qemu/hw/arm/virt.c
<<
>>
Prefs
   1/*
   2 * ARM mach-virt emulation
   3 *
   4 * Copyright (c) 2013 Linaro Limited
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2 or later, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * Emulate a virtual board which works by passing Linux all the information
  19 * it needs about what devices are present via the device tree.
  20 * There are some restrictions about what we can do here:
  21 *  + we can only present devices whose Linux drivers will work based
  22 *    purely on the device tree with no platform data at all
  23 *  + we want to present a very stripped-down minimalist platform,
  24 *    both because this reduces the security attack surface from the guest
  25 *    and also because it reduces our exposure to being broken when
  26 *    the kernel updates its device tree bindings and requires further
  27 *    information in a device binding that we aren't providing.
  28 * This is essentially the same approach kvmtool uses.
  29 */
  30
  31#include "qemu/osdep.h"
  32#include "qapi/error.h"
  33#include "hw/sysbus.h"
  34#include "hw/arm/arm.h"
  35#include "hw/arm/primecell.h"
  36#include "hw/arm/virt.h"
  37#include "hw/devices.h"
  38#include "net/net.h"
  39#include "sysemu/block-backend.h"
  40#include "sysemu/device_tree.h"
  41#include "sysemu/sysemu.h"
  42#include "sysemu/kvm.h"
  43#include "hw/boards.h"
  44#include "hw/loader.h"
  45#include "exec/address-spaces.h"
  46#include "qemu/bitops.h"
  47#include "qemu/error-report.h"
  48#include "hw/pci-host/gpex.h"
  49#include "hw/arm/virt-acpi-build.h"
  50#include "hw/arm/sysbus-fdt.h"
  51#include "hw/platform-bus.h"
  52#include "hw/arm/fdt.h"
  53#include "hw/intc/arm_gic_common.h"
  54#include "kvm_arm.h"
  55#include "hw/smbios/smbios.h"
  56#include "qapi/visitor.h"
  57#include "standard-headers/linux/input.h"
  58
  59/* Number of external interrupt lines to configure the GIC with */
  60#define NUM_IRQS 256
  61
  62#define PLATFORM_BUS_NUM_IRQS 64
  63
  64static ARMPlatformBusSystemParams platform_bus_params;
  65
  66typedef struct VirtBoardInfo {
  67    struct arm_boot_info bootinfo;
  68    const char *cpu_model;
  69    const MemMapEntry *memmap;
  70    const int *irqmap;
  71    int smp_cpus;
  72    void *fdt;
  73    int fdt_size;
  74    uint32_t clock_phandle;
  75    uint32_t gic_phandle;
  76    uint32_t v2m_phandle;
  77    bool using_psci;
  78} VirtBoardInfo;
  79
  80typedef struct {
  81    MachineClass parent;
  82    VirtBoardInfo *daughterboard;
  83} VirtMachineClass;
  84
  85typedef struct {
  86    MachineState parent;
  87    bool secure;
  88    bool highmem;
  89    int32_t gic_version;
  90} VirtMachineState;
  91
  92#define TYPE_VIRT_MACHINE   MACHINE_TYPE_NAME("virt")
  93#define VIRT_MACHINE(obj) \
  94    OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
  95#define VIRT_MACHINE_GET_CLASS(obj) \
  96    OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
  97#define VIRT_MACHINE_CLASS(klass) \
  98    OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
  99
 100/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
 101 * RAM can go up to the 256GB mark, leaving 256GB of the physical
 102 * address space unallocated and free for future use between 256G and 512G.
 103 * If we need to provide more RAM to VMs in the future then we need to:
 104 *  * allocate a second bank of RAM starting at 2TB and working up
 105 *  * fix the DT and ACPI table generation code in QEMU to correctly
 106 *    report two split lumps of RAM to the guest
 107 *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
 108 * (We don't want to fill all the way up to 512GB with RAM because
 109 * we might want it for non-RAM purposes later. Conversely it seems
 110 * reasonable to assume that anybody configuring a VM with a quarter
 111 * of a terabyte of RAM will be doing it on a host with more than a
 112 * terabyte of physical address space.)
 113 */
 114#define RAMLIMIT_GB 255
 115#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
 116
 117/* Addresses and sizes of our components.
 118 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 119 * 128MB..256MB is used for miscellaneous device I/O.
 120 * 256MB..1GB is reserved for possible future PCI support (ie where the
 121 * PCI memory window will go if we add a PCI host controller).
 122 * 1GB and up is RAM (which may happily spill over into the
 123 * high memory region beyond 4GB).
 124 * This represents a compromise between how much RAM can be given to
 125 * a 32 bit VM and leaving space for expansion and in particular for PCI.
 126 * Note that devices should generally be placed at multiples of 0x10000,
 127 * to accommodate guests using 64K pages.
 128 */
 129static const MemMapEntry a15memmap[] = {
 130    /* Space up to 0x8000000 is reserved for a boot ROM */
 131    [VIRT_FLASH] =              {          0, 0x08000000 },
 132    [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 133    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 134    [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 135    [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 136    [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 137    /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 138    [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 139    /* This redistributor space allows up to 2*64kB*123 CPUs */
 140    [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 141    [VIRT_UART] =               { 0x09000000, 0x00001000 },
 142    [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 143    [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 144    [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 145    [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 146    [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 147    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 148    [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 149    [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 150    [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 151    [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 152    [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 153    [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
 154    /* Second PCIe window, 512GB wide at the 512GB boundary */
 155    [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
 156};
 157
 158static const int a15irqmap[] = {
 159    [VIRT_UART] = 1,
 160    [VIRT_RTC] = 2,
 161    [VIRT_PCIE] = 3, /* ... to 6 */
 162    [VIRT_GPIO] = 7,
 163    [VIRT_SECURE_UART] = 8,
 164    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 165    [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 166    [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 167};
 168
 169static VirtBoardInfo machines[] = {
 170    {
 171        .cpu_model = "cortex-a15",
 172        .memmap = a15memmap,
 173        .irqmap = a15irqmap,
 174    },
 175    {
 176        .cpu_model = "cortex-a53",
 177        .memmap = a15memmap,
 178        .irqmap = a15irqmap,
 179    },
 180    {
 181        .cpu_model = "cortex-a57",
 182        .memmap = a15memmap,
 183        .irqmap = a15irqmap,
 184    },
 185    {
 186        .cpu_model = "host",
 187        .memmap = a15memmap,
 188        .irqmap = a15irqmap,
 189    },
 190};
 191
 192static VirtBoardInfo *find_machine_info(const char *cpu)
 193{
 194    int i;
 195
 196    for (i = 0; i < ARRAY_SIZE(machines); i++) {
 197        if (strcmp(cpu, machines[i].cpu_model) == 0) {
 198            return &machines[i];
 199        }
 200    }
 201    return NULL;
 202}
 203
 204static void create_fdt(VirtBoardInfo *vbi)
 205{
 206    void *fdt = create_device_tree(&vbi->fdt_size);
 207
 208    if (!fdt) {
 209        error_report("create_device_tree() failed");
 210        exit(1);
 211    }
 212
 213    vbi->fdt = fdt;
 214
 215    /* Header */
 216    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 217    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 218    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 219
 220    /*
 221     * /chosen and /memory nodes must exist for load_dtb
 222     * to fill in necessary properties later
 223     */
 224    qemu_fdt_add_subnode(fdt, "/chosen");
 225    qemu_fdt_add_subnode(fdt, "/memory");
 226    qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
 227
 228    /* Clock node, for the benefit of the UART. The kernel device tree
 229     * binding documentation claims the PL011 node clock properties are
 230     * optional but in practice if you omit them the kernel refuses to
 231     * probe for the device.
 232     */
 233    vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 234    qemu_fdt_add_subnode(fdt, "/apb-pclk");
 235    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 236    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 237    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 238    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 239                                "clk24mhz");
 240    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
 241
 242}
 243
 244static void fdt_add_psci_node(const VirtBoardInfo *vbi)
 245{
 246    uint32_t cpu_suspend_fn;
 247    uint32_t cpu_off_fn;
 248    uint32_t cpu_on_fn;
 249    uint32_t migrate_fn;
 250    void *fdt = vbi->fdt;
 251    ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
 252
 253    if (!vbi->using_psci) {
 254        return;
 255    }
 256
 257    qemu_fdt_add_subnode(fdt, "/psci");
 258    if (armcpu->psci_version == 2) {
 259        const char comp[] = "arm,psci-0.2\0arm,psci";
 260        qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 261
 262        cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
 263        if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
 264            cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
 265            cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
 266            migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
 267        } else {
 268            cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
 269            cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
 270            migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
 271        }
 272    } else {
 273        qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
 274
 275        cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
 276        cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
 277        cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
 278        migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
 279    }
 280
 281    /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
 282     * to the instruction that should be used to invoke PSCI functions.
 283     * However, the device tree binding uses 'method' instead, so that is
 284     * what we should use here.
 285     */
 286    qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
 287
 288    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
 289    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
 290    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
 291    qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
 292}
 293
 294static void fdt_add_timer_nodes(const VirtBoardInfo *vbi, int gictype)
 295{
 296    /* Note that on A15 h/w these interrupts are level-triggered,
 297     * but for the GIC implementation provided by both QEMU and KVM
 298     * they are edge-triggered.
 299     */
 300    ARMCPU *armcpu;
 301    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 302
 303    if (gictype == 2) {
 304        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 305                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 306                             (1 << vbi->smp_cpus) - 1);
 307    }
 308
 309    qemu_fdt_add_subnode(vbi->fdt, "/timer");
 310
 311    armcpu = ARM_CPU(qemu_get_cpu(0));
 312    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 313        const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 314        qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
 315                         compat, sizeof(compat));
 316    } else {
 317        qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
 318                                "arm,armv7-timer");
 319    }
 320    qemu_fdt_setprop(vbi->fdt, "/timer", "always-on", NULL, 0);
 321    qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
 322                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 323                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 324                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 325                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 326}
 327
 328static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
 329{
 330    int cpu;
 331    int addr_cells = 1;
 332
 333    /*
 334     * From Documentation/devicetree/bindings/arm/cpus.txt
 335     *  On ARM v8 64-bit systems value should be set to 2,
 336     *  that corresponds to the MPIDR_EL1 register size.
 337     *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 338     *  in the system, #address-cells can be set to 1, since
 339     *  MPIDR_EL1[63:32] bits are not used for CPUs
 340     *  identification.
 341     *
 342     *  Here we actually don't know whether our system is 32- or 64-bit one.
 343     *  The simplest way to go is to examine affinity IDs of all our CPUs. If
 344     *  at least one of them has Aff3 populated, we set #address-cells to 2.
 345     */
 346    for (cpu = 0; cpu < vbi->smp_cpus; cpu++) {
 347        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 348
 349        if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 350            addr_cells = 2;
 351            break;
 352        }
 353    }
 354
 355    qemu_fdt_add_subnode(vbi->fdt, "/cpus");
 356    qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", addr_cells);
 357    qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
 358
 359    for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
 360        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 361        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 362
 363        qemu_fdt_add_subnode(vbi->fdt, nodename);
 364        qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
 365        qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
 366                                    armcpu->dtb_compatible);
 367
 368        if (vbi->using_psci && vbi->smp_cpus > 1) {
 369            qemu_fdt_setprop_string(vbi->fdt, nodename,
 370                                        "enable-method", "psci");
 371        }
 372
 373        if (addr_cells == 2) {
 374            qemu_fdt_setprop_u64(vbi->fdt, nodename, "reg",
 375                                 armcpu->mp_affinity);
 376        } else {
 377            qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg",
 378                                  armcpu->mp_affinity);
 379        }
 380
 381        g_free(nodename);
 382    }
 383}
 384
 385static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
 386{
 387    vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
 388    qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
 389    qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
 390                            "arm,gic-v2m-frame");
 391    qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
 392    qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
 393                                 2, vbi->memmap[VIRT_GIC_V2M].base,
 394                                 2, vbi->memmap[VIRT_GIC_V2M].size);
 395    qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
 396}
 397
 398static void fdt_add_gic_node(VirtBoardInfo *vbi, int type)
 399{
 400    vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
 401    qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
 402
 403    qemu_fdt_add_subnode(vbi->fdt, "/intc");
 404    qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
 405    qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
 406    qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
 407    qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
 408    qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
 409    if (type == 3) {
 410        qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
 411                                "arm,gic-v3");
 412        qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
 413                                     2, vbi->memmap[VIRT_GIC_DIST].base,
 414                                     2, vbi->memmap[VIRT_GIC_DIST].size,
 415                                     2, vbi->memmap[VIRT_GIC_REDIST].base,
 416                                     2, vbi->memmap[VIRT_GIC_REDIST].size);
 417    } else {
 418        /* 'cortex-a15-gic' means 'GIC v2' */
 419        qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
 420                                "arm,cortex-a15-gic");
 421        qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
 422                                      2, vbi->memmap[VIRT_GIC_DIST].base,
 423                                      2, vbi->memmap[VIRT_GIC_DIST].size,
 424                                      2, vbi->memmap[VIRT_GIC_CPU].base,
 425                                      2, vbi->memmap[VIRT_GIC_CPU].size);
 426    }
 427
 428    qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
 429}
 430
 431static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
 432{
 433    int i;
 434    int irq = vbi->irqmap[VIRT_GIC_V2M];
 435    DeviceState *dev;
 436
 437    dev = qdev_create(NULL, "arm-gicv2m");
 438    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
 439    qdev_prop_set_uint32(dev, "base-spi", irq);
 440    qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 441    qdev_init_nofail(dev);
 442
 443    for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 444        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 445    }
 446
 447    fdt_add_v2m_gic_node(vbi);
 448}
 449
 450static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic, int type, bool secure)
 451{
 452    /* We create a standalone GIC */
 453    DeviceState *gicdev;
 454    SysBusDevice *gicbusdev;
 455    const char *gictype;
 456    int i;
 457
 458    gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
 459
 460    gicdev = qdev_create(NULL, gictype);
 461    qdev_prop_set_uint32(gicdev, "revision", type);
 462    qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
 463    /* Note that the num-irq property counts both internal and external
 464     * interrupts; there are always 32 of the former (mandated by GIC spec).
 465     */
 466    qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
 467    if (!kvm_irqchip_in_kernel()) {
 468        qdev_prop_set_bit(gicdev, "has-security-extensions", secure);
 469    }
 470    qdev_init_nofail(gicdev);
 471    gicbusdev = SYS_BUS_DEVICE(gicdev);
 472    sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
 473    if (type == 3) {
 474        sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_REDIST].base);
 475    } else {
 476        sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
 477    }
 478
 479    /* Wire the outputs from each CPU's generic timer to the
 480     * appropriate GIC PPI inputs, and the GIC's IRQ output to
 481     * the CPU's IRQ input.
 482     */
 483    for (i = 0; i < smp_cpus; i++) {
 484        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 485        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 486        int irq;
 487        /* Mapping from the output timer irq lines from the CPU to the
 488         * GIC PPI inputs we use for the virt board.
 489         */
 490        const int timer_irq[] = {
 491            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 492            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 493            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 494            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 495        };
 496
 497        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 498            qdev_connect_gpio_out(cpudev, irq,
 499                                  qdev_get_gpio_in(gicdev,
 500                                                   ppibase + timer_irq[irq]));
 501        }
 502
 503        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 504        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 505                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 506    }
 507
 508    for (i = 0; i < NUM_IRQS; i++) {
 509        pic[i] = qdev_get_gpio_in(gicdev, i);
 510    }
 511
 512    fdt_add_gic_node(vbi, type);
 513
 514    if (type == 2) {
 515        create_v2m(vbi, pic);
 516    }
 517}
 518
 519static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic, int uart,
 520                        MemoryRegion *mem)
 521{
 522    char *nodename;
 523    hwaddr base = vbi->memmap[uart].base;
 524    hwaddr size = vbi->memmap[uart].size;
 525    int irq = vbi->irqmap[uart];
 526    const char compat[] = "arm,pl011\0arm,primecell";
 527    const char clocknames[] = "uartclk\0apb_pclk";
 528    DeviceState *dev = qdev_create(NULL, "pl011");
 529    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 530
 531    qdev_init_nofail(dev);
 532    memory_region_add_subregion(mem, base,
 533                                sysbus_mmio_get_region(s, 0));
 534    sysbus_connect_irq(s, 0, pic[irq]);
 535
 536    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 537    qemu_fdt_add_subnode(vbi->fdt, nodename);
 538    /* Note that we can't use setprop_string because of the embedded NUL */
 539    qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
 540                         compat, sizeof(compat));
 541    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 542                                     2, base, 2, size);
 543    qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
 544                               GIC_FDT_IRQ_TYPE_SPI, irq,
 545                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 546    qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
 547                               vbi->clock_phandle, vbi->clock_phandle);
 548    qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
 549                         clocknames, sizeof(clocknames));
 550
 551    if (uart == VIRT_UART) {
 552        qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
 553    } else {
 554        /* Mark as not usable by the normal world */
 555        qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
 556        qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
 557    }
 558
 559    g_free(nodename);
 560}
 561
 562static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
 563{
 564    char *nodename;
 565    hwaddr base = vbi->memmap[VIRT_RTC].base;
 566    hwaddr size = vbi->memmap[VIRT_RTC].size;
 567    int irq = vbi->irqmap[VIRT_RTC];
 568    const char compat[] = "arm,pl031\0arm,primecell";
 569
 570    sysbus_create_simple("pl031", base, pic[irq]);
 571
 572    nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 573    qemu_fdt_add_subnode(vbi->fdt, nodename);
 574    qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
 575    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 576                                 2, base, 2, size);
 577    qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
 578                           GIC_FDT_IRQ_TYPE_SPI, irq,
 579                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 580    qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
 581    qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
 582    g_free(nodename);
 583}
 584
 585static DeviceState *gpio_key_dev;
 586static void virt_powerdown_req(Notifier *n, void *opaque)
 587{
 588    /* use gpio Pin 3 for power button event */
 589    qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 590}
 591
 592static Notifier virt_system_powerdown_notifier = {
 593    .notify = virt_powerdown_req
 594};
 595
 596static void create_gpio(const VirtBoardInfo *vbi, qemu_irq *pic)
 597{
 598    char *nodename;
 599    DeviceState *pl061_dev;
 600    hwaddr base = vbi->memmap[VIRT_GPIO].base;
 601    hwaddr size = vbi->memmap[VIRT_GPIO].size;
 602    int irq = vbi->irqmap[VIRT_GPIO];
 603    const char compat[] = "arm,pl061\0arm,primecell";
 604
 605    pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
 606
 607    uint32_t phandle = qemu_fdt_alloc_phandle(vbi->fdt);
 608    nodename = g_strdup_printf("/pl061@%" PRIx64, base);
 609    qemu_fdt_add_subnode(vbi->fdt, nodename);
 610    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 611                                 2, base, 2, size);
 612    qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
 613    qemu_fdt_setprop_cell(vbi->fdt, nodename, "#gpio-cells", 2);
 614    qemu_fdt_setprop(vbi->fdt, nodename, "gpio-controller", NULL, 0);
 615    qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
 616                           GIC_FDT_IRQ_TYPE_SPI, irq,
 617                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 618    qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
 619    qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
 620    qemu_fdt_setprop_cell(vbi->fdt, nodename, "phandle", phandle);
 621
 622    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 623                                        qdev_get_gpio_in(pl061_dev, 3));
 624    qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys");
 625    qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys", "compatible", "gpio-keys");
 626    qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#size-cells", 0);
 627    qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys", "#address-cells", 1);
 628
 629    qemu_fdt_add_subnode(vbi->fdt, "/gpio-keys/poweroff");
 630    qemu_fdt_setprop_string(vbi->fdt, "/gpio-keys/poweroff",
 631                            "label", "GPIO Key Poweroff");
 632    qemu_fdt_setprop_cell(vbi->fdt, "/gpio-keys/poweroff", "linux,code",
 633                          KEY_POWER);
 634    qemu_fdt_setprop_cells(vbi->fdt, "/gpio-keys/poweroff",
 635                           "gpios", phandle, 3, 0);
 636
 637    /* connect powerdown request */
 638    qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
 639
 640    g_free(nodename);
 641}
 642
 643static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
 644{
 645    int i;
 646    hwaddr size = vbi->memmap[VIRT_MMIO].size;
 647
 648    /* We create the transports in forwards order. Since qbus_realize()
 649     * prepends (not appends) new child buses, the incrementing loop below will
 650     * create a list of virtio-mmio buses with decreasing base addresses.
 651     *
 652     * When a -device option is processed from the command line,
 653     * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
 654     * order. The upshot is that -device options in increasing command line
 655     * order are mapped to virtio-mmio buses with decreasing base addresses.
 656     *
 657     * When this code was originally written, that arrangement ensured that the
 658     * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
 659     * the first -device on the command line. (The end-to-end order is a
 660     * function of this loop, qbus_realize(), qbus_find_recursive(), and the
 661     * guest kernel's name-to-address assignment strategy.)
 662     *
 663     * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
 664     * the message, if not necessarily the code, of commit 70161ff336.
 665     * Therefore the loop now establishes the inverse of the original intent.
 666     *
 667     * Unfortunately, we can't counteract the kernel change by reversing the
 668     * loop; it would break existing command lines.
 669     *
 670     * In any case, the kernel makes no guarantee about the stability of
 671     * enumeration order of virtio devices (as demonstrated by it changing
 672     * between kernel versions). For reliable and stable identification
 673     * of disks users must use UUIDs or similar mechanisms.
 674     */
 675    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
 676        int irq = vbi->irqmap[VIRT_MMIO] + i;
 677        hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
 678
 679        sysbus_create_simple("virtio-mmio", base, pic[irq]);
 680    }
 681
 682    /* We add dtb nodes in reverse order so that they appear in the finished
 683     * device tree lowest address first.
 684     *
 685     * Note that this mapping is independent of the loop above. The previous
 686     * loop influences virtio device to virtio transport assignment, whereas
 687     * this loop controls how virtio transports are laid out in the dtb.
 688     */
 689    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
 690        char *nodename;
 691        int irq = vbi->irqmap[VIRT_MMIO] + i;
 692        hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
 693
 694        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
 695        qemu_fdt_add_subnode(vbi->fdt, nodename);
 696        qemu_fdt_setprop_string(vbi->fdt, nodename,
 697                                "compatible", "virtio,mmio");
 698        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 699                                     2, base, 2, size);
 700        qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
 701                               GIC_FDT_IRQ_TYPE_SPI, irq,
 702                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 703        g_free(nodename);
 704    }
 705}
 706
 707static void create_one_flash(const char *name, hwaddr flashbase,
 708                             hwaddr flashsize, const char *file,
 709                             MemoryRegion *sysmem)
 710{
 711    /* Create and map a single flash device. We use the same
 712     * parameters as the flash devices on the Versatile Express board.
 713     */
 714    DriveInfo *dinfo = drive_get_next(IF_PFLASH);
 715    DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
 716    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 717    const uint64_t sectorlength = 256 * 1024;
 718
 719    if (dinfo) {
 720        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
 721                            &error_abort);
 722    }
 723
 724    qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
 725    qdev_prop_set_uint64(dev, "sector-length", sectorlength);
 726    qdev_prop_set_uint8(dev, "width", 4);
 727    qdev_prop_set_uint8(dev, "device-width", 2);
 728    qdev_prop_set_bit(dev, "big-endian", false);
 729    qdev_prop_set_uint16(dev, "id0", 0x89);
 730    qdev_prop_set_uint16(dev, "id1", 0x18);
 731    qdev_prop_set_uint16(dev, "id2", 0x00);
 732    qdev_prop_set_uint16(dev, "id3", 0x00);
 733    qdev_prop_set_string(dev, "name", name);
 734    qdev_init_nofail(dev);
 735
 736    memory_region_add_subregion(sysmem, flashbase,
 737                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
 738
 739    if (file) {
 740        char *fn;
 741        int image_size;
 742
 743        if (drive_get(IF_PFLASH, 0, 0)) {
 744            error_report("The contents of the first flash device may be "
 745                         "specified with -bios or with -drive if=pflash... "
 746                         "but you cannot use both options at once");
 747            exit(1);
 748        }
 749        fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
 750        if (!fn) {
 751            error_report("Could not find ROM image '%s'", file);
 752            exit(1);
 753        }
 754        image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
 755        g_free(fn);
 756        if (image_size < 0) {
 757            error_report("Could not load ROM image '%s'", file);
 758            exit(1);
 759        }
 760    }
 761}
 762
 763static void create_flash(const VirtBoardInfo *vbi,
 764                         MemoryRegion *sysmem,
 765                         MemoryRegion *secure_sysmem)
 766{
 767    /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
 768     * Any file passed via -bios goes in the first of these.
 769     * sysmem is the system memory space. secure_sysmem is the secure view
 770     * of the system, and the first flash device should be made visible only
 771     * there. The second flash device is visible to both secure and nonsecure.
 772     * If sysmem == secure_sysmem this means there is no separate Secure
 773     * address space and both flash devices are generally visible.
 774     */
 775    hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
 776    hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
 777    char *nodename;
 778
 779    create_one_flash("virt.flash0", flashbase, flashsize,
 780                     bios_name, secure_sysmem);
 781    create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
 782                     NULL, sysmem);
 783
 784    if (sysmem == secure_sysmem) {
 785        /* Report both flash devices as a single node in the DT */
 786        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 787        qemu_fdt_add_subnode(vbi->fdt, nodename);
 788        qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
 789        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 790                                     2, flashbase, 2, flashsize,
 791                                     2, flashbase + flashsize, 2, flashsize);
 792        qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
 793        g_free(nodename);
 794    } else {
 795        /* Report the devices as separate nodes so we can mark one as
 796         * only visible to the secure world.
 797         */
 798        nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
 799        qemu_fdt_add_subnode(vbi->fdt, nodename);
 800        qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
 801        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 802                                     2, flashbase, 2, flashsize);
 803        qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
 804        qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
 805        qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
 806        g_free(nodename);
 807
 808        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 809        qemu_fdt_add_subnode(vbi->fdt, nodename);
 810        qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
 811        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 812                                     2, flashbase + flashsize, 2, flashsize);
 813        qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
 814        g_free(nodename);
 815    }
 816}
 817
 818static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
 819{
 820    hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
 821    hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
 822    char *nodename;
 823
 824    fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
 825
 826    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
 827    qemu_fdt_add_subnode(vbi->fdt, nodename);
 828    qemu_fdt_setprop_string(vbi->fdt, nodename,
 829                            "compatible", "qemu,fw-cfg-mmio");
 830    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 831                                 2, base, 2, size);
 832    g_free(nodename);
 833}
 834
 835static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
 836                                int first_irq, const char *nodename)
 837{
 838    int devfn, pin;
 839    uint32_t full_irq_map[4 * 4 * 10] = { 0 };
 840    uint32_t *irq_map = full_irq_map;
 841
 842    for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
 843        for (pin = 0; pin < 4; pin++) {
 844            int irq_type = GIC_FDT_IRQ_TYPE_SPI;
 845            int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
 846            int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 847            int i;
 848
 849            uint32_t map[] = {
 850                devfn << 8, 0, 0,                           /* devfn */
 851                pin + 1,                                    /* PCI pin */
 852                gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
 853
 854            /* Convert map to big endian */
 855            for (i = 0; i < 10; i++) {
 856                irq_map[i] = cpu_to_be32(map[i]);
 857            }
 858            irq_map += 10;
 859        }
 860    }
 861
 862    qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
 863                     full_irq_map, sizeof(full_irq_map));
 864
 865    qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
 866                           0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
 867                           0x7           /* PCI irq */);
 868}
 869
 870static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic,
 871                        bool use_highmem)
 872{
 873    hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
 874    hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
 875    hwaddr base_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].base;
 876    hwaddr size_mmio_high = vbi->memmap[VIRT_PCIE_MMIO_HIGH].size;
 877    hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
 878    hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
 879    hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
 880    hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
 881    hwaddr base = base_mmio;
 882    int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
 883    int irq = vbi->irqmap[VIRT_PCIE];
 884    MemoryRegion *mmio_alias;
 885    MemoryRegion *mmio_reg;
 886    MemoryRegion *ecam_alias;
 887    MemoryRegion *ecam_reg;
 888    DeviceState *dev;
 889    char *nodename;
 890    int i;
 891    PCIHostState *pci;
 892
 893    dev = qdev_create(NULL, TYPE_GPEX_HOST);
 894    qdev_init_nofail(dev);
 895
 896    /* Map only the first size_ecam bytes of ECAM space */
 897    ecam_alias = g_new0(MemoryRegion, 1);
 898    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 899    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
 900                             ecam_reg, 0, size_ecam);
 901    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
 902
 903    /* Map the MMIO window into system address space so as to expose
 904     * the section of PCI MMIO space which starts at the same base address
 905     * (ie 1:1 mapping for that part of PCI MMIO space visible through
 906     * the window).
 907     */
 908    mmio_alias = g_new0(MemoryRegion, 1);
 909    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 910    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
 911                             mmio_reg, base_mmio, size_mmio);
 912    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
 913
 914    if (use_highmem) {
 915        /* Map high MMIO space */
 916        MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
 917
 918        memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
 919                                 mmio_reg, base_mmio_high, size_mmio_high);
 920        memory_region_add_subregion(get_system_memory(), base_mmio_high,
 921                                    high_mmio_alias);
 922    }
 923
 924    /* Map IO port space */
 925    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
 926
 927    for (i = 0; i < GPEX_NUM_IRQS; i++) {
 928        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 929    }
 930
 931    pci = PCI_HOST_BRIDGE(dev);
 932    if (pci->bus) {
 933        for (i = 0; i < nb_nics; i++) {
 934            NICInfo *nd = &nd_table[i];
 935
 936            if (!nd->model) {
 937                nd->model = g_strdup("virtio");
 938            }
 939
 940            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
 941        }
 942    }
 943
 944    nodename = g_strdup_printf("/pcie@%" PRIx64, base);
 945    qemu_fdt_add_subnode(vbi->fdt, nodename);
 946    qemu_fdt_setprop_string(vbi->fdt, nodename,
 947                            "compatible", "pci-host-ecam-generic");
 948    qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
 949    qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
 950    qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
 951    qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
 952                           nr_pcie_buses - 1);
 953
 954    if (vbi->v2m_phandle) {
 955        qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent",
 956                               vbi->v2m_phandle);
 957    }
 958
 959    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
 960                                 2, base_ecam, 2, size_ecam);
 961
 962    if (use_highmem) {
 963        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
 964                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
 965                                     2, base_pio, 2, size_pio,
 966                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
 967                                     2, base_mmio, 2, size_mmio,
 968                                     1, FDT_PCI_RANGE_MMIO_64BIT,
 969                                     2, base_mmio_high,
 970                                     2, base_mmio_high, 2, size_mmio_high);
 971    } else {
 972        qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
 973                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
 974                                     2, base_pio, 2, size_pio,
 975                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
 976                                     2, base_mmio, 2, size_mmio);
 977    }
 978
 979    qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
 980    create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
 981
 982    g_free(nodename);
 983}
 984
 985static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
 986{
 987    DeviceState *dev;
 988    SysBusDevice *s;
 989    int i;
 990    ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
 991    MemoryRegion *sysmem = get_system_memory();
 992
 993    platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
 994    platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
 995    platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
 996    platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
 997
 998    fdt_params->system_params = &platform_bus_params;
 999    fdt_params->binfo = &vbi->bootinfo;
1000    fdt_params->intc = "/intc";
1001    /*
1002     * register a machine init done notifier that creates the device tree
1003     * nodes of the platform bus and its children dynamic sysbus devices
1004     */
1005    arm_register_platform_bus_fdt_creator(fdt_params);
1006
1007    dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1008    dev->id = (char *) TYPE_PLATFORM_BUS_DEVICE;
1009    qdev_prop_set_uint32(dev, "num_irqs",
1010        platform_bus_params.platform_bus_num_irqs);
1011    qdev_prop_set_uint32(dev, "mmio_size",
1012        platform_bus_params.platform_bus_size);
1013    qdev_init_nofail(dev);
1014    s = SYS_BUS_DEVICE(dev);
1015
1016    for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1017        int irqn = platform_bus_params.platform_bus_first_irq + i;
1018        sysbus_connect_irq(s, i, pic[irqn]);
1019    }
1020
1021    memory_region_add_subregion(sysmem,
1022                                platform_bus_params.platform_bus_base,
1023                                sysbus_mmio_get_region(s, 0));
1024}
1025
1026static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
1027{
1028    MemoryRegion *secram = g_new(MemoryRegion, 1);
1029    char *nodename;
1030    hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
1031    hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
1032
1033    memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1034    vmstate_register_ram_global(secram);
1035    memory_region_add_subregion(secure_sysmem, base, secram);
1036
1037    nodename = g_strdup_printf("/secram@%" PRIx64, base);
1038    qemu_fdt_add_subnode(vbi->fdt, nodename);
1039    qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
1040    qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
1041    qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
1042    qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
1043
1044    g_free(nodename);
1045}
1046
1047static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1048{
1049    const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
1050
1051    *fdt_size = board->fdt_size;
1052    return board->fdt;
1053}
1054
1055static void virt_build_smbios(VirtGuestInfo *guest_info)
1056{
1057    FWCfgState *fw_cfg = guest_info->fw_cfg;
1058    uint8_t *smbios_tables, *smbios_anchor;
1059    size_t smbios_tables_len, smbios_anchor_len;
1060    const char *product = "QEMU Virtual Machine";
1061
1062    if (!fw_cfg) {
1063        return;
1064    }
1065
1066    if (kvm_enabled()) {
1067        product = "KVM Virtual Machine";
1068    }
1069
1070    smbios_set_defaults("QEMU", product,
1071                        "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1072
1073    smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1074                      &smbios_anchor, &smbios_anchor_len);
1075
1076    if (smbios_anchor) {
1077        fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
1078                        smbios_tables, smbios_tables_len);
1079        fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
1080                        smbios_anchor, smbios_anchor_len);
1081    }
1082}
1083
1084static
1085void virt_guest_info_machine_done(Notifier *notifier, void *data)
1086{
1087    VirtGuestInfoState *guest_info_state = container_of(notifier,
1088                                              VirtGuestInfoState, machine_done);
1089    virt_acpi_setup(&guest_info_state->info);
1090    virt_build_smbios(&guest_info_state->info);
1091}
1092
1093static void machvirt_init(MachineState *machine)
1094{
1095    VirtMachineState *vms = VIRT_MACHINE(machine);
1096    qemu_irq pic[NUM_IRQS];
1097    MemoryRegion *sysmem = get_system_memory();
1098    MemoryRegion *secure_sysmem = NULL;
1099    int gic_version = vms->gic_version;
1100    int n, virt_max_cpus;
1101    MemoryRegion *ram = g_new(MemoryRegion, 1);
1102    const char *cpu_model = machine->cpu_model;
1103    VirtBoardInfo *vbi;
1104    VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
1105    VirtGuestInfo *guest_info = &guest_info_state->info;
1106    char **cpustr;
1107    bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1108
1109    if (!cpu_model) {
1110        cpu_model = "cortex-a15";
1111    }
1112
1113    /* We can probe only here because during property set
1114     * KVM is not available yet
1115     */
1116    if (!gic_version) {
1117        gic_version = kvm_arm_vgic_probe();
1118        if (!gic_version) {
1119            error_report("Unable to determine GIC version supported by host");
1120            error_printf("KVM acceleration is probably not supported\n");
1121            exit(1);
1122        }
1123    }
1124
1125    /* Separate the actual CPU model name from any appended features */
1126    cpustr = g_strsplit(cpu_model, ",", 2);
1127
1128    vbi = find_machine_info(cpustr[0]);
1129
1130    if (!vbi) {
1131        error_report("mach-virt: CPU %s not supported", cpustr[0]);
1132        exit(1);
1133    }
1134
1135    /* If we have an EL3 boot ROM then the assumption is that it will
1136     * implement PSCI itself, so disable QEMU's internal implementation
1137     * so it doesn't get in the way. Instead of starting secondary
1138     * CPUs in PSCI powerdown state we will start them all running and
1139     * let the boot ROM sort them out.
1140     * The usual case is that we do use QEMU's PSCI implementation.
1141     */
1142    vbi->using_psci = !(vms->secure && firmware_loaded);
1143
1144    /* The maximum number of CPUs depends on the GIC version, or on how
1145     * many redistributors we can fit into the memory map.
1146     */
1147    if (gic_version == 3) {
1148        virt_max_cpus = vbi->memmap[VIRT_GIC_REDIST].size / 0x20000;
1149    } else {
1150        virt_max_cpus = GIC_NCPU;
1151    }
1152
1153    if (max_cpus > virt_max_cpus) {
1154        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1155                     "supported by machine 'mach-virt' (%d)",
1156                     max_cpus, virt_max_cpus);
1157        exit(1);
1158    }
1159
1160    vbi->smp_cpus = smp_cpus;
1161
1162    if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
1163        error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
1164        exit(1);
1165    }
1166
1167    if (vms->secure) {
1168        if (kvm_enabled()) {
1169            error_report("mach-virt: KVM does not support Security extensions");
1170            exit(1);
1171        }
1172
1173        /* The Secure view of the world is the same as the NonSecure,
1174         * but with a few extra devices. Create it as a container region
1175         * containing the system memory at low priority; any secure-only
1176         * devices go in at higher priority and take precedence.
1177         */
1178        secure_sysmem = g_new(MemoryRegion, 1);
1179        memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1180                           UINT64_MAX);
1181        memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1182    }
1183
1184    create_fdt(vbi);
1185
1186    for (n = 0; n < smp_cpus; n++) {
1187        ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1188        CPUClass *cc = CPU_CLASS(oc);
1189        Object *cpuobj;
1190        Error *err = NULL;
1191        char *cpuopts = g_strdup(cpustr[1]);
1192
1193        if (!oc) {
1194            error_report("Unable to find CPU definition");
1195            exit(1);
1196        }
1197        cpuobj = object_new(object_class_get_name(oc));
1198
1199        /* Handle any CPU options specified by the user */
1200        cc->parse_features(CPU(cpuobj), cpuopts, &err);
1201        g_free(cpuopts);
1202        if (err) {
1203            error_report_err(err);
1204            exit(1);
1205        }
1206
1207        if (!vms->secure) {
1208            object_property_set_bool(cpuobj, false, "has_el3", NULL);
1209        }
1210
1211        if (vbi->using_psci) {
1212            object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
1213                                    "psci-conduit", NULL);
1214
1215            /* Secondary CPUs start in PSCI powered-down state */
1216            if (n > 0) {
1217                object_property_set_bool(cpuobj, true,
1218                                         "start-powered-off", NULL);
1219            }
1220        }
1221
1222        if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1223            object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
1224                                    "reset-cbar", &error_abort);
1225        }
1226
1227        object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1228                                 &error_abort);
1229        if (vms->secure) {
1230            object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1231                                     "secure-memory", &error_abort);
1232        }
1233
1234        object_property_set_bool(cpuobj, true, "realized", NULL);
1235    }
1236    g_strfreev(cpustr);
1237    fdt_add_timer_nodes(vbi, gic_version);
1238    fdt_add_cpu_nodes(vbi);
1239    fdt_add_psci_node(vbi);
1240
1241    memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1242                                         machine->ram_size);
1243    memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
1244
1245    create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1246
1247    create_gic(vbi, pic, gic_version, vms->secure);
1248
1249    create_uart(vbi, pic, VIRT_UART, sysmem);
1250
1251    if (vms->secure) {
1252        create_secure_ram(vbi, secure_sysmem);
1253        create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem);
1254    }
1255
1256    create_rtc(vbi, pic);
1257
1258    create_pcie(vbi, pic, vms->highmem);
1259
1260    create_gpio(vbi, pic);
1261
1262    /* Create mmio transports, so the user can create virtio backends
1263     * (which will be automatically plugged in to the transports). If
1264     * no backend is created the transport will just sit harmlessly idle.
1265     */
1266    create_virtio_devices(vbi, pic);
1267
1268    create_fw_cfg(vbi, &address_space_memory);
1269    rom_set_fw(fw_cfg_find());
1270
1271    guest_info->smp_cpus = smp_cpus;
1272    guest_info->fw_cfg = fw_cfg_find();
1273    guest_info->memmap = vbi->memmap;
1274    guest_info->irqmap = vbi->irqmap;
1275    guest_info->use_highmem = vms->highmem;
1276    guest_info->gic_version = gic_version;
1277    guest_info_state->machine_done.notify = virt_guest_info_machine_done;
1278    qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
1279
1280    vbi->bootinfo.ram_size = machine->ram_size;
1281    vbi->bootinfo.kernel_filename = machine->kernel_filename;
1282    vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1283    vbi->bootinfo.initrd_filename = machine->initrd_filename;
1284    vbi->bootinfo.nb_cpus = smp_cpus;
1285    vbi->bootinfo.board_id = -1;
1286    vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
1287    vbi->bootinfo.get_dtb = machvirt_dtb;
1288    vbi->bootinfo.firmware_loaded = firmware_loaded;
1289    arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
1290
1291    /*
1292     * arm_load_kernel machine init done notifier registration must
1293     * happen before the platform_bus_create call. In this latter,
1294     * another notifier is registered which adds platform bus nodes.
1295     * Notifiers are executed in registration reverse order.
1296     */
1297    create_platform_bus(vbi, pic);
1298}
1299
1300static bool virt_get_secure(Object *obj, Error **errp)
1301{
1302    VirtMachineState *vms = VIRT_MACHINE(obj);
1303
1304    return vms->secure;
1305}
1306
1307static void virt_set_secure(Object *obj, bool value, Error **errp)
1308{
1309    VirtMachineState *vms = VIRT_MACHINE(obj);
1310
1311    vms->secure = value;
1312}
1313
1314static bool virt_get_highmem(Object *obj, Error **errp)
1315{
1316    VirtMachineState *vms = VIRT_MACHINE(obj);
1317
1318    return vms->highmem;
1319}
1320
1321static void virt_set_highmem(Object *obj, bool value, Error **errp)
1322{
1323    VirtMachineState *vms = VIRT_MACHINE(obj);
1324
1325    vms->highmem = value;
1326}
1327
1328static char *virt_get_gic_version(Object *obj, Error **errp)
1329{
1330    VirtMachineState *vms = VIRT_MACHINE(obj);
1331    const char *val = vms->gic_version == 3 ? "3" : "2";
1332
1333    return g_strdup(val);
1334}
1335
1336static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1337{
1338    VirtMachineState *vms = VIRT_MACHINE(obj);
1339
1340    if (!strcmp(value, "3")) {
1341        vms->gic_version = 3;
1342    } else if (!strcmp(value, "2")) {
1343        vms->gic_version = 2;
1344    } else if (!strcmp(value, "host")) {
1345        vms->gic_version = 0; /* Will probe later */
1346    } else {
1347        error_setg(errp, "Invalid gic-version value");
1348        error_append_hint(errp, "Valid values are 3, 2, host.\n");
1349    }
1350}
1351
1352static void virt_machine_class_init(ObjectClass *oc, void *data)
1353{
1354    MachineClass *mc = MACHINE_CLASS(oc);
1355
1356    mc->init = machvirt_init;
1357    /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1358     * it later in machvirt_init, where we have more information about the
1359     * configuration of the particular instance.
1360     */
1361    mc->max_cpus = MAX_CPUMASK_BITS;
1362    mc->has_dynamic_sysbus = true;
1363    mc->block_default_type = IF_VIRTIO;
1364    mc->no_cdrom = 1;
1365    mc->pci_allow_0_address = true;
1366}
1367
1368static const TypeInfo virt_machine_info = {
1369    .name          = TYPE_VIRT_MACHINE,
1370    .parent        = TYPE_MACHINE,
1371    .abstract      = true,
1372    .instance_size = sizeof(VirtMachineState),
1373    .class_size    = sizeof(VirtMachineClass),
1374    .class_init    = virt_machine_class_init,
1375};
1376
1377static void virt_2_6_instance_init(Object *obj)
1378{
1379    VirtMachineState *vms = VIRT_MACHINE(obj);
1380
1381    /* EL3 is disabled by default on virt: this makes us consistent
1382     * between KVM and TCG for this board, and it also allows us to
1383     * boot UEFI blobs which assume no TrustZone support.
1384     */
1385    vms->secure = false;
1386    object_property_add_bool(obj, "secure", virt_get_secure,
1387                             virt_set_secure, NULL);
1388    object_property_set_description(obj, "secure",
1389                                    "Set on/off to enable/disable the ARM "
1390                                    "Security Extensions (TrustZone)",
1391                                    NULL);
1392
1393    /* High memory is enabled by default */
1394    vms->highmem = true;
1395    object_property_add_bool(obj, "highmem", virt_get_highmem,
1396                             virt_set_highmem, NULL);
1397    object_property_set_description(obj, "highmem",
1398                                    "Set on/off to enable/disable using "
1399                                    "physical address space above 32 bits",
1400                                    NULL);
1401    /* Default GIC type is v2 */
1402    vms->gic_version = 2;
1403    object_property_add_str(obj, "gic-version", virt_get_gic_version,
1404                        virt_set_gic_version, NULL);
1405    object_property_set_description(obj, "gic-version",
1406                                    "Set GIC version. "
1407                                    "Valid values are 2, 3 and host", NULL);
1408}
1409
1410static void virt_2_6_class_init(ObjectClass *oc, void *data)
1411{
1412    MachineClass *mc = MACHINE_CLASS(oc);
1413    static GlobalProperty compat_props[] = {
1414        { /* end of list */ }
1415    };
1416
1417    mc->desc = "QEMU 2.6 ARM Virtual Machine";
1418    mc->alias = "virt";
1419    mc->compat_props = compat_props;
1420}
1421
1422static const TypeInfo machvirt_info = {
1423    .name = MACHINE_TYPE_NAME("virt-2.6"),
1424    .parent = TYPE_VIRT_MACHINE,
1425    .instance_init = virt_2_6_instance_init,
1426    .class_init = virt_2_6_class_init,
1427};
1428
1429static void machvirt_machine_init(void)
1430{
1431    type_register_static(&virt_machine_info);
1432    type_register_static(&machvirt_info);
1433}
1434
1435type_init(machvirt_machine_init);
1436