qemu/hw/char/cadence_uart.c
<<
>>
Prefs
   1/*
   2 * Device model for Cadence UART
   3 *
   4 * Copyright (c) 2010 Xilinx Inc.
   5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
   6 * Copyright (c) 2012 PetaLogix Pty Ltd.
   7 * Written by Haibing Ma
   8 *            M.Habib
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "hw/char/cadence_uart.h"
  21
  22#ifdef CADENCE_UART_ERR_DEBUG
  23#define DB_PRINT(...) do { \
  24    fprintf(stderr,  ": %s: ", __func__); \
  25    fprintf(stderr, ## __VA_ARGS__); \
  26    } while (0);
  27#else
  28    #define DB_PRINT(...)
  29#endif
  30
  31#define UART_SR_INTR_RTRIG     0x00000001
  32#define UART_SR_INTR_REMPTY    0x00000002
  33#define UART_SR_INTR_RFUL      0x00000004
  34#define UART_SR_INTR_TEMPTY    0x00000008
  35#define UART_SR_INTR_TFUL      0x00000010
  36/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
  37#define UART_SR_TTRIG          0x00002000
  38#define UART_INTR_TTRIG        0x00000400
  39/* bits fields in CSR that correlate to CISR. If any of these bits are set in
  40 * SR, then the same bit in CISR is set high too */
  41#define UART_SR_TO_CISR_MASK   0x0000001F
  42
  43#define UART_INTR_ROVR         0x00000020
  44#define UART_INTR_FRAME        0x00000040
  45#define UART_INTR_PARE         0x00000080
  46#define UART_INTR_TIMEOUT      0x00000100
  47#define UART_INTR_DMSI         0x00000200
  48#define UART_INTR_TOVR         0x00001000
  49
  50#define UART_SR_RACTIVE    0x00000400
  51#define UART_SR_TACTIVE    0x00000800
  52#define UART_SR_FDELT      0x00001000
  53
  54#define UART_CR_RXRST       0x00000001
  55#define UART_CR_TXRST       0x00000002
  56#define UART_CR_RX_EN       0x00000004
  57#define UART_CR_RX_DIS      0x00000008
  58#define UART_CR_TX_EN       0x00000010
  59#define UART_CR_TX_DIS      0x00000020
  60#define UART_CR_RST_TO      0x00000040
  61#define UART_CR_STARTBRK    0x00000080
  62#define UART_CR_STOPBRK     0x00000100
  63
  64#define UART_MR_CLKS            0x00000001
  65#define UART_MR_CHRL            0x00000006
  66#define UART_MR_CHRL_SH         1
  67#define UART_MR_PAR             0x00000038
  68#define UART_MR_PAR_SH          3
  69#define UART_MR_NBSTOP          0x000000C0
  70#define UART_MR_NBSTOP_SH       6
  71#define UART_MR_CHMODE          0x00000300
  72#define UART_MR_CHMODE_SH       8
  73#define UART_MR_UCLKEN          0x00000400
  74#define UART_MR_IRMODE          0x00000800
  75
  76#define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
  77#define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
  78#define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
  79#define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
  80#define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
  81#define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
  82#define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
  83#define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
  84#define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
  85#define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
  86
  87#define UART_INPUT_CLK         50000000
  88
  89#define R_CR       (0x00/4)
  90#define R_MR       (0x04/4)
  91#define R_IER      (0x08/4)
  92#define R_IDR      (0x0C/4)
  93#define R_IMR      (0x10/4)
  94#define R_CISR     (0x14/4)
  95#define R_BRGR     (0x18/4)
  96#define R_RTOR     (0x1C/4)
  97#define R_RTRIG    (0x20/4)
  98#define R_MCR      (0x24/4)
  99#define R_MSR      (0x28/4)
 100#define R_SR       (0x2C/4)
 101#define R_TX_RX    (0x30/4)
 102#define R_BDIV     (0x34/4)
 103#define R_FDEL     (0x38/4)
 104#define R_PMIN     (0x3C/4)
 105#define R_PWID     (0x40/4)
 106#define R_TTRIG    (0x44/4)
 107
 108
 109static void uart_update_status(CadenceUARTState *s)
 110{
 111    s->r[R_SR] = 0;
 112
 113    s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
 114                                                           : 0;
 115    s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
 116    s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
 117
 118    s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
 119                                                           : 0;
 120    s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
 121    s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
 122
 123    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
 124    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
 125    qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
 126}
 127
 128static void fifo_trigger_update(void *opaque)
 129{
 130    CadenceUARTState *s = opaque;
 131
 132    s->r[R_CISR] |= UART_INTR_TIMEOUT;
 133
 134    uart_update_status(s);
 135}
 136
 137static void uart_rx_reset(CadenceUARTState *s)
 138{
 139    s->rx_wpos = 0;
 140    s->rx_count = 0;
 141    if (s->chr) {
 142        qemu_chr_accept_input(s->chr);
 143    }
 144}
 145
 146static void uart_tx_reset(CadenceUARTState *s)
 147{
 148    s->tx_count = 0;
 149}
 150
 151static void uart_send_breaks(CadenceUARTState *s)
 152{
 153    int break_enabled = 1;
 154
 155    if (s->chr) {
 156        qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
 157                                   &break_enabled);
 158    }
 159}
 160
 161static void uart_parameters_setup(CadenceUARTState *s)
 162{
 163    QEMUSerialSetParams ssp;
 164    unsigned int baud_rate, packet_size;
 165
 166    baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
 167            UART_INPUT_CLK / 8 : UART_INPUT_CLK;
 168
 169    ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
 170    packet_size = 1;
 171
 172    switch (s->r[R_MR] & UART_MR_PAR) {
 173    case UART_PARITY_EVEN:
 174        ssp.parity = 'E';
 175        packet_size++;
 176        break;
 177    case UART_PARITY_ODD:
 178        ssp.parity = 'O';
 179        packet_size++;
 180        break;
 181    default:
 182        ssp.parity = 'N';
 183        break;
 184    }
 185
 186    switch (s->r[R_MR] & UART_MR_CHRL) {
 187    case UART_DATA_BITS_6:
 188        ssp.data_bits = 6;
 189        break;
 190    case UART_DATA_BITS_7:
 191        ssp.data_bits = 7;
 192        break;
 193    default:
 194        ssp.data_bits = 8;
 195        break;
 196    }
 197
 198    switch (s->r[R_MR] & UART_MR_NBSTOP) {
 199    case UART_STOP_BITS_1:
 200        ssp.stop_bits = 1;
 201        break;
 202    default:
 203        ssp.stop_bits = 2;
 204        break;
 205    }
 206
 207    packet_size += ssp.data_bits + ssp.stop_bits;
 208    s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
 209    if (s->chr) {
 210        qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
 211    }
 212}
 213
 214static int uart_can_receive(void *opaque)
 215{
 216    CadenceUARTState *s = opaque;
 217    int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
 218    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 219
 220    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 221        ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
 222    }
 223    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 224        ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
 225    }
 226    return ret;
 227}
 228
 229static void uart_ctrl_update(CadenceUARTState *s)
 230{
 231    if (s->r[R_CR] & UART_CR_TXRST) {
 232        uart_tx_reset(s);
 233    }
 234
 235    if (s->r[R_CR] & UART_CR_RXRST) {
 236        uart_rx_reset(s);
 237    }
 238
 239    s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
 240
 241    if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
 242        uart_send_breaks(s);
 243    }
 244}
 245
 246static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
 247{
 248    CadenceUARTState *s = opaque;
 249    uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 250    int i;
 251
 252    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 253        return;
 254    }
 255
 256    if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
 257        s->r[R_CISR] |= UART_INTR_ROVR;
 258    } else {
 259        for (i = 0; i < size; i++) {
 260            s->rx_fifo[s->rx_wpos] = buf[i];
 261            s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
 262            s->rx_count++;
 263        }
 264        timer_mod(s->fifo_trigger_handle, new_rx_time +
 265                                                (s->char_tx_time * 4));
 266    }
 267    uart_update_status(s);
 268}
 269
 270static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
 271                                  void *opaque)
 272{
 273    CadenceUARTState *s = opaque;
 274    int ret;
 275
 276    /* instant drain the fifo when there's no back-end */
 277    if (!s->chr) {
 278        s->tx_count = 0;
 279        return FALSE;
 280    }
 281
 282    if (!s->tx_count) {
 283        return FALSE;
 284    }
 285
 286    ret = qemu_chr_fe_write(s->chr, s->tx_fifo, s->tx_count);
 287    s->tx_count -= ret;
 288    memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
 289
 290    if (s->tx_count) {
 291        int r = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
 292                                      cadence_uart_xmit, s);
 293        assert(r);
 294    }
 295
 296    uart_update_status(s);
 297    return FALSE;
 298}
 299
 300static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
 301                               int size)
 302{
 303    if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
 304        return;
 305    }
 306
 307    if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
 308        size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
 309        /*
 310         * This can only be a guest error via a bad tx fifo register push,
 311         * as can_receive() should stop remote loop and echo modes ever getting
 312         * us to here.
 313         */
 314        qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
 315        s->r[R_CISR] |= UART_INTR_ROVR;
 316    }
 317
 318    memcpy(s->tx_fifo + s->tx_count, buf, size);
 319    s->tx_count += size;
 320
 321    cadence_uart_xmit(NULL, G_IO_OUT, s);
 322}
 323
 324static void uart_receive(void *opaque, const uint8_t *buf, int size)
 325{
 326    CadenceUARTState *s = opaque;
 327    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 328
 329    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 330        uart_write_rx_fifo(opaque, buf, size);
 331    }
 332    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 333        uart_write_tx_fifo(s, buf, size);
 334    }
 335}
 336
 337static void uart_event(void *opaque, int event)
 338{
 339    CadenceUARTState *s = opaque;
 340    uint8_t buf = '\0';
 341
 342    if (event == CHR_EVENT_BREAK) {
 343        uart_write_rx_fifo(opaque, &buf, 1);
 344    }
 345
 346    uart_update_status(s);
 347}
 348
 349static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
 350{
 351    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 352        return;
 353    }
 354
 355    if (s->rx_count) {
 356        uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
 357                            s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
 358        *c = s->rx_fifo[rx_rpos];
 359        s->rx_count--;
 360
 361        if (s->chr) {
 362            qemu_chr_accept_input(s->chr);
 363        }
 364    } else {
 365        *c = 0;
 366    }
 367
 368    uart_update_status(s);
 369}
 370
 371static void uart_write(void *opaque, hwaddr offset,
 372                          uint64_t value, unsigned size)
 373{
 374    CadenceUARTState *s = opaque;
 375
 376    DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
 377    offset >>= 2;
 378    if (offset >= CADENCE_UART_R_MAX) {
 379        return;
 380    }
 381    switch (offset) {
 382    case R_IER: /* ier (wts imr) */
 383        s->r[R_IMR] |= value;
 384        break;
 385    case R_IDR: /* idr (wtc imr) */
 386        s->r[R_IMR] &= ~value;
 387        break;
 388    case R_IMR: /* imr (read only) */
 389        break;
 390    case R_CISR: /* cisr (wtc) */
 391        s->r[R_CISR] &= ~value;
 392        break;
 393    case R_TX_RX: /* UARTDR */
 394        switch (s->r[R_MR] & UART_MR_CHMODE) {
 395        case NORMAL_MODE:
 396            uart_write_tx_fifo(s, (uint8_t *) &value, 1);
 397            break;
 398        case LOCAL_LOOPBACK:
 399            uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
 400            break;
 401        }
 402        break;
 403    case R_BRGR: /* Baud rate generator */
 404        if (value >= 0x01) {
 405            s->r[offset] = value & 0xFFFF;
 406        }
 407        break;
 408    case R_BDIV:    /* Baud rate divider */
 409        if (value >= 0x04) {
 410            s->r[offset] = value & 0xFF;
 411        }
 412        break;
 413    default:
 414        s->r[offset] = value;
 415    }
 416
 417    switch (offset) {
 418    case R_CR:
 419        uart_ctrl_update(s);
 420        break;
 421    case R_MR:
 422        uart_parameters_setup(s);
 423        break;
 424    }
 425    uart_update_status(s);
 426}
 427
 428static uint64_t uart_read(void *opaque, hwaddr offset,
 429        unsigned size)
 430{
 431    CadenceUARTState *s = opaque;
 432    uint32_t c = 0;
 433
 434    offset >>= 2;
 435    if (offset >= CADENCE_UART_R_MAX) {
 436        c = 0;
 437    } else if (offset == R_TX_RX) {
 438        uart_read_rx_fifo(s, &c);
 439    } else {
 440       c = s->r[offset];
 441    }
 442
 443    DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
 444    return c;
 445}
 446
 447static const MemoryRegionOps uart_ops = {
 448    .read = uart_read,
 449    .write = uart_write,
 450    .endianness = DEVICE_NATIVE_ENDIAN,
 451};
 452
 453static void cadence_uart_reset(DeviceState *dev)
 454{
 455    CadenceUARTState *s = CADENCE_UART(dev);
 456
 457    s->r[R_CR] = UART_CR_RX_EN | UART_CR_TX_EN | UART_CR_STOPBRK;
 458    s->r[R_IMR] = 0;
 459    s->r[R_CISR] = 0;
 460    s->r[R_RTRIG] = 0x00000020;
 461    s->r[R_BRGR] = 0x0000028B;
 462    s->r[R_BDIV] = 0x0000000F;
 463    s->r[R_TTRIG] = 0x00000020;
 464
 465    uart_rx_reset(s);
 466    uart_tx_reset(s);
 467
 468    uart_update_status(s);
 469}
 470
 471static void cadence_uart_realize(DeviceState *dev, Error **errp)
 472{
 473    CadenceUARTState *s = CADENCE_UART(dev);
 474
 475    s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
 476                                          fifo_trigger_update, s);
 477
 478    /* FIXME use a qdev chardev prop instead of qemu_char_get_next_serial() */
 479    s->chr = qemu_char_get_next_serial();
 480
 481    if (s->chr) {
 482        qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
 483                              uart_event, s);
 484    }
 485}
 486
 487static void cadence_uart_init(Object *obj)
 488{
 489    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 490    CadenceUARTState *s = CADENCE_UART(obj);
 491
 492    memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
 493    sysbus_init_mmio(sbd, &s->iomem);
 494    sysbus_init_irq(sbd, &s->irq);
 495
 496    s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
 497}
 498
 499static int cadence_uart_post_load(void *opaque, int version_id)
 500{
 501    CadenceUARTState *s = opaque;
 502
 503    uart_parameters_setup(s);
 504    uart_update_status(s);
 505    return 0;
 506}
 507
 508static const VMStateDescription vmstate_cadence_uart = {
 509    .name = "cadence_uart",
 510    .version_id = 2,
 511    .minimum_version_id = 2,
 512    .post_load = cadence_uart_post_load,
 513    .fields = (VMStateField[]) {
 514        VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
 515        VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
 516                            CADENCE_UART_RX_FIFO_SIZE),
 517        VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
 518                            CADENCE_UART_TX_FIFO_SIZE),
 519        VMSTATE_UINT32(rx_count, CadenceUARTState),
 520        VMSTATE_UINT32(tx_count, CadenceUARTState),
 521        VMSTATE_UINT32(rx_wpos, CadenceUARTState),
 522        VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
 523        VMSTATE_END_OF_LIST()
 524    }
 525};
 526
 527static void cadence_uart_class_init(ObjectClass *klass, void *data)
 528{
 529    DeviceClass *dc = DEVICE_CLASS(klass);
 530
 531    dc->realize = cadence_uart_realize;
 532    dc->vmsd = &vmstate_cadence_uart;
 533    dc->reset = cadence_uart_reset;
 534    /* Reason: realize() method uses qemu_char_get_next_serial() */
 535    dc->cannot_instantiate_with_device_add_yet = true;
 536}
 537
 538static const TypeInfo cadence_uart_info = {
 539    .name          = TYPE_CADENCE_UART,
 540    .parent        = TYPE_SYS_BUS_DEVICE,
 541    .instance_size = sizeof(CadenceUARTState),
 542    .instance_init = cadence_uart_init,
 543    .class_init    = cadence_uart_class_init,
 544};
 545
 546static void cadence_uart_register_types(void)
 547{
 548    type_register_static(&cadence_uart_info);
 549}
 550
 551type_init(cadence_uart_register_types)
 552