qemu/hw/s390x/sclp.c
<<
>>
Prefs
   1/*
   2 * SCLP Support
   3 *
   4 * Copyright IBM, Corp. 2012
   5 *
   6 * Authors:
   7 *  Christian Borntraeger <borntraeger@de.ibm.com>
   8 *  Heinz Graalfs <graalfs@linux.vnet.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or (at your
  11 * option) any later version.  See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qapi/error.h"
  17#include "cpu.h"
  18#include "sysemu/kvm.h"
  19#include "exec/memory.h"
  20#include "sysemu/sysemu.h"
  21#include "exec/address-spaces.h"
  22#include "hw/boards.h"
  23#include "hw/s390x/sclp.h"
  24#include "hw/s390x/event-facility.h"
  25#include "hw/s390x/s390-pci-bus.h"
  26
  27static inline SCLPDevice *get_sclp_device(void)
  28{
  29    return SCLP(object_resolve_path_type("", TYPE_SCLP, NULL));
  30}
  31
  32/* Provide information about the configuration, CPUs and storage */
  33static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb)
  34{
  35    ReadInfo *read_info = (ReadInfo *) sccb;
  36    MachineState *machine = MACHINE(qdev_get_machine());
  37    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
  38    CPUState *cpu;
  39    int cpu_count = 0;
  40    int i = 0;
  41    int rnsize, rnmax;
  42    int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state));
  43
  44    CPU_FOREACH(cpu) {
  45        cpu_count++;
  46    }
  47
  48    /* CPU information */
  49    read_info->entries_cpu = cpu_to_be16(cpu_count);
  50    read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
  51    read_info->highest_cpu = cpu_to_be16(max_cpus);
  52
  53    for (i = 0; i < cpu_count; i++) {
  54        read_info->entries[i].address = i;
  55        read_info->entries[i].type = 0;
  56    }
  57
  58    read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
  59                                        SCLP_HAS_PCI_RECONFIG);
  60
  61    /* Memory Hotplug is only supported for the ccw machine type */
  62    if (mhd) {
  63        mhd->standby_subregion_size = MEM_SECTION_SIZE;
  64        /* Deduct the memory slot already used for core */
  65        if (slots > 0) {
  66            while ((mhd->standby_subregion_size * (slots - 1)
  67                    < mhd->standby_mem_size)) {
  68                mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
  69            }
  70        }
  71        /*
  72         * Initialize mapping of guest standby memory sections indicating which
  73         * are and are not online. Assume all standby memory begins offline.
  74         */
  75        if (mhd->standby_state_map == 0) {
  76            if (mhd->standby_mem_size % mhd->standby_subregion_size) {
  77                mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
  78                                             mhd->standby_subregion_size + 1) *
  79                                             (mhd->standby_subregion_size /
  80                                             MEM_SECTION_SIZE));
  81            } else {
  82                mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
  83                                                   MEM_SECTION_SIZE);
  84            }
  85        }
  86        mhd->padded_ram_size = ram_size + mhd->pad_size;
  87        mhd->rzm = 1 << mhd->increment_size;
  88
  89        read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
  90    }
  91
  92    rnsize = 1 << (sclp->increment_size - 20);
  93    if (rnsize <= 128) {
  94        read_info->rnsize = rnsize;
  95    } else {
  96        read_info->rnsize = 0;
  97        read_info->rnsize2 = cpu_to_be32(rnsize);
  98    }
  99
 100    rnmax = machine->maxram_size >> sclp->increment_size;
 101    if (rnmax < 0x10000) {
 102        read_info->rnmax = cpu_to_be16(rnmax);
 103    } else {
 104        read_info->rnmax = cpu_to_be16(0);
 105        read_info->rnmax2 = cpu_to_be64(rnmax);
 106    }
 107
 108    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
 109}
 110
 111static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb)
 112{
 113    int i, assigned;
 114    int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
 115    ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
 116    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 117
 118    if (!mhd) {
 119        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 120        return;
 121    }
 122
 123    if ((ram_size >> mhd->increment_size) >= 0x10000) {
 124        sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
 125        return;
 126    }
 127
 128    /* Return information regarding core memory */
 129    storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
 130    assigned = ram_size >> mhd->increment_size;
 131    storage_info->assigned = cpu_to_be16(assigned);
 132
 133    for (i = 0; i < assigned; i++) {
 134        storage_info->entries[i] = cpu_to_be32(subincrement_id);
 135        subincrement_id += SCLP_INCREMENT_UNIT;
 136    }
 137    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
 138}
 139
 140static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb)
 141{
 142    ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
 143    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 144
 145    if (!mhd) {
 146        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 147        return;
 148    }
 149
 150    if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
 151        sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
 152        return;
 153    }
 154
 155    /* Return information regarding standby memory */
 156    storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
 157    storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
 158                                         mhd->increment_size);
 159    storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
 160                                        mhd->increment_size);
 161    sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
 162}
 163
 164static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb,
 165                                   uint16_t element)
 166{
 167    int i, assigned, subincrement_id;
 168    AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
 169    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 170
 171    if (!mhd) {
 172        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 173        return;
 174    }
 175
 176    if (element != 1) {
 177        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 178        return;
 179    }
 180
 181    assigned = mhd->standby_mem_size >> mhd->increment_size;
 182    attach_info->assigned = cpu_to_be16(assigned);
 183    subincrement_id = ((ram_size >> mhd->increment_size) << 16)
 184                      + SCLP_STARTING_SUBINCREMENT_ID;
 185    for (i = 0; i < assigned; i++) {
 186        attach_info->entries[i] = cpu_to_be32(subincrement_id);
 187        subincrement_id += SCLP_INCREMENT_UNIT;
 188    }
 189    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
 190}
 191
 192static void assign_storage(SCLPDevice *sclp, SCCB *sccb)
 193{
 194    MemoryRegion *mr = NULL;
 195    uint64_t this_subregion_size;
 196    AssignStorage *assign_info = (AssignStorage *) sccb;
 197    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 198    ram_addr_t assign_addr;
 199    MemoryRegion *sysmem = get_system_memory();
 200
 201    if (!mhd) {
 202        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 203        return;
 204    }
 205    assign_addr = (assign_info->rn - 1) * mhd->rzm;
 206
 207    if ((assign_addr % MEM_SECTION_SIZE == 0) &&
 208        (assign_addr >= mhd->padded_ram_size)) {
 209        /* Re-use existing memory region if found */
 210        mr = memory_region_find(sysmem, assign_addr, 1).mr;
 211        memory_region_unref(mr);
 212        if (!mr) {
 213
 214            MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
 215
 216            /* offset to align to standby_subregion_size for allocation */
 217            ram_addr_t offset = assign_addr -
 218                                (assign_addr - mhd->padded_ram_size)
 219                                % mhd->standby_subregion_size;
 220
 221            /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) +  NULL */
 222            char id[16];
 223            snprintf(id, 16, "standby.ram%d",
 224                     (int)((offset - mhd->padded_ram_size) /
 225                     mhd->standby_subregion_size) + 1);
 226
 227            /* Allocate a subregion of the calculated standby_subregion_size */
 228            if (offset + mhd->standby_subregion_size >
 229                mhd->padded_ram_size + mhd->standby_mem_size) {
 230                this_subregion_size = mhd->padded_ram_size +
 231                  mhd->standby_mem_size - offset;
 232            } else {
 233                this_subregion_size = mhd->standby_subregion_size;
 234            }
 235
 236            memory_region_init_ram(standby_ram, NULL, id, this_subregion_size,
 237                                   &error_fatal);
 238            /* This is a hack to make memory hotunplug work again. Once we have
 239             * subdevices, we have to unparent them when unassigning memory,
 240             * instead of doing it via the ref count of the MemoryRegion. */
 241            object_ref(OBJECT(standby_ram));
 242            object_unparent(OBJECT(standby_ram));
 243            vmstate_register_ram_global(standby_ram);
 244            memory_region_add_subregion(sysmem, offset, standby_ram);
 245        }
 246        /* The specified subregion is no longer in standby */
 247        mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
 248                               / MEM_SECTION_SIZE] = 1;
 249    }
 250    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
 251}
 252
 253static void unassign_storage(SCLPDevice *sclp, SCCB *sccb)
 254{
 255    MemoryRegion *mr = NULL;
 256    AssignStorage *assign_info = (AssignStorage *) sccb;
 257    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 258    ram_addr_t unassign_addr;
 259    MemoryRegion *sysmem = get_system_memory();
 260
 261    if (!mhd) {
 262        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 263        return;
 264    }
 265    unassign_addr = (assign_info->rn - 1) * mhd->rzm;
 266
 267    /* if the addr is a multiple of 256 MB */
 268    if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
 269        (unassign_addr >= mhd->padded_ram_size)) {
 270        mhd->standby_state_map[(unassign_addr -
 271                           mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
 272
 273        /* find the specified memory region and destroy it */
 274        mr = memory_region_find(sysmem, unassign_addr, 1).mr;
 275        memory_region_unref(mr);
 276        if (mr) {
 277            int i;
 278            int is_removable = 1;
 279            ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
 280                                     (unassign_addr - mhd->padded_ram_size)
 281                                     % mhd->standby_subregion_size);
 282            /* Mark all affected subregions as 'standby' once again */
 283            for (i = 0;
 284                 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
 285                 i++) {
 286
 287                if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
 288                    is_removable = 0;
 289                    break;
 290                }
 291            }
 292            if (is_removable) {
 293                memory_region_del_subregion(sysmem, mr);
 294                object_unref(OBJECT(mr));
 295            }
 296        }
 297    }
 298    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
 299}
 300
 301/* Provide information about the CPU */
 302static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb)
 303{
 304    ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
 305    CPUState *cpu;
 306    int cpu_count = 0;
 307    int i = 0;
 308
 309    CPU_FOREACH(cpu) {
 310        cpu_count++;
 311    }
 312
 313    cpu_info->nr_configured = cpu_to_be16(cpu_count);
 314    cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
 315    cpu_info->nr_standby = cpu_to_be16(0);
 316
 317    /* The standby offset is 16-byte for each CPU */
 318    cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
 319        + cpu_info->nr_configured*sizeof(CPUEntry));
 320
 321    for (i = 0; i < cpu_count; i++) {
 322        cpu_info->entries[i].address = i;
 323        cpu_info->entries[i].type = 0;
 324    }
 325
 326    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
 327}
 328
 329static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code)
 330{
 331    SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
 332    SCLPEventFacility *ef = sclp->event_facility;
 333    SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
 334
 335    switch (code & SCLP_CMD_CODE_MASK) {
 336    case SCLP_CMDW_READ_SCP_INFO:
 337    case SCLP_CMDW_READ_SCP_INFO_FORCED:
 338        sclp_c->read_SCP_info(sclp, sccb);
 339        break;
 340    case SCLP_CMDW_READ_CPU_INFO:
 341        sclp_c->read_cpu_info(sclp, sccb);
 342        break;
 343    case SCLP_READ_STORAGE_ELEMENT_INFO:
 344        if (code & 0xff00) {
 345            sclp_c->read_storage_element1_info(sclp, sccb);
 346        } else {
 347            sclp_c->read_storage_element0_info(sclp, sccb);
 348        }
 349        break;
 350    case SCLP_ATTACH_STORAGE_ELEMENT:
 351        sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8);
 352        break;
 353    case SCLP_ASSIGN_STORAGE:
 354        sclp_c->assign_storage(sclp, sccb);
 355        break;
 356    case SCLP_UNASSIGN_STORAGE:
 357        sclp_c->unassign_storage(sclp, sccb);
 358        break;
 359    case SCLP_CMDW_CONFIGURE_PCI:
 360        s390_pci_sclp_configure(1, sccb);
 361        break;
 362    case SCLP_CMDW_DECONFIGURE_PCI:
 363        s390_pci_sclp_configure(0, sccb);
 364        break;
 365    default:
 366        efc->command_handler(ef, sccb, code);
 367        break;
 368    }
 369}
 370
 371int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
 372{
 373    SCLPDevice *sclp = get_sclp_device();
 374    SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
 375    int r = 0;
 376    SCCB work_sccb;
 377
 378    hwaddr sccb_len = sizeof(SCCB);
 379
 380    /* first some basic checks on program checks */
 381    if (env->psw.mask & PSW_MASK_PSTATE) {
 382        r = -PGM_PRIVILEGED;
 383        goto out;
 384    }
 385    if (cpu_physical_memory_is_io(sccb)) {
 386        r = -PGM_ADDRESSING;
 387        goto out;
 388    }
 389    if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
 390        || (sccb & ~0x7ffffff8UL) != 0) {
 391        r = -PGM_SPECIFICATION;
 392        goto out;
 393    }
 394
 395    /*
 396     * we want to work on a private copy of the sccb, to prevent guests
 397     * from playing dirty tricks by modifying the memory content after
 398     * the host has checked the values
 399     */
 400    cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
 401
 402    /* Valid sccb sizes */
 403    if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
 404        be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
 405        r = -PGM_SPECIFICATION;
 406        goto out;
 407    }
 408
 409    sclp_c->execute(sclp, (SCCB *)&work_sccb, code);
 410
 411    cpu_physical_memory_write(sccb, &work_sccb,
 412                              be16_to_cpu(work_sccb.h.length));
 413
 414    sclp_c->service_interrupt(sclp, sccb);
 415
 416out:
 417    return r;
 418}
 419
 420static void service_interrupt(SCLPDevice *sclp, uint32_t sccb)
 421{
 422    SCLPEventFacility *ef = sclp->event_facility;
 423    SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
 424
 425    uint32_t param = sccb & ~3;
 426
 427    /* Indicate whether an event is still pending */
 428    param |= efc->event_pending(ef) ? 1 : 0;
 429
 430    if (!param) {
 431        /* No need to send an interrupt, there's nothing to be notified about */
 432        return;
 433    }
 434    s390_sclp_extint(param);
 435}
 436
 437void sclp_service_interrupt(uint32_t sccb)
 438{
 439    SCLPDevice *sclp = get_sclp_device();
 440    SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
 441
 442    sclp_c->service_interrupt(sclp, sccb);
 443}
 444
 445/* qemu object creation and initialization functions */
 446
 447void s390_sclp_init(void)
 448{
 449    Object *new = object_new(TYPE_SCLP);
 450
 451    object_property_add_child(qdev_get_machine(), TYPE_SCLP, new,
 452                              NULL);
 453    object_unref(OBJECT(new));
 454    qdev_init_nofail(DEVICE(new));
 455}
 456
 457static void sclp_realize(DeviceState *dev, Error **errp)
 458{
 459    MachineState *machine = MACHINE(qdev_get_machine());
 460    SCLPDevice *sclp = SCLP(dev);
 461    Error *err = NULL;
 462    uint64_t hw_limit;
 463    int ret;
 464
 465    object_property_set_bool(OBJECT(sclp->event_facility), true, "realized",
 466                             &err);
 467    if (err) {
 468        goto out;
 469    }
 470    /*
 471     * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long
 472     * as we can't find a fitting bus via the qom tree, we have to add the
 473     * event facility to the sysbus, so e.g. a sclp console can be created.
 474     */
 475    qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default());
 476
 477    ret = s390_set_memory_limit(machine->maxram_size, &hw_limit);
 478    if (ret == -E2BIG) {
 479        error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB",
 480                   hw_limit >> 30);
 481    } else if (ret) {
 482        error_setg(&err, "qemu: setting the guest size failed");
 483    }
 484
 485out:
 486    error_propagate(errp, err);
 487}
 488
 489static void sclp_memory_init(SCLPDevice *sclp)
 490{
 491    MachineState *machine = MACHINE(qdev_get_machine());
 492    ram_addr_t initial_mem = machine->ram_size;
 493    ram_addr_t max_mem = machine->maxram_size;
 494    ram_addr_t standby_mem = max_mem - initial_mem;
 495    ram_addr_t pad_mem = 0;
 496    int increment_size = 20;
 497
 498    /* The storage increment size is a multiple of 1M and is a power of 2.
 499     * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
 500     * The variable 'increment_size' is an exponent of 2 that can be
 501     * used to calculate the size (in bytes) of an increment. */
 502    while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
 503        increment_size++;
 504    }
 505    if (machine->ram_slots) {
 506        while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
 507            increment_size++;
 508        }
 509    }
 510    sclp->increment_size = increment_size;
 511
 512    /* The core and standby memory areas need to be aligned with
 513     * the increment size.  In effect, this can cause the
 514     * user-specified memory size to be rounded down to align
 515     * with the nearest increment boundary. */
 516    initial_mem = initial_mem >> increment_size << increment_size;
 517    standby_mem = standby_mem >> increment_size << increment_size;
 518
 519    /* If the size of ram is not on a MEM_SECTION_SIZE boundary,
 520       calculate the pad size necessary to force this boundary. */
 521    if (machine->ram_slots && standby_mem) {
 522        sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev();
 523
 524        if (initial_mem % MEM_SECTION_SIZE) {
 525            pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE;
 526        }
 527        mhd->increment_size = increment_size;
 528        mhd->pad_size = pad_mem;
 529        mhd->standby_mem_size = standby_mem;
 530    }
 531    machine->ram_size = initial_mem;
 532    machine->maxram_size = initial_mem + pad_mem + standby_mem;
 533    /* let's propagate the changed ram size into the global variable. */
 534    ram_size = initial_mem;
 535}
 536
 537static void sclp_init(Object *obj)
 538{
 539    SCLPDevice *sclp = SCLP(obj);
 540    Object *new;
 541
 542    new = object_new(TYPE_SCLP_EVENT_FACILITY);
 543    object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL);
 544    object_unref(new);
 545    sclp->event_facility = EVENT_FACILITY(new);
 546
 547    sclp_memory_init(sclp);
 548}
 549
 550static void sclp_class_init(ObjectClass *oc, void *data)
 551{
 552    SCLPDeviceClass *sc = SCLP_CLASS(oc);
 553    DeviceClass *dc = DEVICE_CLASS(oc);
 554
 555    dc->desc = "SCLP (Service-Call Logical Processor)";
 556    dc->realize = sclp_realize;
 557    dc->hotpluggable = false;
 558    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
 559
 560    sc->read_SCP_info = read_SCP_info;
 561    sc->read_storage_element0_info = read_storage_element0_info;
 562    sc->read_storage_element1_info = read_storage_element1_info;
 563    sc->attach_storage_element = attach_storage_element;
 564    sc->assign_storage = assign_storage;
 565    sc->unassign_storage = unassign_storage;
 566    sc->read_cpu_info = sclp_read_cpu_info;
 567    sc->execute = sclp_execute;
 568    sc->service_interrupt = service_interrupt;
 569}
 570
 571static TypeInfo sclp_info = {
 572    .name = TYPE_SCLP,
 573    .parent = TYPE_DEVICE,
 574    .instance_init = sclp_init,
 575    .instance_size = sizeof(SCLPDevice),
 576    .class_init = sclp_class_init,
 577    .class_size = sizeof(SCLPDeviceClass),
 578};
 579
 580sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
 581{
 582    DeviceState *dev;
 583    dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
 584    object_property_add_child(qdev_get_machine(),
 585                              TYPE_SCLP_MEMORY_HOTPLUG_DEV,
 586                              OBJECT(dev), NULL);
 587    qdev_init_nofail(dev);
 588    return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
 589                                   TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
 590}
 591
 592sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
 593{
 594    return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
 595                                   TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
 596}
 597
 598static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass,
 599                                               void *data)
 600{
 601    DeviceClass *dc = DEVICE_CLASS(klass);
 602
 603    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
 604}
 605
 606static TypeInfo sclp_memory_hotplug_dev_info = {
 607    .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
 608    .parent = TYPE_SYS_BUS_DEVICE,
 609    .instance_size = sizeof(sclpMemoryHotplugDev),
 610    .class_init = sclp_memory_hotplug_dev_class_init,
 611};
 612
 613static void register_types(void)
 614{
 615    type_register_static(&sclp_memory_hotplug_dev_info);
 616    type_register_static(&sclp_info);
 617}
 618type_init(register_types);
 619