 658uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
 659{                                                          \
 660    CPU_DoubleU farg;                                      \
 661                                                           \
 662    if (is_single) {                                       \
 663        float32 tmp = cvtr(arg, &env->fp_status);          \
 664        farg.d = float32_to_float64(tmp, &env->fp_status); \
 665    } else {                                               \
 666        farg.d = cvtr(arg, &env->fp_status);               \
 667    }                                                      \
 668    helper_float_check_status(env);                        \
 669    return farg.ll;                                        \
 670}
 671
 672FPU_FCFI(fcfid, int64_to_float64, 0)
 673FPU_FCFI(fcfids, int64_to_float32, 1)
 674FPU_FCFI(fcfidu, uint64_to_float64, 0)
 675FPU_FCFI(fcfidus, uint64_to_float32, 1)
 676
 677static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
 678                              int rounding_mode)
 679{
 680    CPU_DoubleU farg;
 681
 682    farg.ll = arg;
 683
 684    if (unlikely(float64_is_signaling_nan(farg.d))) {
 685        /* sNaN round */
 686        fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 687        farg.ll = arg | 0x0008000000000000ULL;
 688    } else {
 689        int inexact = get_float_exception_flags(&env->fp_status) &
 690                      float_flag_inexact;
 691        set_float_rounding_mode(rounding_mode, &env->fp_status);
 692        farg.ll = float64_round_to_int(farg.d, &env->fp_status);
 693        /* Restore rounding mode from FPSCR */
 694        fpscr_set_rounding_mode(env);
 695
 696        /* fri* does not set FPSCR[XX] */
 697        if (!inexact) {
 698            env->fp_status.float_exception_flags &= ~float_flag_inexact;
 699        }
 700    }
 701    helper_float_check_status(env);
 702    return farg.ll;
 703}
 704
 705uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
 706{
 707    return do_fri(env, arg, float_round_ties_away);
 708}
 709
 710uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
 711{
 712    return do_fri(env, arg, float_round_to_zero);
 713}
 714
 715uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
 716{
 717    return do_fri(env, arg, float_round_up);
 718}
 719
 720uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
 721{
 722    return do_fri(env, arg, float_round_down);
 723}
 724
 725/* fmadd - fmadd. */
 726uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 727                      uint64_t arg3)
 728{
 729    CPU_DoubleU farg1, farg2, farg3;
 730
 731    farg1.ll = arg1;
 732    farg2.ll = arg2;
 733    farg3.ll = arg3;
 734
 735    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 736                 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 737        /* Multiplication of zero by infinity */
 738        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 739    } else {
 740        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 741                     float64_is_signaling_nan(farg2.d) ||
 742                     float64_is_signaling_nan(farg3.d))) {
 743            /* sNaN operation */
 744            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 745        }
 746        /* This is the way the PowerPC specification defines it */
 747        float128 ft0_128, ft1_128;
 748
 749        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 750        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 751        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 752        if (unlikely(float128_is_infinity(ft0_128) &&
 753                     float64_is_infinity(farg3.d) &&
 754                     float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
 755            /* Magnitude subtraction of infinities */
 756            farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 757        } else {
 758            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 759            ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
 760            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 761        }
 762    }
 763
 764    return farg1.ll;
 765}
 766
 767/* fmsub - fmsub. */
 768uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 769                      uint64_t arg3)
 770{
 771    CPU_DoubleU farg1, farg2, farg3;
 772
 773    farg1.ll = arg1;
 774    farg2.ll = arg2;
 775    farg3.ll = arg3;
 776
 777    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 778                 (float64_is_zero(farg1.d) &&
 779                  float64_is_infinity(farg2.d)))) {
 780        /* Multiplication of zero by infinity */
 781        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 782    } else {
 783        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 784                     float64_is_signaling_nan(farg2.d) ||
 785                     float64_is_signaling_nan(farg3.d))) {
 786            /* sNaN operation */
 787            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 788        }
 789        /* This is the way the PowerPC specification defines it */
 790        float128 ft0_128, ft1_128;
 791
 792        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 793        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 794        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 795        if (unlikely(float128_is_infinity(ft0_128) &&
 796                     float64_is_infinity(farg3.d) &&
 797                     float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
 798            /* Magnitude subtraction of infinities */
 799            farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 800        } else {
 801            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 802            ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
 803            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 804        }
 805    }
 806    return farg1.ll;
 807}
 808
 809/* fnmadd - fnmadd. */
 810uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 811                       uint64_t arg3)
 812{
 813    CPU_DoubleU farg1, farg2, farg3;
 814
 815    farg1.ll = arg1;
 816    farg2.ll = arg2;
 817    farg3.ll = arg3;
 818
 819    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 820                 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 821        /* Multiplication of zero by infinity */
 822        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 823    } else {
 824        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 825                     float64_is_signaling_nan(farg2.d) ||
 826                     float64_is_signaling_nan(farg3.d))) {
 827            /* sNaN operation */
 828            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 829        }
 830        /* This is the way the PowerPC specification defines it */
 831        float128 ft0_128, ft1_128;
 832
 833        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 834        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 835        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 836        if (unlikely(float128_is_infinity(ft0_128) &&
 837                     float64_is_infinity(farg3.d) &&
 838                     float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
 839            /* Magnitude subtraction of infinities */
 840            farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 841        } else {
 842            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 843            ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
 844            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 845        }
 846        if (likely(!float64_is_any_nan(farg1.d))) {
 847            farg1.d = float64_chs(farg1.d);
 848        }
 849    }
 850    return farg1.ll;
 851}
 852
 853/* fnmsub - fnmsub. */
 854uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 855                       uint64_t arg3)
 856{
 857    CPU_DoubleU farg1, farg2, farg3;
 858
 859    farg1.ll = arg1;
 860    farg2.ll = arg2;
 861    farg3.ll = arg3;
 862
 863    if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 864                 (float64_is_zero(farg1.d) &&
 865                  float64_is_infinity(farg2.d)))) {
 866        /* Multiplication of zero by infinity */
 867        farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
 868    } else {
 869        if (unlikely(float64_is_signaling_nan(farg1.d) ||
 870                     float64_is_signaling_nan(farg2.d) ||
 871                     float64_is_signaling_nan(farg3.d))) {
 872            /* sNaN operation */
 873            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 874        }
 875        /* This is the way the PowerPC specification defines it */
 876        float128 ft0_128, ft1_128;
 877
 878        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 879        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 880        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 881        if (unlikely(float128_is_infinity(ft0_128) &&
 882                     float64_is_infinity(farg3.d) &&
 883                     float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
 884            /* Magnitude subtraction of infinities */
 885            farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
 886        } else {
 887            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 888            ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
 889            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 890        }
 891        if (likely(!float64_is_any_nan(farg1.d))) {
 892            farg1.d = float64_chs(farg1.d);
 893        }
 894    }
 895    return farg1.ll;
 896}
 897
 898/* frsp - frsp. */
 899uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
 900{
 901    CPU_DoubleU farg;
 902    float32 f32;
 903
 904    farg.ll = arg;
 905
 906    if (unlikely(float64_is_signaling_nan(farg.d))) {
 907        /* sNaN square root */
 908        fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 909    }
 910    f32 = float64_to_float32(farg.d, &env->fp_status);
 911    farg.d = float32_to_float64(f32, &env->fp_status);
 912
 913    return farg.ll;
 914}
 915
 916/* fsqrt - fsqrt. */
 917uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
 918{
 919    CPU_DoubleU farg;
 920
 921    farg.ll = arg;
 922
 923    if (unlikely(float64_is_any_nan(farg.d))) {
 924        if (unlikely(float64_is_signaling_nan(farg.d))) {
 925            /* sNaN reciprocal square root */
 926            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 927            farg.ll = float64_snan_to_qnan(farg.ll);
 928        }
 929    } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
 930        /* Square root of a negative nonzero number */
 931        farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
 932    } else {
 933        farg.d = float64_sqrt(farg.d, &env->fp_status);
 934    }
 935    return farg.ll;
 936}
 937
 938/* fre - fre. */
 939uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
 940{
 941    CPU_DoubleU farg;
 942
 943    farg.ll = arg;
 944
 945    if (unlikely(float64_is_signaling_nan(farg.d))) {
 946        /* sNaN reciprocal */
 947        fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 948    }
 949    farg.d = float64_div(float64_one, farg.d, &env->fp_status);
 950    return farg.d;
 951}
 952
 953/* fres - fres. */
 954uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
 955{
 956    CPU_DoubleU farg;
 957    float32 f32;
 958
 959    farg.ll = arg;
 960
 961    if (unlikely(float64_is_signaling_nan(farg.d))) {
 962        /* sNaN reciprocal */
 963        fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 964    }
 965    farg.d = float64_div(float64_one, farg.d, &env->fp_status);
 966    f32 = float64_to_float32(farg.d, &env->fp_status);
 967    farg.d = float32_to_float64(f32, &env->fp_status);
 968
 969    return farg.ll;
 970}
 971
 972/* frsqrte  - frsqrte. */
 973uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
 974{
 975    CPU_DoubleU farg;
 976
 977    farg.ll = arg;
 978
 979    if (unlikely(float64_is_any_nan(farg.d))) {
 980        if (unlikely(float64_is_signaling_nan(farg.d))) {
 981            /* sNaN reciprocal square root */
 982            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
 983            farg.ll = float64_snan_to_qnan(farg.ll);
 984        }
 985    } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
 986        /* Reciprocal square root of a negative nonzero number */
 987        farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
 988    } else {
 989        farg.d = float64_sqrt(farg.d, &env->fp_status);
 990        farg.d = float64_div(float64_one, farg.d, &env->fp_status);
 991    }
 992
 993    return farg.ll;
 994}
 995
 996/* fsel - fsel. */
 997uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 998                     uint64_t arg3)
 999{
1000    CPU_DoubleU farg1;
1001
1002    farg1.ll = arg1;
1003
1004    if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1005        !float64_is_any_nan(farg1.d)) {
1006        return arg2;
1007    } else {
1008        return arg3;
1009    }
1010}
1011
1012uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1013{
1014    int fe_flag = 0;
1015    int fg_flag = 0;
1016
1017    if (unlikely(float64_is_infinity(fra) ||
1018                 float64_is_infinity(frb) ||
1019                 float64_is_zero(frb))) {
1020        fe_flag = 1;
1021        fg_flag = 1;
1022    } else {
1023        int e_a = ppc_float64_get_unbiased_exp(fra);
1024        int e_b = ppc_float64_get_unbiased_exp(frb);
1025
1026        if (unlikely(float64_is_any_nan(fra) ||
1027                     float64_is_any_nan(frb))) {
1028            fe_flag = 1;
1029        } else if ((e_b <= -1022) || (e_b >= 1021)) {
1030            fe_flag = 1;
1031        } else if (!float64_is_zero(fra) &&
1032                   (((e_a - e_b) >= 1023) ||
1033                    ((e_a - e_b) <= -1021) ||
1034                    (e_a <= -970))) {
1035            fe_flag = 1;
1036        }
1037
1038        if (unlikely(float64_is_zero_or_denormal(frb))) {
1039            /* XB is not zero because of the above check and */
1040            /* so must be denormalized.                      */
1041            fg_flag = 1;
1042        }
1043    }
1044
1045    return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1046}
1047
1048uint32_t helper_ftsqrt(uint64_t frb)
1049{
1050    int fe_flag = 0;
1051    int fg_flag = 0;
1052
1053    if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1054        fe_flag = 1;
1055        fg_flag = 1;
1056    } else {
1057        int e_b = ppc_float64_get_unbiased_exp(frb);
1058
1059        if (unlikely(float64_is_any_nan(frb))) {
1060            fe_flag = 1;
1061        } else if (unlikely(float64_is_zero(frb))) {
1062            fe_flag = 1;
1063        } else if (unlikely(float64_is_neg(frb))) {
1064            fe_flag = 1;
1065        } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
1066            fe_flag = 1;
1067        }
1068
1069        if (unlikely(float64_is_zero_or_denormal(frb))) {
1070            /* XB is not zero because of the above check and */
1071            /* therefore must be denormalized.               */
1072            fg_flag = 1;
1073        }
1074    }
1075
1076    return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1077}
1078
1079void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1080                  uint32_t crfD)
1081{
1082    CPU_DoubleU farg1, farg2;
1083    uint32_t ret = 0;
1084
1085    farg1.ll = arg1;
1086    farg2.ll = arg2;
1087
1088    if (unlikely(float64_is_any_nan(farg1.d) ||
1089                 float64_is_any_nan(farg2.d))) {
1090        ret = 0x01UL;
1091    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1092        ret = 0x08UL;
1093    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1094        ret = 0x04UL;
1095    } else {
1096        ret = 0x02UL;
1097    }
1098
1099    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1100    env->fpscr |= ret << FPSCR_FPRF;
1101    env->crf[crfD] = ret;
1102    if (unlikely(ret == 0x01UL
1103                 && (float64_is_signaling_nan(farg1.d) ||
1104                     float64_is_signaling_nan(farg2.d)))) {
1105        /* sNaN comparison */
1106        fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1107    }
1108}
1109
1110void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1111                  uint32_t crfD)
1112{
1113    CPU_DoubleU farg1, farg2;
1114    uint32_t ret = 0;
1115
1116    farg1.ll = arg1;
1117    farg2.ll = arg2;
1118
1119    if (unlikely(float64_is_any_nan(farg1.d) ||
1120                 float64_is_any_nan(farg2.d))) {
1121        ret = 0x01UL;
1122    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1123        ret = 0x08UL;
1124    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1125        ret = 0x04UL;
1126    } else {
1127        ret = 0x02UL;
1128    }
1129
1130    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1131    env->fpscr |= ret << FPSCR_FPRF;
1132    env->crf[crfD] = ret;
1133    if (unlikely(ret == 0x01UL)) {
1134        if (float64_is_signaling_nan(farg1.d) ||
1135            float64_is_signaling_nan(farg2.d)) {
1136            /* sNaN comparison */
1137            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1138                                  POWERPC_EXCP_FP_VXVC, 1);
1139        } else {
1140            /* qNaN comparison */
1141            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1);
1142        }
1143    }
1144}
1145
1146/* Single-precision floating-point conversions */
1147static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1148{
1149    CPU_FloatU u;
1150
1151    u.f = int32_to_float32(val, &env->vec_status);
1152
1153    return u.l;
1154}
1155
1156static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1157{
1158    CPU_FloatU u;
1159
1160    u.f = uint32_to_float32(val, &env->vec_status);
1161
1162    return u.l;
1163}
1164
1165static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1166{
1167    CPU_FloatU u;
1168
1169    u.l = val;
1170    /* NaN are not treated the same way IEEE 754 does */
1171    if (unlikely(float32_is_quiet_nan(u.f))) {
1172        return 0;
1173    }
1174
1175    return float32_to_int32(u.f, &env->vec_status);
1176}
1177
1178static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1179{
1180    CPU_FloatU u;
1181
1182    u.l = val;
1183    /* NaN are not treated the same way IEEE 754 does */
1184    if (unlikely(float32_is_quiet_nan(u.f))) {
1185        return 0;
1186    }
1187
1188    return float32_to_uint32(u.f, &env->vec_status);
1189}
1190
1191static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1192{
1193    CPU_FloatU u;
1194
1195    u.l = val;
1196    /* NaN are not treated the same way IEEE 754 does */
1197    if (unlikely(float32_is_quiet_nan(u.f))) {
1198        return 0;
1199    }
1200
1201    return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1202}
1203
1204static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1205{
1206    CPU_FloatU u;
1207
1208    u.l = val;
1209    /* NaN are not treated the same way IEEE 754 does */
1210    if (unlikely(float32_is_quiet_nan(u.f))) {
1211        return 0;
1212    }
1213
1214    return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1215}
1216
1217static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1218{
1219    CPU_FloatU u;
1220    float32 tmp;
1221
1222    u.f = int32_to_float32(val, &env->vec_status);
1223    tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1224    u.f = float32_div(u.f, tmp, &env->vec_status);
1225
1226    return u.l;
1227}
1228
1229static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1230{
1231    CPU_FloatU u;
1232    float32 tmp;
1233
1234    u.f = uint32_to_float32(val, &env->vec_status);
1235    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1236    u.f = float32_div(u.f, tmp, &env->vec_status);
1237
1238    return u.l;
1239}
1240
1241static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1242{
1243    CPU_FloatU u;
1244    float32 tmp;
1245
1246    u.l = val;
1247    /* NaN are not treated the same way IEEE 754 does */
1248    if (unlikely(float32_is_quiet_nan(u.f))) {
1249        return 0;
1250    }
1251    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1252    u.f = float32_mul(u.f, tmp, &env->vec_status);
1253
1254    return float32_to_int32(u.f, &env->vec_status);
1255}
1256
1257static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1258{
1259    CPU_FloatU u;
1260    float32 tmp;
1261
1262    u.l = val;
1263    /* NaN are not treated the same way IEEE 754 does */
1264    if (unlikely(float32_is_quiet_nan(u.f))) {
1265        return 0;
1266    }
1267    tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1268    u.f = float32_mul(u.f, tmp, &env->vec_status);
1269
1270    return float32_to_uint32(u.f, &env->vec_status);
1271}
1272
1273#define HELPER_SPE_SINGLE_CONV(name)                              \
1274    uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1275    {                                                             \
1276        return e##name(env, val);                                 \
1277    }
1278/* efscfsi */
1279HELPER_SPE_SINGLE_CONV(fscfsi);
1280/* efscfui */
1281HELPER_SPE_SINGLE_CONV(fscfui);
1282/* efscfuf */
1283HELPER_SPE_SINGLE_CONV(fscfuf);
1284/* efscfsf */
1285HELPER_SPE_SINGLE_CONV(fscfsf);
1286/* efsctsi */
1287HELPER_SPE_SINGLE_CONV(fsctsi);
1288/* efsctui */
1289HELPER_SPE_SINGLE_CONV(fsctui);
1290/* efsctsiz */
1291HELPER_SPE_SINGLE_CONV(fsctsiz);
1292/* efsctuiz */
1293HELPER_SPE_SINGLE_CONV(fsctuiz);
1294/* efsctsf */
1295HELPER_SPE_SINGLE_CONV(fsctsf);
1296/* efsctuf */
1297HELPER_SPE_SINGLE_CONV(fsctuf);
1298
1299#define HELPER_SPE_VECTOR_CONV(name)                            \
1300    uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1301    {                                                           \
1302        return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1303            (uint64_t)e##name(env, val);                        \
1304    }
1305/* evfscfsi */
1306HELPER_SPE_VECTOR_CONV(fscfsi);
1307/* evfscfui */
1308HELPER_SPE_VECTOR_CONV(fscfui);
1309/* evfscfuf */
1310HELPER_SPE_VECTOR_CONV(fscfuf);
1311/* evfscfsf */
1312HELPER_SPE_VECTOR_CONV(fscfsf);
1313/* evfsctsi */
1314HELPER_SPE_VECTOR_CONV(fsctsi);
1315/* evfsctui */
1316HELPER_SPE_VECTOR_CONV(fsctui);
1317/* evfsctsiz */
1318HELPER_SPE_VECTOR_CONV(fsctsiz);
1319/* evfsctuiz */
1320HELPER_SPE_VECTOR_CONV(fsctuiz);
1321/* evfsctsf */
1322HELPER_SPE_VECTOR_CONV(fsctsf);
1323/* evfsctuf */
1324HELPER_SPE_VECTOR_CONV(fsctuf);
1325
1326/* Single-precision floating-point arithmetic */
1327static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1328{
1329    CPU_FloatU u1, u2;
1330
1331    u1.l = op1;
1332    u2.l = op2;
1333    u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1334    return u1.l;
1335}
1336
1337static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1338{
1339    CPU_FloatU u1, u2;
1340
1341    u1.l = op1;
1342    u2.l = op2;
1343    u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1344    return u1.l;
1345}
1346
1347static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1348{
1349    CPU_FloatU u1, u2;
1350
1351    u1.l = op1;
1352    u2.l = op2;
1353    u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1354    return u1.l;
1355}
1356
1357static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1358{
1359    CPU_FloatU u1, u2;
1360
1361    u1.l = op1;
1362    u2.l = op2;
1363    u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1364    return u1.l;
1365}
1366
1367#define HELPER_SPE_SINGLE_ARITH(name)                                   \
1368    uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1369    {                                                                   \
1370        return e##name(env, op1, op2);                                  \
1371    }
1372/* efsadd */
1373HELPER_SPE_SINGLE_ARITH(fsadd);
1374/* efssub */
1375HELPER_SPE_SINGLE_ARITH(fssub);
1376/* efsmul */
1377HELPER_SPE_SINGLE_ARITH(fsmul);
1378/* efsdiv */
1379HELPER_SPE_SINGLE_ARITH(fsdiv);
1380
1381#define HELPER_SPE_VECTOR_ARITH(name)                                   \
1382    uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1383    {                                                                   \
1384        return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1385            (uint64_t)e##name(env, op1, op2);                           \
1386    }
1387/* evfsadd */
1388HELPER_SPE_VECTOR_ARITH(fsadd);
1389/* evfssub */
1390HELPER_SPE_VECTOR_ARITH(fssub);
1391/* evfsmul */
1392HELPER_SPE_VECTOR_ARITH(fsmul);
1393/* evfsdiv */
1394HELPER_SPE_VECTOR_ARITH(fsdiv);
1395
1396/* Single-precision floating-point comparisons */
1397static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1398{
1399    CPU_FloatU u1, u2;
1400
1401    u1.l = op1;
1402    u2.l = op2;
1403    return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1404}
1405
1406static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1407{
1408    CPU_FloatU u1, u2;
1409
1410    u1.l = op1;
1411    u2.l = op2;
1412    return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1413}
1414
1415static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1416{
1417    CPU_FloatU u1, u2;
1418
1419    u1.l = op1;
1420    u2.l = op2;
1421    return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1422}
1423
1424static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1425{
1426    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1427    return efscmplt(env, op1, op2);
1428}
1429
1430static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1431{
1432    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1433    return efscmpgt(env, op1, op2);
1434}
1435
1436static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1437{
1438    /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1439    return efscmpeq(env, op1, op2);
1440}
1441
1442#define HELPER_SINGLE_SPE_CMP(name)                                     \
1443    uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1444    {                                                                   \
1445        return e##name(env, op1, op2) << 2;                             \
1446    }
1447/* efststlt */
1448HELPER_SINGLE_SPE_CMP(fststlt);
1449/* efststgt */
1450HELPER_SINGLE_SPE_CMP(fststgt);
1451/* efststeq */
1452HELPER_SINGLE_SPE_CMP(fststeq);
1453/* efscmplt */
1454HELPER_SINGLE_SPE_CMP(fscmplt);
1455/* efscmpgt */
1456HELPER_SINGLE_SPE_CMP(fscmpgt);
1457/* efscmpeq */
1458HELPER_SINGLE_SPE_CMP(fscmpeq);
1459
1460static inline uint32_t evcmp_merge(int t0, int t1)
1461{
1462    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1463}
1464
1465#define HELPER_VECTOR_SPE_CMP(name)                                     \
1466    uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1467    {                                                                   \
1468        return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1469                           e##name(env, op1, op2));                     \
1470    }
1471/* evfststlt */
1472HELPER_VECTOR_SPE_CMP(fststlt);
1473/* evfststgt */
1474HELPER_VECTOR_SPE_CMP(fststgt);
1475/* evfststeq */
1476HELPER_VECTOR_SPE_CMP(fststeq);
1477/* evfscmplt */
1478HELPER_VECTOR_SPE_CMP(fscmplt);
1479/* evfscmpgt */
1480HELPER_VECTOR_SPE_CMP(fscmpgt);
1481/* evfscmpeq */
1482HELPER_VECTOR_SPE_CMP(fscmpeq);
1483
1484/* Double-precision floating-point conversion */
1485uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1486{
1487    CPU_DoubleU u;
1488
1489    u.d = int32_to_float64(val, &env->vec_status);
1490
1491    return u.ll;
1492}
1493
1494uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1495{
1496    CPU_DoubleU u;
1497
1498    u.d = int64_to_float64(val, &env->vec_status);
1499
1500    return u.ll;
1501}
1502
1503uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1504{
1505    CPU_DoubleU u;
1506
1507    u.d = uint32_to_float64(val, &env->vec_status);
1508
1509    return u.ll;
1510}
1511
1512uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1513{
1514    CPU_DoubleU u;
1515
1516    u.d = uint64_to_float64(val, &env->vec_status);
1517
1518    return u.ll;
1519}
1520
1521uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1522{
1523    CPU_DoubleU u;
1524
1525    u.ll = val;
1526    /* NaN are not treated the same way IEEE 754 does */
1527    if (unlikely(float64_is_any_nan(u.d))) {
1528        return 0;
1529    }
1530
1531    return float64_to_int32(u.d, &env->vec_status);
1532}
1533
1534uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1535{
1536    CPU_DoubleU u;
1537
1538    u.ll = val;
1539    /* NaN are not treated the same way IEEE 754 does */
1540    if (unlikely(float64_is_any_nan(u.d))) {
1541        return 0;
1542    }
1543
1544    return float64_to_uint32(u.d, &env->vec_status);
1545}
1546
1547uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1548{
1549    CPU_DoubleU u;
1550
1551    u.ll = val;
1552    /* NaN are not treated the same way IEEE 754 does */
1553    if (unlikely(float64_is_any_nan(u.d))) {
1554        return 0;
1555    }
1556
1557    return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1558}
1559
1560uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1561{
1562    CPU_DoubleU u;
1563
1564    u.ll = val;
1565    /* NaN are not treated the same way IEEE 754 does */
1566    if (unlikely(float64_is_any_nan(u.d))) {
1567        return 0;
1568    }
1569
1570    return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1571}
1572
1573uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1574{
1575    CPU_DoubleU u;
1576
1577    u.ll = val;
1578    /* NaN are not treated the same way IEEE 754 does */
1579    if (unlikely(float64_is_any_nan(u.d))) {
1580        return 0;
1581    }
1582
1583    return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1584}
1585
1586uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1587{
1588    CPU_DoubleU u;
1589
1590    u.ll = val;
1591    /* NaN are not treated the same way IEEE 754 does */
1592    if (unlikely(float64_is_any_nan(u.d))) {
1593        return 0;
1594    }
1595
1596    return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1597}
1598
1599uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1600{
1601    CPU_DoubleU u;
1602    float64 tmp;
1603
1604    u.d = int32_to_float64(val, &env->vec_status);
1605    tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1606    u.d = float64_div(u.d, tmp, &env->vec_status);
1607
1608    return u.ll;
1609}
1610
1611uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1612{
1613    CPU_DoubleU u;
1614    float64 tmp;
1615
1616    u.d = uint32_to_float64(val, &env->vec_status);
1617    tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1618    u.d = float64_div(u.d, tmp, &env->vec_status);
1619
1620    return u.ll;
1621}
1622
1623uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1624{
1625    CPU_DoubleU u;
1626    float64 tmp;
1627
1628    u.ll = val;
1629    /* NaN are not treated the same way IEEE 754 does */
1630    if (unlikely(float64_is_any_nan(u.d))) {
1631        return 0;
1632    }
1633    tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1634    u.d = float64_mul(u.d, tmp, &env->vec_status);
1635
1636    return float64_to_int32(u.d, &env->vec_status);
1637}
1638
1639uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1640{
1641    CPU_DoubleU u;
1642    float64 tmp;
1643
1644    u.ll = val;
1645    /* NaN are not treated the same way IEEE 754 does */
1646    if (unlikely(float64_is_any_nan(u.d))) {
1647        return 0;
1648    }
1649    tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1650    u.d = float64_mul(u.d, tmp, &env->vec_status);
1651
1652    return float64_to_uint32(u.d, &env->vec_status);
1653}
1654
1655uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1656{
1657    CPU_DoubleU u1;
1658    CPU_FloatU u2;
1659
1660    u1.ll = val;
1661    u2.f = float64_to_float32(u1.d, &env->vec_status);
1662
1663    return u2.l;
1664}
1665
1666uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1667{
1668    CPU_DoubleU u2;
1669    CPU_FloatU u1;
1670
1671    u1.l = val;
1672    u2.d = float32_to_float64(u1.f, &env->vec_status);
1673
1674    return u2.ll;
1675}
1676
1677/* Double precision fixed-point arithmetic */
1678uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1679{
1680    CPU_DoubleU u1, u2;
1681
1682    u1.ll = op1;
1683    u2.ll = op2;
1684    u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1685    return u1.ll;
1686}
1687
1688uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1689{
1690    CPU_DoubleU u1, u2;
1691
1692    u1.ll = op1;
1693    u2.ll = op2;
1694    u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1695    return u1.ll;
1696}
1697
1698uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1699{
1700    CPU_DoubleU u1, u2;
1701
1702    u1.ll = op1;
1703    u2.ll = op2;
1704    u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1705    return u1.ll;
1706}
1707
1708uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1709{
1710    CPU_DoubleU u1, u2;
1711
1712    u1.ll = op1;
1713    u2.ll = op2;
1714    u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1715    return u1.ll;
1716}
1717
1718/* Double precision floating point helpers */
1719uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1720{
1721    CPU_DoubleU u1, u2;
1722
1723    u1.ll = op1;
1724    u2.ll = op2;
1725    return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1726}
1727
1728uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1729{
1730    CPU_DoubleU u1, u2;
1731
1732    u1.ll = op1;
1733    u2.ll = op2;
1734    return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1735}
1736
1737uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1738{
1739    CPU_DoubleU u1, u2;
1740
1741    u1.ll = op1;
1742    u2.ll = op2;
1743    return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1744}
1745
1746uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1747{
1748    /* XXX: TODO: test special values (NaN, infinites, ...) */
1749    return helper_efdtstlt(env, op1, op2);
1750}
1751
1752uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1753{
1754    /* XXX: TODO: test special values (NaN, infinites, ...) */
1755    return helper_efdtstgt(env, op1, op2);
1756}
1757
1758uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1759{
1760    /* XXX: TODO: test special values (NaN, infinites, ...) */
1761    return helper_efdtsteq(env, op1, op2);
1762}
1763
1764#define DECODE_SPLIT(opcode, shift1, nb1, shift2, nb2) \
1765    (((((opcode) >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) |    \
1766     (((opcode) >> (shift2)) & ((1 << (nb2)) - 1)))
1767
1768#define xT(opcode) DECODE_SPLIT(opcode, 0, 1, 21, 5)
1769#define xA(opcode) DECODE_SPLIT(opcode, 2, 1, 16, 5)
1770#define xB(opcode) DECODE_SPLIT(opcode, 1, 1, 11, 5)
1771#define xC(opcode) DECODE_SPLIT(opcode, 3, 1,  6, 5)
1772#define BF(opcode) (((opcode) >> (31-8)) & 7)
1773
1774typedef union _ppc_vsr_t {
1775    uint64_t u64[2];
1776    uint32_t u32[4];
1777    float32 f32[4];
1778    float64 f64[2];
1779} ppc_vsr_t;
1780
1781#if defined(HOST_WORDS_BIGENDIAN)
1782#define VsrW(i) u32[i]
1783#define VsrD(i) u64[i]
1784#else
1785#define VsrW(i) u32[3-(i)]
1786#define VsrD(i) u64[1-(i)]
1787#endif
1788
1789static void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1790{
1791    if (n < 32) {
1792        vsr->VsrD(0) = env->fpr[n];
1793        vsr->VsrD(1) = env->vsr[n];
1794    } else {
1795        vsr->u64[0] = env->avr[n-32].u64[0];
1796        vsr->u64[1] = env->avr[n-32].u64[1];
1797    }
1798}
1799
1800static void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1801{
1802    if (n < 32) {
1803        env->fpr[n] = vsr->VsrD(0);
1804        env->vsr[n] = vsr->VsrD(1);
1805    } else {
1806        env->avr[n-32].u64[0] = vsr->u64[0];
1807        env->avr[n-32].u64[1] = vsr->u64[1];
1808    }
1809}
1810
1811#define float64_to_float64(x, env) x
1812
1813
1814/* VSX_ADD_SUB - VSX floating point add/subract
1815 *   name  - instruction mnemonic
1816 *   op    - operation (add or sub)
1817 *   nels  - number of elements (1, 2 or 4)
1818 *   tp    - type (float32 or float64)
1819 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1820 *   sfprf - set FPRF
1821 */
1822#define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp)                    \
1823void helper_##name(CPUPPCState *env, uint32_t opcode)                        \
1824{                                                                            \
1825    ppc_vsr_t xt, xa, xb;                                                    \
1826    int i;                                                                   \
1827                                                                             \
1828    getVSR(xA(opcode), &xa, env);                                            \
1829    getVSR(xB(opcode), &xb, env);                                            \
1830    getVSR(xT(opcode), &xt, env);                                            \
1831    helper_reset_fpstatus(env);                                              \
1832                                                                             \
1833    for (i = 0; i < nels; i++) {                                             \
1834        float_status tstat = env->fp_status;                                 \
1835        set_float_exception_flags(0, &tstat);                                \
1836        xt.fld = tp##_##op(xa.fld, xb.fld, &tstat);                          \
1837        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1838                                                                             \
1839        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1840            if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {      \
1841                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);    \
1842            } else if (tp##_is_signaling_nan(xa.fld) ||                      \
1843                       tp##_is_signaling_nan(xb.fld)) {                      \
1844                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
1845            }                                                                \
1846        }                                                                    \
1847                                                                             \
1848        if (r2sp) {                                                          \
1849            xt.fld = helper_frsp(env, xt.fld);                               \
1850        }                                                                    \
1851                                                                             \
1852        if (sfprf) {                                                         \
1853            helper_compute_fprf(env, xt.fld);                                \
1854        }                                                                    \
1855    }                                                                        \
1856    putVSR(xT(opcode), &xt, env);                                            \
1857    helper_float_check_status(env);                                          \
1858}
1859
1860VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1861VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1862VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1863VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1864VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1865VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1866VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1867VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1868
1869/* VSX_MUL - VSX floating point multiply
1870 *   op    - instruction mnemonic
1871 *   nels  - number of elements (1, 2 or 4)
1872 *   tp    - type (float32 or float64)
1873 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1874 *   sfprf - set FPRF
1875 */
1876#define VSX_MUL(op, nels, tp, fld, sfprf, r2sp)                              \
1877void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
1878{                                                                            \
1879    ppc_vsr_t xt, xa, xb;                                                    \
1880    int i;                                                                   \
1881                                                                             \
1882    getVSR(xA(opcode), &xa, env);                                            \
1883    getVSR(xB(opcode), &xb, env);                                            \
1884    getVSR(xT(opcode), &xt, env);                                            \
1885    helper_reset_fpstatus(env);                                              \
1886                                                                             \
1887    for (i = 0; i < nels; i++) {                                             \
1888        float_status tstat = env->fp_status;                                 \
1889        set_float_exception_flags(0, &tstat);                                \
1890        xt.fld = tp##_mul(xa.fld, xb.fld, &tstat);                           \
1891        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1892                                                                             \
1893        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1894            if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) ||        \
1895                (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) {        \
1896                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf);    \
1897            } else if (tp##_is_signaling_nan(xa.fld) ||                      \
1898                       tp##_is_signaling_nan(xb.fld)) {                      \
1899                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
1900            }                                                                \
1901        }                                                                    \
1902                                                                             \
1903        if (r2sp) {                                                          \
1904            xt.fld = helper_frsp(env, xt.fld);                               \
1905        }                                                                    \
1906                                                                             \
1907        if (sfprf) {                                                         \
1908            helper_compute_fprf(env, xt.fld);                                \
1909        }                                                                    \
1910    }                                                                        \
1911                                                                             \
1912    putVSR(xT(opcode), &xt, env);                                            \
1913    helper_float_check_status(env);                                          \
1914}
1915
1916VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1917VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1918VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1919VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1920
1921/* VSX_DIV - VSX floating point divide
1922 *   op    - instruction mnemonic
1923 *   nels  - number of elements (1, 2 or 4)
1924 *   tp    - type (float32 or float64)
1925 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1926 *   sfprf - set FPRF
1927 */
1928#define VSX_DIV(op, nels, tp, fld, sfprf, r2sp)                               \
1929void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1930{                                                                             \
1931    ppc_vsr_t xt, xa, xb;                                                     \
1932    int i;                                                                    \
1933                                                                              \
1934    getVSR(xA(opcode), &xa, env);                                             \
1935    getVSR(xB(opcode), &xb, env);                                             \
1936    getVSR(xT(opcode), &xt, env);                                             \
1937    helper_reset_fpstatus(env);                                               \
1938                                                                              \
1939    for (i = 0; i < nels; i++) {                                              \
1940        float_status tstat = env->fp_status;                                  \
1941        set_float_exception_flags(0, &tstat);                                 \
1942        xt.fld = tp##_div(xa.fld, xb.fld, &tstat);                            \
1943        env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1944                                                                              \
1945        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1946            if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {       \
1947                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf);     \
1948            } else if (tp##_is_zero(xa.fld) &&                                \
1949                tp##_is_zero(xb.fld)) {                                       \
1950                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf);     \
1951            } else if (tp##_is_signaling_nan(xa.fld) ||                       \
1952                tp##_is_signaling_nan(xb.fld)) {                              \
1953                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
1954            }                                                                 \
1955        }                                                                     \
1956                                                                              \
1957        if (r2sp) {                                                           \
1958            xt.fld = helper_frsp(env, xt.fld);                                \
1959        }                                                                     \
1960                                                                              \
1961        if (sfprf) {                                                          \
1962            helper_compute_fprf(env, xt.fld);                                 \
1963        }                                                                     \
1964    }                                                                         \
1965                                                                              \
1966    putVSR(xT(opcode), &xt, env);                                             \
1967    helper_float_check_status(env);                                           \
1968}
1969
1970VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1971VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1972VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1973VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1974
1975/* VSX_RE  - VSX floating point reciprocal estimate
1976 *   op    - instruction mnemonic
1977 *   nels  - number of elements (1, 2 or 4)
1978 *   tp    - type (float32 or float64)
1979 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1980 *   sfprf - set FPRF
1981 */
1982#define VSX_RE(op, nels, tp, fld, sfprf, r2sp)                                \
1983void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1984{                                                                             \
1985    ppc_vsr_t xt, xb;                                                         \
1986    int i;                                                                    \
1987                                                                              \
1988    getVSR(xB(opcode), &xb, env);                                             \
1989    getVSR(xT(opcode), &xt, env);                                             \
1990    helper_reset_fpstatus(env);                                               \
1991                                                                              \
1992    for (i = 0; i < nels; i++) {                                              \
1993        if (unlikely(tp##_is_signaling_nan(xb.fld))) {                        \
1994                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
1995        }                                                                     \
1996        xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status);                 \
1997                                                                              \
1998        if (r2sp) {                                                           \
1999            xt.fld = helper_frsp(env, xt.fld);                                \
2000        }                                                                     \
2001                                                                              \
2002        if (sfprf) {                                                          \
2003            helper_compute_fprf(env, xt.fld);                                 \
2004        }                                                                     \
2005    }                                                                         \
2006                                                                              \
2007    putVSR(xT(opcode), &xt, env);                                             \
2008    helper_float_check_status(env);                                           \
2009}
2010
2011VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2012VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2013VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2014VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2015
2016/* VSX_SQRT - VSX floating point square root
2017 *   op    - instruction mnemonic
2018 *   nels  - number of elements (1, 2 or 4)
2019 *   tp    - type (float32 or float64)
2020 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2021 *   sfprf - set FPRF
2022 */
2023#define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp)                             \
2024void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2025{                                                                            \
2026    ppc_vsr_t xt, xb;                                                        \
2027    int i;                                                                   \
2028                                                                             \
2029    getVSR(xB(opcode), &xb, env);                                            \
2030    getVSR(xT(opcode), &xt, env);                                            \
2031    helper_reset_fpstatus(env);                                              \
2032                                                                             \
2033    for (i = 0; i < nels; i++) {                                             \
2034        float_status tstat = env->fp_status;                                 \
2035        set_float_exception_flags(0, &tstat);                                \
2036        xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2037        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2038                                                                             \
2039        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2040            if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2041                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
2042            } else if (tp##_is_signaling_nan(xb.fld)) {                      \
2043                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
2044            }                                                                \
2045        }                                                                    \
2046                                                                             \
2047        if (r2sp) {                                                          \
2048            xt.fld = helper_frsp(env, xt.fld);                               \
2049        }                                                                    \
2050                                                                             \
2051        if (sfprf) {                                                         \
2052            helper_compute_fprf(env, xt.fld);                                \
2053        }                                                                    \
2054    }                                                                        \
2055                                                                             \
2056    putVSR(xT(opcode), &xt, env);                                            \
2057    helper_float_check_status(env);                                          \
2058}
2059
2060VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2061VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2062VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2063VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2064
2065/* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2066 *   op    - instruction mnemonic
2067 *   nels  - number of elements (1, 2 or 4)
2068 *   tp    - type (float32 or float64)
2069 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2070 *   sfprf - set FPRF
2071 */
2072#define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp)                           \
2073void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2074{                                                                            \
2075    ppc_vsr_t xt, xb;                                                        \
2076    int i;                                                                   \
2077                                                                             \
2078    getVSR(xB(opcode), &xb, env);                                            \
2079    getVSR(xT(opcode), &xt, env);                                            \
2080    helper_reset_fpstatus(env);                                              \
2081                                                                             \
2082    for (i = 0; i < nels; i++) {                                             \
2083        float_status tstat = env->fp_status;                                 \
2084        set_float_exception_flags(0, &tstat);                                \
2085        xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2086        xt.fld = tp##_div(tp##_one, xt.fld, &tstat);                         \
2087        env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2088                                                                             \
2089        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2090            if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2091                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
2092            } else if (tp##_is_signaling_nan(xb.fld)) {                      \
2093                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
2094            }                                                                \
2095        }                                                                    \
2096                                                                             \
2097        if (r2sp) {                                                          \
2098            xt.fld = helper_frsp(env, xt.fld);                               \
2099        }                                                                    \
2100                                                                             \
2101        if (sfprf) {                                                         \
2102            helper_compute_fprf(env, xt.fld);                                \
2103        }                                                                    \
2104    }                                                                        \
2105                                                                             \
2106    putVSR(xT(opcode), &xt, env);                                            \
2107    helper_float_check_status(env);                                          \
2108}
2109
2110VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2111VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2112VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2113VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2114
2115/* VSX_TDIV - VSX floating point test for divide
2116 *   op    - instruction mnemonic
2117 *   nels  - number of elements (1, 2 or 4)
2118 *   tp    - type (float32 or float64)
2119 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2120 *   emin  - minimum unbiased exponent
2121 *   emax  - maximum unbiased exponent
2122 *   nbits - number of fraction bits
2123 */
2124#define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
2125void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2126{                                                                       \
2127    ppc_vsr_t xa, xb;                                                   \
2128    int i;                                                              \
2129    int fe_flag = 0;                                                    \
2130    int fg_flag = 0;                                                    \
2131                                                                        \
2132    getVSR(xA(opcode), &xa, env);                                       \
2133    getVSR(xB(opcode), &xb, env);                                       \
2134                                                                        \
2135    for (i = 0; i < nels; i++) {                                        \
2136        if (unlikely(tp##_is_infinity(xa.fld) ||                        \
2137                     tp##_is_infinity(xb.fld) ||                        \
2138                     tp##_is_zero(xb.fld))) {                           \
2139            fe_flag = 1;                                                \
2140            fg_flag = 1;                                                \
2141        } else {                                                        \
2142            int e_a = ppc_##tp##_get_unbiased_exp(xa.fld);              \
2143            int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2144                                                                        \
2145            if (unlikely(tp##_is_any_nan(xa.fld) ||                     \
2146                         tp##_is_any_nan(xb.fld))) {                    \
2147                fe_flag = 1;                                            \
2148            } else if ((e_b <= emin) || (e_b >= (emax-2))) {            \
2149                fe_flag = 1;                                            \
2150            } else if (!tp##_is_zero(xa.fld) &&                         \
2151                       (((e_a - e_b) >= emax) ||                        \
2152                        ((e_a - e_b) <= (emin+1)) ||                    \
2153                         (e_a <= (emin+nbits)))) {                      \
2154                fe_flag = 1;                                            \
2155            }                                                           \
2156                                                                        \
2157            if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2158                /* XB is not zero because of the above check and */     \
2159                /* so must be denormalized.                      */     \
2160                fg_flag = 1;                                            \
2161            }                                                           \
2162        }                                                               \
2163    }                                                                   \
2164                                                                        \
2165    env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2166}
2167
2168VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2169VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2170VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2171
2172/* VSX_TSQRT - VSX floating point test for square root
2173 *   op    - instruction mnemonic
2174 *   nels  - number of elements (1, 2 or 4)
2175 *   tp    - type (float32 or float64)
2176 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2177 *   emin  - minimum unbiased exponent
2178 *   emax  - maximum unbiased exponent
2179 *   nbits - number of fraction bits
2180 */
2181#define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
2182void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2183{                                                                       \
2184    ppc_vsr_t xa, xb;                                                   \
2185    int i;                                                              \
2186    int fe_flag = 0;                                                    \
2187    int fg_flag = 0;                                                    \
2188                                                                        \
2189    getVSR(xA(opcode), &xa, env);                                       \
2190    getVSR(xB(opcode), &xb, env);                                       \
2191                                                                        \
2192    for (i = 0; i < nels; i++) {                                        \
2193        if (unlikely(tp##_is_infinity(xb.fld) ||                        \
2194                     tp##_is_zero(xb.fld))) {                           \
2195            fe_flag = 1;                                                \
2196            fg_flag = 1;                                                \
2197        } else {                                                        \
2198            int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2199                                                                        \
2200            if (unlikely(tp##_is_any_nan(xb.fld))) {                    \
2201                fe_flag = 1;                                            \
2202            } else if (unlikely(tp##_is_zero(xb.fld))) {                \
2203                fe_flag = 1;                                            \
2204            } else if (unlikely(tp##_is_neg(xb.fld))) {                 \
2205                fe_flag = 1;                                            \
2206            } else if (!tp##_is_zero(xb.fld) &&                         \
2207                      (e_b <= (emin+nbits))) {                          \
2208                fe_flag = 1;                                            \
2209            }                                                           \
2210                                                                        \
2211            if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2212                /* XB is not zero because of the above check and */     \
2213                /* therefore must be denormalized.               */     \
2214                fg_flag = 1;                                            \
2215            }                                                           \
2216        }                                                               \
2217    }                                                                   \
2218                                                                        \
2219    env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2220}
2221
2222VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2223VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2224VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2225
2226/* VSX_MADD - VSX floating point muliply/add variations
2227 *   op    - instruction mnemonic
2228 *   nels  - number of elements (1, 2 or 4)
2229 *   tp    - type (float32 or float64)
2230 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2231 *   maddflgs - flags for the float*muladd routine that control the
2232 *           various forms (madd, msub, nmadd, nmsub)
2233 *   afrm  - A form (1=A, 0=M)
2234 *   sfprf - set FPRF
2235 */
2236#define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp)              \
2237void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2238{                                                                             \
2239    ppc_vsr_t xt_in, xa, xb, xt_out;                                          \
2240    ppc_vsr_t *b, *c;                                                         \
2241    int i;                                                                    \
2242                                                                              \
2243    if (afrm) { /* AxB + T */                                                 \
2244        b = &xb;                                                              \
2245        c = &xt_in;                                                           \
2246    } else { /* AxT + B */                                                    \
2247        b = &xt_in;                                                           \
2248        c = &xb;                                                              \
2249    }                                                                         \
2250                                                                              \
2251    getVSR(xA(opcode), &xa, env);                                             \
2252    getVSR(xB(opcode), &xb, env);                                             \
2253    getVSR(xT(opcode), &xt_in, env);                                          \
2254                                                                              \
2255    xt_out = xt_in;                                                           \
2256                                                                              \
2257    helper_reset_fpstatus(env);                                               \
2258                                                                              \
2259    for (i = 0; i < nels; i++) {                                              \
2260        float_status tstat = env->fp_status;                                  \
2261        set_float_exception_flags(0, &tstat);                                 \
2262        if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2263            /* Avoid double rounding errors by rounding the intermediate */   \
2264            /* result to odd.                                            */   \
2265            set_float_rounding_mode(float_round_to_zero, &tstat);             \
2266            xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2267                                       maddflgs, &tstat);                     \
2268            xt_out.fld |= (get_float_exception_flags(&tstat) &                \
2269                              float_flag_inexact) != 0;                       \
2270        } else {                                                              \
2271            xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2272                                        maddflgs, &tstat);                    \
2273        }                                                                     \
2274        env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2275                                                                              \
2276        if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2277            if (tp##_is_signaling_nan(xa.fld) ||                              \
2278                tp##_is_signaling_nan(b->fld) ||                              \
2279                tp##_is_signaling_nan(c->fld)) {                              \
2280                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
2281                tstat.float_exception_flags &= ~float_flag_invalid;           \
2282            }                                                                 \
2283            if ((tp##_is_infinity(xa.fld) && tp##_is_zero(b->fld)) ||         \
2284                (tp##_is_zero(xa.fld) && tp##_is_infinity(b->fld))) {         \
2285                xt_out.fld = float64_to_##tp(fload_invalid_op_excp(env,       \
2286                    POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status);          \
2287                tstat.float_exception_flags &= ~float_flag_invalid;           \
2288            }                                                                 \
2289            if ((tstat.float_exception_flags & float_flag_invalid) &&         \
2290                ((tp##_is_infinity(xa.fld) ||                                 \
2291                  tp##_is_infinity(b->fld)) &&                                \
2292                  tp##_is_infinity(c->fld))) {                                \
2293                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);     \
2294            }                                                                 \
2295        }                                                                     \
2296                                                                              \
2297        if (r2sp) {                                                           \
2298            xt_out.fld = helper_frsp(env, xt_out.fld);                        \
2299        }                                                                     \
2300                                                                              \
2301        if (sfprf) {                                                          \
2302            helper_compute_fprf(env, xt_out.fld);                             \
2303        }                                                                     \
2304    }                                                                         \
2305    putVSR(xT(opcode), &xt_out, env);                                         \
2306    helper_float_check_status(env);                                           \
2307}
2308
2309#define MADD_FLGS 0
2310#define MSUB_FLGS float_muladd_negate_c
2311#define NMADD_FLGS float_muladd_negate_result
2312#define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
2313
2314VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2315VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2316VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2317VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2318VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2319VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2320VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2321VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2322
2323VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2324VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2325VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2326VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2327VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2328VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2329VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2330VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2331
2332VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2333VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2334VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2335VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2336VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2337VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2338VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2339VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2340
2341VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2342VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2343VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2344VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2345VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2346VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2347VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2348VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2349
2350#define VSX_SCALAR_CMP(op, ordered)                                      \
2351void helper_##op(CPUPPCState *env, uint32_t opcode)                      \
2352{                                                                        \
2353    ppc_vsr_t xa, xb;                                                    \
2354    uint32_t cc = 0;                                                     \
2355                                                                         \
2356    getVSR(xA(opcode), &xa, env);                                        \
2357    getVSR(xB(opcode), &xb, env);                                        \
2358                                                                         \
2359    if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||                       \
2360                 float64_is_any_nan(xb.VsrD(0)))) {                      \
2361        if (float64_is_signaling_nan(xa.VsrD(0)) ||                      \
2362            float64_is_signaling_nan(xb.VsrD(0))) {                      \
2363            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
2364        }                                                                \
2365        if (ordered) {                                                   \
2366            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);         \
2367        }                                                                \
2368        cc = 1;                                                          \
2369    } else {                                                             \
2370        if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) {       \
2371            cc = 8;                                                      \
2372        } else if (!float64_le(xa.VsrD(0), xb.VsrD(0),                   \
2373                               &env->fp_status)) { \
2374            cc = 4;                                                      \
2375        } else {                                                         \
2376            cc = 2;                                                      \
2377        }                                                                \
2378    }                                                                    \
2379                                                                         \
2380    env->fpscr &= ~(0x0F << FPSCR_FPRF);                                 \
2381    env->fpscr |= cc << FPSCR_FPRF;                                      \
2382    env->crf[BF(opcode)] = cc;                                           \
2383                                                                         \
2384    helper_float_check_status(env);                                      \
2385}
2386
2387VSX_SCALAR_CMP(xscmpodp, 1)
2388VSX_SCALAR_CMP(xscmpudp, 0)
2389
2390/* VSX_MAX_MIN - VSX floating point maximum/minimum
2391 *   name  - instruction mnemonic
2392 *   op    - operation (max or min)
2393 *   nels  - number of elements (1, 2 or 4)
2394 *   tp    - type (float32 or float64)
2395 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2396 */
2397#define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2398void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2399{                                                                             \
2400    ppc_vsr_t xt, xa, xb;                                                     \
2401    int i;                                                                    \
2402                                                                              \
2403    getVSR(xA(opcode), &xa, env);                                             \
2404    getVSR(xB(opcode), &xb, env);                                             \
2405    getVSR(xT(opcode), &xt, env);                                             \
2406                                                                              \
2407    for (i = 0; i < nels; i++) {                                              \
2408        xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status);                  \
2409        if (unlikely(tp##_is_signaling_nan(xa.fld) ||                         \
2410                     tp##_is_signaling_nan(xb.fld))) {                        \
2411            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);            \
2412        }                                                                     \
2413    }                                                                         \
2414                                                                              \
2415    putVSR(xT(opcode), &xt, env);                                             \
2416    helper_float_check_status(env);                                           \
2417}
2418
2419VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2420VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2421VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2422VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2423VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2424VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2425
2426/* VSX_CMP - VSX floating point compare
2427 *   op    - instruction mnemonic
2428 *   nels  - number of elements (1, 2 or 4)
2429 *   tp    - type (float32 or float64)
2430 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2431 *   cmp   - comparison operation
2432 *   svxvc - set VXVC bit
2433 */
2434#define VSX_CMP(op, nels, tp, fld, cmp, svxvc)                            \
2435void helper_##op(CPUPPCState *env, uint32_t opcode)                       \
2436{                                                                         \
2437    ppc_vsr_t xt, xa, xb;                                                 \
2438    int i;                                                                \
2439    int all_true = 1;                                                     \
2440    int all_false = 1;                                                    \
2441                                                                          \
2442    getVSR(xA(opcode), &xa, env);                                         \
2443    getVSR(xB(opcode), &xb, env);                                         \
2444    getVSR(xT(opcode), &xt, env);                                         \
2445                                                                          \
2446    for (i = 0; i < nels; i++) {                                          \
2447        if (unlikely(tp##_is_any_nan(xa.fld) ||                           \
2448                     tp##_is_any_nan(xb.fld))) {                          \
2449            if (tp##_is_signaling_nan(xa.fld) ||                          \
2450                tp##_is_signaling_nan(xb.fld)) {                          \
2451                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);    \
2452            }                                                             \
2453            if (svxvc) {                                                  \
2454                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);      \
2455            }                                                             \
2456            xt.fld = 0;                                                   \
2457            all_true = 0;                                                 \
2458        } else {                                                          \
2459            if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == 1) {       \
2460                xt.fld = -1;                                              \
2461                all_false = 0;                                            \
2462            } else {                                                      \
2463                xt.fld = 0;                                               \
2464                all_true = 0;                                             \
2465            }                                                             \
2466        }                                                                 \
2467    }                                                                     \
2468                                                                          \
2469    putVSR(xT(opcode), &xt, env);                                         \
2470    if ((opcode >> (31-21)) & 1) {                                        \
2471        env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);       \
2472    }                                                                     \
2473    helper_float_check_status(env);                                       \
2474 }
2475
2476VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0)
2477VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1)
2478VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1)
2479VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0)
2480VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1)
2481VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1)
2482
2483/* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2484 *   op    - instruction mnemonic
2485 *   nels  - number of elements (1, 2 or 4)
2486 *   stp   - source type (float32 or float64)
2487 *   ttp   - target type (float32 or float64)
2488 *   sfld  - source vsr_t field
2489 *   tfld  - target vsr_t field (f32 or f64)
2490 *   sfprf - set FPRF
2491 */
2492#define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2493void helper_##op(CPUPPCState *env, uint32_t opcode)                \
2494{                                                                  \
2495    ppc_vsr_t xt, xb;                                              \
2496    int i;                                                         \
2497                                                                   \
2498    getVSR(xB(opcode), &xb, env);                                  \
2499    getVSR(xT(opcode), &xt, env);                                  \
2500                                                                   \
2501    for (i = 0; i < nels; i++) {                                   \
2502        xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);        \
2503        if (unlikely(stp##_is_signaling_nan(xb.sfld))) {           \
2504            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2505            xt.tfld = ttp##_snan_to_qnan(xt.tfld);                 \
2506        }                                                          \
2507        if (sfprf) {                                               \
2508            helper_compute_fprf(env, ttp##_to_float64(xt.tfld,     \
2509                                &env->fp_status));                 \
2510        }                                                          \
2511    }                                                              \
2512                                                                   \
2513    putVSR(xT(opcode), &xt, env);                                  \
2514    helper_float_check_status(env);                                \
2515}
2516
2517VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2518VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2519VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2*i), 0)
2520VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2*i), VsrD(i), 0)
2521
2522uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2523{
2524    float_status tstat = env->fp_status;
2525    set_float_exception_flags(0, &tstat);
2526
2527    return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2528}
2529
2530uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2531{
2532    float_status tstat = env->fp_status;
2533    set_float_exception_flags(0, &tstat);
2534
2535    return float32_to_float64(xb >> 32, &tstat);
2536}
2537
2538/* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2539 *   op    - instruction mnemonic
2540 *   nels  - number of elements (1, 2 or 4)
2541 *   stp   - source type (float32 or float64)
2542 *   ttp   - target type (int32, uint32, int64 or uint64)
2543 *   sfld  - source vsr_t field
2544 *   tfld  - target vsr_t field
2545 *   rnan  - resulting NaN
2546 */
2547#define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan)              \
2548void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2549{                                                                            \
2550    ppc_vsr_t xt, xb;                                                        \
2551    int i;                                                                   \
2552                                                                             \
2553    getVSR(xB(opcode), &xb, env);                                            \
2554    getVSR(xT(opcode), &xt, env);                                            \
2555                                                                             \
2556    for (i = 0; i < nels; i++) {                                             \
2557        if (unlikely(stp##_is_any_nan(xb.sfld))) {                           \
2558            if (stp##_is_signaling_nan(xb.sfld)) {                           \
2559                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
2560            }                                                                \
2561            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);            \
2562            xt.tfld = rnan;                                                  \
2563        } else {                                                             \
2564            xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld,                \
2565                          &env->fp_status);                                  \
2566            if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2567                fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);        \
2568            }                                                                \
2569        }                                                                    \
2570    }                                                                        \
2571                                                                             \
2572    putVSR(xT(opcode), &xt, env);                                            \
2573    helper_float_check_status(env);                                          \
2574}
2575
2576VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2577                  0x8000000000000000ULL)
2578VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2579                  0x80000000U)
2580VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2581VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2582VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2583                  0x8000000000000000ULL)
2584VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2*i), \
2585                  0x80000000U)
2586VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2587VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2*i), 0U)
2588VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2*i), VsrD(i), \
2589                  0x8000000000000000ULL)
2590VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2591VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2*i), VsrD(i), 0ULL)
2592VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2593
2594/* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2595 *   op    - instruction mnemonic
2596 *   nels  - number of elements (1, 2 or 4)
2597 *   stp   - source type (int32, uint32, int64 or uint64)
2598 *   ttp   - target type (float32 or float64)
2599 *   sfld  - source vsr_t field
2600 *   tfld  - target vsr_t field
2601 *   jdef  - definition of the j index (i or 2*i)
2602 *   sfprf - set FPRF
2603 */
2604#define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp)  \
2605void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2606{                                                                       \
2607    ppc_vsr_t xt, xb;                                                   \
2608    int i;                                                              \
2609                                                                        \
2610    getVSR(xB(opcode), &xb, env);                                       \
2611    getVSR(xT(opcode), &xt, env);                                       \
2612                                                                        \
2613    for (i = 0; i < nels; i++) {                                        \
2614        xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);             \
2615        if (r2sp) {                                                     \
2616            xt.tfld = helper_frsp(env, xt.tfld);                        \
2617        }                                                               \
2618        if (sfprf) {                                                    \
2619            helper_compute_fprf(env, xt.tfld);                          \
2620        }                                                               \
2621    }                                                                   \
2622                                                                        \
2623    putVSR(xT(opcode), &xt, env);                                       \
2624    helper_float_check_status(env);                                     \
2625}
2626
2627VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
2628VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
2629VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
2630VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
2631VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
2632VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
2633VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2*i), VsrD(i), 0, 0)
2634VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2*i), VsrD(i), 0, 0)
2635VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2*i), 0, 0)
2636VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2*i), 0, 0)
2637VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
2638VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
2639
2640/* For "use current rounding mode", define a value that will not be one of
2641 * the existing rounding model enums.
2642 */
2643#define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
2644  float_round_up + float_round_to_zero)
2645
2646/* VSX_ROUND - VSX floating point round
2647 *   op    - instruction mnemonic
2648 *   nels  - number of elements (1, 2 or 4)
2649 *   tp    - type (float32 or float64)
2650 *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2651 *   rmode - rounding mode
2652 *   sfprf - set FPRF
2653 */
2654#define VSX_ROUND(op, nels, tp, fld, rmode, sfprf)                     \
2655void helper_##op(CPUPPCState *env, uint32_t opcode)                    \
2656{                                                                      \
2657    ppc_vsr_t xt, xb;                                                  \
2658    int i;                                                             \
2659    getVSR(xB(opcode), &xb, env);                                      \
2660    getVSR(xT(opcode), &xt, env);                                      \
2661                                                                       \
2662    if (rmode != FLOAT_ROUND_CURRENT) {                                \
2663        set_float_rounding_mode(rmode, &env->fp_status);               \
2664    }                                                                  \
2665                                                                       \
2666    for (i = 0; i < nels; i++) {                                       \
2667        if (unlikely(tp##_is_signaling_nan(xb.fld))) {                 \
2668            fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);     \
2669            xt.fld = tp##_snan_to_qnan(xb.fld);                        \
2670        } else {                                                       \
2671            xt.fld = tp##_round_to_int(xb.fld, &env->fp_status);       \
2672        }                                                              \
2673        if (sfprf) {                                                   \
2674            helper_compute_fprf(env, xt.fld);                          \
2675        }                                                              \
2676    }                                                                  \
2677                                                                       \
2678    /* If this is not a "use current rounding mode" instruction,       \
2679     * then inhibit setting of the XX bit and restore rounding         \
2680     * mode from FPSCR */                                              \
2681    if (rmode != FLOAT_ROUND_CURRENT) {                                \
2682        fpscr_set_rounding_mode(env);                                  \
2683        env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
2684    }                                                                  \
2685                                                                       \
2686    putVSR(xT(opcode), &xt, env);                                      \
2687    helper_float_check_status(env);                                    \
2688}
2689
2690VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_nearest_even, 1)
2691VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
2692VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
2693VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
2694VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
2695
2696VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_nearest_even, 0)
2697VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
2698VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
2699VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
2700VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
2701
2702VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_nearest_even, 0)
2703VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
2704VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
2705VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
2706VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
2707
2708uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
2709{
2710    helper_reset_fpstatus(env);
2711
2712    uint64_t xt = helper_frsp(env, xb);
2713
2714    helper_compute_fprf(env, xt);
2715    helper_float_check_status(env);
2716    return xt;
2717}
2718