qemu/hw/block/fdc.c
<<
>>
Prefs
   1/*
   2 * QEMU Floppy disk emulator (Intel 82078)
   3 *
   4 * Copyright (c) 2003, 2007 Jocelyn Mayer
   5 * Copyright (c) 2008 Hervé Poussineau
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a copy
   8 * of this software and associated documentation files (the "Software"), to deal
   9 * in the Software without restriction, including without limitation the rights
  10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  11 * copies of the Software, and to permit persons to whom the Software is
  12 * furnished to do so, subject to the following conditions:
  13 *
  14 * The above copyright notice and this permission notice shall be included in
  15 * all copies or substantial portions of the Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  23 * THE SOFTWARE.
  24 */
  25/*
  26 * The controller is used in Sun4m systems in a slightly different
  27 * way. There are changes in DOR register and DMA is not available.
  28 */
  29
  30#include "qemu/osdep.h"
  31#include "hw/hw.h"
  32#include "hw/block/fdc.h"
  33#include "qapi/error.h"
  34#include "qemu/error-report.h"
  35#include "qemu/timer.h"
  36#include "hw/isa/isa.h"
  37#include "hw/sysbus.h"
  38#include "sysemu/block-backend.h"
  39#include "sysemu/blockdev.h"
  40#include "sysemu/sysemu.h"
  41#include "qemu/log.h"
  42
  43/********************************************************/
  44/* debug Floppy devices */
  45
  46#define DEBUG_FLOPPY 0
  47
  48#define FLOPPY_DPRINTF(fmt, ...)                                \
  49    do {                                                        \
  50        if (DEBUG_FLOPPY) {                                     \
  51            fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__);   \
  52        }                                                       \
  53    } while (0)
  54
  55/********************************************************/
  56/* Floppy drive emulation                               */
  57
  58typedef enum FDriveRate {
  59    FDRIVE_RATE_500K = 0x00,  /* 500 Kbps */
  60    FDRIVE_RATE_300K = 0x01,  /* 300 Kbps */
  61    FDRIVE_RATE_250K = 0x02,  /* 250 Kbps */
  62    FDRIVE_RATE_1M   = 0x03,  /*   1 Mbps */
  63} FDriveRate;
  64
  65typedef enum FDriveSize {
  66    FDRIVE_SIZE_UNKNOWN,
  67    FDRIVE_SIZE_350,
  68    FDRIVE_SIZE_525,
  69} FDriveSize;
  70
  71typedef struct FDFormat {
  72    FloppyDriveType drive;
  73    uint8_t last_sect;
  74    uint8_t max_track;
  75    uint8_t max_head;
  76    FDriveRate rate;
  77} FDFormat;
  78
  79/* In many cases, the total sector size of a format is enough to uniquely
  80 * identify it. However, there are some total sector collisions between
  81 * formats of different physical size, and these are noted below by
  82 * highlighting the total sector size for entries with collisions. */
  83static const FDFormat fd_formats[] = {
  84    /* First entry is default format */
  85    /* 1.44 MB 3"1/2 floppy disks */
  86    { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
  87    { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
  88    { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
  89    { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
  90    { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
  91    { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
  92    { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
  93    { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
  94    /* 2.88 MB 3"1/2 floppy disks */
  95    { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
  96    { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
  97    { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
  98    { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
  99    { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
 100    /* 720 kB 3"1/2 floppy disks */
 101    { FLOPPY_DRIVE_TYPE_144,  9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
 102    { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
 103    { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
 104    { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
 105    { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
 106    { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
 107    /* 1.2 MB 5"1/4 floppy disks */
 108    { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
 109    { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
 110    { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
 111    { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
 112    { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
 113    /* 720 kB 5"1/4 floppy disks */
 114    { FLOPPY_DRIVE_TYPE_120,  9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
 115    { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
 116    /* 360 kB 5"1/4 floppy disks */
 117    { FLOPPY_DRIVE_TYPE_120,  9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
 118    { FLOPPY_DRIVE_TYPE_120,  9, 40, 0, FDRIVE_RATE_300K, },
 119    { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
 120    { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
 121    /* 320 kB 5"1/4 floppy disks */
 122    { FLOPPY_DRIVE_TYPE_120,  8, 40, 1, FDRIVE_RATE_250K, },
 123    { FLOPPY_DRIVE_TYPE_120,  8, 40, 0, FDRIVE_RATE_250K, },
 124    /* 360 kB must match 5"1/4 better than 3"1/2... */
 125    { FLOPPY_DRIVE_TYPE_144,  9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
 126    /* end */
 127    { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
 128};
 129
 130static FDriveSize drive_size(FloppyDriveType drive)
 131{
 132    switch (drive) {
 133    case FLOPPY_DRIVE_TYPE_120:
 134        return FDRIVE_SIZE_525;
 135    case FLOPPY_DRIVE_TYPE_144:
 136    case FLOPPY_DRIVE_TYPE_288:
 137        return FDRIVE_SIZE_350;
 138    default:
 139        return FDRIVE_SIZE_UNKNOWN;
 140    }
 141}
 142
 143#define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
 144#define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
 145
 146/* Will always be a fixed parameter for us */
 147#define FD_SECTOR_LEN          512
 148#define FD_SECTOR_SC           2   /* Sector size code */
 149#define FD_RESET_SENSEI_COUNT  4   /* Number of sense interrupts on RESET */
 150
 151typedef struct FDCtrl FDCtrl;
 152
 153/* Floppy disk drive emulation */
 154typedef enum FDiskFlags {
 155    FDISK_DBL_SIDES  = 0x01,
 156} FDiskFlags;
 157
 158typedef struct FDrive {
 159    FDCtrl *fdctrl;
 160    BlockBackend *blk;
 161    /* Drive status */
 162    FloppyDriveType drive;    /* CMOS drive type        */
 163    uint8_t perpendicular;    /* 2.88 MB access mode    */
 164    /* Position */
 165    uint8_t head;
 166    uint8_t track;
 167    uint8_t sect;
 168    /* Media */
 169    FloppyDriveType disk;     /* Current disk type      */
 170    FDiskFlags flags;
 171    uint8_t last_sect;        /* Nb sector per track    */
 172    uint8_t max_track;        /* Nb of tracks           */
 173    uint16_t bps;             /* Bytes per sector       */
 174    uint8_t ro;               /* Is read-only           */
 175    uint8_t media_changed;    /* Is media changed       */
 176    uint8_t media_rate;       /* Data rate of medium    */
 177
 178    bool media_validated;     /* Have we validated the media? */
 179} FDrive;
 180
 181
 182static FloppyDriveType get_fallback_drive_type(FDrive *drv);
 183
 184/* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
 185 * currently goes through some pains to keep seeks within the bounds
 186 * established by last_sect and max_track. Correcting this is difficult,
 187 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
 188 *
 189 * For now: allow empty drives to have large bounds so we can seek around,
 190 * with the understanding that when a diskette is inserted, the bounds will
 191 * properly tighten to match the geometry of that inserted medium.
 192 */
 193static void fd_empty_seek_hack(FDrive *drv)
 194{
 195    drv->last_sect = 0xFF;
 196    drv->max_track = 0xFF;
 197}
 198
 199static void fd_init(FDrive *drv)
 200{
 201    /* Drive */
 202    drv->perpendicular = 0;
 203    /* Disk */
 204    drv->disk = FLOPPY_DRIVE_TYPE_NONE;
 205    drv->last_sect = 0;
 206    drv->max_track = 0;
 207    drv->ro = true;
 208    drv->media_changed = 1;
 209}
 210
 211#define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
 212
 213static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
 214                          uint8_t last_sect, uint8_t num_sides)
 215{
 216    return (((track * num_sides) + head) * last_sect) + sect - 1;
 217}
 218
 219/* Returns current position, in sectors, for given drive */
 220static int fd_sector(FDrive *drv)
 221{
 222    return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
 223                          NUM_SIDES(drv));
 224}
 225
 226/* Seek to a new position:
 227 * returns 0 if already on right track
 228 * returns 1 if track changed
 229 * returns 2 if track is invalid
 230 * returns 3 if sector is invalid
 231 * returns 4 if seek is disabled
 232 */
 233static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
 234                   int enable_seek)
 235{
 236    uint32_t sector;
 237    int ret;
 238
 239    if (track > drv->max_track ||
 240        (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
 241        FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
 242                       head, track, sect, 1,
 243                       (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
 244                       drv->max_track, drv->last_sect);
 245        return 2;
 246    }
 247    if (sect > drv->last_sect) {
 248        FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
 249                       head, track, sect, 1,
 250                       (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
 251                       drv->max_track, drv->last_sect);
 252        return 3;
 253    }
 254    sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
 255    ret = 0;
 256    if (sector != fd_sector(drv)) {
 257#if 0
 258        if (!enable_seek) {
 259            FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
 260                           " (max=%d %02x %02x)\n",
 261                           head, track, sect, 1, drv->max_track,
 262                           drv->last_sect);
 263            return 4;
 264        }
 265#endif
 266        drv->head = head;
 267        if (drv->track != track) {
 268            if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
 269                drv->media_changed = 0;
 270            }
 271            ret = 1;
 272        }
 273        drv->track = track;
 274        drv->sect = sect;
 275    }
 276
 277    if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
 278        ret = 2;
 279    }
 280
 281    return ret;
 282}
 283
 284/* Set drive back to track 0 */
 285static void fd_recalibrate(FDrive *drv)
 286{
 287    FLOPPY_DPRINTF("recalibrate\n");
 288    fd_seek(drv, 0, 0, 1, 1);
 289}
 290
 291/**
 292 * Determine geometry based on inserted diskette.
 293 * Will not operate on an empty drive.
 294 *
 295 * @return: 0 on success, -1 if the drive is empty.
 296 */
 297static int pick_geometry(FDrive *drv)
 298{
 299    BlockBackend *blk = drv->blk;
 300    const FDFormat *parse;
 301    uint64_t nb_sectors, size;
 302    int i;
 303    int match, size_match, type_match;
 304    bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
 305
 306    /* We can only pick a geometry if we have a diskette. */
 307    if (!drv->blk || !blk_is_inserted(drv->blk) ||
 308        drv->drive == FLOPPY_DRIVE_TYPE_NONE)
 309    {
 310        return -1;
 311    }
 312
 313    /* We need to determine the likely geometry of the inserted medium.
 314     * In order of preference, we look for:
 315     * (1) The same drive type and number of sectors,
 316     * (2) The same diskette size and number of sectors,
 317     * (3) The same drive type.
 318     *
 319     * In all cases, matches that occur higher in the drive table will take
 320     * precedence over matches that occur later in the table.
 321     */
 322    blk_get_geometry(blk, &nb_sectors);
 323    match = size_match = type_match = -1;
 324    for (i = 0; ; i++) {
 325        parse = &fd_formats[i];
 326        if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
 327            break;
 328        }
 329        size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
 330        if (nb_sectors == size) {
 331            if (magic || parse->drive == drv->drive) {
 332                /* (1) perfect match -- nb_sectors and drive type */
 333                goto out;
 334            } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
 335                /* (2) size match -- nb_sectors and physical medium size */
 336                match = (match == -1) ? i : match;
 337            } else {
 338                /* This is suspicious -- Did the user misconfigure? */
 339                size_match = (size_match == -1) ? i : size_match;
 340            }
 341        } else if (type_match == -1) {
 342            if ((parse->drive == drv->drive) ||
 343                (magic && (parse->drive == get_fallback_drive_type(drv)))) {
 344                /* (3) type match -- nb_sectors mismatch, but matches the type
 345                 *     specified explicitly by the user, or matches the fallback
 346                 *     default type when using the drive autodetect mechanism */
 347                type_match = i;
 348            }
 349        }
 350    }
 351
 352    /* No exact match found */
 353    if (match == -1) {
 354        if (size_match != -1) {
 355            parse = &fd_formats[size_match];
 356            FLOPPY_DPRINTF("User requested floppy drive type '%s', "
 357                           "but inserted medium appears to be a "
 358                           "%"PRId64" sector '%s' type\n",
 359                           FloppyDriveType_lookup[drv->drive],
 360                           nb_sectors,
 361                           FloppyDriveType_lookup[parse->drive]);
 362        }
 363        match = type_match;
 364    }
 365
 366    /* No match of any kind found -- fd_format is misconfigured, abort. */
 367    if (match == -1) {
 368        error_setg(&error_abort, "No candidate geometries present in table "
 369                   " for floppy drive type '%s'",
 370                   FloppyDriveType_lookup[drv->drive]);
 371    }
 372
 373    parse = &(fd_formats[match]);
 374
 375 out:
 376    if (parse->max_head == 0) {
 377        drv->flags &= ~FDISK_DBL_SIDES;
 378    } else {
 379        drv->flags |= FDISK_DBL_SIDES;
 380    }
 381    drv->max_track = parse->max_track;
 382    drv->last_sect = parse->last_sect;
 383    drv->disk = parse->drive;
 384    drv->media_rate = parse->rate;
 385    return 0;
 386}
 387
 388static void pick_drive_type(FDrive *drv)
 389{
 390    if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
 391        return;
 392    }
 393
 394    if (pick_geometry(drv) == 0) {
 395        drv->drive = drv->disk;
 396    } else {
 397        drv->drive = get_fallback_drive_type(drv);
 398    }
 399
 400    g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
 401}
 402
 403/* Revalidate a disk drive after a disk change */
 404static void fd_revalidate(FDrive *drv)
 405{
 406    int rc;
 407
 408    FLOPPY_DPRINTF("revalidate\n");
 409    if (drv->blk != NULL) {
 410        drv->ro = blk_is_read_only(drv->blk);
 411        if (!blk_is_inserted(drv->blk)) {
 412            FLOPPY_DPRINTF("No disk in drive\n");
 413            drv->disk = FLOPPY_DRIVE_TYPE_NONE;
 414            fd_empty_seek_hack(drv);
 415        } else if (!drv->media_validated) {
 416            rc = pick_geometry(drv);
 417            if (rc) {
 418                FLOPPY_DPRINTF("Could not validate floppy drive media");
 419            } else {
 420                drv->media_validated = true;
 421                FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
 422                               (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
 423                               drv->max_track, drv->last_sect,
 424                               drv->ro ? "ro" : "rw");
 425            }
 426        }
 427    } else {
 428        FLOPPY_DPRINTF("No drive connected\n");
 429        drv->last_sect = 0;
 430        drv->max_track = 0;
 431        drv->flags &= ~FDISK_DBL_SIDES;
 432        drv->drive = FLOPPY_DRIVE_TYPE_NONE;
 433        drv->disk = FLOPPY_DRIVE_TYPE_NONE;
 434    }
 435}
 436
 437/********************************************************/
 438/* Intel 82078 floppy disk controller emulation          */
 439
 440static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
 441static void fdctrl_to_command_phase(FDCtrl *fdctrl);
 442static int fdctrl_transfer_handler (void *opaque, int nchan,
 443                                    int dma_pos, int dma_len);
 444static void fdctrl_raise_irq(FDCtrl *fdctrl);
 445static FDrive *get_cur_drv(FDCtrl *fdctrl);
 446
 447static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
 448static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
 449static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
 450static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
 451static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
 452static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
 453static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
 454static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
 455static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
 456static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
 457static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
 458static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
 459
 460enum {
 461    FD_DIR_WRITE   = 0,
 462    FD_DIR_READ    = 1,
 463    FD_DIR_SCANE   = 2,
 464    FD_DIR_SCANL   = 3,
 465    FD_DIR_SCANH   = 4,
 466    FD_DIR_VERIFY  = 5,
 467};
 468
 469enum {
 470    FD_STATE_MULTI  = 0x01,     /* multi track flag */
 471    FD_STATE_FORMAT = 0x02,     /* format flag */
 472};
 473
 474enum {
 475    FD_REG_SRA = 0x00,
 476    FD_REG_SRB = 0x01,
 477    FD_REG_DOR = 0x02,
 478    FD_REG_TDR = 0x03,
 479    FD_REG_MSR = 0x04,
 480    FD_REG_DSR = 0x04,
 481    FD_REG_FIFO = 0x05,
 482    FD_REG_DIR = 0x07,
 483    FD_REG_CCR = 0x07,
 484};
 485
 486enum {
 487    FD_CMD_READ_TRACK = 0x02,
 488    FD_CMD_SPECIFY = 0x03,
 489    FD_CMD_SENSE_DRIVE_STATUS = 0x04,
 490    FD_CMD_WRITE = 0x05,
 491    FD_CMD_READ = 0x06,
 492    FD_CMD_RECALIBRATE = 0x07,
 493    FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
 494    FD_CMD_WRITE_DELETED = 0x09,
 495    FD_CMD_READ_ID = 0x0a,
 496    FD_CMD_READ_DELETED = 0x0c,
 497    FD_CMD_FORMAT_TRACK = 0x0d,
 498    FD_CMD_DUMPREG = 0x0e,
 499    FD_CMD_SEEK = 0x0f,
 500    FD_CMD_VERSION = 0x10,
 501    FD_CMD_SCAN_EQUAL = 0x11,
 502    FD_CMD_PERPENDICULAR_MODE = 0x12,
 503    FD_CMD_CONFIGURE = 0x13,
 504    FD_CMD_LOCK = 0x14,
 505    FD_CMD_VERIFY = 0x16,
 506    FD_CMD_POWERDOWN_MODE = 0x17,
 507    FD_CMD_PART_ID = 0x18,
 508    FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
 509    FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
 510    FD_CMD_SAVE = 0x2e,
 511    FD_CMD_OPTION = 0x33,
 512    FD_CMD_RESTORE = 0x4e,
 513    FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
 514    FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
 515    FD_CMD_FORMAT_AND_WRITE = 0xcd,
 516    FD_CMD_RELATIVE_SEEK_IN = 0xcf,
 517};
 518
 519enum {
 520    FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
 521    FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
 522    FD_CONFIG_POLL  = 0x10, /* Poll enabled */
 523    FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
 524    FD_CONFIG_EIS   = 0x40, /* No implied seeks */
 525};
 526
 527enum {
 528    FD_SR0_DS0      = 0x01,
 529    FD_SR0_DS1      = 0x02,
 530    FD_SR0_HEAD     = 0x04,
 531    FD_SR0_EQPMT    = 0x10,
 532    FD_SR0_SEEK     = 0x20,
 533    FD_SR0_ABNTERM  = 0x40,
 534    FD_SR0_INVCMD   = 0x80,
 535    FD_SR0_RDYCHG   = 0xc0,
 536};
 537
 538enum {
 539    FD_SR1_MA       = 0x01, /* Missing address mark */
 540    FD_SR1_NW       = 0x02, /* Not writable */
 541    FD_SR1_EC       = 0x80, /* End of cylinder */
 542};
 543
 544enum {
 545    FD_SR2_SNS      = 0x04, /* Scan not satisfied */
 546    FD_SR2_SEH      = 0x08, /* Scan equal hit */
 547};
 548
 549enum {
 550    FD_SRA_DIR      = 0x01,
 551    FD_SRA_nWP      = 0x02,
 552    FD_SRA_nINDX    = 0x04,
 553    FD_SRA_HDSEL    = 0x08,
 554    FD_SRA_nTRK0    = 0x10,
 555    FD_SRA_STEP     = 0x20,
 556    FD_SRA_nDRV2    = 0x40,
 557    FD_SRA_INTPEND  = 0x80,
 558};
 559
 560enum {
 561    FD_SRB_MTR0     = 0x01,
 562    FD_SRB_MTR1     = 0x02,
 563    FD_SRB_WGATE    = 0x04,
 564    FD_SRB_RDATA    = 0x08,
 565    FD_SRB_WDATA    = 0x10,
 566    FD_SRB_DR0      = 0x20,
 567};
 568
 569enum {
 570#if MAX_FD == 4
 571    FD_DOR_SELMASK  = 0x03,
 572#else
 573    FD_DOR_SELMASK  = 0x01,
 574#endif
 575    FD_DOR_nRESET   = 0x04,
 576    FD_DOR_DMAEN    = 0x08,
 577    FD_DOR_MOTEN0   = 0x10,
 578    FD_DOR_MOTEN1   = 0x20,
 579    FD_DOR_MOTEN2   = 0x40,
 580    FD_DOR_MOTEN3   = 0x80,
 581};
 582
 583enum {
 584#if MAX_FD == 4
 585    FD_TDR_BOOTSEL  = 0x0c,
 586#else
 587    FD_TDR_BOOTSEL  = 0x04,
 588#endif
 589};
 590
 591enum {
 592    FD_DSR_DRATEMASK= 0x03,
 593    FD_DSR_PWRDOWN  = 0x40,
 594    FD_DSR_SWRESET  = 0x80,
 595};
 596
 597enum {
 598    FD_MSR_DRV0BUSY = 0x01,
 599    FD_MSR_DRV1BUSY = 0x02,
 600    FD_MSR_DRV2BUSY = 0x04,
 601    FD_MSR_DRV3BUSY = 0x08,
 602    FD_MSR_CMDBUSY  = 0x10,
 603    FD_MSR_NONDMA   = 0x20,
 604    FD_MSR_DIO      = 0x40,
 605    FD_MSR_RQM      = 0x80,
 606};
 607
 608enum {
 609    FD_DIR_DSKCHG   = 0x80,
 610};
 611
 612/*
 613 * See chapter 5.0 "Controller phases" of the spec:
 614 *
 615 * Command phase:
 616 * The host writes a command and its parameters into the FIFO. The command
 617 * phase is completed when all parameters for the command have been supplied,
 618 * and execution phase is entered.
 619 *
 620 * Execution phase:
 621 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
 622 * contains the payload now, otherwise it's unused. When all bytes of the
 623 * required data have been transferred, the state is switched to either result
 624 * phase (if the command produces status bytes) or directly back into the
 625 * command phase for the next command.
 626 *
 627 * Result phase:
 628 * The host reads out the FIFO, which contains one or more result bytes now.
 629 */
 630enum {
 631    /* Only for migration: reconstruct phase from registers like qemu 2.3 */
 632    FD_PHASE_RECONSTRUCT    = 0,
 633
 634    FD_PHASE_COMMAND        = 1,
 635    FD_PHASE_EXECUTION      = 2,
 636    FD_PHASE_RESULT         = 3,
 637};
 638
 639#define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
 640#define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
 641
 642struct FDCtrl {
 643    MemoryRegion iomem;
 644    qemu_irq irq;
 645    /* Controller state */
 646    QEMUTimer *result_timer;
 647    int dma_chann;
 648    uint8_t phase;
 649    IsaDma *dma;
 650    /* Controller's identification */
 651    uint8_t version;
 652    /* HW */
 653    uint8_t sra;
 654    uint8_t srb;
 655    uint8_t dor;
 656    uint8_t dor_vmstate; /* only used as temp during vmstate */
 657    uint8_t tdr;
 658    uint8_t dsr;
 659    uint8_t msr;
 660    uint8_t cur_drv;
 661    uint8_t status0;
 662    uint8_t status1;
 663    uint8_t status2;
 664    /* Command FIFO */
 665    uint8_t *fifo;
 666    int32_t fifo_size;
 667    uint32_t data_pos;
 668    uint32_t data_len;
 669    uint8_t data_state;
 670    uint8_t data_dir;
 671    uint8_t eot; /* last wanted sector */
 672    /* States kept only to be returned back */
 673    /* precompensation */
 674    uint8_t precomp_trk;
 675    uint8_t config;
 676    uint8_t lock;
 677    /* Power down config (also with status regB access mode */
 678    uint8_t pwrd;
 679    /* Floppy drives */
 680    uint8_t num_floppies;
 681    FDrive drives[MAX_FD];
 682    int reset_sensei;
 683    uint32_t check_media_rate;
 684    FloppyDriveType fallback; /* type=auto failure fallback */
 685    /* Timers state */
 686    uint8_t timer0;
 687    uint8_t timer1;
 688};
 689
 690static FloppyDriveType get_fallback_drive_type(FDrive *drv)
 691{
 692    return drv->fdctrl->fallback;
 693}
 694
 695#define TYPE_SYSBUS_FDC "base-sysbus-fdc"
 696#define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
 697
 698typedef struct FDCtrlSysBus {
 699    /*< private >*/
 700    SysBusDevice parent_obj;
 701    /*< public >*/
 702
 703    struct FDCtrl state;
 704} FDCtrlSysBus;
 705
 706#define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
 707
 708typedef struct FDCtrlISABus {
 709    ISADevice parent_obj;
 710
 711    uint32_t iobase;
 712    uint32_t irq;
 713    uint32_t dma;
 714    struct FDCtrl state;
 715    int32_t bootindexA;
 716    int32_t bootindexB;
 717} FDCtrlISABus;
 718
 719static uint32_t fdctrl_read (void *opaque, uint32_t reg)
 720{
 721    FDCtrl *fdctrl = opaque;
 722    uint32_t retval;
 723
 724    reg &= 7;
 725    switch (reg) {
 726    case FD_REG_SRA:
 727        retval = fdctrl_read_statusA(fdctrl);
 728        break;
 729    case FD_REG_SRB:
 730        retval = fdctrl_read_statusB(fdctrl);
 731        break;
 732    case FD_REG_DOR:
 733        retval = fdctrl_read_dor(fdctrl);
 734        break;
 735    case FD_REG_TDR:
 736        retval = fdctrl_read_tape(fdctrl);
 737        break;
 738    case FD_REG_MSR:
 739        retval = fdctrl_read_main_status(fdctrl);
 740        break;
 741    case FD_REG_FIFO:
 742        retval = fdctrl_read_data(fdctrl);
 743        break;
 744    case FD_REG_DIR:
 745        retval = fdctrl_read_dir(fdctrl);
 746        break;
 747    default:
 748        retval = (uint32_t)(-1);
 749        break;
 750    }
 751    FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
 752
 753    return retval;
 754}
 755
 756static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
 757{
 758    FDCtrl *fdctrl = opaque;
 759
 760    FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
 761
 762    reg &= 7;
 763    switch (reg) {
 764    case FD_REG_DOR:
 765        fdctrl_write_dor(fdctrl, value);
 766        break;
 767    case FD_REG_TDR:
 768        fdctrl_write_tape(fdctrl, value);
 769        break;
 770    case FD_REG_DSR:
 771        fdctrl_write_rate(fdctrl, value);
 772        break;
 773    case FD_REG_FIFO:
 774        fdctrl_write_data(fdctrl, value);
 775        break;
 776    case FD_REG_CCR:
 777        fdctrl_write_ccr(fdctrl, value);
 778        break;
 779    default:
 780        break;
 781    }
 782}
 783
 784static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
 785                                 unsigned ize)
 786{
 787    return fdctrl_read(opaque, (uint32_t)reg);
 788}
 789
 790static void fdctrl_write_mem (void *opaque, hwaddr reg,
 791                              uint64_t value, unsigned size)
 792{
 793    fdctrl_write(opaque, (uint32_t)reg, value);
 794}
 795
 796static const MemoryRegionOps fdctrl_mem_ops = {
 797    .read = fdctrl_read_mem,
 798    .write = fdctrl_write_mem,
 799    .endianness = DEVICE_NATIVE_ENDIAN,
 800};
 801
 802static const MemoryRegionOps fdctrl_mem_strict_ops = {
 803    .read = fdctrl_read_mem,
 804    .write = fdctrl_write_mem,
 805    .endianness = DEVICE_NATIVE_ENDIAN,
 806    .valid = {
 807        .min_access_size = 1,
 808        .max_access_size = 1,
 809    },
 810};
 811
 812static bool fdrive_media_changed_needed(void *opaque)
 813{
 814    FDrive *drive = opaque;
 815
 816    return (drive->blk != NULL && drive->media_changed != 1);
 817}
 818
 819static const VMStateDescription vmstate_fdrive_media_changed = {
 820    .name = "fdrive/media_changed",
 821    .version_id = 1,
 822    .minimum_version_id = 1,
 823    .needed = fdrive_media_changed_needed,
 824    .fields = (VMStateField[]) {
 825        VMSTATE_UINT8(media_changed, FDrive),
 826        VMSTATE_END_OF_LIST()
 827    }
 828};
 829
 830static bool fdrive_media_rate_needed(void *opaque)
 831{
 832    FDrive *drive = opaque;
 833
 834    return drive->fdctrl->check_media_rate;
 835}
 836
 837static const VMStateDescription vmstate_fdrive_media_rate = {
 838    .name = "fdrive/media_rate",
 839    .version_id = 1,
 840    .minimum_version_id = 1,
 841    .needed = fdrive_media_rate_needed,
 842    .fields = (VMStateField[]) {
 843        VMSTATE_UINT8(media_rate, FDrive),
 844        VMSTATE_END_OF_LIST()
 845    }
 846};
 847
 848static bool fdrive_perpendicular_needed(void *opaque)
 849{
 850    FDrive *drive = opaque;
 851
 852    return drive->perpendicular != 0;
 853}
 854
 855static const VMStateDescription vmstate_fdrive_perpendicular = {
 856    .name = "fdrive/perpendicular",
 857    .version_id = 1,
 858    .minimum_version_id = 1,
 859    .needed = fdrive_perpendicular_needed,
 860    .fields = (VMStateField[]) {
 861        VMSTATE_UINT8(perpendicular, FDrive),
 862        VMSTATE_END_OF_LIST()
 863    }
 864};
 865
 866static int fdrive_post_load(void *opaque, int version_id)
 867{
 868    fd_revalidate(opaque);
 869    return 0;
 870}
 871
 872static const VMStateDescription vmstate_fdrive = {
 873    .name = "fdrive",
 874    .version_id = 1,
 875    .minimum_version_id = 1,
 876    .post_load = fdrive_post_load,
 877    .fields = (VMStateField[]) {
 878        VMSTATE_UINT8(head, FDrive),
 879        VMSTATE_UINT8(track, FDrive),
 880        VMSTATE_UINT8(sect, FDrive),
 881        VMSTATE_END_OF_LIST()
 882    },
 883    .subsections = (const VMStateDescription*[]) {
 884        &vmstate_fdrive_media_changed,
 885        &vmstate_fdrive_media_rate,
 886        &vmstate_fdrive_perpendicular,
 887        NULL
 888    }
 889};
 890
 891/*
 892 * Reconstructs the phase from register values according to the logic that was
 893 * implemented in qemu 2.3. This is the default value that is used if the phase
 894 * subsection is not present on migration.
 895 *
 896 * Don't change this function to reflect newer qemu versions, it is part of
 897 * the migration ABI.
 898 */
 899static int reconstruct_phase(FDCtrl *fdctrl)
 900{
 901    if (fdctrl->msr & FD_MSR_NONDMA) {
 902        return FD_PHASE_EXECUTION;
 903    } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
 904        /* qemu 2.3 disabled RQM only during DMA transfers */
 905        return FD_PHASE_EXECUTION;
 906    } else if (fdctrl->msr & FD_MSR_DIO) {
 907        return FD_PHASE_RESULT;
 908    } else {
 909        return FD_PHASE_COMMAND;
 910    }
 911}
 912
 913static void fdc_pre_save(void *opaque)
 914{
 915    FDCtrl *s = opaque;
 916
 917    s->dor_vmstate = s->dor | GET_CUR_DRV(s);
 918}
 919
 920static int fdc_pre_load(void *opaque)
 921{
 922    FDCtrl *s = opaque;
 923    s->phase = FD_PHASE_RECONSTRUCT;
 924    return 0;
 925}
 926
 927static int fdc_post_load(void *opaque, int version_id)
 928{
 929    FDCtrl *s = opaque;
 930
 931    SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
 932    s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
 933
 934    if (s->phase == FD_PHASE_RECONSTRUCT) {
 935        s->phase = reconstruct_phase(s);
 936    }
 937
 938    return 0;
 939}
 940
 941static bool fdc_reset_sensei_needed(void *opaque)
 942{
 943    FDCtrl *s = opaque;
 944
 945    return s->reset_sensei != 0;
 946}
 947
 948static const VMStateDescription vmstate_fdc_reset_sensei = {
 949    .name = "fdc/reset_sensei",
 950    .version_id = 1,
 951    .minimum_version_id = 1,
 952    .needed = fdc_reset_sensei_needed,
 953    .fields = (VMStateField[]) {
 954        VMSTATE_INT32(reset_sensei, FDCtrl),
 955        VMSTATE_END_OF_LIST()
 956    }
 957};
 958
 959static bool fdc_result_timer_needed(void *opaque)
 960{
 961    FDCtrl *s = opaque;
 962
 963    return timer_pending(s->result_timer);
 964}
 965
 966static const VMStateDescription vmstate_fdc_result_timer = {
 967    .name = "fdc/result_timer",
 968    .version_id = 1,
 969    .minimum_version_id = 1,
 970    .needed = fdc_result_timer_needed,
 971    .fields = (VMStateField[]) {
 972        VMSTATE_TIMER_PTR(result_timer, FDCtrl),
 973        VMSTATE_END_OF_LIST()
 974    }
 975};
 976
 977static bool fdc_phase_needed(void *opaque)
 978{
 979    FDCtrl *fdctrl = opaque;
 980
 981    return reconstruct_phase(fdctrl) != fdctrl->phase;
 982}
 983
 984static const VMStateDescription vmstate_fdc_phase = {
 985    .name = "fdc/phase",
 986    .version_id = 1,
 987    .minimum_version_id = 1,
 988    .needed = fdc_phase_needed,
 989    .fields = (VMStateField[]) {
 990        VMSTATE_UINT8(phase, FDCtrl),
 991        VMSTATE_END_OF_LIST()
 992    }
 993};
 994
 995static const VMStateDescription vmstate_fdc = {
 996    .name = "fdc",
 997    .version_id = 2,
 998    .minimum_version_id = 2,
 999    .pre_save = fdc_pre_save,
1000    .pre_load = fdc_pre_load,
1001    .post_load = fdc_post_load,
1002    .fields = (VMStateField[]) {
1003        /* Controller State */
1004        VMSTATE_UINT8(sra, FDCtrl),
1005        VMSTATE_UINT8(srb, FDCtrl),
1006        VMSTATE_UINT8(dor_vmstate, FDCtrl),
1007        VMSTATE_UINT8(tdr, FDCtrl),
1008        VMSTATE_UINT8(dsr, FDCtrl),
1009        VMSTATE_UINT8(msr, FDCtrl),
1010        VMSTATE_UINT8(status0, FDCtrl),
1011        VMSTATE_UINT8(status1, FDCtrl),
1012        VMSTATE_UINT8(status2, FDCtrl),
1013        /* Command FIFO */
1014        VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1015                             uint8_t),
1016        VMSTATE_UINT32(data_pos, FDCtrl),
1017        VMSTATE_UINT32(data_len, FDCtrl),
1018        VMSTATE_UINT8(data_state, FDCtrl),
1019        VMSTATE_UINT8(data_dir, FDCtrl),
1020        VMSTATE_UINT8(eot, FDCtrl),
1021        /* States kept only to be returned back */
1022        VMSTATE_UINT8(timer0, FDCtrl),
1023        VMSTATE_UINT8(timer1, FDCtrl),
1024        VMSTATE_UINT8(precomp_trk, FDCtrl),
1025        VMSTATE_UINT8(config, FDCtrl),
1026        VMSTATE_UINT8(lock, FDCtrl),
1027        VMSTATE_UINT8(pwrd, FDCtrl),
1028        VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl),
1029        VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1030                             vmstate_fdrive, FDrive),
1031        VMSTATE_END_OF_LIST()
1032    },
1033    .subsections = (const VMStateDescription*[]) {
1034        &vmstate_fdc_reset_sensei,
1035        &vmstate_fdc_result_timer,
1036        &vmstate_fdc_phase,
1037        NULL
1038    }
1039};
1040
1041static void fdctrl_external_reset_sysbus(DeviceState *d)
1042{
1043    FDCtrlSysBus *sys = SYSBUS_FDC(d);
1044    FDCtrl *s = &sys->state;
1045
1046    fdctrl_reset(s, 0);
1047}
1048
1049static void fdctrl_external_reset_isa(DeviceState *d)
1050{
1051    FDCtrlISABus *isa = ISA_FDC(d);
1052    FDCtrl *s = &isa->state;
1053
1054    fdctrl_reset(s, 0);
1055}
1056
1057static void fdctrl_handle_tc(void *opaque, int irq, int level)
1058{
1059    //FDCtrl *s = opaque;
1060
1061    if (level) {
1062        // XXX
1063        FLOPPY_DPRINTF("TC pulsed\n");
1064    }
1065}
1066
1067/* Change IRQ state */
1068static void fdctrl_reset_irq(FDCtrl *fdctrl)
1069{
1070    fdctrl->status0 = 0;
1071    if (!(fdctrl->sra & FD_SRA_INTPEND))
1072        return;
1073    FLOPPY_DPRINTF("Reset interrupt\n");
1074    qemu_set_irq(fdctrl->irq, 0);
1075    fdctrl->sra &= ~FD_SRA_INTPEND;
1076}
1077
1078static void fdctrl_raise_irq(FDCtrl *fdctrl)
1079{
1080    if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1081        qemu_set_irq(fdctrl->irq, 1);
1082        fdctrl->sra |= FD_SRA_INTPEND;
1083    }
1084
1085    fdctrl->reset_sensei = 0;
1086    FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1087}
1088
1089/* Reset controller */
1090static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1091{
1092    int i;
1093
1094    FLOPPY_DPRINTF("reset controller\n");
1095    fdctrl_reset_irq(fdctrl);
1096    /* Initialise controller */
1097    fdctrl->sra = 0;
1098    fdctrl->srb = 0xc0;
1099    if (!fdctrl->drives[1].blk) {
1100        fdctrl->sra |= FD_SRA_nDRV2;
1101    }
1102    fdctrl->cur_drv = 0;
1103    fdctrl->dor = FD_DOR_nRESET;
1104    fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1105    fdctrl->msr = FD_MSR_RQM;
1106    fdctrl->reset_sensei = 0;
1107    timer_del(fdctrl->result_timer);
1108    /* FIFO state */
1109    fdctrl->data_pos = 0;
1110    fdctrl->data_len = 0;
1111    fdctrl->data_state = 0;
1112    fdctrl->data_dir = FD_DIR_WRITE;
1113    for (i = 0; i < MAX_FD; i++)
1114        fd_recalibrate(&fdctrl->drives[i]);
1115    fdctrl_to_command_phase(fdctrl);
1116    if (do_irq) {
1117        fdctrl->status0 |= FD_SR0_RDYCHG;
1118        fdctrl_raise_irq(fdctrl);
1119        fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1120    }
1121}
1122
1123static inline FDrive *drv0(FDCtrl *fdctrl)
1124{
1125    return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1126}
1127
1128static inline FDrive *drv1(FDCtrl *fdctrl)
1129{
1130    if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1131        return &fdctrl->drives[1];
1132    else
1133        return &fdctrl->drives[0];
1134}
1135
1136#if MAX_FD == 4
1137static inline FDrive *drv2(FDCtrl *fdctrl)
1138{
1139    if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1140        return &fdctrl->drives[2];
1141    else
1142        return &fdctrl->drives[1];
1143}
1144
1145static inline FDrive *drv3(FDCtrl *fdctrl)
1146{
1147    if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1148        return &fdctrl->drives[3];
1149    else
1150        return &fdctrl->drives[2];
1151}
1152#endif
1153
1154static FDrive *get_cur_drv(FDCtrl *fdctrl)
1155{
1156    switch (fdctrl->cur_drv) {
1157        case 0: return drv0(fdctrl);
1158        case 1: return drv1(fdctrl);
1159#if MAX_FD == 4
1160        case 2: return drv2(fdctrl);
1161        case 3: return drv3(fdctrl);
1162#endif
1163        default: return NULL;
1164    }
1165}
1166
1167/* Status A register : 0x00 (read-only) */
1168static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1169{
1170    uint32_t retval = fdctrl->sra;
1171
1172    FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1173
1174    return retval;
1175}
1176
1177/* Status B register : 0x01 (read-only) */
1178static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1179{
1180    uint32_t retval = fdctrl->srb;
1181
1182    FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1183
1184    return retval;
1185}
1186
1187/* Digital output register : 0x02 */
1188static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1189{
1190    uint32_t retval = fdctrl->dor;
1191
1192    /* Selected drive */
1193    retval |= fdctrl->cur_drv;
1194    FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1195
1196    return retval;
1197}
1198
1199static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1200{
1201    FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1202
1203    /* Motors */
1204    if (value & FD_DOR_MOTEN0)
1205        fdctrl->srb |= FD_SRB_MTR0;
1206    else
1207        fdctrl->srb &= ~FD_SRB_MTR0;
1208    if (value & FD_DOR_MOTEN1)
1209        fdctrl->srb |= FD_SRB_MTR1;
1210    else
1211        fdctrl->srb &= ~FD_SRB_MTR1;
1212
1213    /* Drive */
1214    if (value & 1)
1215        fdctrl->srb |= FD_SRB_DR0;
1216    else
1217        fdctrl->srb &= ~FD_SRB_DR0;
1218
1219    /* Reset */
1220    if (!(value & FD_DOR_nRESET)) {
1221        if (fdctrl->dor & FD_DOR_nRESET) {
1222            FLOPPY_DPRINTF("controller enter RESET state\n");
1223        }
1224    } else {
1225        if (!(fdctrl->dor & FD_DOR_nRESET)) {
1226            FLOPPY_DPRINTF("controller out of RESET state\n");
1227            fdctrl_reset(fdctrl, 1);
1228            fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1229        }
1230    }
1231    /* Selected drive */
1232    fdctrl->cur_drv = value & FD_DOR_SELMASK;
1233
1234    fdctrl->dor = value;
1235}
1236
1237/* Tape drive register : 0x03 */
1238static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1239{
1240    uint32_t retval = fdctrl->tdr;
1241
1242    FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1243
1244    return retval;
1245}
1246
1247static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1248{
1249    /* Reset mode */
1250    if (!(fdctrl->dor & FD_DOR_nRESET)) {
1251        FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1252        return;
1253    }
1254    FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1255    /* Disk boot selection indicator */
1256    fdctrl->tdr = value & FD_TDR_BOOTSEL;
1257    /* Tape indicators: never allow */
1258}
1259
1260/* Main status register : 0x04 (read) */
1261static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1262{
1263    uint32_t retval = fdctrl->msr;
1264
1265    fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1266    fdctrl->dor |= FD_DOR_nRESET;
1267
1268    FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1269
1270    return retval;
1271}
1272
1273/* Data select rate register : 0x04 (write) */
1274static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1275{
1276    /* Reset mode */
1277    if (!(fdctrl->dor & FD_DOR_nRESET)) {
1278        FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1279        return;
1280    }
1281    FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1282    /* Reset: autoclear */
1283    if (value & FD_DSR_SWRESET) {
1284        fdctrl->dor &= ~FD_DOR_nRESET;
1285        fdctrl_reset(fdctrl, 1);
1286        fdctrl->dor |= FD_DOR_nRESET;
1287    }
1288    if (value & FD_DSR_PWRDOWN) {
1289        fdctrl_reset(fdctrl, 1);
1290    }
1291    fdctrl->dsr = value;
1292}
1293
1294/* Configuration control register: 0x07 (write) */
1295static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1296{
1297    /* Reset mode */
1298    if (!(fdctrl->dor & FD_DOR_nRESET)) {
1299        FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1300        return;
1301    }
1302    FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1303
1304    /* Only the rate selection bits used in AT mode, and we
1305     * store those in the DSR.
1306     */
1307    fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1308                  (value & FD_DSR_DRATEMASK);
1309}
1310
1311static int fdctrl_media_changed(FDrive *drv)
1312{
1313    return drv->media_changed;
1314}
1315
1316/* Digital input register : 0x07 (read-only) */
1317static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1318{
1319    uint32_t retval = 0;
1320
1321    if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1322        retval |= FD_DIR_DSKCHG;
1323    }
1324    if (retval != 0) {
1325        FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1326    }
1327
1328    return retval;
1329}
1330
1331/* Clear the FIFO and update the state for receiving the next command */
1332static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1333{
1334    fdctrl->phase = FD_PHASE_COMMAND;
1335    fdctrl->data_dir = FD_DIR_WRITE;
1336    fdctrl->data_pos = 0;
1337    fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1338    fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1339    fdctrl->msr |= FD_MSR_RQM;
1340}
1341
1342/* Update the state to allow the guest to read out the command status.
1343 * @fifo_len is the number of result bytes to be read out. */
1344static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1345{
1346    fdctrl->phase = FD_PHASE_RESULT;
1347    fdctrl->data_dir = FD_DIR_READ;
1348    fdctrl->data_len = fifo_len;
1349    fdctrl->data_pos = 0;
1350    fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1351}
1352
1353/* Set an error: unimplemented/unknown command */
1354static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1355{
1356    qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1357                  fdctrl->fifo[0]);
1358    fdctrl->fifo[0] = FD_SR0_INVCMD;
1359    fdctrl_to_result_phase(fdctrl, 1);
1360}
1361
1362/* Seek to next sector
1363 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1364 * otherwise returns 1
1365 */
1366static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1367{
1368    FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1369                   cur_drv->head, cur_drv->track, cur_drv->sect,
1370                   fd_sector(cur_drv));
1371    /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1372       error in fact */
1373    uint8_t new_head = cur_drv->head;
1374    uint8_t new_track = cur_drv->track;
1375    uint8_t new_sect = cur_drv->sect;
1376
1377    int ret = 1;
1378
1379    if (new_sect >= cur_drv->last_sect ||
1380        new_sect == fdctrl->eot) {
1381        new_sect = 1;
1382        if (FD_MULTI_TRACK(fdctrl->data_state)) {
1383            if (new_head == 0 &&
1384                (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1385                new_head = 1;
1386            } else {
1387                new_head = 0;
1388                new_track++;
1389                fdctrl->status0 |= FD_SR0_SEEK;
1390                if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1391                    ret = 0;
1392                }
1393            }
1394        } else {
1395            fdctrl->status0 |= FD_SR0_SEEK;
1396            new_track++;
1397            ret = 0;
1398        }
1399        if (ret == 1) {
1400            FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1401                    new_head, new_track, new_sect, fd_sector(cur_drv));
1402        }
1403    } else {
1404        new_sect++;
1405    }
1406    fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1407    return ret;
1408}
1409
1410/* Callback for transfer end (stop or abort) */
1411static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1412                                 uint8_t status1, uint8_t status2)
1413{
1414    FDrive *cur_drv;
1415    cur_drv = get_cur_drv(fdctrl);
1416
1417    fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1418    fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1419    if (cur_drv->head) {
1420        fdctrl->status0 |= FD_SR0_HEAD;
1421    }
1422    fdctrl->status0 |= status0;
1423
1424    FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1425                   status0, status1, status2, fdctrl->status0);
1426    fdctrl->fifo[0] = fdctrl->status0;
1427    fdctrl->fifo[1] = status1;
1428    fdctrl->fifo[2] = status2;
1429    fdctrl->fifo[3] = cur_drv->track;
1430    fdctrl->fifo[4] = cur_drv->head;
1431    fdctrl->fifo[5] = cur_drv->sect;
1432    fdctrl->fifo[6] = FD_SECTOR_SC;
1433    fdctrl->data_dir = FD_DIR_READ;
1434    if (!(fdctrl->msr & FD_MSR_NONDMA)) {
1435        IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1436        k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1437    }
1438    fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1439    fdctrl->msr &= ~FD_MSR_NONDMA;
1440
1441    fdctrl_to_result_phase(fdctrl, 7);
1442    fdctrl_raise_irq(fdctrl);
1443}
1444
1445/* Prepare a data transfer (either DMA or FIFO) */
1446static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1447{
1448    FDrive *cur_drv;
1449    uint8_t kh, kt, ks;
1450
1451    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1452    cur_drv = get_cur_drv(fdctrl);
1453    kt = fdctrl->fifo[2];
1454    kh = fdctrl->fifo[3];
1455    ks = fdctrl->fifo[4];
1456    FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1457                   GET_CUR_DRV(fdctrl), kh, kt, ks,
1458                   fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1459                                  NUM_SIDES(cur_drv)));
1460    switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1461    case 2:
1462        /* sect too big */
1463        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1464        fdctrl->fifo[3] = kt;
1465        fdctrl->fifo[4] = kh;
1466        fdctrl->fifo[5] = ks;
1467        return;
1468    case 3:
1469        /* track too big */
1470        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1471        fdctrl->fifo[3] = kt;
1472        fdctrl->fifo[4] = kh;
1473        fdctrl->fifo[5] = ks;
1474        return;
1475    case 4:
1476        /* No seek enabled */
1477        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1478        fdctrl->fifo[3] = kt;
1479        fdctrl->fifo[4] = kh;
1480        fdctrl->fifo[5] = ks;
1481        return;
1482    case 1:
1483        fdctrl->status0 |= FD_SR0_SEEK;
1484        break;
1485    default:
1486        break;
1487    }
1488
1489    /* Check the data rate. If the programmed data rate does not match
1490     * the currently inserted medium, the operation has to fail. */
1491    if (fdctrl->check_media_rate &&
1492        (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1493        FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1494                       fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1495        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1496        fdctrl->fifo[3] = kt;
1497        fdctrl->fifo[4] = kh;
1498        fdctrl->fifo[5] = ks;
1499        return;
1500    }
1501
1502    /* Set the FIFO state */
1503    fdctrl->data_dir = direction;
1504    fdctrl->data_pos = 0;
1505    assert(fdctrl->msr & FD_MSR_CMDBUSY);
1506    if (fdctrl->fifo[0] & 0x80)
1507        fdctrl->data_state |= FD_STATE_MULTI;
1508    else
1509        fdctrl->data_state &= ~FD_STATE_MULTI;
1510    if (fdctrl->fifo[5] == 0) {
1511        fdctrl->data_len = fdctrl->fifo[8];
1512    } else {
1513        int tmp;
1514        fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1515        tmp = (fdctrl->fifo[6] - ks + 1);
1516        if (fdctrl->fifo[0] & 0x80)
1517            tmp += fdctrl->fifo[6];
1518        fdctrl->data_len *= tmp;
1519    }
1520    fdctrl->eot = fdctrl->fifo[6];
1521    if (fdctrl->dor & FD_DOR_DMAEN) {
1522        IsaDmaTransferMode dma_mode;
1523        IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1524        bool dma_mode_ok;
1525        /* DMA transfer are enabled. Check if DMA channel is well programmed */
1526        dma_mode = k->get_transfer_mode(fdctrl->dma, fdctrl->dma_chann);
1527        FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1528                       dma_mode, direction,
1529                       (128 << fdctrl->fifo[5]) *
1530                       (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1531        switch (direction) {
1532        case FD_DIR_SCANE:
1533        case FD_DIR_SCANL:
1534        case FD_DIR_SCANH:
1535            dma_mode_ok = (dma_mode == ISADMA_TRANSFER_VERIFY);
1536            break;
1537        case FD_DIR_WRITE:
1538            dma_mode_ok = (dma_mode == ISADMA_TRANSFER_WRITE);
1539            break;
1540        case FD_DIR_READ:
1541            dma_mode_ok = (dma_mode == ISADMA_TRANSFER_READ);
1542            break;
1543        case FD_DIR_VERIFY:
1544            dma_mode_ok = true;
1545            break;
1546        default:
1547            dma_mode_ok = false;
1548            break;
1549        }
1550        if (dma_mode_ok) {
1551            /* No access is allowed until DMA transfer has completed */
1552            fdctrl->msr &= ~FD_MSR_RQM;
1553            if (direction != FD_DIR_VERIFY) {
1554                /* Now, we just have to wait for the DMA controller to
1555                 * recall us...
1556                 */
1557                k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1558                k->schedule(fdctrl->dma);
1559            } else {
1560                /* Start transfer */
1561                fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1562                                        fdctrl->data_len);
1563            }
1564            return;
1565        } else {
1566            FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode,
1567                           direction);
1568        }
1569    }
1570    FLOPPY_DPRINTF("start non-DMA transfer\n");
1571    fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1572    if (direction != FD_DIR_WRITE)
1573        fdctrl->msr |= FD_MSR_DIO;
1574    /* IO based transfer: calculate len */
1575    fdctrl_raise_irq(fdctrl);
1576}
1577
1578/* Prepare a transfer of deleted data */
1579static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1580{
1581    qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1582
1583    /* We don't handle deleted data,
1584     * so we don't return *ANYTHING*
1585     */
1586    fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1587}
1588
1589/* handlers for DMA transfers */
1590static int fdctrl_transfer_handler (void *opaque, int nchan,
1591                                    int dma_pos, int dma_len)
1592{
1593    FDCtrl *fdctrl;
1594    FDrive *cur_drv;
1595    int len, start_pos, rel_pos;
1596    uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1597    IsaDmaClass *k;
1598
1599    fdctrl = opaque;
1600    if (fdctrl->msr & FD_MSR_RQM) {
1601        FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1602        return 0;
1603    }
1604    k = ISADMA_GET_CLASS(fdctrl->dma);
1605    cur_drv = get_cur_drv(fdctrl);
1606    if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1607        fdctrl->data_dir == FD_DIR_SCANH)
1608        status2 = FD_SR2_SNS;
1609    if (dma_len > fdctrl->data_len)
1610        dma_len = fdctrl->data_len;
1611    if (cur_drv->blk == NULL) {
1612        if (fdctrl->data_dir == FD_DIR_WRITE)
1613            fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1614        else
1615            fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1616        len = 0;
1617        goto transfer_error;
1618    }
1619    rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1620    for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1621        len = dma_len - fdctrl->data_pos;
1622        if (len + rel_pos > FD_SECTOR_LEN)
1623            len = FD_SECTOR_LEN - rel_pos;
1624        FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1625                       "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1626                       fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1627                       cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1628                       fd_sector(cur_drv) * FD_SECTOR_LEN);
1629        if (fdctrl->data_dir != FD_DIR_WRITE ||
1630            len < FD_SECTOR_LEN || rel_pos != 0) {
1631            /* READ & SCAN commands and realign to a sector for WRITE */
1632            if (blk_read(cur_drv->blk, fd_sector(cur_drv),
1633                         fdctrl->fifo, 1) < 0) {
1634                FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1635                               fd_sector(cur_drv));
1636                /* Sure, image size is too small... */
1637                memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1638            }
1639        }
1640        switch (fdctrl->data_dir) {
1641        case FD_DIR_READ:
1642            /* READ commands */
1643            k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1644                            fdctrl->data_pos, len);
1645            break;
1646        case FD_DIR_WRITE:
1647            /* WRITE commands */
1648            if (cur_drv->ro) {
1649                /* Handle readonly medium early, no need to do DMA, touch the
1650                 * LED or attempt any writes. A real floppy doesn't attempt
1651                 * to write to readonly media either. */
1652                fdctrl_stop_transfer(fdctrl,
1653                                     FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1654                                     0x00);
1655                goto transfer_error;
1656            }
1657
1658            k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1659                           fdctrl->data_pos, len);
1660            if (blk_write(cur_drv->blk, fd_sector(cur_drv),
1661                          fdctrl->fifo, 1) < 0) {
1662                FLOPPY_DPRINTF("error writing sector %d\n",
1663                               fd_sector(cur_drv));
1664                fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1665                goto transfer_error;
1666            }
1667            break;
1668        case FD_DIR_VERIFY:
1669            /* VERIFY commands */
1670            break;
1671        default:
1672            /* SCAN commands */
1673            {
1674                uint8_t tmpbuf[FD_SECTOR_LEN];
1675                int ret;
1676                k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1677                               len);
1678                ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1679                if (ret == 0) {
1680                    status2 = FD_SR2_SEH;
1681                    goto end_transfer;
1682                }
1683                if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1684                    (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1685                    status2 = 0x00;
1686                    goto end_transfer;
1687                }
1688            }
1689            break;
1690        }
1691        fdctrl->data_pos += len;
1692        rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1693        if (rel_pos == 0) {
1694            /* Seek to next sector */
1695            if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1696                break;
1697        }
1698    }
1699 end_transfer:
1700    len = fdctrl->data_pos - start_pos;
1701    FLOPPY_DPRINTF("end transfer %d %d %d\n",
1702                   fdctrl->data_pos, len, fdctrl->data_len);
1703    if (fdctrl->data_dir == FD_DIR_SCANE ||
1704        fdctrl->data_dir == FD_DIR_SCANL ||
1705        fdctrl->data_dir == FD_DIR_SCANH)
1706        status2 = FD_SR2_SEH;
1707    fdctrl->data_len -= len;
1708    fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1709 transfer_error:
1710
1711    return len;
1712}
1713
1714/* Data register : 0x05 */
1715static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1716{
1717    FDrive *cur_drv;
1718    uint32_t retval = 0;
1719    uint32_t pos;
1720
1721    cur_drv = get_cur_drv(fdctrl);
1722    fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1723    if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1724        FLOPPY_DPRINTF("error: controller not ready for reading\n");
1725        return 0;
1726    }
1727
1728    /* If data_len spans multiple sectors, the current position in the FIFO
1729     * wraps around while fdctrl->data_pos is the real position in the whole
1730     * request. */
1731    pos = fdctrl->data_pos;
1732    pos %= FD_SECTOR_LEN;
1733
1734    switch (fdctrl->phase) {
1735    case FD_PHASE_EXECUTION:
1736        assert(fdctrl->msr & FD_MSR_NONDMA);
1737        if (pos == 0) {
1738            if (fdctrl->data_pos != 0)
1739                if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1740                    FLOPPY_DPRINTF("error seeking to next sector %d\n",
1741                                   fd_sector(cur_drv));
1742                    return 0;
1743                }
1744            if (blk_read(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1)
1745                < 0) {
1746                FLOPPY_DPRINTF("error getting sector %d\n",
1747                               fd_sector(cur_drv));
1748                /* Sure, image size is too small... */
1749                memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1750            }
1751        }
1752
1753        if (++fdctrl->data_pos == fdctrl->data_len) {
1754            fdctrl->msr &= ~FD_MSR_RQM;
1755            fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1756        }
1757        break;
1758
1759    case FD_PHASE_RESULT:
1760        assert(!(fdctrl->msr & FD_MSR_NONDMA));
1761        if (++fdctrl->data_pos == fdctrl->data_len) {
1762            fdctrl->msr &= ~FD_MSR_RQM;
1763            fdctrl_to_command_phase(fdctrl);
1764            fdctrl_reset_irq(fdctrl);
1765        }
1766        break;
1767
1768    case FD_PHASE_COMMAND:
1769    default:
1770        abort();
1771    }
1772
1773    retval = fdctrl->fifo[pos];
1774    FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1775
1776    return retval;
1777}
1778
1779static void fdctrl_format_sector(FDCtrl *fdctrl)
1780{
1781    FDrive *cur_drv;
1782    uint8_t kh, kt, ks;
1783
1784    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1785    cur_drv = get_cur_drv(fdctrl);
1786    kt = fdctrl->fifo[6];
1787    kh = fdctrl->fifo[7];
1788    ks = fdctrl->fifo[8];
1789    FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1790                   GET_CUR_DRV(fdctrl), kh, kt, ks,
1791                   fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1792                                  NUM_SIDES(cur_drv)));
1793    switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1794    case 2:
1795        /* sect too big */
1796        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1797        fdctrl->fifo[3] = kt;
1798        fdctrl->fifo[4] = kh;
1799        fdctrl->fifo[5] = ks;
1800        return;
1801    case 3:
1802        /* track too big */
1803        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1804        fdctrl->fifo[3] = kt;
1805        fdctrl->fifo[4] = kh;
1806        fdctrl->fifo[5] = ks;
1807        return;
1808    case 4:
1809        /* No seek enabled */
1810        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1811        fdctrl->fifo[3] = kt;
1812        fdctrl->fifo[4] = kh;
1813        fdctrl->fifo[5] = ks;
1814        return;
1815    case 1:
1816        fdctrl->status0 |= FD_SR0_SEEK;
1817        break;
1818    default:
1819        break;
1820    }
1821    memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1822    if (cur_drv->blk == NULL ||
1823        blk_write(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
1824        FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1825        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1826    } else {
1827        if (cur_drv->sect == cur_drv->last_sect) {
1828            fdctrl->data_state &= ~FD_STATE_FORMAT;
1829            /* Last sector done */
1830            fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1831        } else {
1832            /* More to do */
1833            fdctrl->data_pos = 0;
1834            fdctrl->data_len = 4;
1835        }
1836    }
1837}
1838
1839static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1840{
1841    fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1842    fdctrl->fifo[0] = fdctrl->lock << 4;
1843    fdctrl_to_result_phase(fdctrl, 1);
1844}
1845
1846static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1847{
1848    FDrive *cur_drv = get_cur_drv(fdctrl);
1849
1850    /* Drives position */
1851    fdctrl->fifo[0] = drv0(fdctrl)->track;
1852    fdctrl->fifo[1] = drv1(fdctrl)->track;
1853#if MAX_FD == 4
1854    fdctrl->fifo[2] = drv2(fdctrl)->track;
1855    fdctrl->fifo[3] = drv3(fdctrl)->track;
1856#else
1857    fdctrl->fifo[2] = 0;
1858    fdctrl->fifo[3] = 0;
1859#endif
1860    /* timers */
1861    fdctrl->fifo[4] = fdctrl->timer0;
1862    fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1863    fdctrl->fifo[6] = cur_drv->last_sect;
1864    fdctrl->fifo[7] = (fdctrl->lock << 7) |
1865        (cur_drv->perpendicular << 2);
1866    fdctrl->fifo[8] = fdctrl->config;
1867    fdctrl->fifo[9] = fdctrl->precomp_trk;
1868    fdctrl_to_result_phase(fdctrl, 10);
1869}
1870
1871static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1872{
1873    /* Controller's version */
1874    fdctrl->fifo[0] = fdctrl->version;
1875    fdctrl_to_result_phase(fdctrl, 1);
1876}
1877
1878static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1879{
1880    fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1881    fdctrl_to_result_phase(fdctrl, 1);
1882}
1883
1884static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1885{
1886    FDrive *cur_drv = get_cur_drv(fdctrl);
1887
1888    /* Drives position */
1889    drv0(fdctrl)->track = fdctrl->fifo[3];
1890    drv1(fdctrl)->track = fdctrl->fifo[4];
1891#if MAX_FD == 4
1892    drv2(fdctrl)->track = fdctrl->fifo[5];
1893    drv3(fdctrl)->track = fdctrl->fifo[6];
1894#endif
1895    /* timers */
1896    fdctrl->timer0 = fdctrl->fifo[7];
1897    fdctrl->timer1 = fdctrl->fifo[8];
1898    cur_drv->last_sect = fdctrl->fifo[9];
1899    fdctrl->lock = fdctrl->fifo[10] >> 7;
1900    cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1901    fdctrl->config = fdctrl->fifo[11];
1902    fdctrl->precomp_trk = fdctrl->fifo[12];
1903    fdctrl->pwrd = fdctrl->fifo[13];
1904    fdctrl_to_command_phase(fdctrl);
1905}
1906
1907static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1908{
1909    FDrive *cur_drv = get_cur_drv(fdctrl);
1910
1911    fdctrl->fifo[0] = 0;
1912    fdctrl->fifo[1] = 0;
1913    /* Drives position */
1914    fdctrl->fifo[2] = drv0(fdctrl)->track;
1915    fdctrl->fifo[3] = drv1(fdctrl)->track;
1916#if MAX_FD == 4
1917    fdctrl->fifo[4] = drv2(fdctrl)->track;
1918    fdctrl->fifo[5] = drv3(fdctrl)->track;
1919#else
1920    fdctrl->fifo[4] = 0;
1921    fdctrl->fifo[5] = 0;
1922#endif
1923    /* timers */
1924    fdctrl->fifo[6] = fdctrl->timer0;
1925    fdctrl->fifo[7] = fdctrl->timer1;
1926    fdctrl->fifo[8] = cur_drv->last_sect;
1927    fdctrl->fifo[9] = (fdctrl->lock << 7) |
1928        (cur_drv->perpendicular << 2);
1929    fdctrl->fifo[10] = fdctrl->config;
1930    fdctrl->fifo[11] = fdctrl->precomp_trk;
1931    fdctrl->fifo[12] = fdctrl->pwrd;
1932    fdctrl->fifo[13] = 0;
1933    fdctrl->fifo[14] = 0;
1934    fdctrl_to_result_phase(fdctrl, 15);
1935}
1936
1937static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1938{
1939    FDrive *cur_drv = get_cur_drv(fdctrl);
1940
1941    cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1942    timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1943             (NANOSECONDS_PER_SECOND / 50));
1944}
1945
1946static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1947{
1948    FDrive *cur_drv;
1949
1950    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1951    cur_drv = get_cur_drv(fdctrl);
1952    fdctrl->data_state |= FD_STATE_FORMAT;
1953    if (fdctrl->fifo[0] & 0x80)
1954        fdctrl->data_state |= FD_STATE_MULTI;
1955    else
1956        fdctrl->data_state &= ~FD_STATE_MULTI;
1957    cur_drv->bps =
1958        fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1959#if 0
1960    cur_drv->last_sect =
1961        cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1962        fdctrl->fifo[3] / 2;
1963#else
1964    cur_drv->last_sect = fdctrl->fifo[3];
1965#endif
1966    /* TODO: implement format using DMA expected by the Bochs BIOS
1967     * and Linux fdformat (read 3 bytes per sector via DMA and fill
1968     * the sector with the specified fill byte
1969     */
1970    fdctrl->data_state &= ~FD_STATE_FORMAT;
1971    fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1972}
1973
1974static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
1975{
1976    fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
1977    fdctrl->timer1 = fdctrl->fifo[2] >> 1;
1978    if (fdctrl->fifo[2] & 1)
1979        fdctrl->dor &= ~FD_DOR_DMAEN;
1980    else
1981        fdctrl->dor |= FD_DOR_DMAEN;
1982    /* No result back */
1983    fdctrl_to_command_phase(fdctrl);
1984}
1985
1986static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
1987{
1988    FDrive *cur_drv;
1989
1990    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1991    cur_drv = get_cur_drv(fdctrl);
1992    cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1993    /* 1 Byte status back */
1994    fdctrl->fifo[0] = (cur_drv->ro << 6) |
1995        (cur_drv->track == 0 ? 0x10 : 0x00) |
1996        (cur_drv->head << 2) |
1997        GET_CUR_DRV(fdctrl) |
1998        0x28;
1999    fdctrl_to_result_phase(fdctrl, 1);
2000}
2001
2002static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2003{
2004    FDrive *cur_drv;
2005
2006    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2007    cur_drv = get_cur_drv(fdctrl);
2008    fd_recalibrate(cur_drv);
2009    fdctrl_to_command_phase(fdctrl);
2010    /* Raise Interrupt */
2011    fdctrl->status0 |= FD_SR0_SEEK;
2012    fdctrl_raise_irq(fdctrl);
2013}
2014
2015static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2016{
2017    FDrive *cur_drv = get_cur_drv(fdctrl);
2018
2019    if (fdctrl->reset_sensei > 0) {
2020        fdctrl->fifo[0] =
2021            FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2022        fdctrl->reset_sensei--;
2023    } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2024        fdctrl->fifo[0] = FD_SR0_INVCMD;
2025        fdctrl_to_result_phase(fdctrl, 1);
2026        return;
2027    } else {
2028        fdctrl->fifo[0] =
2029                (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2030                | GET_CUR_DRV(fdctrl);
2031    }
2032
2033    fdctrl->fifo[1] = cur_drv->track;
2034    fdctrl_to_result_phase(fdctrl, 2);
2035    fdctrl_reset_irq(fdctrl);
2036    fdctrl->status0 = FD_SR0_RDYCHG;
2037}
2038
2039static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2040{
2041    FDrive *cur_drv;
2042
2043    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2044    cur_drv = get_cur_drv(fdctrl);
2045    fdctrl_to_command_phase(fdctrl);
2046    /* The seek command just sends step pulses to the drive and doesn't care if
2047     * there is a medium inserted of if it's banging the head against the drive.
2048     */
2049    fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2050    /* Raise Interrupt */
2051    fdctrl->status0 |= FD_SR0_SEEK;
2052    fdctrl_raise_irq(fdctrl);
2053}
2054
2055static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2056{
2057    FDrive *cur_drv = get_cur_drv(fdctrl);
2058
2059    if (fdctrl->fifo[1] & 0x80)
2060        cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2061    /* No result back */
2062    fdctrl_to_command_phase(fdctrl);
2063}
2064
2065static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2066{
2067    fdctrl->config = fdctrl->fifo[2];
2068    fdctrl->precomp_trk =  fdctrl->fifo[3];
2069    /* No result back */
2070    fdctrl_to_command_phase(fdctrl);
2071}
2072
2073static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2074{
2075    fdctrl->pwrd = fdctrl->fifo[1];
2076    fdctrl->fifo[0] = fdctrl->fifo[1];
2077    fdctrl_to_result_phase(fdctrl, 1);
2078}
2079
2080static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2081{
2082    /* No result back */
2083    fdctrl_to_command_phase(fdctrl);
2084}
2085
2086static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2087{
2088    FDrive *cur_drv = get_cur_drv(fdctrl);
2089    uint32_t pos;
2090
2091    pos = fdctrl->data_pos - 1;
2092    pos %= FD_SECTOR_LEN;
2093    if (fdctrl->fifo[pos] & 0x80) {
2094        /* Command parameters done */
2095        if (fdctrl->fifo[pos] & 0x40) {
2096            fdctrl->fifo[0] = fdctrl->fifo[1];
2097            fdctrl->fifo[2] = 0;
2098            fdctrl->fifo[3] = 0;
2099            fdctrl_to_result_phase(fdctrl, 4);
2100        } else {
2101            fdctrl_to_command_phase(fdctrl);
2102        }
2103    } else if (fdctrl->data_len > 7) {
2104        /* ERROR */
2105        fdctrl->fifo[0] = 0x80 |
2106            (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2107        fdctrl_to_result_phase(fdctrl, 1);
2108    }
2109}
2110
2111static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2112{
2113    FDrive *cur_drv;
2114
2115    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2116    cur_drv = get_cur_drv(fdctrl);
2117    if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2118        fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2119                cur_drv->sect, 1);
2120    } else {
2121        fd_seek(cur_drv, cur_drv->head,
2122                cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2123    }
2124    fdctrl_to_command_phase(fdctrl);
2125    /* Raise Interrupt */
2126    fdctrl->status0 |= FD_SR0_SEEK;
2127    fdctrl_raise_irq(fdctrl);
2128}
2129
2130static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2131{
2132    FDrive *cur_drv;
2133
2134    SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2135    cur_drv = get_cur_drv(fdctrl);
2136    if (fdctrl->fifo[2] > cur_drv->track) {
2137        fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2138    } else {
2139        fd_seek(cur_drv, cur_drv->head,
2140                cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2141    }
2142    fdctrl_to_command_phase(fdctrl);
2143    /* Raise Interrupt */
2144    fdctrl->status0 |= FD_SR0_SEEK;
2145    fdctrl_raise_irq(fdctrl);
2146}
2147
2148/*
2149 * Handlers for the execution phase of each command
2150 */
2151typedef struct FDCtrlCommand {
2152    uint8_t value;
2153    uint8_t mask;
2154    const char* name;
2155    int parameters;
2156    void (*handler)(FDCtrl *fdctrl, int direction);
2157    int direction;
2158} FDCtrlCommand;
2159
2160static const FDCtrlCommand handlers[] = {
2161    { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2162    { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2163    { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2164    { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2165    { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2166    { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2167    { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2168    { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2169    { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2170    { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2171    { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2172    { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2173    { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2174    { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2175    { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2176    { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2177    { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2178    { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2179    { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2180    { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2181    { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2182    { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2183    { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2184    { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2185    { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2186    { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2187    { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2188    { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2189    { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2190    { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2191    { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2192    { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2193};
2194/* Associate command to an index in the 'handlers' array */
2195static uint8_t command_to_handler[256];
2196
2197static const FDCtrlCommand *get_command(uint8_t cmd)
2198{
2199    int idx;
2200
2201    idx = command_to_handler[cmd];
2202    FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2203    return &handlers[idx];
2204}
2205
2206static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2207{
2208    FDrive *cur_drv;
2209    const FDCtrlCommand *cmd;
2210    uint32_t pos;
2211
2212    /* Reset mode */
2213    if (!(fdctrl->dor & FD_DOR_nRESET)) {
2214        FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2215        return;
2216    }
2217    if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2218        FLOPPY_DPRINTF("error: controller not ready for writing\n");
2219        return;
2220    }
2221    fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2222
2223    FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2224
2225    /* If data_len spans multiple sectors, the current position in the FIFO
2226     * wraps around while fdctrl->data_pos is the real position in the whole
2227     * request. */
2228    pos = fdctrl->data_pos++;
2229    pos %= FD_SECTOR_LEN;
2230    fdctrl->fifo[pos] = value;
2231
2232    if (fdctrl->data_pos == fdctrl->data_len) {
2233        fdctrl->msr &= ~FD_MSR_RQM;
2234    }
2235
2236    switch (fdctrl->phase) {
2237    case FD_PHASE_EXECUTION:
2238        /* For DMA requests, RQM should be cleared during execution phase, so
2239         * we would have errored out above. */
2240        assert(fdctrl->msr & FD_MSR_NONDMA);
2241
2242        /* FIFO data write */
2243        if (pos == FD_SECTOR_LEN - 1 ||
2244            fdctrl->data_pos == fdctrl->data_len) {
2245            cur_drv = get_cur_drv(fdctrl);
2246            if (blk_write(cur_drv->blk, fd_sector(cur_drv), fdctrl->fifo, 1)
2247                < 0) {
2248                FLOPPY_DPRINTF("error writing sector %d\n",
2249                               fd_sector(cur_drv));
2250                break;
2251            }
2252            if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2253                FLOPPY_DPRINTF("error seeking to next sector %d\n",
2254                               fd_sector(cur_drv));
2255                break;
2256            }
2257        }
2258
2259        /* Switch to result phase when done with the transfer */
2260        if (fdctrl->data_pos == fdctrl->data_len) {
2261            fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2262        }
2263        break;
2264
2265    case FD_PHASE_COMMAND:
2266        assert(!(fdctrl->msr & FD_MSR_NONDMA));
2267        assert(fdctrl->data_pos < FD_SECTOR_LEN);
2268
2269        if (pos == 0) {
2270            /* The first byte specifies the command. Now we start reading
2271             * as many parameters as this command requires. */
2272            cmd = get_command(value);
2273            fdctrl->data_len = cmd->parameters + 1;
2274            if (cmd->parameters) {
2275                fdctrl->msr |= FD_MSR_RQM;
2276            }
2277            fdctrl->msr |= FD_MSR_CMDBUSY;
2278        }
2279
2280        if (fdctrl->data_pos == fdctrl->data_len) {
2281            /* We have all parameters now, execute the command */
2282            fdctrl->phase = FD_PHASE_EXECUTION;
2283
2284            if (fdctrl->data_state & FD_STATE_FORMAT) {
2285                fdctrl_format_sector(fdctrl);
2286                break;
2287            }
2288
2289            cmd = get_command(fdctrl->fifo[0]);
2290            FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2291            cmd->handler(fdctrl, cmd->direction);
2292        }
2293        break;
2294
2295    case FD_PHASE_RESULT:
2296    default:
2297        abort();
2298    }
2299}
2300
2301static void fdctrl_result_timer(void *opaque)
2302{
2303    FDCtrl *fdctrl = opaque;
2304    FDrive *cur_drv = get_cur_drv(fdctrl);
2305
2306    /* Pretend we are spinning.
2307     * This is needed for Coherent, which uses READ ID to check for
2308     * sector interleaving.
2309     */
2310    if (cur_drv->last_sect != 0) {
2311        cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2312    }
2313    /* READ_ID can't automatically succeed! */
2314    if (fdctrl->check_media_rate &&
2315        (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2316        FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2317                       fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2318        fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2319    } else {
2320        fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2321    }
2322}
2323
2324static void fdctrl_change_cb(void *opaque, bool load)
2325{
2326    FDrive *drive = opaque;
2327
2328    drive->media_changed = 1;
2329    drive->media_validated = false;
2330    fd_revalidate(drive);
2331}
2332
2333static const BlockDevOps fdctrl_block_ops = {
2334    .change_media_cb = fdctrl_change_cb,
2335};
2336
2337/* Init functions */
2338static void fdctrl_connect_drives(FDCtrl *fdctrl, Error **errp)
2339{
2340    unsigned int i;
2341    FDrive *drive;
2342
2343    for (i = 0; i < MAX_FD; i++) {
2344        drive = &fdctrl->drives[i];
2345        drive->fdctrl = fdctrl;
2346
2347        if (drive->blk) {
2348            if (blk_get_on_error(drive->blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC) {
2349                error_setg(errp, "fdc doesn't support drive option werror");
2350                return;
2351            }
2352            if (blk_get_on_error(drive->blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
2353                error_setg(errp, "fdc doesn't support drive option rerror");
2354                return;
2355            }
2356        }
2357
2358        fd_init(drive);
2359        if (drive->blk) {
2360            blk_set_dev_ops(drive->blk, &fdctrl_block_ops, drive);
2361            pick_drive_type(drive);
2362        }
2363        fd_revalidate(drive);
2364    }
2365}
2366
2367ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds)
2368{
2369    DeviceState *dev;
2370    ISADevice *isadev;
2371
2372    isadev = isa_try_create(bus, TYPE_ISA_FDC);
2373    if (!isadev) {
2374        return NULL;
2375    }
2376    dev = DEVICE(isadev);
2377
2378    if (fds[0]) {
2379        qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2380                            &error_fatal);
2381    }
2382    if (fds[1]) {
2383        qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2384                            &error_fatal);
2385    }
2386    qdev_init_nofail(dev);
2387
2388    return isadev;
2389}
2390
2391void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2392                        hwaddr mmio_base, DriveInfo **fds)
2393{
2394    FDCtrl *fdctrl;
2395    DeviceState *dev;
2396    SysBusDevice *sbd;
2397    FDCtrlSysBus *sys;
2398
2399    dev = qdev_create(NULL, "sysbus-fdc");
2400    sys = SYSBUS_FDC(dev);
2401    fdctrl = &sys->state;
2402    fdctrl->dma_chann = dma_chann; /* FIXME */
2403    if (fds[0]) {
2404        qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fds[0]),
2405                            &error_fatal);
2406    }
2407    if (fds[1]) {
2408        qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fds[1]),
2409                            &error_fatal);
2410    }
2411    qdev_init_nofail(dev);
2412    sbd = SYS_BUS_DEVICE(dev);
2413    sysbus_connect_irq(sbd, 0, irq);
2414    sysbus_mmio_map(sbd, 0, mmio_base);
2415}
2416
2417void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2418                       DriveInfo **fds, qemu_irq *fdc_tc)
2419{
2420    DeviceState *dev;
2421    FDCtrlSysBus *sys;
2422
2423    dev = qdev_create(NULL, "SUNW,fdtwo");
2424    if (fds[0]) {
2425        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[0]),
2426                            &error_fatal);
2427    }
2428    qdev_init_nofail(dev);
2429    sys = SYSBUS_FDC(dev);
2430    sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2431    sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2432    *fdc_tc = qdev_get_gpio_in(dev, 0);
2433}
2434
2435static void fdctrl_realize_common(FDCtrl *fdctrl, Error **errp)
2436{
2437    int i, j;
2438    static int command_tables_inited = 0;
2439
2440    if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2441        error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2442    }
2443
2444    /* Fill 'command_to_handler' lookup table */
2445    if (!command_tables_inited) {
2446        command_tables_inited = 1;
2447        for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2448            for (j = 0; j < sizeof(command_to_handler); j++) {
2449                if ((j & handlers[i].mask) == handlers[i].value) {
2450                    command_to_handler[j] = i;
2451                }
2452            }
2453        }
2454    }
2455
2456    FLOPPY_DPRINTF("init controller\n");
2457    fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2458    fdctrl->fifo_size = 512;
2459    fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2460                                             fdctrl_result_timer, fdctrl);
2461
2462    fdctrl->version = 0x90; /* Intel 82078 controller */
2463    fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2464    fdctrl->num_floppies = MAX_FD;
2465
2466    if (fdctrl->dma_chann != -1) {
2467        IsaDmaClass *k;
2468        assert(fdctrl->dma);
2469        k = ISADMA_GET_CLASS(fdctrl->dma);
2470        k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2471                            &fdctrl_transfer_handler, fdctrl);
2472    }
2473    fdctrl_connect_drives(fdctrl, errp);
2474}
2475
2476static const MemoryRegionPortio fdc_portio_list[] = {
2477    { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2478    { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2479    PORTIO_END_OF_LIST(),
2480};
2481
2482static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2483{
2484    ISADevice *isadev = ISA_DEVICE(dev);
2485    FDCtrlISABus *isa = ISA_FDC(dev);
2486    FDCtrl *fdctrl = &isa->state;
2487    Error *err = NULL;
2488
2489    isa_register_portio_list(isadev, isa->iobase, fdc_portio_list, fdctrl,
2490                             "fdc");
2491
2492    isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2493    fdctrl->dma_chann = isa->dma;
2494    if (fdctrl->dma_chann != -1) {
2495        fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2496        assert(fdctrl->dma);
2497    }
2498
2499    qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2500    fdctrl_realize_common(fdctrl, &err);
2501    if (err != NULL) {
2502        error_propagate(errp, err);
2503        return;
2504    }
2505}
2506
2507static void sysbus_fdc_initfn(Object *obj)
2508{
2509    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2510    FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2511    FDCtrl *fdctrl = &sys->state;
2512
2513    fdctrl->dma_chann = -1;
2514
2515    memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2516                          "fdc", 0x08);
2517    sysbus_init_mmio(sbd, &fdctrl->iomem);
2518}
2519
2520static void sun4m_fdc_initfn(Object *obj)
2521{
2522    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2523    FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2524    FDCtrl *fdctrl = &sys->state;
2525
2526    fdctrl->dma_chann = -1;
2527
2528    memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2529                          fdctrl, "fdctrl", 0x08);
2530    sysbus_init_mmio(sbd, &fdctrl->iomem);
2531}
2532
2533static void sysbus_fdc_common_initfn(Object *obj)
2534{
2535    DeviceState *dev = DEVICE(obj);
2536    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2537    FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2538    FDCtrl *fdctrl = &sys->state;
2539
2540    qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2541
2542    sysbus_init_irq(sbd, &fdctrl->irq);
2543    qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2544}
2545
2546static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2547{
2548    FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2549    FDCtrl *fdctrl = &sys->state;
2550
2551    fdctrl_realize_common(fdctrl, errp);
2552}
2553
2554FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2555{
2556    FDCtrlISABus *isa = ISA_FDC(fdc);
2557
2558    return isa->state.drives[i].drive;
2559}
2560
2561void isa_fdc_get_drive_max_chs(FloppyDriveType type,
2562                               uint8_t *maxc, uint8_t *maxh, uint8_t *maxs)
2563{
2564    const FDFormat *fdf;
2565
2566    *maxc = *maxh = *maxs = 0;
2567    for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2568        if (fdf->drive != type) {
2569            continue;
2570        }
2571        if (*maxc < fdf->max_track) {
2572            *maxc = fdf->max_track;
2573        }
2574        if (*maxh < fdf->max_head) {
2575            *maxh = fdf->max_head;
2576        }
2577        if (*maxs < fdf->last_sect) {
2578            *maxs = fdf->last_sect;
2579        }
2580    }
2581    (*maxc)--;
2582}
2583
2584static const VMStateDescription vmstate_isa_fdc ={
2585    .name = "fdc",
2586    .version_id = 2,
2587    .minimum_version_id = 2,
2588    .fields = (VMStateField[]) {
2589        VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2590        VMSTATE_END_OF_LIST()
2591    }
2592};
2593
2594static Property isa_fdc_properties[] = {
2595    DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2596    DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2597    DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2598    DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.drives[0].blk),
2599    DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.drives[1].blk),
2600    DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate,
2601                    0, true),
2602    DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlISABus, state.drives[0].drive,
2603                        FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2604                        FloppyDriveType),
2605    DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlISABus, state.drives[1].drive,
2606                        FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2607                        FloppyDriveType),
2608    DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2609                        FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2610                        FloppyDriveType),
2611    DEFINE_PROP_END_OF_LIST(),
2612};
2613
2614static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2615{
2616    DeviceClass *dc = DEVICE_CLASS(klass);
2617
2618    dc->realize = isabus_fdc_realize;
2619    dc->fw_name = "fdc";
2620    dc->reset = fdctrl_external_reset_isa;
2621    dc->vmsd = &vmstate_isa_fdc;
2622    dc->props = isa_fdc_properties;
2623    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2624}
2625
2626static void isabus_fdc_instance_init(Object *obj)
2627{
2628    FDCtrlISABus *isa = ISA_FDC(obj);
2629
2630    device_add_bootindex_property(obj, &isa->bootindexA,
2631                                  "bootindexA", "/floppy@0",
2632                                  DEVICE(obj), NULL);
2633    device_add_bootindex_property(obj, &isa->bootindexB,
2634                                  "bootindexB", "/floppy@1",
2635                                  DEVICE(obj), NULL);
2636}
2637
2638static const TypeInfo isa_fdc_info = {
2639    .name          = TYPE_ISA_FDC,
2640    .parent        = TYPE_ISA_DEVICE,
2641    .instance_size = sizeof(FDCtrlISABus),
2642    .class_init    = isabus_fdc_class_init,
2643    .instance_init = isabus_fdc_instance_init,
2644};
2645
2646static const VMStateDescription vmstate_sysbus_fdc ={
2647    .name = "fdc",
2648    .version_id = 2,
2649    .minimum_version_id = 2,
2650    .fields = (VMStateField[]) {
2651        VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2652        VMSTATE_END_OF_LIST()
2653    }
2654};
2655
2656static Property sysbus_fdc_properties[] = {
2657    DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.drives[0].blk),
2658    DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.drives[1].blk),
2659    DEFINE_PROP_DEFAULT("fdtypeA", FDCtrlSysBus, state.drives[0].drive,
2660                        FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2661                        FloppyDriveType),
2662    DEFINE_PROP_DEFAULT("fdtypeB", FDCtrlSysBus, state.drives[1].drive,
2663                        FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2664                        FloppyDriveType),
2665    DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2666                        FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2667                        FloppyDriveType),
2668    DEFINE_PROP_END_OF_LIST(),
2669};
2670
2671static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2672{
2673    DeviceClass *dc = DEVICE_CLASS(klass);
2674
2675    dc->props = sysbus_fdc_properties;
2676    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2677}
2678
2679static const TypeInfo sysbus_fdc_info = {
2680    .name          = "sysbus-fdc",
2681    .parent        = TYPE_SYSBUS_FDC,
2682    .instance_init = sysbus_fdc_initfn,
2683    .class_init    = sysbus_fdc_class_init,
2684};
2685
2686static Property sun4m_fdc_properties[] = {
2687    DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.drives[0].blk),
2688    DEFINE_PROP_DEFAULT("fdtype", FDCtrlSysBus, state.drives[0].drive,
2689                        FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2690                        FloppyDriveType),
2691    DEFINE_PROP_DEFAULT("fallback", FDCtrlISABus, state.fallback,
2692                        FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2693                        FloppyDriveType),
2694    DEFINE_PROP_END_OF_LIST(),
2695};
2696
2697static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2698{
2699    DeviceClass *dc = DEVICE_CLASS(klass);
2700
2701    dc->props = sun4m_fdc_properties;
2702    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2703}
2704
2705static const TypeInfo sun4m_fdc_info = {
2706    .name          = "SUNW,fdtwo",
2707    .parent        = TYPE_SYSBUS_FDC,
2708    .instance_init = sun4m_fdc_initfn,
2709    .class_init    = sun4m_fdc_class_init,
2710};
2711
2712static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
2713{
2714    DeviceClass *dc = DEVICE_CLASS(klass);
2715
2716    dc->realize = sysbus_fdc_common_realize;
2717    dc->reset = fdctrl_external_reset_sysbus;
2718    dc->vmsd = &vmstate_sysbus_fdc;
2719}
2720
2721static const TypeInfo sysbus_fdc_type_info = {
2722    .name          = TYPE_SYSBUS_FDC,
2723    .parent        = TYPE_SYS_BUS_DEVICE,
2724    .instance_size = sizeof(FDCtrlSysBus),
2725    .instance_init = sysbus_fdc_common_initfn,
2726    .abstract      = true,
2727    .class_init    = sysbus_fdc_common_class_init,
2728};
2729
2730static void fdc_register_types(void)
2731{
2732    type_register_static(&isa_fdc_info);
2733    type_register_static(&sysbus_fdc_type_info);
2734    type_register_static(&sysbus_fdc_info);
2735    type_register_static(&sun4m_fdc_info);
2736}
2737
2738type_init(fdc_register_types)
2739