qemu/hw/arm/omap1.c
<<
>>
Prefs
   1/*
   2 * TI OMAP processors emulation.
   3 *
   4 * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation; either version 2 or
   9 * (at your option) version 3 of the License.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along
  17 * with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qapi/error.h"
  22#include "qemu-common.h"
  23#include "cpu.h"
  24#include "hw/boards.h"
  25#include "hw/hw.h"
  26#include "hw/arm/arm.h"
  27#include "hw/arm/omap.h"
  28#include "sysemu/sysemu.h"
  29#include "hw/arm/soc_dma.h"
  30#include "sysemu/block-backend.h"
  31#include "sysemu/blockdev.h"
  32#include "qemu/range.h"
  33#include "hw/sysbus.h"
  34#include "qemu/cutils.h"
  35#include "qemu/bcd.h"
  36
  37/* Should signal the TCMI/GPMC */
  38uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
  39{
  40    uint8_t ret;
  41
  42    OMAP_8B_REG(addr);
  43    cpu_physical_memory_read(addr, &ret, 1);
  44    return ret;
  45}
  46
  47void omap_badwidth_write8(void *opaque, hwaddr addr,
  48                uint32_t value)
  49{
  50    uint8_t val8 = value;
  51
  52    OMAP_8B_REG(addr);
  53    cpu_physical_memory_write(addr, &val8, 1);
  54}
  55
  56uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
  57{
  58    uint16_t ret;
  59
  60    OMAP_16B_REG(addr);
  61    cpu_physical_memory_read(addr, &ret, 2);
  62    return ret;
  63}
  64
  65void omap_badwidth_write16(void *opaque, hwaddr addr,
  66                uint32_t value)
  67{
  68    uint16_t val16 = value;
  69
  70    OMAP_16B_REG(addr);
  71    cpu_physical_memory_write(addr, &val16, 2);
  72}
  73
  74uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
  75{
  76    uint32_t ret;
  77
  78    OMAP_32B_REG(addr);
  79    cpu_physical_memory_read(addr, &ret, 4);
  80    return ret;
  81}
  82
  83void omap_badwidth_write32(void *opaque, hwaddr addr,
  84                uint32_t value)
  85{
  86    OMAP_32B_REG(addr);
  87    cpu_physical_memory_write(addr, &value, 4);
  88}
  89
  90/* MPU OS timers */
  91struct omap_mpu_timer_s {
  92    MemoryRegion iomem;
  93    qemu_irq irq;
  94    omap_clk clk;
  95    uint32_t val;
  96    int64_t time;
  97    QEMUTimer *timer;
  98    QEMUBH *tick;
  99    int64_t rate;
 100    int it_ena;
 101
 102    int enable;
 103    int ptv;
 104    int ar;
 105    int st;
 106    uint32_t reset_val;
 107};
 108
 109static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
 110{
 111    uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
 112
 113    if (timer->st && timer->enable && timer->rate)
 114        return timer->val - muldiv64(distance >> (timer->ptv + 1),
 115                                     timer->rate, NANOSECONDS_PER_SECOND);
 116    else
 117        return timer->val;
 118}
 119
 120static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
 121{
 122    timer->val = omap_timer_read(timer);
 123    timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 124}
 125
 126static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
 127{
 128    int64_t expires;
 129
 130    if (timer->enable && timer->st && timer->rate) {
 131        timer->val = timer->reset_val;  /* Should skip this on clk enable */
 132        expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
 133                           NANOSECONDS_PER_SECOND, timer->rate);
 134
 135        /* If timer expiry would be sooner than in about 1 ms and
 136         * auto-reload isn't set, then fire immediately.  This is a hack
 137         * to make systems like PalmOS run in acceptable time.  PalmOS
 138         * sets the interval to a very low value and polls the status bit
 139         * in a busy loop when it wants to sleep just a couple of CPU
 140         * ticks.  */
 141        if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
 142            timer_mod(timer->timer, timer->time + expires);
 143        } else {
 144            qemu_bh_schedule(timer->tick);
 145        }
 146    } else
 147        timer_del(timer->timer);
 148}
 149
 150static void omap_timer_fire(void *opaque)
 151{
 152    struct omap_mpu_timer_s *timer = opaque;
 153
 154    if (!timer->ar) {
 155        timer->val = 0;
 156        timer->st = 0;
 157    }
 158
 159    if (timer->it_ena)
 160        /* Edge-triggered irq */
 161        qemu_irq_pulse(timer->irq);
 162}
 163
 164static void omap_timer_tick(void *opaque)
 165{
 166    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
 167
 168    omap_timer_sync(timer);
 169    omap_timer_fire(timer);
 170    omap_timer_update(timer);
 171}
 172
 173static void omap_timer_clk_update(void *opaque, int line, int on)
 174{
 175    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
 176
 177    omap_timer_sync(timer);
 178    timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
 179    omap_timer_update(timer);
 180}
 181
 182static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
 183{
 184    omap_clk_adduser(timer->clk,
 185                    qemu_allocate_irq(omap_timer_clk_update, timer, 0));
 186    timer->rate = omap_clk_getrate(timer->clk);
 187}
 188
 189static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
 190                                    unsigned size)
 191{
 192    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
 193
 194    if (size != 4) {
 195        return omap_badwidth_read32(opaque, addr);
 196    }
 197
 198    switch (addr) {
 199    case 0x00:  /* CNTL_TIMER */
 200        return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
 201
 202    case 0x04:  /* LOAD_TIM */
 203        break;
 204
 205    case 0x08:  /* READ_TIM */
 206        return omap_timer_read(s);
 207    }
 208
 209    OMAP_BAD_REG(addr);
 210    return 0;
 211}
 212
 213static void omap_mpu_timer_write(void *opaque, hwaddr addr,
 214                                 uint64_t value, unsigned size)
 215{
 216    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
 217
 218    if (size != 4) {
 219        omap_badwidth_write32(opaque, addr, value);
 220        return;
 221    }
 222
 223    switch (addr) {
 224    case 0x00:  /* CNTL_TIMER */
 225        omap_timer_sync(s);
 226        s->enable = (value >> 5) & 1;
 227        s->ptv = (value >> 2) & 7;
 228        s->ar = (value >> 1) & 1;
 229        s->st = value & 1;
 230        omap_timer_update(s);
 231        return;
 232
 233    case 0x04:  /* LOAD_TIM */
 234        s->reset_val = value;
 235        return;
 236
 237    case 0x08:  /* READ_TIM */
 238        OMAP_RO_REG(addr);
 239        break;
 240
 241    default:
 242        OMAP_BAD_REG(addr);
 243    }
 244}
 245
 246static const MemoryRegionOps omap_mpu_timer_ops = {
 247    .read = omap_mpu_timer_read,
 248    .write = omap_mpu_timer_write,
 249    .endianness = DEVICE_LITTLE_ENDIAN,
 250};
 251
 252static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
 253{
 254    timer_del(s->timer);
 255    s->enable = 0;
 256    s->reset_val = 31337;
 257    s->val = 0;
 258    s->ptv = 0;
 259    s->ar = 0;
 260    s->st = 0;
 261    s->it_ena = 1;
 262}
 263
 264static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
 265                hwaddr base,
 266                qemu_irq irq, omap_clk clk)
 267{
 268    struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
 269
 270    s->irq = irq;
 271    s->clk = clk;
 272    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
 273    s->tick = qemu_bh_new(omap_timer_fire, s);
 274    omap_mpu_timer_reset(s);
 275    omap_timer_clk_setup(s);
 276
 277    memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
 278                          "omap-mpu-timer", 0x100);
 279
 280    memory_region_add_subregion(system_memory, base, &s->iomem);
 281
 282    return s;
 283}
 284
 285/* Watchdog timer */
 286struct omap_watchdog_timer_s {
 287    struct omap_mpu_timer_s timer;
 288    MemoryRegion iomem;
 289    uint8_t last_wr;
 290    int mode;
 291    int free;
 292    int reset;
 293};
 294
 295static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
 296                                   unsigned size)
 297{
 298    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
 299
 300    if (size != 2) {
 301        return omap_badwidth_read16(opaque, addr);
 302    }
 303
 304    switch (addr) {
 305    case 0x00:  /* CNTL_TIMER */
 306        return (s->timer.ptv << 9) | (s->timer.ar << 8) |
 307                (s->timer.st << 7) | (s->free << 1);
 308
 309    case 0x04:  /* READ_TIMER */
 310        return omap_timer_read(&s->timer);
 311
 312    case 0x08:  /* TIMER_MODE */
 313        return s->mode << 15;
 314    }
 315
 316    OMAP_BAD_REG(addr);
 317    return 0;
 318}
 319
 320static void omap_wd_timer_write(void *opaque, hwaddr addr,
 321                                uint64_t value, unsigned size)
 322{
 323    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
 324
 325    if (size != 2) {
 326        omap_badwidth_write16(opaque, addr, value);
 327        return;
 328    }
 329
 330    switch (addr) {
 331    case 0x00:  /* CNTL_TIMER */
 332        omap_timer_sync(&s->timer);
 333        s->timer.ptv = (value >> 9) & 7;
 334        s->timer.ar = (value >> 8) & 1;
 335        s->timer.st = (value >> 7) & 1;
 336        s->free = (value >> 1) & 1;
 337        omap_timer_update(&s->timer);
 338        break;
 339
 340    case 0x04:  /* LOAD_TIMER */
 341        s->timer.reset_val = value & 0xffff;
 342        break;
 343
 344    case 0x08:  /* TIMER_MODE */
 345        if (!s->mode && ((value >> 15) & 1))
 346            omap_clk_get(s->timer.clk);
 347        s->mode |= (value >> 15) & 1;
 348        if (s->last_wr == 0xf5) {
 349            if ((value & 0xff) == 0xa0) {
 350                if (s->mode) {
 351                    s->mode = 0;
 352                    omap_clk_put(s->timer.clk);
 353                }
 354            } else {
 355                /* XXX: on T|E hardware somehow this has no effect,
 356                 * on Zire 71 it works as specified.  */
 357                s->reset = 1;
 358                qemu_system_reset_request();
 359            }
 360        }
 361        s->last_wr = value & 0xff;
 362        break;
 363
 364    default:
 365        OMAP_BAD_REG(addr);
 366    }
 367}
 368
 369static const MemoryRegionOps omap_wd_timer_ops = {
 370    .read = omap_wd_timer_read,
 371    .write = omap_wd_timer_write,
 372    .endianness = DEVICE_NATIVE_ENDIAN,
 373};
 374
 375static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
 376{
 377    timer_del(s->timer.timer);
 378    if (!s->mode)
 379        omap_clk_get(s->timer.clk);
 380    s->mode = 1;
 381    s->free = 1;
 382    s->reset = 0;
 383    s->timer.enable = 1;
 384    s->timer.it_ena = 1;
 385    s->timer.reset_val = 0xffff;
 386    s->timer.val = 0;
 387    s->timer.st = 0;
 388    s->timer.ptv = 0;
 389    s->timer.ar = 0;
 390    omap_timer_update(&s->timer);
 391}
 392
 393static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
 394                hwaddr base,
 395                qemu_irq irq, omap_clk clk)
 396{
 397    struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
 398
 399    s->timer.irq = irq;
 400    s->timer.clk = clk;
 401    s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
 402    omap_wd_timer_reset(s);
 403    omap_timer_clk_setup(&s->timer);
 404
 405    memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
 406                          "omap-wd-timer", 0x100);
 407    memory_region_add_subregion(memory, base, &s->iomem);
 408
 409    return s;
 410}
 411
 412/* 32-kHz timer */
 413struct omap_32khz_timer_s {
 414    struct omap_mpu_timer_s timer;
 415    MemoryRegion iomem;
 416};
 417
 418static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
 419                                   unsigned size)
 420{
 421    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
 422    int offset = addr & OMAP_MPUI_REG_MASK;
 423
 424    if (size != 4) {
 425        return omap_badwidth_read32(opaque, addr);
 426    }
 427
 428    switch (offset) {
 429    case 0x00:  /* TVR */
 430        return s->timer.reset_val;
 431
 432    case 0x04:  /* TCR */
 433        return omap_timer_read(&s->timer);
 434
 435    case 0x08:  /* CR */
 436        return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
 437
 438    default:
 439        break;
 440    }
 441    OMAP_BAD_REG(addr);
 442    return 0;
 443}
 444
 445static void omap_os_timer_write(void *opaque, hwaddr addr,
 446                                uint64_t value, unsigned size)
 447{
 448    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
 449    int offset = addr & OMAP_MPUI_REG_MASK;
 450
 451    if (size != 4) {
 452        omap_badwidth_write32(opaque, addr, value);
 453        return;
 454    }
 455
 456    switch (offset) {
 457    case 0x00:  /* TVR */
 458        s->timer.reset_val = value & 0x00ffffff;
 459        break;
 460
 461    case 0x04:  /* TCR */
 462        OMAP_RO_REG(addr);
 463        break;
 464
 465    case 0x08:  /* CR */
 466        s->timer.ar = (value >> 3) & 1;
 467        s->timer.it_ena = (value >> 2) & 1;
 468        if (s->timer.st != (value & 1) || (value & 2)) {
 469            omap_timer_sync(&s->timer);
 470            s->timer.enable = value & 1;
 471            s->timer.st = value & 1;
 472            omap_timer_update(&s->timer);
 473        }
 474        break;
 475
 476    default:
 477        OMAP_BAD_REG(addr);
 478    }
 479}
 480
 481static const MemoryRegionOps omap_os_timer_ops = {
 482    .read = omap_os_timer_read,
 483    .write = omap_os_timer_write,
 484    .endianness = DEVICE_NATIVE_ENDIAN,
 485};
 486
 487static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
 488{
 489    timer_del(s->timer.timer);
 490    s->timer.enable = 0;
 491    s->timer.it_ena = 0;
 492    s->timer.reset_val = 0x00ffffff;
 493    s->timer.val = 0;
 494    s->timer.st = 0;
 495    s->timer.ptv = 0;
 496    s->timer.ar = 1;
 497}
 498
 499static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
 500                hwaddr base,
 501                qemu_irq irq, omap_clk clk)
 502{
 503    struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
 504
 505    s->timer.irq = irq;
 506    s->timer.clk = clk;
 507    s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
 508    omap_os_timer_reset(s);
 509    omap_timer_clk_setup(&s->timer);
 510
 511    memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
 512                          "omap-os-timer", 0x800);
 513    memory_region_add_subregion(memory, base, &s->iomem);
 514
 515    return s;
 516}
 517
 518/* Ultra Low-Power Device Module */
 519static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
 520                                  unsigned size)
 521{
 522    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 523    uint16_t ret;
 524
 525    if (size != 2) {
 526        return omap_badwidth_read16(opaque, addr);
 527    }
 528
 529    switch (addr) {
 530    case 0x14:  /* IT_STATUS */
 531        ret = s->ulpd_pm_regs[addr >> 2];
 532        s->ulpd_pm_regs[addr >> 2] = 0;
 533        qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
 534        return ret;
 535
 536    case 0x18:  /* Reserved */
 537    case 0x1c:  /* Reserved */
 538    case 0x20:  /* Reserved */
 539    case 0x28:  /* Reserved */
 540    case 0x2c:  /* Reserved */
 541        OMAP_BAD_REG(addr);
 542        /* fall through */
 543    case 0x00:  /* COUNTER_32_LSB */
 544    case 0x04:  /* COUNTER_32_MSB */
 545    case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
 546    case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
 547    case 0x10:  /* GAUGING_CTRL */
 548    case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
 549    case 0x30:  /* CLOCK_CTRL */
 550    case 0x34:  /* SOFT_REQ */
 551    case 0x38:  /* COUNTER_32_FIQ */
 552    case 0x3c:  /* DPLL_CTRL */
 553    case 0x40:  /* STATUS_REQ */
 554        /* XXX: check clk::usecount state for every clock */
 555    case 0x48:  /* LOCL_TIME */
 556    case 0x4c:  /* APLL_CTRL */
 557    case 0x50:  /* POWER_CTRL */
 558        return s->ulpd_pm_regs[addr >> 2];
 559    }
 560
 561    OMAP_BAD_REG(addr);
 562    return 0;
 563}
 564
 565static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
 566                uint16_t diff, uint16_t value)
 567{
 568    if (diff & (1 << 4))                                /* USB_MCLK_EN */
 569        omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
 570    if (diff & (1 << 5))                                /* DIS_USB_PVCI_CLK */
 571        omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
 572}
 573
 574static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
 575                uint16_t diff, uint16_t value)
 576{
 577    if (diff & (1 << 0))                                /* SOFT_DPLL_REQ */
 578        omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
 579    if (diff & (1 << 1))                                /* SOFT_COM_REQ */
 580        omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
 581    if (diff & (1 << 2))                                /* SOFT_SDW_REQ */
 582        omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
 583    if (diff & (1 << 3))                                /* SOFT_USB_REQ */
 584        omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
 585}
 586
 587static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
 588                               uint64_t value, unsigned size)
 589{
 590    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 591    int64_t now, ticks;
 592    int div, mult;
 593    static const int bypass_div[4] = { 1, 2, 4, 4 };
 594    uint16_t diff;
 595
 596    if (size != 2) {
 597        omap_badwidth_write16(opaque, addr, value);
 598        return;
 599    }
 600
 601    switch (addr) {
 602    case 0x00:  /* COUNTER_32_LSB */
 603    case 0x04:  /* COUNTER_32_MSB */
 604    case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
 605    case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
 606    case 0x14:  /* IT_STATUS */
 607    case 0x40:  /* STATUS_REQ */
 608        OMAP_RO_REG(addr);
 609        break;
 610
 611    case 0x10:  /* GAUGING_CTRL */
 612        /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
 613        if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
 614            now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 615
 616            if (value & 1)
 617                s->ulpd_gauge_start = now;
 618            else {
 619                now -= s->ulpd_gauge_start;
 620
 621                /* 32-kHz ticks */
 622                ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
 623                s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
 624                s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
 625                if (ticks >> 32)        /* OVERFLOW_32K */
 626                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
 627
 628                /* High frequency ticks */
 629                ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
 630                s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
 631                s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
 632                if (ticks >> 32)        /* OVERFLOW_HI_FREQ */
 633                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
 634
 635                s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;   /* IT_GAUGING */
 636                qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
 637            }
 638        }
 639        s->ulpd_pm_regs[addr >> 2] = value;
 640        break;
 641
 642    case 0x18:  /* Reserved */
 643    case 0x1c:  /* Reserved */
 644    case 0x20:  /* Reserved */
 645    case 0x28:  /* Reserved */
 646    case 0x2c:  /* Reserved */
 647        OMAP_BAD_REG(addr);
 648        /* fall through */
 649    case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
 650    case 0x38:  /* COUNTER_32_FIQ */
 651    case 0x48:  /* LOCL_TIME */
 652    case 0x50:  /* POWER_CTRL */
 653        s->ulpd_pm_regs[addr >> 2] = value;
 654        break;
 655
 656    case 0x30:  /* CLOCK_CTRL */
 657        diff = s->ulpd_pm_regs[addr >> 2] ^ value;
 658        s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
 659        omap_ulpd_clk_update(s, diff, value);
 660        break;
 661
 662    case 0x34:  /* SOFT_REQ */
 663        diff = s->ulpd_pm_regs[addr >> 2] ^ value;
 664        s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
 665        omap_ulpd_req_update(s, diff, value);
 666        break;
 667
 668    case 0x3c:  /* DPLL_CTRL */
 669        /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
 670         * omitted altogether, probably a typo.  */
 671        /* This register has identical semantics with DPLL(1:3) control
 672         * registers, see omap_dpll_write() */
 673        diff = s->ulpd_pm_regs[addr >> 2] & value;
 674        s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
 675        if (diff & (0x3ff << 2)) {
 676            if (value & (1 << 4)) {                     /* PLL_ENABLE */
 677                div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
 678                mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
 679            } else {
 680                div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
 681                mult = 1;
 682            }
 683            omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
 684        }
 685
 686        /* Enter the desired mode.  */
 687        s->ulpd_pm_regs[addr >> 2] =
 688                (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
 689                ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
 690
 691        /* Act as if the lock is restored.  */
 692        s->ulpd_pm_regs[addr >> 2] |= 2;
 693        break;
 694
 695    case 0x4c:  /* APLL_CTRL */
 696        diff = s->ulpd_pm_regs[addr >> 2] & value;
 697        s->ulpd_pm_regs[addr >> 2] = value & 0xf;
 698        if (diff & (1 << 0))                            /* APLL_NDPLL_SWITCH */
 699            omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
 700                                    (value & (1 << 0)) ? "apll" : "dpll4"));
 701        break;
 702
 703    default:
 704        OMAP_BAD_REG(addr);
 705    }
 706}
 707
 708static const MemoryRegionOps omap_ulpd_pm_ops = {
 709    .read = omap_ulpd_pm_read,
 710    .write = omap_ulpd_pm_write,
 711    .endianness = DEVICE_NATIVE_ENDIAN,
 712};
 713
 714static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
 715{
 716    mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
 717    mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
 718    mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
 719    mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
 720    mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
 721    mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
 722    mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
 723    mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
 724    mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
 725    mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
 726    mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
 727    omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
 728    mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
 729    omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
 730    mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
 731    mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
 732    mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
 733    mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
 734    mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
 735    mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
 736    mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
 737    omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
 738    omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
 739}
 740
 741static void omap_ulpd_pm_init(MemoryRegion *system_memory,
 742                hwaddr base,
 743                struct omap_mpu_state_s *mpu)
 744{
 745    memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
 746                          "omap-ulpd-pm", 0x800);
 747    memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
 748    omap_ulpd_pm_reset(mpu);
 749}
 750
 751/* OMAP Pin Configuration */
 752static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
 753                                  unsigned size)
 754{
 755    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 756
 757    if (size != 4) {
 758        return omap_badwidth_read32(opaque, addr);
 759    }
 760
 761    switch (addr) {
 762    case 0x00:  /* FUNC_MUX_CTRL_0 */
 763    case 0x04:  /* FUNC_MUX_CTRL_1 */
 764    case 0x08:  /* FUNC_MUX_CTRL_2 */
 765        return s->func_mux_ctrl[addr >> 2];
 766
 767    case 0x0c:  /* COMP_MODE_CTRL_0 */
 768        return s->comp_mode_ctrl[0];
 769
 770    case 0x10:  /* FUNC_MUX_CTRL_3 */
 771    case 0x14:  /* FUNC_MUX_CTRL_4 */
 772    case 0x18:  /* FUNC_MUX_CTRL_5 */
 773    case 0x1c:  /* FUNC_MUX_CTRL_6 */
 774    case 0x20:  /* FUNC_MUX_CTRL_7 */
 775    case 0x24:  /* FUNC_MUX_CTRL_8 */
 776    case 0x28:  /* FUNC_MUX_CTRL_9 */
 777    case 0x2c:  /* FUNC_MUX_CTRL_A */
 778    case 0x30:  /* FUNC_MUX_CTRL_B */
 779    case 0x34:  /* FUNC_MUX_CTRL_C */
 780    case 0x38:  /* FUNC_MUX_CTRL_D */
 781        return s->func_mux_ctrl[(addr >> 2) - 1];
 782
 783    case 0x40:  /* PULL_DWN_CTRL_0 */
 784    case 0x44:  /* PULL_DWN_CTRL_1 */
 785    case 0x48:  /* PULL_DWN_CTRL_2 */
 786    case 0x4c:  /* PULL_DWN_CTRL_3 */
 787        return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
 788
 789    case 0x50:  /* GATE_INH_CTRL_0 */
 790        return s->gate_inh_ctrl[0];
 791
 792    case 0x60:  /* VOLTAGE_CTRL_0 */
 793        return s->voltage_ctrl[0];
 794
 795    case 0x70:  /* TEST_DBG_CTRL_0 */
 796        return s->test_dbg_ctrl[0];
 797
 798    case 0x80:  /* MOD_CONF_CTRL_0 */
 799        return s->mod_conf_ctrl[0];
 800    }
 801
 802    OMAP_BAD_REG(addr);
 803    return 0;
 804}
 805
 806static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
 807                uint32_t diff, uint32_t value)
 808{
 809    if (s->compat1509) {
 810        if (diff & (1 << 9))                    /* BLUETOOTH */
 811            omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
 812                            (~value >> 9) & 1);
 813        if (diff & (1 << 7))                    /* USB.CLKO */
 814            omap_clk_onoff(omap_findclk(s, "usb.clko"),
 815                            (value >> 7) & 1);
 816    }
 817}
 818
 819static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
 820                uint32_t diff, uint32_t value)
 821{
 822    if (s->compat1509) {
 823        if (diff & (1U << 31)) {
 824            /* MCBSP3_CLK_HIZ_DI */
 825            omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
 826        }
 827        if (diff & (1 << 1)) {
 828            /* CLK32K */
 829            omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
 830        }
 831    }
 832}
 833
 834static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
 835                uint32_t diff, uint32_t value)
 836{
 837    if (diff & (1U << 31)) {
 838        /* CONF_MOD_UART3_CLK_MODE_R */
 839        omap_clk_reparent(omap_findclk(s, "uart3_ck"),
 840                          omap_findclk(s, ((value >> 31) & 1) ?
 841                                       "ck_48m" : "armper_ck"));
 842    }
 843    if (diff & (1 << 30))                       /* CONF_MOD_UART2_CLK_MODE_R */
 844         omap_clk_reparent(omap_findclk(s, "uart2_ck"),
 845                         omap_findclk(s, ((value >> 30) & 1) ?
 846                                 "ck_48m" : "armper_ck"));
 847    if (diff & (1 << 29))                       /* CONF_MOD_UART1_CLK_MODE_R */
 848         omap_clk_reparent(omap_findclk(s, "uart1_ck"),
 849                         omap_findclk(s, ((value >> 29) & 1) ?
 850                                 "ck_48m" : "armper_ck"));
 851    if (diff & (1 << 23))                       /* CONF_MOD_MMC_SD_CLK_REQ_R */
 852         omap_clk_reparent(omap_findclk(s, "mmc_ck"),
 853                         omap_findclk(s, ((value >> 23) & 1) ?
 854                                 "ck_48m" : "armper_ck"));
 855    if (diff & (1 << 12))                       /* CONF_MOD_COM_MCLK_12_48_S */
 856         omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
 857                         omap_findclk(s, ((value >> 12) & 1) ?
 858                                 "ck_48m" : "armper_ck"));
 859    if (diff & (1 << 9))                        /* CONF_MOD_USB_HOST_HHC_UHO */
 860         omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
 861}
 862
 863static void omap_pin_cfg_write(void *opaque, hwaddr addr,
 864                               uint64_t value, unsigned size)
 865{
 866    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 867    uint32_t diff;
 868
 869    if (size != 4) {
 870        omap_badwidth_write32(opaque, addr, value);
 871        return;
 872    }
 873
 874    switch (addr) {
 875    case 0x00:  /* FUNC_MUX_CTRL_0 */
 876        diff = s->func_mux_ctrl[addr >> 2] ^ value;
 877        s->func_mux_ctrl[addr >> 2] = value;
 878        omap_pin_funcmux0_update(s, diff, value);
 879        return;
 880
 881    case 0x04:  /* FUNC_MUX_CTRL_1 */
 882        diff = s->func_mux_ctrl[addr >> 2] ^ value;
 883        s->func_mux_ctrl[addr >> 2] = value;
 884        omap_pin_funcmux1_update(s, diff, value);
 885        return;
 886
 887    case 0x08:  /* FUNC_MUX_CTRL_2 */
 888        s->func_mux_ctrl[addr >> 2] = value;
 889        return;
 890
 891    case 0x0c:  /* COMP_MODE_CTRL_0 */
 892        s->comp_mode_ctrl[0] = value;
 893        s->compat1509 = (value != 0x0000eaef);
 894        omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
 895        omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
 896        return;
 897
 898    case 0x10:  /* FUNC_MUX_CTRL_3 */
 899    case 0x14:  /* FUNC_MUX_CTRL_4 */
 900    case 0x18:  /* FUNC_MUX_CTRL_5 */
 901    case 0x1c:  /* FUNC_MUX_CTRL_6 */
 902    case 0x20:  /* FUNC_MUX_CTRL_7 */
 903    case 0x24:  /* FUNC_MUX_CTRL_8 */
 904    case 0x28:  /* FUNC_MUX_CTRL_9 */
 905    case 0x2c:  /* FUNC_MUX_CTRL_A */
 906    case 0x30:  /* FUNC_MUX_CTRL_B */
 907    case 0x34:  /* FUNC_MUX_CTRL_C */
 908    case 0x38:  /* FUNC_MUX_CTRL_D */
 909        s->func_mux_ctrl[(addr >> 2) - 1] = value;
 910        return;
 911
 912    case 0x40:  /* PULL_DWN_CTRL_0 */
 913    case 0x44:  /* PULL_DWN_CTRL_1 */
 914    case 0x48:  /* PULL_DWN_CTRL_2 */
 915    case 0x4c:  /* PULL_DWN_CTRL_3 */
 916        s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
 917        return;
 918
 919    case 0x50:  /* GATE_INH_CTRL_0 */
 920        s->gate_inh_ctrl[0] = value;
 921        return;
 922
 923    case 0x60:  /* VOLTAGE_CTRL_0 */
 924        s->voltage_ctrl[0] = value;
 925        return;
 926
 927    case 0x70:  /* TEST_DBG_CTRL_0 */
 928        s->test_dbg_ctrl[0] = value;
 929        return;
 930
 931    case 0x80:  /* MOD_CONF_CTRL_0 */
 932        diff = s->mod_conf_ctrl[0] ^ value;
 933        s->mod_conf_ctrl[0] = value;
 934        omap_pin_modconf1_update(s, diff, value);
 935        return;
 936
 937    default:
 938        OMAP_BAD_REG(addr);
 939    }
 940}
 941
 942static const MemoryRegionOps omap_pin_cfg_ops = {
 943    .read = omap_pin_cfg_read,
 944    .write = omap_pin_cfg_write,
 945    .endianness = DEVICE_NATIVE_ENDIAN,
 946};
 947
 948static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
 949{
 950    /* Start in Compatibility Mode.  */
 951    mpu->compat1509 = 1;
 952    omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
 953    omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
 954    omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
 955    memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
 956    memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
 957    memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
 958    memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
 959    memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
 960    memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
 961    memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
 962}
 963
 964static void omap_pin_cfg_init(MemoryRegion *system_memory,
 965                hwaddr base,
 966                struct omap_mpu_state_s *mpu)
 967{
 968    memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
 969                          "omap-pin-cfg", 0x800);
 970    memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
 971    omap_pin_cfg_reset(mpu);
 972}
 973
 974/* Device Identification, Die Identification */
 975static uint64_t omap_id_read(void *opaque, hwaddr addr,
 976                             unsigned size)
 977{
 978    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 979
 980    if (size != 4) {
 981        return omap_badwidth_read32(opaque, addr);
 982    }
 983
 984    switch (addr) {
 985    case 0xfffe1800:    /* DIE_ID_LSB */
 986        return 0xc9581f0e;
 987    case 0xfffe1804:    /* DIE_ID_MSB */
 988        return 0xa8858bfa;
 989
 990    case 0xfffe2000:    /* PRODUCT_ID_LSB */
 991        return 0x00aaaafc;
 992    case 0xfffe2004:    /* PRODUCT_ID_MSB */
 993        return 0xcafeb574;
 994
 995    case 0xfffed400:    /* JTAG_ID_LSB */
 996        switch (s->mpu_model) {
 997        case omap310:
 998            return 0x03310315;
 999        case omap1510:
1000            return 0x03310115;
1001        default:
1002            hw_error("%s: bad mpu model\n", __FUNCTION__);
1003        }
1004        break;
1005
1006    case 0xfffed404:    /* JTAG_ID_MSB */
1007        switch (s->mpu_model) {
1008        case omap310:
1009            return 0xfb57402f;
1010        case omap1510:
1011            return 0xfb47002f;
1012        default:
1013            hw_error("%s: bad mpu model\n", __FUNCTION__);
1014        }
1015        break;
1016    }
1017
1018    OMAP_BAD_REG(addr);
1019    return 0;
1020}
1021
1022static void omap_id_write(void *opaque, hwaddr addr,
1023                          uint64_t value, unsigned size)
1024{
1025    if (size != 4) {
1026        omap_badwidth_write32(opaque, addr, value);
1027        return;
1028    }
1029
1030    OMAP_BAD_REG(addr);
1031}
1032
1033static const MemoryRegionOps omap_id_ops = {
1034    .read = omap_id_read,
1035    .write = omap_id_write,
1036    .endianness = DEVICE_NATIVE_ENDIAN,
1037};
1038
1039static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1040{
1041    memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1042                          "omap-id", 0x100000000ULL);
1043    memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1044                             0xfffe1800, 0x800);
1045    memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1046    memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1047                             0xfffed400, 0x100);
1048    memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1049    if (!cpu_is_omap15xx(mpu)) {
1050        memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1051                                 &mpu->id_iomem, 0xfffe2000, 0x800);
1052        memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1053    }
1054}
1055
1056/* MPUI Control (Dummy) */
1057static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1058                               unsigned size)
1059{
1060    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1061
1062    if (size != 4) {
1063        return omap_badwidth_read32(opaque, addr);
1064    }
1065
1066    switch (addr) {
1067    case 0x00:  /* CTRL */
1068        return s->mpui_ctrl;
1069    case 0x04:  /* DEBUG_ADDR */
1070        return 0x01ffffff;
1071    case 0x08:  /* DEBUG_DATA */
1072        return 0xffffffff;
1073    case 0x0c:  /* DEBUG_FLAG */
1074        return 0x00000800;
1075    case 0x10:  /* STATUS */
1076        return 0x00000000;
1077
1078    /* Not in OMAP310 */
1079    case 0x14:  /* DSP_STATUS */
1080    case 0x18:  /* DSP_BOOT_CONFIG */
1081        return 0x00000000;
1082    case 0x1c:  /* DSP_MPUI_CONFIG */
1083        return 0x0000ffff;
1084    }
1085
1086    OMAP_BAD_REG(addr);
1087    return 0;
1088}
1089
1090static void omap_mpui_write(void *opaque, hwaddr addr,
1091                            uint64_t value, unsigned size)
1092{
1093    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1094
1095    if (size != 4) {
1096        omap_badwidth_write32(opaque, addr, value);
1097        return;
1098    }
1099
1100    switch (addr) {
1101    case 0x00:  /* CTRL */
1102        s->mpui_ctrl = value & 0x007fffff;
1103        break;
1104
1105    case 0x04:  /* DEBUG_ADDR */
1106    case 0x08:  /* DEBUG_DATA */
1107    case 0x0c:  /* DEBUG_FLAG */
1108    case 0x10:  /* STATUS */
1109    /* Not in OMAP310 */
1110    case 0x14:  /* DSP_STATUS */
1111        OMAP_RO_REG(addr);
1112        break;
1113    case 0x18:  /* DSP_BOOT_CONFIG */
1114    case 0x1c:  /* DSP_MPUI_CONFIG */
1115        break;
1116
1117    default:
1118        OMAP_BAD_REG(addr);
1119    }
1120}
1121
1122static const MemoryRegionOps omap_mpui_ops = {
1123    .read = omap_mpui_read,
1124    .write = omap_mpui_write,
1125    .endianness = DEVICE_NATIVE_ENDIAN,
1126};
1127
1128static void omap_mpui_reset(struct omap_mpu_state_s *s)
1129{
1130    s->mpui_ctrl = 0x0003ff1b;
1131}
1132
1133static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1134                struct omap_mpu_state_s *mpu)
1135{
1136    memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1137                          "omap-mpui", 0x100);
1138    memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1139
1140    omap_mpui_reset(mpu);
1141}
1142
1143/* TIPB Bridges */
1144struct omap_tipb_bridge_s {
1145    qemu_irq abort;
1146    MemoryRegion iomem;
1147
1148    int width_intr;
1149    uint16_t control;
1150    uint16_t alloc;
1151    uint16_t buffer;
1152    uint16_t enh_control;
1153};
1154
1155static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1156                                      unsigned size)
1157{
1158    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1159
1160    if (size < 2) {
1161        return omap_badwidth_read16(opaque, addr);
1162    }
1163
1164    switch (addr) {
1165    case 0x00:  /* TIPB_CNTL */
1166        return s->control;
1167    case 0x04:  /* TIPB_BUS_ALLOC */
1168        return s->alloc;
1169    case 0x08:  /* MPU_TIPB_CNTL */
1170        return s->buffer;
1171    case 0x0c:  /* ENHANCED_TIPB_CNTL */
1172        return s->enh_control;
1173    case 0x10:  /* ADDRESS_DBG */
1174    case 0x14:  /* DATA_DEBUG_LOW */
1175    case 0x18:  /* DATA_DEBUG_HIGH */
1176        return 0xffff;
1177    case 0x1c:  /* DEBUG_CNTR_SIG */
1178        return 0x00f8;
1179    }
1180
1181    OMAP_BAD_REG(addr);
1182    return 0;
1183}
1184
1185static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1186                                   uint64_t value, unsigned size)
1187{
1188    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1189
1190    if (size < 2) {
1191        omap_badwidth_write16(opaque, addr, value);
1192        return;
1193    }
1194
1195    switch (addr) {
1196    case 0x00:  /* TIPB_CNTL */
1197        s->control = value & 0xffff;
1198        break;
1199
1200    case 0x04:  /* TIPB_BUS_ALLOC */
1201        s->alloc = value & 0x003f;
1202        break;
1203
1204    case 0x08:  /* MPU_TIPB_CNTL */
1205        s->buffer = value & 0x0003;
1206        break;
1207
1208    case 0x0c:  /* ENHANCED_TIPB_CNTL */
1209        s->width_intr = !(value & 2);
1210        s->enh_control = value & 0x000f;
1211        break;
1212
1213    case 0x10:  /* ADDRESS_DBG */
1214    case 0x14:  /* DATA_DEBUG_LOW */
1215    case 0x18:  /* DATA_DEBUG_HIGH */
1216    case 0x1c:  /* DEBUG_CNTR_SIG */
1217        OMAP_RO_REG(addr);
1218        break;
1219
1220    default:
1221        OMAP_BAD_REG(addr);
1222    }
1223}
1224
1225static const MemoryRegionOps omap_tipb_bridge_ops = {
1226    .read = omap_tipb_bridge_read,
1227    .write = omap_tipb_bridge_write,
1228    .endianness = DEVICE_NATIVE_ENDIAN,
1229};
1230
1231static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1232{
1233    s->control = 0xffff;
1234    s->alloc = 0x0009;
1235    s->buffer = 0x0000;
1236    s->enh_control = 0x000f;
1237}
1238
1239static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1240    MemoryRegion *memory, hwaddr base,
1241    qemu_irq abort_irq, omap_clk clk)
1242{
1243    struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1244
1245    s->abort = abort_irq;
1246    omap_tipb_bridge_reset(s);
1247
1248    memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1249                          "omap-tipb-bridge", 0x100);
1250    memory_region_add_subregion(memory, base, &s->iomem);
1251
1252    return s;
1253}
1254
1255/* Dummy Traffic Controller's Memory Interface */
1256static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1257                               unsigned size)
1258{
1259    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1260    uint32_t ret;
1261
1262    if (size != 4) {
1263        return omap_badwidth_read32(opaque, addr);
1264    }
1265
1266    switch (addr) {
1267    case 0x00:  /* IMIF_PRIO */
1268    case 0x04:  /* EMIFS_PRIO */
1269    case 0x08:  /* EMIFF_PRIO */
1270    case 0x0c:  /* EMIFS_CONFIG */
1271    case 0x10:  /* EMIFS_CS0_CONFIG */
1272    case 0x14:  /* EMIFS_CS1_CONFIG */
1273    case 0x18:  /* EMIFS_CS2_CONFIG */
1274    case 0x1c:  /* EMIFS_CS3_CONFIG */
1275    case 0x24:  /* EMIFF_MRS */
1276    case 0x28:  /* TIMEOUT1 */
1277    case 0x2c:  /* TIMEOUT2 */
1278    case 0x30:  /* TIMEOUT3 */
1279    case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1280    case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1281        return s->tcmi_regs[addr >> 2];
1282
1283    case 0x20:  /* EMIFF_SDRAM_CONFIG */
1284        ret = s->tcmi_regs[addr >> 2];
1285        s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1286        /* XXX: We can try using the VGA_DIRTY flag for this */
1287        return ret;
1288    }
1289
1290    OMAP_BAD_REG(addr);
1291    return 0;
1292}
1293
1294static void omap_tcmi_write(void *opaque, hwaddr addr,
1295                            uint64_t value, unsigned size)
1296{
1297    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1298
1299    if (size != 4) {
1300        omap_badwidth_write32(opaque, addr, value);
1301        return;
1302    }
1303
1304    switch (addr) {
1305    case 0x00:  /* IMIF_PRIO */
1306    case 0x04:  /* EMIFS_PRIO */
1307    case 0x08:  /* EMIFF_PRIO */
1308    case 0x10:  /* EMIFS_CS0_CONFIG */
1309    case 0x14:  /* EMIFS_CS1_CONFIG */
1310    case 0x18:  /* EMIFS_CS2_CONFIG */
1311    case 0x1c:  /* EMIFS_CS3_CONFIG */
1312    case 0x20:  /* EMIFF_SDRAM_CONFIG */
1313    case 0x24:  /* EMIFF_MRS */
1314    case 0x28:  /* TIMEOUT1 */
1315    case 0x2c:  /* TIMEOUT2 */
1316    case 0x30:  /* TIMEOUT3 */
1317    case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1318    case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1319        s->tcmi_regs[addr >> 2] = value;
1320        break;
1321    case 0x0c:  /* EMIFS_CONFIG */
1322        s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1323        break;
1324
1325    default:
1326        OMAP_BAD_REG(addr);
1327    }
1328}
1329
1330static const MemoryRegionOps omap_tcmi_ops = {
1331    .read = omap_tcmi_read,
1332    .write = omap_tcmi_write,
1333    .endianness = DEVICE_NATIVE_ENDIAN,
1334};
1335
1336static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1337{
1338    mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1339    mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1340    mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1341    mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1342    mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1343    mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1344    mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1345    mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1346    mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1347    mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1348    mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1349    mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1350    mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1351    mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1352    mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1353}
1354
1355static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1356                struct omap_mpu_state_s *mpu)
1357{
1358    memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1359                          "omap-tcmi", 0x100);
1360    memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1361    omap_tcmi_reset(mpu);
1362}
1363
1364/* Digital phase-locked loops control */
1365struct dpll_ctl_s {
1366    MemoryRegion iomem;
1367    uint16_t mode;
1368    omap_clk dpll;
1369};
1370
1371static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1372                               unsigned size)
1373{
1374    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1375
1376    if (size != 2) {
1377        return omap_badwidth_read16(opaque, addr);
1378    }
1379
1380    if (addr == 0x00)   /* CTL_REG */
1381        return s->mode;
1382
1383    OMAP_BAD_REG(addr);
1384    return 0;
1385}
1386
1387static void omap_dpll_write(void *opaque, hwaddr addr,
1388                            uint64_t value, unsigned size)
1389{
1390    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1391    uint16_t diff;
1392    static const int bypass_div[4] = { 1, 2, 4, 4 };
1393    int div, mult;
1394
1395    if (size != 2) {
1396        omap_badwidth_write16(opaque, addr, value);
1397        return;
1398    }
1399
1400    if (addr == 0x00) { /* CTL_REG */
1401        /* See omap_ulpd_pm_write() too */
1402        diff = s->mode & value;
1403        s->mode = value & 0x2fff;
1404        if (diff & (0x3ff << 2)) {
1405            if (value & (1 << 4)) {                     /* PLL_ENABLE */
1406                div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
1407                mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
1408            } else {
1409                div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
1410                mult = 1;
1411            }
1412            omap_clk_setrate(s->dpll, div, mult);
1413        }
1414
1415        /* Enter the desired mode.  */
1416        s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1417
1418        /* Act as if the lock is restored.  */
1419        s->mode |= 2;
1420    } else {
1421        OMAP_BAD_REG(addr);
1422    }
1423}
1424
1425static const MemoryRegionOps omap_dpll_ops = {
1426    .read = omap_dpll_read,
1427    .write = omap_dpll_write,
1428    .endianness = DEVICE_NATIVE_ENDIAN,
1429};
1430
1431static void omap_dpll_reset(struct dpll_ctl_s *s)
1432{
1433    s->mode = 0x2002;
1434    omap_clk_setrate(s->dpll, 1, 1);
1435}
1436
1437static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1438                           hwaddr base, omap_clk clk)
1439{
1440    struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1441    memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1442
1443    s->dpll = clk;
1444    omap_dpll_reset(s);
1445
1446    memory_region_add_subregion(memory, base, &s->iomem);
1447    return s;
1448}
1449
1450/* MPU Clock/Reset/Power Mode Control */
1451static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1452                               unsigned size)
1453{
1454    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1455
1456    if (size != 2) {
1457        return omap_badwidth_read16(opaque, addr);
1458    }
1459
1460    switch (addr) {
1461    case 0x00:  /* ARM_CKCTL */
1462        return s->clkm.arm_ckctl;
1463
1464    case 0x04:  /* ARM_IDLECT1 */
1465        return s->clkm.arm_idlect1;
1466
1467    case 0x08:  /* ARM_IDLECT2 */
1468        return s->clkm.arm_idlect2;
1469
1470    case 0x0c:  /* ARM_EWUPCT */
1471        return s->clkm.arm_ewupct;
1472
1473    case 0x10:  /* ARM_RSTCT1 */
1474        return s->clkm.arm_rstct1;
1475
1476    case 0x14:  /* ARM_RSTCT2 */
1477        return s->clkm.arm_rstct2;
1478
1479    case 0x18:  /* ARM_SYSST */
1480        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1481
1482    case 0x1c:  /* ARM_CKOUT1 */
1483        return s->clkm.arm_ckout1;
1484
1485    case 0x20:  /* ARM_CKOUT2 */
1486        break;
1487    }
1488
1489    OMAP_BAD_REG(addr);
1490    return 0;
1491}
1492
1493static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1494                uint16_t diff, uint16_t value)
1495{
1496    omap_clk clk;
1497
1498    if (diff & (1 << 14)) {                             /* ARM_INTHCK_SEL */
1499        if (value & (1 << 14))
1500            /* Reserved */;
1501        else {
1502            clk = omap_findclk(s, "arminth_ck");
1503            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1504        }
1505    }
1506    if (diff & (1 << 12)) {                             /* ARM_TIMXO */
1507        clk = omap_findclk(s, "armtim_ck");
1508        if (value & (1 << 12))
1509            omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1510        else
1511            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1512    }
1513    /* XXX: en_dspck */
1514    if (diff & (3 << 10)) {                             /* DSPMMUDIV */
1515        clk = omap_findclk(s, "dspmmu_ck");
1516        omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1517    }
1518    if (diff & (3 << 8)) {                              /* TCDIV */
1519        clk = omap_findclk(s, "tc_ck");
1520        omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1521    }
1522    if (diff & (3 << 6)) {                              /* DSPDIV */
1523        clk = omap_findclk(s, "dsp_ck");
1524        omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1525    }
1526    if (diff & (3 << 4)) {                              /* ARMDIV */
1527        clk = omap_findclk(s, "arm_ck");
1528        omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1529    }
1530    if (diff & (3 << 2)) {                              /* LCDDIV */
1531        clk = omap_findclk(s, "lcd_ck");
1532        omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1533    }
1534    if (diff & (3 << 0)) {                              /* PERDIV */
1535        clk = omap_findclk(s, "armper_ck");
1536        omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1537    }
1538}
1539
1540static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1541                uint16_t diff, uint16_t value)
1542{
1543    omap_clk clk;
1544
1545    if (value & (1 << 11)) {                            /* SETARM_IDLE */
1546        cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1547    }
1548    if (!(value & (1 << 10)))                           /* WKUP_MODE */
1549        qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1550
1551#define SET_CANIDLE(clock, bit)                         \
1552    if (diff & (1 << bit)) {                            \
1553        clk = omap_findclk(s, clock);                   \
1554        omap_clk_canidle(clk, (value >> bit) & 1);      \
1555    }
1556    SET_CANIDLE("mpuwd_ck", 0)                          /* IDLWDT_ARM */
1557    SET_CANIDLE("armxor_ck", 1)                         /* IDLXORP_ARM */
1558    SET_CANIDLE("mpuper_ck", 2)                         /* IDLPER_ARM */
1559    SET_CANIDLE("lcd_ck", 3)                            /* IDLLCD_ARM */
1560    SET_CANIDLE("lb_ck", 4)                             /* IDLLB_ARM */
1561    SET_CANIDLE("hsab_ck", 5)                           /* IDLHSAB_ARM */
1562    SET_CANIDLE("tipb_ck", 6)                           /* IDLIF_ARM */
1563    SET_CANIDLE("dma_ck", 6)                            /* IDLIF_ARM */
1564    SET_CANIDLE("tc_ck", 6)                             /* IDLIF_ARM */
1565    SET_CANIDLE("dpll1", 7)                             /* IDLDPLL_ARM */
1566    SET_CANIDLE("dpll2", 7)                             /* IDLDPLL_ARM */
1567    SET_CANIDLE("dpll3", 7)                             /* IDLDPLL_ARM */
1568    SET_CANIDLE("mpui_ck", 8)                           /* IDLAPI_ARM */
1569    SET_CANIDLE("armtim_ck", 9)                         /* IDLTIM_ARM */
1570}
1571
1572static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1573                uint16_t diff, uint16_t value)
1574{
1575    omap_clk clk;
1576
1577#define SET_ONOFF(clock, bit)                           \
1578    if (diff & (1 << bit)) {                            \
1579        clk = omap_findclk(s, clock);                   \
1580        omap_clk_onoff(clk, (value >> bit) & 1);        \
1581    }
1582    SET_ONOFF("mpuwd_ck", 0)                            /* EN_WDTCK */
1583    SET_ONOFF("armxor_ck", 1)                           /* EN_XORPCK */
1584    SET_ONOFF("mpuper_ck", 2)                           /* EN_PERCK */
1585    SET_ONOFF("lcd_ck", 3)                              /* EN_LCDCK */
1586    SET_ONOFF("lb_ck", 4)                               /* EN_LBCK */
1587    SET_ONOFF("hsab_ck", 5)                             /* EN_HSABCK */
1588    SET_ONOFF("mpui_ck", 6)                             /* EN_APICK */
1589    SET_ONOFF("armtim_ck", 7)                           /* EN_TIMCK */
1590    SET_CANIDLE("dma_ck", 8)                            /* DMACK_REQ */
1591    SET_ONOFF("arm_gpio_ck", 9)                         /* EN_GPIOCK */
1592    SET_ONOFF("lbfree_ck", 10)                          /* EN_LBFREECK */
1593}
1594
1595static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1596                uint16_t diff, uint16_t value)
1597{
1598    omap_clk clk;
1599
1600    if (diff & (3 << 4)) {                              /* TCLKOUT */
1601        clk = omap_findclk(s, "tclk_out");
1602        switch ((value >> 4) & 3) {
1603        case 1:
1604            omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1605            omap_clk_onoff(clk, 1);
1606            break;
1607        case 2:
1608            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1609            omap_clk_onoff(clk, 1);
1610            break;
1611        default:
1612            omap_clk_onoff(clk, 0);
1613        }
1614    }
1615    if (diff & (3 << 2)) {                              /* DCLKOUT */
1616        clk = omap_findclk(s, "dclk_out");
1617        switch ((value >> 2) & 3) {
1618        case 0:
1619            omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1620            break;
1621        case 1:
1622            omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1623            break;
1624        case 2:
1625            omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1626            break;
1627        case 3:
1628            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1629            break;
1630        }
1631    }
1632    if (diff & (3 << 0)) {                              /* ACLKOUT */
1633        clk = omap_findclk(s, "aclk_out");
1634        switch ((value >> 0) & 3) {
1635        case 1:
1636            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1637            omap_clk_onoff(clk, 1);
1638            break;
1639        case 2:
1640            omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1641            omap_clk_onoff(clk, 1);
1642            break;
1643        case 3:
1644            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1645            omap_clk_onoff(clk, 1);
1646            break;
1647        default:
1648            omap_clk_onoff(clk, 0);
1649        }
1650    }
1651}
1652
1653static void omap_clkm_write(void *opaque, hwaddr addr,
1654                            uint64_t value, unsigned size)
1655{
1656    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1657    uint16_t diff;
1658    omap_clk clk;
1659    static const char *clkschemename[8] = {
1660        "fully synchronous", "fully asynchronous", "synchronous scalable",
1661        "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1662    };
1663
1664    if (size != 2) {
1665        omap_badwidth_write16(opaque, addr, value);
1666        return;
1667    }
1668
1669    switch (addr) {
1670    case 0x00:  /* ARM_CKCTL */
1671        diff = s->clkm.arm_ckctl ^ value;
1672        s->clkm.arm_ckctl = value & 0x7fff;
1673        omap_clkm_ckctl_update(s, diff, value);
1674        return;
1675
1676    case 0x04:  /* ARM_IDLECT1 */
1677        diff = s->clkm.arm_idlect1 ^ value;
1678        s->clkm.arm_idlect1 = value & 0x0fff;
1679        omap_clkm_idlect1_update(s, diff, value);
1680        return;
1681
1682    case 0x08:  /* ARM_IDLECT2 */
1683        diff = s->clkm.arm_idlect2 ^ value;
1684        s->clkm.arm_idlect2 = value & 0x07ff;
1685        omap_clkm_idlect2_update(s, diff, value);
1686        return;
1687
1688    case 0x0c:  /* ARM_EWUPCT */
1689        s->clkm.arm_ewupct = value & 0x003f;
1690        return;
1691
1692    case 0x10:  /* ARM_RSTCT1 */
1693        diff = s->clkm.arm_rstct1 ^ value;
1694        s->clkm.arm_rstct1 = value & 0x0007;
1695        if (value & 9) {
1696            qemu_system_reset_request();
1697            s->clkm.cold_start = 0xa;
1698        }
1699        if (diff & ~value & 4) {                                /* DSP_RST */
1700            omap_mpui_reset(s);
1701            omap_tipb_bridge_reset(s->private_tipb);
1702            omap_tipb_bridge_reset(s->public_tipb);
1703        }
1704        if (diff & 2) {                                         /* DSP_EN */
1705            clk = omap_findclk(s, "dsp_ck");
1706            omap_clk_canidle(clk, (~value >> 1) & 1);
1707        }
1708        return;
1709
1710    case 0x14:  /* ARM_RSTCT2 */
1711        s->clkm.arm_rstct2 = value & 0x0001;
1712        return;
1713
1714    case 0x18:  /* ARM_SYSST */
1715        if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1716            s->clkm.clocking_scheme = (value >> 11) & 7;
1717            printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1718                            clkschemename[s->clkm.clocking_scheme]);
1719        }
1720        s->clkm.cold_start &= value & 0x3f;
1721        return;
1722
1723    case 0x1c:  /* ARM_CKOUT1 */
1724        diff = s->clkm.arm_ckout1 ^ value;
1725        s->clkm.arm_ckout1 = value & 0x003f;
1726        omap_clkm_ckout1_update(s, diff, value);
1727        return;
1728
1729    case 0x20:  /* ARM_CKOUT2 */
1730    default:
1731        OMAP_BAD_REG(addr);
1732    }
1733}
1734
1735static const MemoryRegionOps omap_clkm_ops = {
1736    .read = omap_clkm_read,
1737    .write = omap_clkm_write,
1738    .endianness = DEVICE_NATIVE_ENDIAN,
1739};
1740
1741static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1742                                 unsigned size)
1743{
1744    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1745    CPUState *cpu = CPU(s->cpu);
1746
1747    if (size != 2) {
1748        return omap_badwidth_read16(opaque, addr);
1749    }
1750
1751    switch (addr) {
1752    case 0x04:  /* DSP_IDLECT1 */
1753        return s->clkm.dsp_idlect1;
1754
1755    case 0x08:  /* DSP_IDLECT2 */
1756        return s->clkm.dsp_idlect2;
1757
1758    case 0x14:  /* DSP_RSTCT2 */
1759        return s->clkm.dsp_rstct2;
1760
1761    case 0x18:  /* DSP_SYSST */
1762        cpu = CPU(s->cpu);
1763        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1764                (cpu->halted << 6);      /* Quite useless... */
1765    }
1766
1767    OMAP_BAD_REG(addr);
1768    return 0;
1769}
1770
1771static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1772                uint16_t diff, uint16_t value)
1773{
1774    omap_clk clk;
1775
1776    SET_CANIDLE("dspxor_ck", 1);                        /* IDLXORP_DSP */
1777}
1778
1779static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1780                uint16_t diff, uint16_t value)
1781{
1782    omap_clk clk;
1783
1784    SET_ONOFF("dspxor_ck", 1);                          /* EN_XORPCK */
1785}
1786
1787static void omap_clkdsp_write(void *opaque, hwaddr addr,
1788                              uint64_t value, unsigned size)
1789{
1790    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1791    uint16_t diff;
1792
1793    if (size != 2) {
1794        omap_badwidth_write16(opaque, addr, value);
1795        return;
1796    }
1797
1798    switch (addr) {
1799    case 0x04:  /* DSP_IDLECT1 */
1800        diff = s->clkm.dsp_idlect1 ^ value;
1801        s->clkm.dsp_idlect1 = value & 0x01f7;
1802        omap_clkdsp_idlect1_update(s, diff, value);
1803        break;
1804
1805    case 0x08:  /* DSP_IDLECT2 */
1806        s->clkm.dsp_idlect2 = value & 0x0037;
1807        diff = s->clkm.dsp_idlect1 ^ value;
1808        omap_clkdsp_idlect2_update(s, diff, value);
1809        break;
1810
1811    case 0x14:  /* DSP_RSTCT2 */
1812        s->clkm.dsp_rstct2 = value & 0x0001;
1813        break;
1814
1815    case 0x18:  /* DSP_SYSST */
1816        s->clkm.cold_start &= value & 0x3f;
1817        break;
1818
1819    default:
1820        OMAP_BAD_REG(addr);
1821    }
1822}
1823
1824static const MemoryRegionOps omap_clkdsp_ops = {
1825    .read = omap_clkdsp_read,
1826    .write = omap_clkdsp_write,
1827    .endianness = DEVICE_NATIVE_ENDIAN,
1828};
1829
1830static void omap_clkm_reset(struct omap_mpu_state_s *s)
1831{
1832    if (s->wdt && s->wdt->reset)
1833        s->clkm.cold_start = 0x6;
1834    s->clkm.clocking_scheme = 0;
1835    omap_clkm_ckctl_update(s, ~0, 0x3000);
1836    s->clkm.arm_ckctl = 0x3000;
1837    omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1838    s->clkm.arm_idlect1 = 0x0400;
1839    omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1840    s->clkm.arm_idlect2 = 0x0100;
1841    s->clkm.arm_ewupct = 0x003f;
1842    s->clkm.arm_rstct1 = 0x0000;
1843    s->clkm.arm_rstct2 = 0x0000;
1844    s->clkm.arm_ckout1 = 0x0015;
1845    s->clkm.dpll1_mode = 0x2002;
1846    omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1847    s->clkm.dsp_idlect1 = 0x0040;
1848    omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1849    s->clkm.dsp_idlect2 = 0x0000;
1850    s->clkm.dsp_rstct2 = 0x0000;
1851}
1852
1853static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1854                hwaddr dsp_base, struct omap_mpu_state_s *s)
1855{
1856    memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1857                          "omap-clkm", 0x100);
1858    memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1859                          "omap-clkdsp", 0x1000);
1860
1861    s->clkm.arm_idlect1 = 0x03ff;
1862    s->clkm.arm_idlect2 = 0x0100;
1863    s->clkm.dsp_idlect1 = 0x0002;
1864    omap_clkm_reset(s);
1865    s->clkm.cold_start = 0x3a;
1866
1867    memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1868    memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1869}
1870
1871/* MPU I/O */
1872struct omap_mpuio_s {
1873    qemu_irq irq;
1874    qemu_irq kbd_irq;
1875    qemu_irq *in;
1876    qemu_irq handler[16];
1877    qemu_irq wakeup;
1878    MemoryRegion iomem;
1879
1880    uint16_t inputs;
1881    uint16_t outputs;
1882    uint16_t dir;
1883    uint16_t edge;
1884    uint16_t mask;
1885    uint16_t ints;
1886
1887    uint16_t debounce;
1888    uint16_t latch;
1889    uint8_t event;
1890
1891    uint8_t buttons[5];
1892    uint8_t row_latch;
1893    uint8_t cols;
1894    int kbd_mask;
1895    int clk;
1896};
1897
1898static void omap_mpuio_set(void *opaque, int line, int level)
1899{
1900    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1901    uint16_t prev = s->inputs;
1902
1903    if (level)
1904        s->inputs |= 1 << line;
1905    else
1906        s->inputs &= ~(1 << line);
1907
1908    if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1909        if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1910            s->ints |= 1 << line;
1911            qemu_irq_raise(s->irq);
1912            /* TODO: wakeup */
1913        }
1914        if ((s->event & (1 << 0)) &&            /* SET_GPIO_EVENT_MODE */
1915                (s->event >> 1) == line)        /* PIN_SELECT */
1916            s->latch = s->inputs;
1917    }
1918}
1919
1920static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1921{
1922    int i;
1923    uint8_t *row, rows = 0, cols = ~s->cols;
1924
1925    for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1926        if (*row & cols)
1927            rows |= i;
1928
1929    qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1930    s->row_latch = ~rows;
1931}
1932
1933static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1934                                unsigned size)
1935{
1936    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1937    int offset = addr & OMAP_MPUI_REG_MASK;
1938    uint16_t ret;
1939
1940    if (size != 2) {
1941        return omap_badwidth_read16(opaque, addr);
1942    }
1943
1944    switch (offset) {
1945    case 0x00:  /* INPUT_LATCH */
1946        return s->inputs;
1947
1948    case 0x04:  /* OUTPUT_REG */
1949        return s->outputs;
1950
1951    case 0x08:  /* IO_CNTL */
1952        return s->dir;
1953
1954    case 0x10:  /* KBR_LATCH */
1955        return s->row_latch;
1956
1957    case 0x14:  /* KBC_REG */
1958        return s->cols;
1959
1960    case 0x18:  /* GPIO_EVENT_MODE_REG */
1961        return s->event;
1962
1963    case 0x1c:  /* GPIO_INT_EDGE_REG */
1964        return s->edge;
1965
1966    case 0x20:  /* KBD_INT */
1967        return (~s->row_latch & 0x1f) && !s->kbd_mask;
1968
1969    case 0x24:  /* GPIO_INT */
1970        ret = s->ints;
1971        s->ints &= s->mask;
1972        if (ret)
1973            qemu_irq_lower(s->irq);
1974        return ret;
1975
1976    case 0x28:  /* KBD_MASKIT */
1977        return s->kbd_mask;
1978
1979    case 0x2c:  /* GPIO_MASKIT */
1980        return s->mask;
1981
1982    case 0x30:  /* GPIO_DEBOUNCING_REG */
1983        return s->debounce;
1984
1985    case 0x34:  /* GPIO_LATCH_REG */
1986        return s->latch;
1987    }
1988
1989    OMAP_BAD_REG(addr);
1990    return 0;
1991}
1992
1993static void omap_mpuio_write(void *opaque, hwaddr addr,
1994                             uint64_t value, unsigned size)
1995{
1996    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1997    int offset = addr & OMAP_MPUI_REG_MASK;
1998    uint16_t diff;
1999    int ln;
2000
2001    if (size != 2) {
2002        omap_badwidth_write16(opaque, addr, value);
2003        return;
2004    }
2005
2006    switch (offset) {
2007    case 0x04:  /* OUTPUT_REG */
2008        diff = (s->outputs ^ value) & ~s->dir;
2009        s->outputs = value;
2010        while ((ln = ctz32(diff)) != 32) {
2011            if (s->handler[ln])
2012                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2013            diff &= ~(1 << ln);
2014        }
2015        break;
2016
2017    case 0x08:  /* IO_CNTL */
2018        diff = s->outputs & (s->dir ^ value);
2019        s->dir = value;
2020
2021        value = s->outputs & ~s->dir;
2022        while ((ln = ctz32(diff)) != 32) {
2023            if (s->handler[ln])
2024                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2025            diff &= ~(1 << ln);
2026        }
2027        break;
2028
2029    case 0x14:  /* KBC_REG */
2030        s->cols = value;
2031        omap_mpuio_kbd_update(s);
2032        break;
2033
2034    case 0x18:  /* GPIO_EVENT_MODE_REG */
2035        s->event = value & 0x1f;
2036        break;
2037
2038    case 0x1c:  /* GPIO_INT_EDGE_REG */
2039        s->edge = value;
2040        break;
2041
2042    case 0x28:  /* KBD_MASKIT */
2043        s->kbd_mask = value & 1;
2044        omap_mpuio_kbd_update(s);
2045        break;
2046
2047    case 0x2c:  /* GPIO_MASKIT */
2048        s->mask = value;
2049        break;
2050
2051    case 0x30:  /* GPIO_DEBOUNCING_REG */
2052        s->debounce = value & 0x1ff;
2053        break;
2054
2055    case 0x00:  /* INPUT_LATCH */
2056    case 0x10:  /* KBR_LATCH */
2057    case 0x20:  /* KBD_INT */
2058    case 0x24:  /* GPIO_INT */
2059    case 0x34:  /* GPIO_LATCH_REG */
2060        OMAP_RO_REG(addr);
2061        return;
2062
2063    default:
2064        OMAP_BAD_REG(addr);
2065        return;
2066    }
2067}
2068
2069static const MemoryRegionOps omap_mpuio_ops  = {
2070    .read = omap_mpuio_read,
2071    .write = omap_mpuio_write,
2072    .endianness = DEVICE_NATIVE_ENDIAN,
2073};
2074
2075static void omap_mpuio_reset(struct omap_mpuio_s *s)
2076{
2077    s->inputs = 0;
2078    s->outputs = 0;
2079    s->dir = ~0;
2080    s->event = 0;
2081    s->edge = 0;
2082    s->kbd_mask = 0;
2083    s->mask = 0;
2084    s->debounce = 0;
2085    s->latch = 0;
2086    s->ints = 0;
2087    s->row_latch = 0x1f;
2088    s->clk = 1;
2089}
2090
2091static void omap_mpuio_onoff(void *opaque, int line, int on)
2092{
2093    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2094
2095    s->clk = on;
2096    if (on)
2097        omap_mpuio_kbd_update(s);
2098}
2099
2100static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2101                hwaddr base,
2102                qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2103                omap_clk clk)
2104{
2105    struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2106
2107    s->irq = gpio_int;
2108    s->kbd_irq = kbd_int;
2109    s->wakeup = wakeup;
2110    s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2111    omap_mpuio_reset(s);
2112
2113    memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2114                          "omap-mpuio", 0x800);
2115    memory_region_add_subregion(memory, base, &s->iomem);
2116
2117    omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2118
2119    return s;
2120}
2121
2122qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2123{
2124    return s->in;
2125}
2126
2127void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2128{
2129    if (line >= 16 || line < 0)
2130        hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2131    s->handler[line] = handler;
2132}
2133
2134void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2135{
2136    if (row >= 5 || row < 0)
2137        hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2138
2139    if (down)
2140        s->buttons[row] |= 1 << col;
2141    else
2142        s->buttons[row] &= ~(1 << col);
2143
2144    omap_mpuio_kbd_update(s);
2145}
2146
2147/* MicroWire Interface */
2148struct omap_uwire_s {
2149    MemoryRegion iomem;
2150    qemu_irq txirq;
2151    qemu_irq rxirq;
2152    qemu_irq txdrq;
2153
2154    uint16_t txbuf;
2155    uint16_t rxbuf;
2156    uint16_t control;
2157    uint16_t setup[5];
2158
2159    uWireSlave *chip[4];
2160};
2161
2162static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2163{
2164    int chipselect = (s->control >> 10) & 3;            /* INDEX */
2165    uWireSlave *slave = s->chip[chipselect];
2166
2167    if ((s->control >> 5) & 0x1f) {                     /* NB_BITS_WR */
2168        if (s->control & (1 << 12))                     /* CS_CMD */
2169            if (slave && slave->send)
2170                slave->send(slave->opaque,
2171                                s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2172        s->control &= ~(1 << 14);                       /* CSRB */
2173        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2174         * a DRQ.  When is the level IRQ supposed to be reset?  */
2175    }
2176
2177    if ((s->control >> 0) & 0x1f) {                     /* NB_BITS_RD */
2178        if (s->control & (1 << 12))                     /* CS_CMD */
2179            if (slave && slave->receive)
2180                s->rxbuf = slave->receive(slave->opaque);
2181        s->control |= 1 << 15;                          /* RDRB */
2182        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2183         * a DRQ.  When is the level IRQ supposed to be reset?  */
2184    }
2185}
2186
2187static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2188                                unsigned size)
2189{
2190    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2191    int offset = addr & OMAP_MPUI_REG_MASK;
2192
2193    if (size != 2) {
2194        return omap_badwidth_read16(opaque, addr);
2195    }
2196
2197    switch (offset) {
2198    case 0x00:  /* RDR */
2199        s->control &= ~(1 << 15);                       /* RDRB */
2200        return s->rxbuf;
2201
2202    case 0x04:  /* CSR */
2203        return s->control;
2204
2205    case 0x08:  /* SR1 */
2206        return s->setup[0];
2207    case 0x0c:  /* SR2 */
2208        return s->setup[1];
2209    case 0x10:  /* SR3 */
2210        return s->setup[2];
2211    case 0x14:  /* SR4 */
2212        return s->setup[3];
2213    case 0x18:  /* SR5 */
2214        return s->setup[4];
2215    }
2216
2217    OMAP_BAD_REG(addr);
2218    return 0;
2219}
2220
2221static void omap_uwire_write(void *opaque, hwaddr addr,
2222                             uint64_t value, unsigned size)
2223{
2224    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2225    int offset = addr & OMAP_MPUI_REG_MASK;
2226
2227    if (size != 2) {
2228        omap_badwidth_write16(opaque, addr, value);
2229        return;
2230    }
2231
2232    switch (offset) {
2233    case 0x00:  /* TDR */
2234        s->txbuf = value;                               /* TD */
2235        if ((s->setup[4] & (1 << 2)) &&                 /* AUTO_TX_EN */
2236                        ((s->setup[4] & (1 << 3)) ||    /* CS_TOGGLE_TX_EN */
2237                         (s->control & (1 << 12)))) {   /* CS_CMD */
2238            s->control |= 1 << 14;                      /* CSRB */
2239            omap_uwire_transfer_start(s);
2240        }
2241        break;
2242
2243    case 0x04:  /* CSR */
2244        s->control = value & 0x1fff;
2245        if (value & (1 << 13))                          /* START */
2246            omap_uwire_transfer_start(s);
2247        break;
2248
2249    case 0x08:  /* SR1 */
2250        s->setup[0] = value & 0x003f;
2251        break;
2252
2253    case 0x0c:  /* SR2 */
2254        s->setup[1] = value & 0x0fc0;
2255        break;
2256
2257    case 0x10:  /* SR3 */
2258        s->setup[2] = value & 0x0003;
2259        break;
2260
2261    case 0x14:  /* SR4 */
2262        s->setup[3] = value & 0x0001;
2263        break;
2264
2265    case 0x18:  /* SR5 */
2266        s->setup[4] = value & 0x000f;
2267        break;
2268
2269    default:
2270        OMAP_BAD_REG(addr);
2271        return;
2272    }
2273}
2274
2275static const MemoryRegionOps omap_uwire_ops = {
2276    .read = omap_uwire_read,
2277    .write = omap_uwire_write,
2278    .endianness = DEVICE_NATIVE_ENDIAN,
2279};
2280
2281static void omap_uwire_reset(struct omap_uwire_s *s)
2282{
2283    s->control = 0;
2284    s->setup[0] = 0;
2285    s->setup[1] = 0;
2286    s->setup[2] = 0;
2287    s->setup[3] = 0;
2288    s->setup[4] = 0;
2289}
2290
2291static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2292                                            hwaddr base,
2293                                            qemu_irq txirq, qemu_irq rxirq,
2294                                            qemu_irq dma,
2295                                            omap_clk clk)
2296{
2297    struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2298
2299    s->txirq = txirq;
2300    s->rxirq = rxirq;
2301    s->txdrq = dma;
2302    omap_uwire_reset(s);
2303
2304    memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2305    memory_region_add_subregion(system_memory, base, &s->iomem);
2306
2307    return s;
2308}
2309
2310void omap_uwire_attach(struct omap_uwire_s *s,
2311                uWireSlave *slave, int chipselect)
2312{
2313    if (chipselect < 0 || chipselect > 3) {
2314        fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2315        exit(-1);
2316    }
2317
2318    s->chip[chipselect] = slave;
2319}
2320
2321/* Pseudonoise Pulse-Width Light Modulator */
2322struct omap_pwl_s {
2323    MemoryRegion iomem;
2324    uint8_t output;
2325    uint8_t level;
2326    uint8_t enable;
2327    int clk;
2328};
2329
2330static void omap_pwl_update(struct omap_pwl_s *s)
2331{
2332    int output = (s->clk && s->enable) ? s->level : 0;
2333
2334    if (output != s->output) {
2335        s->output = output;
2336        printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2337    }
2338}
2339
2340static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2341                              unsigned size)
2342{
2343    struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2344    int offset = addr & OMAP_MPUI_REG_MASK;
2345
2346    if (size != 1) {
2347        return omap_badwidth_read8(opaque, addr);
2348    }
2349
2350    switch (offset) {
2351    case 0x00:  /* PWL_LEVEL */
2352        return s->level;
2353    case 0x04:  /* PWL_CTRL */
2354        return s->enable;
2355    }
2356    OMAP_BAD_REG(addr);
2357    return 0;
2358}
2359
2360static void omap_pwl_write(void *opaque, hwaddr addr,
2361                           uint64_t value, unsigned size)
2362{
2363    struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2364    int offset = addr & OMAP_MPUI_REG_MASK;
2365
2366    if (size != 1) {
2367        omap_badwidth_write8(opaque, addr, value);
2368        return;
2369    }
2370
2371    switch (offset) {
2372    case 0x00:  /* PWL_LEVEL */
2373        s->level = value;
2374        omap_pwl_update(s);
2375        break;
2376    case 0x04:  /* PWL_CTRL */
2377        s->enable = value & 1;
2378        omap_pwl_update(s);
2379        break;
2380    default:
2381        OMAP_BAD_REG(addr);
2382        return;
2383    }
2384}
2385
2386static const MemoryRegionOps omap_pwl_ops = {
2387    .read = omap_pwl_read,
2388    .write = omap_pwl_write,
2389    .endianness = DEVICE_NATIVE_ENDIAN,
2390};
2391
2392static void omap_pwl_reset(struct omap_pwl_s *s)
2393{
2394    s->output = 0;
2395    s->level = 0;
2396    s->enable = 0;
2397    s->clk = 1;
2398    omap_pwl_update(s);
2399}
2400
2401static void omap_pwl_clk_update(void *opaque, int line, int on)
2402{
2403    struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2404
2405    s->clk = on;
2406    omap_pwl_update(s);
2407}
2408
2409static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2410                                        hwaddr base,
2411                                        omap_clk clk)
2412{
2413    struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2414
2415    omap_pwl_reset(s);
2416
2417    memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2418                          "omap-pwl", 0x800);
2419    memory_region_add_subregion(system_memory, base, &s->iomem);
2420
2421    omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2422    return s;
2423}
2424
2425/* Pulse-Width Tone module */
2426struct omap_pwt_s {
2427    MemoryRegion iomem;
2428    uint8_t frc;
2429    uint8_t vrc;
2430    uint8_t gcr;
2431    omap_clk clk;
2432};
2433
2434static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2435                              unsigned size)
2436{
2437    struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2438    int offset = addr & OMAP_MPUI_REG_MASK;
2439
2440    if (size != 1) {
2441        return omap_badwidth_read8(opaque, addr);
2442    }
2443
2444    switch (offset) {
2445    case 0x00:  /* FRC */
2446        return s->frc;
2447    case 0x04:  /* VCR */
2448        return s->vrc;
2449    case 0x08:  /* GCR */
2450        return s->gcr;
2451    }
2452    OMAP_BAD_REG(addr);
2453    return 0;
2454}
2455
2456static void omap_pwt_write(void *opaque, hwaddr addr,
2457                           uint64_t value, unsigned size)
2458{
2459    struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2460    int offset = addr & OMAP_MPUI_REG_MASK;
2461
2462    if (size != 1) {
2463        omap_badwidth_write8(opaque, addr, value);
2464        return;
2465    }
2466
2467    switch (offset) {
2468    case 0x00:  /* FRC */
2469        s->frc = value & 0x3f;
2470        break;
2471    case 0x04:  /* VRC */
2472        if ((value ^ s->vrc) & 1) {
2473            if (value & 1)
2474                printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2475                                /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2476                                ((omap_clk_getrate(s->clk) >> 3) /
2477                                 /* Pre-multiplexer divider */
2478                                 ((s->gcr & 2) ? 1 : 154) /
2479                                 /* Octave multiplexer */
2480                                 (2 << (value & 3)) *
2481                                 /* 101/107 divider */
2482                                 ((value & (1 << 2)) ? 101 : 107) *
2483                                 /*  49/55 divider */
2484                                 ((value & (1 << 3)) ?  49 : 55) *
2485                                 /*  50/63 divider */
2486                                 ((value & (1 << 4)) ?  50 : 63) *
2487                                 /*  80/127 divider */
2488                                 ((value & (1 << 5)) ?  80 : 127) /
2489                                 (107 * 55 * 63 * 127)));
2490            else
2491                printf("%s: silence!\n", __FUNCTION__);
2492        }
2493        s->vrc = value & 0x7f;
2494        break;
2495    case 0x08:  /* GCR */
2496        s->gcr = value & 3;
2497        break;
2498    default:
2499        OMAP_BAD_REG(addr);
2500        return;
2501    }
2502}
2503
2504static const MemoryRegionOps omap_pwt_ops = {
2505    .read =omap_pwt_read,
2506    .write = omap_pwt_write,
2507    .endianness = DEVICE_NATIVE_ENDIAN,
2508};
2509
2510static void omap_pwt_reset(struct omap_pwt_s *s)
2511{
2512    s->frc = 0;
2513    s->vrc = 0;
2514    s->gcr = 0;
2515}
2516
2517static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2518                                        hwaddr base,
2519                                        omap_clk clk)
2520{
2521    struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2522    s->clk = clk;
2523    omap_pwt_reset(s);
2524
2525    memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2526                          "omap-pwt", 0x800);
2527    memory_region_add_subregion(system_memory, base, &s->iomem);
2528    return s;
2529}
2530
2531/* Real-time Clock module */
2532struct omap_rtc_s {
2533    MemoryRegion iomem;
2534    qemu_irq irq;
2535    qemu_irq alarm;
2536    QEMUTimer *clk;
2537
2538    uint8_t interrupts;
2539    uint8_t status;
2540    int16_t comp_reg;
2541    int running;
2542    int pm_am;
2543    int auto_comp;
2544    int round;
2545    struct tm alarm_tm;
2546    time_t alarm_ti;
2547
2548    struct tm current_tm;
2549    time_t ti;
2550    uint64_t tick;
2551};
2552
2553static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2554{
2555    /* s->alarm is level-triggered */
2556    qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2557}
2558
2559static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2560{
2561    s->alarm_ti = mktimegm(&s->alarm_tm);
2562    if (s->alarm_ti == -1)
2563        printf("%s: conversion failed\n", __FUNCTION__);
2564}
2565
2566static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2567                              unsigned size)
2568{
2569    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2570    int offset = addr & OMAP_MPUI_REG_MASK;
2571    uint8_t i;
2572
2573    if (size != 1) {
2574        return omap_badwidth_read8(opaque, addr);
2575    }
2576
2577    switch (offset) {
2578    case 0x00:  /* SECONDS_REG */
2579        return to_bcd(s->current_tm.tm_sec);
2580
2581    case 0x04:  /* MINUTES_REG */
2582        return to_bcd(s->current_tm.tm_min);
2583
2584    case 0x08:  /* HOURS_REG */
2585        if (s->pm_am)
2586            return ((s->current_tm.tm_hour > 11) << 7) |
2587                    to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2588        else
2589            return to_bcd(s->current_tm.tm_hour);
2590
2591    case 0x0c:  /* DAYS_REG */
2592        return to_bcd(s->current_tm.tm_mday);
2593
2594    case 0x10:  /* MONTHS_REG */
2595        return to_bcd(s->current_tm.tm_mon + 1);
2596
2597    case 0x14:  /* YEARS_REG */
2598        return to_bcd(s->current_tm.tm_year % 100);
2599
2600    case 0x18:  /* WEEK_REG */
2601        return s->current_tm.tm_wday;
2602
2603    case 0x20:  /* ALARM_SECONDS_REG */
2604        return to_bcd(s->alarm_tm.tm_sec);
2605
2606    case 0x24:  /* ALARM_MINUTES_REG */
2607        return to_bcd(s->alarm_tm.tm_min);
2608
2609    case 0x28:  /* ALARM_HOURS_REG */
2610        if (s->pm_am)
2611            return ((s->alarm_tm.tm_hour > 11) << 7) |
2612                    to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2613        else
2614            return to_bcd(s->alarm_tm.tm_hour);
2615
2616    case 0x2c:  /* ALARM_DAYS_REG */
2617        return to_bcd(s->alarm_tm.tm_mday);
2618
2619    case 0x30:  /* ALARM_MONTHS_REG */
2620        return to_bcd(s->alarm_tm.tm_mon + 1);
2621
2622    case 0x34:  /* ALARM_YEARS_REG */
2623        return to_bcd(s->alarm_tm.tm_year % 100);
2624
2625    case 0x40:  /* RTC_CTRL_REG */
2626        return (s->pm_am << 3) | (s->auto_comp << 2) |
2627                (s->round << 1) | s->running;
2628
2629    case 0x44:  /* RTC_STATUS_REG */
2630        i = s->status;
2631        s->status &= ~0x3d;
2632        return i;
2633
2634    case 0x48:  /* RTC_INTERRUPTS_REG */
2635        return s->interrupts;
2636
2637    case 0x4c:  /* RTC_COMP_LSB_REG */
2638        return ((uint16_t) s->comp_reg) & 0xff;
2639
2640    case 0x50:  /* RTC_COMP_MSB_REG */
2641        return ((uint16_t) s->comp_reg) >> 8;
2642    }
2643
2644    OMAP_BAD_REG(addr);
2645    return 0;
2646}
2647
2648static void omap_rtc_write(void *opaque, hwaddr addr,
2649                           uint64_t value, unsigned size)
2650{
2651    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2652    int offset = addr & OMAP_MPUI_REG_MASK;
2653    struct tm new_tm;
2654    time_t ti[2];
2655
2656    if (size != 1) {
2657        omap_badwidth_write8(opaque, addr, value);
2658        return;
2659    }
2660
2661    switch (offset) {
2662    case 0x00:  /* SECONDS_REG */
2663#ifdef ALMDEBUG
2664        printf("RTC SEC_REG <-- %02x\n", value);
2665#endif
2666        s->ti -= s->current_tm.tm_sec;
2667        s->ti += from_bcd(value);
2668        return;
2669
2670    case 0x04:  /* MINUTES_REG */
2671#ifdef ALMDEBUG
2672        printf("RTC MIN_REG <-- %02x\n", value);
2673#endif
2674        s->ti -= s->current_tm.tm_min * 60;
2675        s->ti += from_bcd(value) * 60;
2676        return;
2677
2678    case 0x08:  /* HOURS_REG */
2679#ifdef ALMDEBUG
2680        printf("RTC HRS_REG <-- %02x\n", value);
2681#endif
2682        s->ti -= s->current_tm.tm_hour * 3600;
2683        if (s->pm_am) {
2684            s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2685            s->ti += ((value >> 7) & 1) * 43200;
2686        } else
2687            s->ti += from_bcd(value & 0x3f) * 3600;
2688        return;
2689
2690    case 0x0c:  /* DAYS_REG */
2691#ifdef ALMDEBUG
2692        printf("RTC DAY_REG <-- %02x\n", value);
2693#endif
2694        s->ti -= s->current_tm.tm_mday * 86400;
2695        s->ti += from_bcd(value) * 86400;
2696        return;
2697
2698    case 0x10:  /* MONTHS_REG */
2699#ifdef ALMDEBUG
2700        printf("RTC MTH_REG <-- %02x\n", value);
2701#endif
2702        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2703        new_tm.tm_mon = from_bcd(value);
2704        ti[0] = mktimegm(&s->current_tm);
2705        ti[1] = mktimegm(&new_tm);
2706
2707        if (ti[0] != -1 && ti[1] != -1) {
2708            s->ti -= ti[0];
2709            s->ti += ti[1];
2710        } else {
2711            /* A less accurate version */
2712            s->ti -= s->current_tm.tm_mon * 2592000;
2713            s->ti += from_bcd(value) * 2592000;
2714        }
2715        return;
2716
2717    case 0x14:  /* YEARS_REG */
2718#ifdef ALMDEBUG
2719        printf("RTC YRS_REG <-- %02x\n", value);
2720#endif
2721        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2722        new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2723        ti[0] = mktimegm(&s->current_tm);
2724        ti[1] = mktimegm(&new_tm);
2725
2726        if (ti[0] != -1 && ti[1] != -1) {
2727            s->ti -= ti[0];
2728            s->ti += ti[1];
2729        } else {
2730            /* A less accurate version */
2731            s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2732            s->ti += (time_t)from_bcd(value) * 31536000;
2733        }
2734        return;
2735
2736    case 0x18:  /* WEEK_REG */
2737        return; /* Ignored */
2738
2739    case 0x20:  /* ALARM_SECONDS_REG */
2740#ifdef ALMDEBUG
2741        printf("ALM SEC_REG <-- %02x\n", value);
2742#endif
2743        s->alarm_tm.tm_sec = from_bcd(value);
2744        omap_rtc_alarm_update(s);
2745        return;
2746
2747    case 0x24:  /* ALARM_MINUTES_REG */
2748#ifdef ALMDEBUG
2749        printf("ALM MIN_REG <-- %02x\n", value);
2750#endif
2751        s->alarm_tm.tm_min = from_bcd(value);
2752        omap_rtc_alarm_update(s);
2753        return;
2754
2755    case 0x28:  /* ALARM_HOURS_REG */
2756#ifdef ALMDEBUG
2757        printf("ALM HRS_REG <-- %02x\n", value);
2758#endif
2759        if (s->pm_am)
2760            s->alarm_tm.tm_hour =
2761                    ((from_bcd(value & 0x3f)) % 12) +
2762                    ((value >> 7) & 1) * 12;
2763        else
2764            s->alarm_tm.tm_hour = from_bcd(value);
2765        omap_rtc_alarm_update(s);
2766        return;
2767
2768    case 0x2c:  /* ALARM_DAYS_REG */
2769#ifdef ALMDEBUG
2770        printf("ALM DAY_REG <-- %02x\n", value);
2771#endif
2772        s->alarm_tm.tm_mday = from_bcd(value);
2773        omap_rtc_alarm_update(s);
2774        return;
2775
2776    case 0x30:  /* ALARM_MONTHS_REG */
2777#ifdef ALMDEBUG
2778        printf("ALM MON_REG <-- %02x\n", value);
2779#endif
2780        s->alarm_tm.tm_mon = from_bcd(value);
2781        omap_rtc_alarm_update(s);
2782        return;
2783
2784    case 0x34:  /* ALARM_YEARS_REG */
2785#ifdef ALMDEBUG
2786        printf("ALM YRS_REG <-- %02x\n", value);
2787#endif
2788        s->alarm_tm.tm_year = from_bcd(value);
2789        omap_rtc_alarm_update(s);
2790        return;
2791
2792    case 0x40:  /* RTC_CTRL_REG */
2793#ifdef ALMDEBUG
2794        printf("RTC CONTROL <-- %02x\n", value);
2795#endif
2796        s->pm_am = (value >> 3) & 1;
2797        s->auto_comp = (value >> 2) & 1;
2798        s->round = (value >> 1) & 1;
2799        s->running = value & 1;
2800        s->status &= 0xfd;
2801        s->status |= s->running << 1;
2802        return;
2803
2804    case 0x44:  /* RTC_STATUS_REG */
2805#ifdef ALMDEBUG
2806        printf("RTC STATUSL <-- %02x\n", value);
2807#endif
2808        s->status &= ~((value & 0xc0) ^ 0x80);
2809        omap_rtc_interrupts_update(s);
2810        return;
2811
2812    case 0x48:  /* RTC_INTERRUPTS_REG */
2813#ifdef ALMDEBUG
2814        printf("RTC INTRS <-- %02x\n", value);
2815#endif
2816        s->interrupts = value;
2817        return;
2818
2819    case 0x4c:  /* RTC_COMP_LSB_REG */
2820#ifdef ALMDEBUG
2821        printf("RTC COMPLSB <-- %02x\n", value);
2822#endif
2823        s->comp_reg &= 0xff00;
2824        s->comp_reg |= 0x00ff & value;
2825        return;
2826
2827    case 0x50:  /* RTC_COMP_MSB_REG */
2828#ifdef ALMDEBUG
2829        printf("RTC COMPMSB <-- %02x\n", value);
2830#endif
2831        s->comp_reg &= 0x00ff;
2832        s->comp_reg |= 0xff00 & (value << 8);
2833        return;
2834
2835    default:
2836        OMAP_BAD_REG(addr);
2837        return;
2838    }
2839}
2840
2841static const MemoryRegionOps omap_rtc_ops = {
2842    .read = omap_rtc_read,
2843    .write = omap_rtc_write,
2844    .endianness = DEVICE_NATIVE_ENDIAN,
2845};
2846
2847static void omap_rtc_tick(void *opaque)
2848{
2849    struct omap_rtc_s *s = opaque;
2850
2851    if (s->round) {
2852        /* Round to nearest full minute.  */
2853        if (s->current_tm.tm_sec < 30)
2854            s->ti -= s->current_tm.tm_sec;
2855        else
2856            s->ti += 60 - s->current_tm.tm_sec;
2857
2858        s->round = 0;
2859    }
2860
2861    localtime_r(&s->ti, &s->current_tm);
2862
2863    if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2864        s->status |= 0x40;
2865        omap_rtc_interrupts_update(s);
2866    }
2867
2868    if (s->interrupts & 0x04)
2869        switch (s->interrupts & 3) {
2870        case 0:
2871            s->status |= 0x04;
2872            qemu_irq_pulse(s->irq);
2873            break;
2874        case 1:
2875            if (s->current_tm.tm_sec)
2876                break;
2877            s->status |= 0x08;
2878            qemu_irq_pulse(s->irq);
2879            break;
2880        case 2:
2881            if (s->current_tm.tm_sec || s->current_tm.tm_min)
2882                break;
2883            s->status |= 0x10;
2884            qemu_irq_pulse(s->irq);
2885            break;
2886        case 3:
2887            if (s->current_tm.tm_sec ||
2888                            s->current_tm.tm_min || s->current_tm.tm_hour)
2889                break;
2890            s->status |= 0x20;
2891            qemu_irq_pulse(s->irq);
2892            break;
2893        }
2894
2895    /* Move on */
2896    if (s->running)
2897        s->ti ++;
2898    s->tick += 1000;
2899
2900    /*
2901     * Every full hour add a rough approximation of the compensation
2902     * register to the 32kHz Timer (which drives the RTC) value. 
2903     */
2904    if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2905        s->tick += s->comp_reg * 1000 / 32768;
2906
2907    timer_mod(s->clk, s->tick);
2908}
2909
2910static void omap_rtc_reset(struct omap_rtc_s *s)
2911{
2912    struct tm tm;
2913
2914    s->interrupts = 0;
2915    s->comp_reg = 0;
2916    s->running = 0;
2917    s->pm_am = 0;
2918    s->auto_comp = 0;
2919    s->round = 0;
2920    s->tick = qemu_clock_get_ms(rtc_clock);
2921    memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2922    s->alarm_tm.tm_mday = 0x01;
2923    s->status = 1 << 7;
2924    qemu_get_timedate(&tm, 0);
2925    s->ti = mktimegm(&tm);
2926
2927    omap_rtc_alarm_update(s);
2928    omap_rtc_tick(s);
2929}
2930
2931static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2932                                        hwaddr base,
2933                                        qemu_irq timerirq, qemu_irq alarmirq,
2934                                        omap_clk clk)
2935{
2936    struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2937
2938    s->irq = timerirq;
2939    s->alarm = alarmirq;
2940    s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2941
2942    omap_rtc_reset(s);
2943
2944    memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2945                          "omap-rtc", 0x800);
2946    memory_region_add_subregion(system_memory, base, &s->iomem);
2947
2948    return s;
2949}
2950
2951/* Multi-channel Buffered Serial Port interfaces */
2952struct omap_mcbsp_s {
2953    MemoryRegion iomem;
2954    qemu_irq txirq;
2955    qemu_irq rxirq;
2956    qemu_irq txdrq;
2957    qemu_irq rxdrq;
2958
2959    uint16_t spcr[2];
2960    uint16_t rcr[2];
2961    uint16_t xcr[2];
2962    uint16_t srgr[2];
2963    uint16_t mcr[2];
2964    uint16_t pcr;
2965    uint16_t rcer[8];
2966    uint16_t xcer[8];
2967    int tx_rate;
2968    int rx_rate;
2969    int tx_req;
2970    int rx_req;
2971
2972    I2SCodec *codec;
2973    QEMUTimer *source_timer;
2974    QEMUTimer *sink_timer;
2975};
2976
2977static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2978{
2979    int irq;
2980
2981    switch ((s->spcr[0] >> 4) & 3) {                    /* RINTM */
2982    case 0:
2983        irq = (s->spcr[0] >> 1) & 1;                    /* RRDY */
2984        break;
2985    case 3:
2986        irq = (s->spcr[0] >> 3) & 1;                    /* RSYNCERR */
2987        break;
2988    default:
2989        irq = 0;
2990        break;
2991    }
2992
2993    if (irq)
2994        qemu_irq_pulse(s->rxirq);
2995
2996    switch ((s->spcr[1] >> 4) & 3) {                    /* XINTM */
2997    case 0:
2998        irq = (s->spcr[1] >> 1) & 1;                    /* XRDY */
2999        break;
3000    case 3:
3001        irq = (s->spcr[1] >> 3) & 1;                    /* XSYNCERR */
3002        break;
3003    default:
3004        irq = 0;
3005        break;
3006    }
3007
3008    if (irq)
3009        qemu_irq_pulse(s->txirq);
3010}
3011
3012static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3013{
3014    if ((s->spcr[0] >> 1) & 1)                          /* RRDY */
3015        s->spcr[0] |= 1 << 2;                           /* RFULL */
3016    s->spcr[0] |= 1 << 1;                               /* RRDY */
3017    qemu_irq_raise(s->rxdrq);
3018    omap_mcbsp_intr_update(s);
3019}
3020
3021static void omap_mcbsp_source_tick(void *opaque)
3022{
3023    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3024    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3025
3026    if (!s->rx_rate)
3027        return;
3028    if (s->rx_req)
3029        printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3030
3031    s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3032
3033    omap_mcbsp_rx_newdata(s);
3034    timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3035                   NANOSECONDS_PER_SECOND);
3036}
3037
3038static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3039{
3040    if (!s->codec || !s->codec->rts)
3041        omap_mcbsp_source_tick(s);
3042    else if (s->codec->in.len) {
3043        s->rx_req = s->codec->in.len;
3044        omap_mcbsp_rx_newdata(s);
3045    }
3046}
3047
3048static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3049{
3050    timer_del(s->source_timer);
3051}
3052
3053static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3054{
3055    s->spcr[0] &= ~(1 << 1);                            /* RRDY */
3056    qemu_irq_lower(s->rxdrq);
3057    omap_mcbsp_intr_update(s);
3058}
3059
3060static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3061{
3062    s->spcr[1] |= 1 << 1;                               /* XRDY */
3063    qemu_irq_raise(s->txdrq);
3064    omap_mcbsp_intr_update(s);
3065}
3066
3067static void omap_mcbsp_sink_tick(void *opaque)
3068{
3069    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3070    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3071
3072    if (!s->tx_rate)
3073        return;
3074    if (s->tx_req)
3075        printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3076
3077    s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3078
3079    omap_mcbsp_tx_newdata(s);
3080    timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3081                   NANOSECONDS_PER_SECOND);
3082}
3083
3084static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3085{
3086    if (!s->codec || !s->codec->cts)
3087        omap_mcbsp_sink_tick(s);
3088    else if (s->codec->out.size) {
3089        s->tx_req = s->codec->out.size;
3090        omap_mcbsp_tx_newdata(s);
3091    }
3092}
3093
3094static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3095{
3096    s->spcr[1] &= ~(1 << 1);                            /* XRDY */
3097    qemu_irq_lower(s->txdrq);
3098    omap_mcbsp_intr_update(s);
3099    if (s->codec && s->codec->cts)
3100        s->codec->tx_swallow(s->codec->opaque);
3101}
3102
3103static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3104{
3105    s->tx_req = 0;
3106    omap_mcbsp_tx_done(s);
3107    timer_del(s->sink_timer);
3108}
3109
3110static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3111{
3112    int prev_rx_rate, prev_tx_rate;
3113    int rx_rate = 0, tx_rate = 0;
3114    int cpu_rate = 1500000;     /* XXX */
3115
3116    /* TODO: check CLKSTP bit */
3117    if (s->spcr[1] & (1 << 6)) {                        /* GRST */
3118        if (s->spcr[0] & (1 << 0)) {                    /* RRST */
3119            if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3120                            (s->pcr & (1 << 8))) {      /* CLKRM */
3121                if (~s->pcr & (1 << 7))                 /* SCLKME */
3122                    rx_rate = cpu_rate /
3123                            ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3124            } else
3125                if (s->codec)
3126                    rx_rate = s->codec->rx_rate;
3127        }
3128
3129        if (s->spcr[1] & (1 << 0)) {                    /* XRST */
3130            if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3131                            (s->pcr & (1 << 9))) {      /* CLKXM */
3132                if (~s->pcr & (1 << 7))                 /* SCLKME */
3133                    tx_rate = cpu_rate /
3134                            ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3135            } else
3136                if (s->codec)
3137                    tx_rate = s->codec->tx_rate;
3138        }
3139    }
3140    prev_tx_rate = s->tx_rate;
3141    prev_rx_rate = s->rx_rate;
3142    s->tx_rate = tx_rate;
3143    s->rx_rate = rx_rate;
3144
3145    if (s->codec)
3146        s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3147
3148    if (!prev_tx_rate && tx_rate)
3149        omap_mcbsp_tx_start(s);
3150    else if (s->tx_rate && !tx_rate)
3151        omap_mcbsp_tx_stop(s);
3152
3153    if (!prev_rx_rate && rx_rate)
3154        omap_mcbsp_rx_start(s);
3155    else if (prev_tx_rate && !tx_rate)
3156        omap_mcbsp_rx_stop(s);
3157}
3158
3159static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3160                                unsigned size)
3161{
3162    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3163    int offset = addr & OMAP_MPUI_REG_MASK;
3164    uint16_t ret;
3165
3166    if (size != 2) {
3167        return omap_badwidth_read16(opaque, addr);
3168    }
3169
3170    switch (offset) {
3171    case 0x00:  /* DRR2 */
3172        if (((s->rcr[0] >> 5) & 7) < 3)                 /* RWDLEN1 */
3173            return 0x0000;
3174        /* Fall through.  */
3175    case 0x02:  /* DRR1 */
3176        if (s->rx_req < 2) {
3177            printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3178            omap_mcbsp_rx_done(s);
3179        } else {
3180            s->tx_req -= 2;
3181            if (s->codec && s->codec->in.len >= 2) {
3182                ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3183                ret |= s->codec->in.fifo[s->codec->in.start ++];
3184                s->codec->in.len -= 2;
3185            } else
3186                ret = 0x0000;
3187            if (!s->tx_req)
3188                omap_mcbsp_rx_done(s);
3189            return ret;
3190        }
3191        return 0x0000;
3192
3193    case 0x04:  /* DXR2 */
3194    case 0x06:  /* DXR1 */
3195        return 0x0000;
3196
3197    case 0x08:  /* SPCR2 */
3198        return s->spcr[1];
3199    case 0x0a:  /* SPCR1 */
3200        return s->spcr[0];
3201    case 0x0c:  /* RCR2 */
3202        return s->rcr[1];
3203    case 0x0e:  /* RCR1 */
3204        return s->rcr[0];
3205    case 0x10:  /* XCR2 */
3206        return s->xcr[1];
3207    case 0x12:  /* XCR1 */
3208        return s->xcr[0];
3209    case 0x14:  /* SRGR2 */
3210        return s->srgr[1];
3211    case 0x16:  /* SRGR1 */
3212        return s->srgr[0];
3213    case 0x18:  /* MCR2 */
3214        return s->mcr[1];
3215    case 0x1a:  /* MCR1 */
3216        return s->mcr[0];
3217    case 0x1c:  /* RCERA */
3218        return s->rcer[0];
3219    case 0x1e:  /* RCERB */
3220        return s->rcer[1];
3221    case 0x20:  /* XCERA */
3222        return s->xcer[0];
3223    case 0x22:  /* XCERB */
3224        return s->xcer[1];
3225    case 0x24:  /* PCR0 */
3226        return s->pcr;
3227    case 0x26:  /* RCERC */
3228        return s->rcer[2];
3229    case 0x28:  /* RCERD */
3230        return s->rcer[3];
3231    case 0x2a:  /* XCERC */
3232        return s->xcer[2];
3233    case 0x2c:  /* XCERD */
3234        return s->xcer[3];
3235    case 0x2e:  /* RCERE */
3236        return s->rcer[4];
3237    case 0x30:  /* RCERF */
3238        return s->rcer[5];
3239    case 0x32:  /* XCERE */
3240        return s->xcer[4];
3241    case 0x34:  /* XCERF */
3242        return s->xcer[5];
3243    case 0x36:  /* RCERG */
3244        return s->rcer[6];
3245    case 0x38:  /* RCERH */
3246        return s->rcer[7];
3247    case 0x3a:  /* XCERG */
3248        return s->xcer[6];
3249    case 0x3c:  /* XCERH */
3250        return s->xcer[7];
3251    }
3252
3253    OMAP_BAD_REG(addr);
3254    return 0;
3255}
3256
3257static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3258                uint32_t value)
3259{
3260    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3261    int offset = addr & OMAP_MPUI_REG_MASK;
3262
3263    switch (offset) {
3264    case 0x00:  /* DRR2 */
3265    case 0x02:  /* DRR1 */
3266        OMAP_RO_REG(addr);
3267        return;
3268
3269    case 0x04:  /* DXR2 */
3270        if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3271            return;
3272        /* Fall through.  */
3273    case 0x06:  /* DXR1 */
3274        if (s->tx_req > 1) {
3275            s->tx_req -= 2;
3276            if (s->codec && s->codec->cts) {
3277                s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3278                s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3279            }
3280            if (s->tx_req < 2)
3281                omap_mcbsp_tx_done(s);
3282        } else
3283            printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3284        return;
3285
3286    case 0x08:  /* SPCR2 */
3287        s->spcr[1] &= 0x0002;
3288        s->spcr[1] |= 0x03f9 & value;
3289        s->spcr[1] |= 0x0004 & (value << 2);            /* XEMPTY := XRST */
3290        if (~value & 1)                                 /* XRST */
3291            s->spcr[1] &= ~6;
3292        omap_mcbsp_req_update(s);
3293        return;
3294    case 0x0a:  /* SPCR1 */
3295        s->spcr[0] &= 0x0006;
3296        s->spcr[0] |= 0xf8f9 & value;
3297        if (value & (1 << 15))                          /* DLB */
3298            printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3299        if (~value & 1) {                               /* RRST */
3300            s->spcr[0] &= ~6;
3301            s->rx_req = 0;
3302            omap_mcbsp_rx_done(s);
3303        }
3304        omap_mcbsp_req_update(s);
3305        return;
3306
3307    case 0x0c:  /* RCR2 */
3308        s->rcr[1] = value & 0xffff;
3309        return;
3310    case 0x0e:  /* RCR1 */
3311        s->rcr[0] = value & 0x7fe0;
3312        return;
3313    case 0x10:  /* XCR2 */
3314        s->xcr[1] = value & 0xffff;
3315        return;
3316    case 0x12:  /* XCR1 */
3317        s->xcr[0] = value & 0x7fe0;
3318        return;
3319    case 0x14:  /* SRGR2 */
3320        s->srgr[1] = value & 0xffff;
3321        omap_mcbsp_req_update(s);
3322        return;
3323    case 0x16:  /* SRGR1 */
3324        s->srgr[0] = value & 0xffff;
3325        omap_mcbsp_req_update(s);
3326        return;
3327    case 0x18:  /* MCR2 */
3328        s->mcr[1] = value & 0x03e3;
3329        if (value & 3)                                  /* XMCM */
3330            printf("%s: Tx channel selection mode enable attempt\n",
3331                            __FUNCTION__);
3332        return;
3333    case 0x1a:  /* MCR1 */
3334        s->mcr[0] = value & 0x03e1;
3335        if (value & 1)                                  /* RMCM */
3336            printf("%s: Rx channel selection mode enable attempt\n",
3337                            __FUNCTION__);
3338        return;
3339    case 0x1c:  /* RCERA */
3340        s->rcer[0] = value & 0xffff;
3341        return;
3342    case 0x1e:  /* RCERB */
3343        s->rcer[1] = value & 0xffff;
3344        return;
3345    case 0x20:  /* XCERA */
3346        s->xcer[0] = value & 0xffff;
3347        return;
3348    case 0x22:  /* XCERB */
3349        s->xcer[1] = value & 0xffff;
3350        return;
3351    case 0x24:  /* PCR0 */
3352        s->pcr = value & 0x7faf;
3353        return;
3354    case 0x26:  /* RCERC */
3355        s->rcer[2] = value & 0xffff;
3356        return;
3357    case 0x28:  /* RCERD */
3358        s->rcer[3] = value & 0xffff;
3359        return;
3360    case 0x2a:  /* XCERC */
3361        s->xcer[2] = value & 0xffff;
3362        return;
3363    case 0x2c:  /* XCERD */
3364        s->xcer[3] = value & 0xffff;
3365        return;
3366    case 0x2e:  /* RCERE */
3367        s->rcer[4] = value & 0xffff;
3368        return;
3369    case 0x30:  /* RCERF */
3370        s->rcer[5] = value & 0xffff;
3371        return;
3372    case 0x32:  /* XCERE */
3373        s->xcer[4] = value & 0xffff;
3374        return;
3375    case 0x34:  /* XCERF */
3376        s->xcer[5] = value & 0xffff;
3377        return;
3378    case 0x36:  /* RCERG */
3379        s->rcer[6] = value & 0xffff;
3380        return;
3381    case 0x38:  /* RCERH */
3382        s->rcer[7] = value & 0xffff;
3383        return;
3384    case 0x3a:  /* XCERG */
3385        s->xcer[6] = value & 0xffff;
3386        return;
3387    case 0x3c:  /* XCERH */
3388        s->xcer[7] = value & 0xffff;
3389        return;
3390    }
3391
3392    OMAP_BAD_REG(addr);
3393}
3394
3395static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3396                uint32_t value)
3397{
3398    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3399    int offset = addr & OMAP_MPUI_REG_MASK;
3400
3401    if (offset == 0x04) {                               /* DXR */
3402        if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3403            return;
3404        if (s->tx_req > 3) {
3405            s->tx_req -= 4;
3406            if (s->codec && s->codec->cts) {
3407                s->codec->out.fifo[s->codec->out.len ++] =
3408                        (value >> 24) & 0xff;
3409                s->codec->out.fifo[s->codec->out.len ++] =
3410                        (value >> 16) & 0xff;
3411                s->codec->out.fifo[s->codec->out.len ++] =
3412                        (value >> 8) & 0xff;
3413                s->codec->out.fifo[s->codec->out.len ++] =
3414                        (value >> 0) & 0xff;
3415            }
3416            if (s->tx_req < 4)
3417                omap_mcbsp_tx_done(s);
3418        } else
3419            printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3420        return;
3421    }
3422
3423    omap_badwidth_write16(opaque, addr, value);
3424}
3425
3426static void omap_mcbsp_write(void *opaque, hwaddr addr,
3427                             uint64_t value, unsigned size)
3428{
3429    switch (size) {
3430    case 2:
3431        omap_mcbsp_writeh(opaque, addr, value);
3432        break;
3433    case 4:
3434        omap_mcbsp_writew(opaque, addr, value);
3435        break;
3436    default:
3437        omap_badwidth_write16(opaque, addr, value);
3438    }
3439}
3440
3441static const MemoryRegionOps omap_mcbsp_ops = {
3442    .read = omap_mcbsp_read,
3443    .write = omap_mcbsp_write,
3444    .endianness = DEVICE_NATIVE_ENDIAN,
3445};
3446
3447static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3448{
3449    memset(&s->spcr, 0, sizeof(s->spcr));
3450    memset(&s->rcr, 0, sizeof(s->rcr));
3451    memset(&s->xcr, 0, sizeof(s->xcr));
3452    s->srgr[0] = 0x0001;
3453    s->srgr[1] = 0x2000;
3454    memset(&s->mcr, 0, sizeof(s->mcr));
3455    memset(&s->pcr, 0, sizeof(s->pcr));
3456    memset(&s->rcer, 0, sizeof(s->rcer));
3457    memset(&s->xcer, 0, sizeof(s->xcer));
3458    s->tx_req = 0;
3459    s->rx_req = 0;
3460    s->tx_rate = 0;
3461    s->rx_rate = 0;
3462    timer_del(s->source_timer);
3463    timer_del(s->sink_timer);
3464}
3465
3466static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3467                                            hwaddr base,
3468                                            qemu_irq txirq, qemu_irq rxirq,
3469                                            qemu_irq *dma, omap_clk clk)
3470{
3471    struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3472
3473    s->txirq = txirq;
3474    s->rxirq = rxirq;
3475    s->txdrq = dma[0];
3476    s->rxdrq = dma[1];
3477    s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3478    s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3479    omap_mcbsp_reset(s);
3480
3481    memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3482    memory_region_add_subregion(system_memory, base, &s->iomem);
3483
3484    return s;
3485}
3486
3487static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3488{
3489    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3490
3491    if (s->rx_rate) {
3492        s->rx_req = s->codec->in.len;
3493        omap_mcbsp_rx_newdata(s);
3494    }
3495}
3496
3497static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3498{
3499    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3500
3501    if (s->tx_rate) {
3502        s->tx_req = s->codec->out.size;
3503        omap_mcbsp_tx_newdata(s);
3504    }
3505}
3506
3507void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3508{
3509    s->codec = slave;
3510    slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3511    slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3512}
3513
3514/* LED Pulse Generators */
3515struct omap_lpg_s {
3516    MemoryRegion iomem;
3517    QEMUTimer *tm;
3518
3519    uint8_t control;
3520    uint8_t power;
3521    int64_t on;
3522    int64_t period;
3523    int clk;
3524    int cycle;
3525};
3526
3527static void omap_lpg_tick(void *opaque)
3528{
3529    struct omap_lpg_s *s = opaque;
3530
3531    if (s->cycle)
3532        timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3533    else
3534        timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3535
3536    s->cycle = !s->cycle;
3537    printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3538}
3539
3540static void omap_lpg_update(struct omap_lpg_s *s)
3541{
3542    int64_t on, period = 1, ticks = 1000;
3543    static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3544
3545    if (~s->control & (1 << 6))                                 /* LPGRES */
3546        on = 0;
3547    else if (s->control & (1 << 7))                             /* PERM_ON */
3548        on = period;
3549    else {
3550        period = muldiv64(ticks, per[s->control & 7],           /* PERCTRL */
3551                        256 / 32);
3552        on = (s->clk && s->power) ? muldiv64(ticks,
3553                        per[(s->control >> 3) & 7], 256) : 0;   /* ONCTRL */
3554    }
3555
3556    timer_del(s->tm);
3557    if (on == period && s->on < s->period)
3558        printf("%s: LED is on\n", __FUNCTION__);
3559    else if (on == 0 && s->on)
3560        printf("%s: LED is off\n", __FUNCTION__);
3561    else if (on && (on != s->on || period != s->period)) {
3562        s->cycle = 0;
3563        s->on = on;
3564        s->period = period;
3565        omap_lpg_tick(s);
3566        return;
3567    }
3568
3569    s->on = on;
3570    s->period = period;
3571}
3572
3573static void omap_lpg_reset(struct omap_lpg_s *s)
3574{
3575    s->control = 0x00;
3576    s->power = 0x00;
3577    s->clk = 1;
3578    omap_lpg_update(s);
3579}
3580
3581static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3582                              unsigned size)
3583{
3584    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3585    int offset = addr & OMAP_MPUI_REG_MASK;
3586
3587    if (size != 1) {
3588        return omap_badwidth_read8(opaque, addr);
3589    }
3590
3591    switch (offset) {
3592    case 0x00:  /* LCR */
3593        return s->control;
3594
3595    case 0x04:  /* PMR */
3596        return s->power;
3597    }
3598
3599    OMAP_BAD_REG(addr);
3600    return 0;
3601}
3602
3603static void omap_lpg_write(void *opaque, hwaddr addr,
3604                           uint64_t value, unsigned size)
3605{
3606    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3607    int offset = addr & OMAP_MPUI_REG_MASK;
3608
3609    if (size != 1) {
3610        omap_badwidth_write8(opaque, addr, value);
3611        return;
3612    }
3613
3614    switch (offset) {
3615    case 0x00:  /* LCR */
3616        if (~value & (1 << 6))                                  /* LPGRES */
3617            omap_lpg_reset(s);
3618        s->control = value & 0xff;
3619        omap_lpg_update(s);
3620        return;
3621
3622    case 0x04:  /* PMR */
3623        s->power = value & 0x01;
3624        omap_lpg_update(s);
3625        return;
3626
3627    default:
3628        OMAP_BAD_REG(addr);
3629        return;
3630    }
3631}
3632
3633static const MemoryRegionOps omap_lpg_ops = {
3634    .read = omap_lpg_read,
3635    .write = omap_lpg_write,
3636    .endianness = DEVICE_NATIVE_ENDIAN,
3637};
3638
3639static void omap_lpg_clk_update(void *opaque, int line, int on)
3640{
3641    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3642
3643    s->clk = on;
3644    omap_lpg_update(s);
3645}
3646
3647static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3648                                        hwaddr base, omap_clk clk)
3649{
3650    struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3651
3652    s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3653
3654    omap_lpg_reset(s);
3655
3656    memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3657    memory_region_add_subregion(system_memory, base, &s->iomem);
3658
3659    omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3660
3661    return s;
3662}
3663
3664/* MPUI Peripheral Bridge configuration */
3665static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3666                                  unsigned size)
3667{
3668    if (size != 2) {
3669        return omap_badwidth_read16(opaque, addr);
3670    }
3671
3672    if (addr == OMAP_MPUI_BASE) /* CMR */
3673        return 0xfe4d;
3674
3675    OMAP_BAD_REG(addr);
3676    return 0;
3677}
3678
3679static void omap_mpui_io_write(void *opaque, hwaddr addr,
3680                               uint64_t value, unsigned size)
3681{
3682    /* FIXME: infinite loop */
3683    omap_badwidth_write16(opaque, addr, value);
3684}
3685
3686static const MemoryRegionOps omap_mpui_io_ops = {
3687    .read = omap_mpui_io_read,
3688    .write = omap_mpui_io_write,
3689    .endianness = DEVICE_NATIVE_ENDIAN,
3690};
3691
3692static void omap_setup_mpui_io(MemoryRegion *system_memory,
3693                               struct omap_mpu_state_s *mpu)
3694{
3695    memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3696                          "omap-mpui-io", 0x7fff);
3697    memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3698                                &mpu->mpui_io_iomem);
3699}
3700
3701/* General chip reset */
3702static void omap1_mpu_reset(void *opaque)
3703{
3704    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3705
3706    omap_dma_reset(mpu->dma);
3707    omap_mpu_timer_reset(mpu->timer[0]);
3708    omap_mpu_timer_reset(mpu->timer[1]);
3709    omap_mpu_timer_reset(mpu->timer[2]);
3710    omap_wd_timer_reset(mpu->wdt);
3711    omap_os_timer_reset(mpu->os_timer);
3712    omap_lcdc_reset(mpu->lcd);
3713    omap_ulpd_pm_reset(mpu);
3714    omap_pin_cfg_reset(mpu);
3715    omap_mpui_reset(mpu);
3716    omap_tipb_bridge_reset(mpu->private_tipb);
3717    omap_tipb_bridge_reset(mpu->public_tipb);
3718    omap_dpll_reset(mpu->dpll[0]);
3719    omap_dpll_reset(mpu->dpll[1]);
3720    omap_dpll_reset(mpu->dpll[2]);
3721    omap_uart_reset(mpu->uart[0]);
3722    omap_uart_reset(mpu->uart[1]);
3723    omap_uart_reset(mpu->uart[2]);
3724    omap_mmc_reset(mpu->mmc);
3725    omap_mpuio_reset(mpu->mpuio);
3726    omap_uwire_reset(mpu->microwire);
3727    omap_pwl_reset(mpu->pwl);
3728    omap_pwt_reset(mpu->pwt);
3729    omap_rtc_reset(mpu->rtc);
3730    omap_mcbsp_reset(mpu->mcbsp1);
3731    omap_mcbsp_reset(mpu->mcbsp2);
3732    omap_mcbsp_reset(mpu->mcbsp3);
3733    omap_lpg_reset(mpu->led[0]);
3734    omap_lpg_reset(mpu->led[1]);
3735    omap_clkm_reset(mpu);
3736    cpu_reset(CPU(mpu->cpu));
3737}
3738
3739static const struct omap_map_s {
3740    hwaddr phys_dsp;
3741    hwaddr phys_mpu;
3742    uint32_t size;
3743    const char *name;
3744} omap15xx_dsp_mm[] = {
3745    /* Strobe 0 */
3746    { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },              /* CS0 */
3747    { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },             /* CS1 */
3748    { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },          /* CS3 */
3749    { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },   /* CS4 */
3750    { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },        /* CS5 */
3751    { 0xe1013000, 0xfffb3000, 0x800, "uWire" },                 /* CS6 */
3752    { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },                  /* CS7 */
3753    { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },              /* CS8 */
3754    { 0xe1014800, 0xfffb4800, 0x800, "RTC" },                   /* CS9 */
3755    { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },                 /* CS10 */
3756    { 0xe1015800, 0xfffb5800, 0x800, "PWL" },                   /* CS11 */
3757    { 0xe1016000, 0xfffb6000, 0x800, "PWT" },                   /* CS12 */
3758    { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },                /* CS14 */
3759    { 0xe1017800, 0xfffb7800, 0x800, "MMC" },                   /* CS15 */
3760    { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },          /* CS18 */
3761    { 0xe1019800, 0xfffb9800, 0x800, "UART3" },                 /* CS19 */
3762    { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },         /* CS25 */
3763    /* Strobe 1 */
3764    { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },                 /* CS28 */
3765
3766    { 0 }
3767};
3768
3769static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3770                                   const struct omap_map_s *map)
3771{
3772    MemoryRegion *io;
3773
3774    for (; map->phys_dsp; map ++) {
3775        io = g_new(MemoryRegion, 1);
3776        memory_region_init_alias(io, NULL, map->name,
3777                                 system_memory, map->phys_mpu, map->size);
3778        memory_region_add_subregion(system_memory, map->phys_dsp, io);
3779    }
3780}
3781
3782void omap_mpu_wakeup(void *opaque, int irq, int req)
3783{
3784    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3785    CPUState *cpu = CPU(mpu->cpu);
3786
3787    if (cpu->halted) {
3788        cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3789    }
3790}
3791
3792static const struct dma_irq_map omap1_dma_irq_map[] = {
3793    { 0, OMAP_INT_DMA_CH0_6 },
3794    { 0, OMAP_INT_DMA_CH1_7 },
3795    { 0, OMAP_INT_DMA_CH2_8 },
3796    { 0, OMAP_INT_DMA_CH3 },
3797    { 0, OMAP_INT_DMA_CH4 },
3798    { 0, OMAP_INT_DMA_CH5 },
3799    { 1, OMAP_INT_1610_DMA_CH6 },
3800    { 1, OMAP_INT_1610_DMA_CH7 },
3801    { 1, OMAP_INT_1610_DMA_CH8 },
3802    { 1, OMAP_INT_1610_DMA_CH9 },
3803    { 1, OMAP_INT_1610_DMA_CH10 },
3804    { 1, OMAP_INT_1610_DMA_CH11 },
3805    { 1, OMAP_INT_1610_DMA_CH12 },
3806    { 1, OMAP_INT_1610_DMA_CH13 },
3807    { 1, OMAP_INT_1610_DMA_CH14 },
3808    { 1, OMAP_INT_1610_DMA_CH15 }
3809};
3810
3811/* DMA ports for OMAP1 */
3812static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3813                hwaddr addr)
3814{
3815    return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3816}
3817
3818static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3819                hwaddr addr)
3820{
3821    return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3822                             addr);
3823}
3824
3825static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3826                hwaddr addr)
3827{
3828    return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3829}
3830
3831static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3832                hwaddr addr)
3833{
3834    return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3835}
3836
3837static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3838                hwaddr addr)
3839{
3840    return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3841}
3842
3843static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3844                hwaddr addr)
3845{
3846    return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3847}
3848
3849struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3850                unsigned long sdram_size,
3851                const char *core)
3852{
3853    int i;
3854    struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3855    qemu_irq dma_irqs[6];
3856    DriveInfo *dinfo;
3857    SysBusDevice *busdev;
3858
3859    if (!core)
3860        core = "ti925t";
3861
3862    /* Core */
3863    s->mpu_model = omap310;
3864    s->cpu = cpu_arm_init(core);
3865    if (s->cpu == NULL) {
3866        fprintf(stderr, "Unable to find CPU definition\n");
3867        exit(1);
3868    }
3869    s->sdram_size = sdram_size;
3870    s->sram_size = OMAP15XX_SRAM_SIZE;
3871
3872    s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3873
3874    /* Clocks */
3875    omap_clk_init(s);
3876
3877    /* Memory-mapped stuff */
3878    memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3879                                         s->sdram_size);
3880    memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3881    memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3882                           &error_fatal);
3883    vmstate_register_ram_global(&s->imif_ram);
3884    memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3885
3886    omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3887
3888    s->ih[0] = qdev_create(NULL, "omap-intc");
3889    qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3890    qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3891    qdev_init_nofail(s->ih[0]);
3892    busdev = SYS_BUS_DEVICE(s->ih[0]);
3893    sysbus_connect_irq(busdev, 0,
3894                       qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3895    sysbus_connect_irq(busdev, 1,
3896                       qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3897    sysbus_mmio_map(busdev, 0, 0xfffecb00);
3898    s->ih[1] = qdev_create(NULL, "omap-intc");
3899    qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3900    qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3901    qdev_init_nofail(s->ih[1]);
3902    busdev = SYS_BUS_DEVICE(s->ih[1]);
3903    sysbus_connect_irq(busdev, 0,
3904                       qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3905    /* The second interrupt controller's FIQ output is not wired up */
3906    sysbus_mmio_map(busdev, 0, 0xfffe0000);
3907
3908    for (i = 0; i < 6; i++) {
3909        dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3910                                       omap1_dma_irq_map[i].intr);
3911    }
3912    s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3913                           qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3914                           s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3915
3916    s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3917    s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3918    s->port[imif     ].addr_valid = omap_validate_imif_addr;
3919    s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3920    s->port[local    ].addr_valid = omap_validate_local_addr;
3921    s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3922
3923    /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3924    soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3925                         OMAP_EMIFF_BASE, s->sdram_size);
3926    soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3927                         OMAP_IMIF_BASE, s->sram_size);
3928
3929    s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3930                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3931                    omap_findclk(s, "mputim_ck"));
3932    s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3933                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3934                    omap_findclk(s, "mputim_ck"));
3935    s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3936                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3937                    omap_findclk(s, "mputim_ck"));
3938
3939    s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3940                    qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3941                    omap_findclk(s, "armwdt_ck"));
3942
3943    s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3944                    qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3945                    omap_findclk(s, "clk32-kHz"));
3946
3947    s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3948                            qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3949                            omap_dma_get_lcdch(s->dma),
3950                            omap_findclk(s, "lcd_ck"));
3951
3952    omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3953    omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3954    omap_id_init(system_memory, s);
3955
3956    omap_mpui_init(system_memory, 0xfffec900, s);
3957
3958    s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3959                    qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3960                    omap_findclk(s, "tipb_ck"));
3961    s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3962                    qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3963                    omap_findclk(s, "tipb_ck"));
3964
3965    omap_tcmi_init(system_memory, 0xfffecc00, s);
3966
3967    s->uart[0] = omap_uart_init(0xfffb0000,
3968                                qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3969                    omap_findclk(s, "uart1_ck"),
3970                    omap_findclk(s, "uart1_ck"),
3971                    s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3972                    "uart1",
3973                    serial_hds[0]);
3974    s->uart[1] = omap_uart_init(0xfffb0800,
3975                                qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3976                    omap_findclk(s, "uart2_ck"),
3977                    omap_findclk(s, "uart2_ck"),
3978                    s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3979                    "uart2",
3980                    serial_hds[0] ? serial_hds[1] : NULL);
3981    s->uart[2] = omap_uart_init(0xfffb9800,
3982                                qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3983                    omap_findclk(s, "uart3_ck"),
3984                    omap_findclk(s, "uart3_ck"),
3985                    s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3986                    "uart3",
3987                    serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3988
3989    s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3990                                omap_findclk(s, "dpll1"));
3991    s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3992                                omap_findclk(s, "dpll2"));
3993    s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3994                                omap_findclk(s, "dpll3"));
3995
3996    dinfo = drive_get(IF_SD, 0, 0);
3997    if (!dinfo) {
3998        fprintf(stderr, "qemu: missing SecureDigital device\n");
3999        exit(1);
4000    }
4001    s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4002                           blk_by_legacy_dinfo(dinfo),
4003                           qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4004                           &s->drq[OMAP_DMA_MMC_TX],
4005                    omap_findclk(s, "mmc_ck"));
4006
4007    s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4008                               qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4009                               qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4010                               s->wakeup, omap_findclk(s, "clk32-kHz"));
4011
4012    s->gpio = qdev_create(NULL, "omap-gpio");
4013    qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4014    qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4015    qdev_init_nofail(s->gpio);
4016    sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4017                       qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4018    sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4019
4020    s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4021                                   qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4022                                   qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4023                    s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4024
4025    s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4026                           omap_findclk(s, "armxor_ck"));
4027    s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4028                           omap_findclk(s, "armxor_ck"));
4029
4030    s->i2c[0] = qdev_create(NULL, "omap_i2c");
4031    qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4032    qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4033    qdev_init_nofail(s->i2c[0]);
4034    busdev = SYS_BUS_DEVICE(s->i2c[0]);
4035    sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4036    sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4037    sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4038    sysbus_mmio_map(busdev, 0, 0xfffb3800);
4039
4040    s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4041                           qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4042                           qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4043                    omap_findclk(s, "clk32-kHz"));
4044
4045    s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4046                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4047                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4048                    &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4049    s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4050                                qdev_get_gpio_in(s->ih[0],
4051                                                 OMAP_INT_310_McBSP2_TX),
4052                                qdev_get_gpio_in(s->ih[0],
4053                                                 OMAP_INT_310_McBSP2_RX),
4054                    &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4055    s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4056                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4057                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4058                    &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4059
4060    s->led[0] = omap_lpg_init(system_memory,
4061                              0xfffbd000, omap_findclk(s, "clk32-kHz"));
4062    s->led[1] = omap_lpg_init(system_memory,
4063                              0xfffbd800, omap_findclk(s, "clk32-kHz"));
4064
4065    /* Register mappings not currenlty implemented:
4066     * MCSI2 Comm       fffb2000 - fffb27ff (not mapped on OMAP310)
4067     * MCSI1 Bluetooth  fffb2800 - fffb2fff (not mapped on OMAP310)
4068     * USB W2FC         fffb4000 - fffb47ff
4069     * Camera Interface fffb6800 - fffb6fff
4070     * USB Host         fffba000 - fffba7ff
4071     * FAC              fffba800 - fffbafff
4072     * HDQ/1-Wire       fffbc000 - fffbc7ff
4073     * TIPB switches    fffbc800 - fffbcfff
4074     * Mailbox          fffcf000 - fffcf7ff
4075     * Local bus IF     fffec100 - fffec1ff
4076     * Local bus MMU    fffec200 - fffec2ff
4077     * DSP MMU          fffed200 - fffed2ff
4078     */
4079
4080    omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4081    omap_setup_mpui_io(system_memory, s);
4082
4083    qemu_register_reset(omap1_mpu_reset, s);
4084
4085    return s;
4086}
4087