qemu/hw/xtensa/xtfpga.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are met:
   7 *     * Redistributions of source code must retain the above copyright
   8 *       notice, this list of conditions and the following disclaimer.
   9 *     * Redistributions in binary form must reproduce the above copyright
  10 *       notice, this list of conditions and the following disclaimer in the
  11 *       documentation and/or other materials provided with the distribution.
  12 *     * Neither the name of the Open Source and Linux Lab nor the
  13 *       names of its contributors may be used to endorse or promote products
  14 *       derived from this software without specific prior written permission.
  15 *
  16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26 */
  27
  28#include "qemu/osdep.h"
  29#include "qapi/error.h"
  30#include "qemu-common.h"
  31#include "cpu.h"
  32#include "sysemu/sysemu.h"
  33#include "hw/boards.h"
  34#include "hw/loader.h"
  35#include "elf.h"
  36#include "exec/memory.h"
  37#include "exec/address-spaces.h"
  38#include "hw/char/serial.h"
  39#include "net/net.h"
  40#include "hw/sysbus.h"
  41#include "hw/block/flash.h"
  42#include "sysemu/block-backend.h"
  43#include "sysemu/char.h"
  44#include "sysemu/device_tree.h"
  45#include "qemu/error-report.h"
  46#include "bootparam.h"
  47
  48typedef struct LxBoardDesc {
  49    hwaddr flash_base;
  50    size_t flash_size;
  51    size_t flash_boot_base;
  52    size_t flash_sector_size;
  53    size_t sram_size;
  54} LxBoardDesc;
  55
  56typedef struct Lx60FpgaState {
  57    MemoryRegion iomem;
  58    uint32_t leds;
  59    uint32_t switches;
  60} Lx60FpgaState;
  61
  62static void lx60_fpga_reset(void *opaque)
  63{
  64    Lx60FpgaState *s = opaque;
  65
  66    s->leds = 0;
  67    s->switches = 0;
  68}
  69
  70static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
  71        unsigned size)
  72{
  73    Lx60FpgaState *s = opaque;
  74
  75    switch (addr) {
  76    case 0x0: /*build date code*/
  77        return 0x09272011;
  78
  79    case 0x4: /*processor clock frequency, Hz*/
  80        return 10000000;
  81
  82    case 0x8: /*LEDs (off = 0, on = 1)*/
  83        return s->leds;
  84
  85    case 0xc: /*DIP switches (off = 0, on = 1)*/
  86        return s->switches;
  87    }
  88    return 0;
  89}
  90
  91static void lx60_fpga_write(void *opaque, hwaddr addr,
  92        uint64_t val, unsigned size)
  93{
  94    Lx60FpgaState *s = opaque;
  95
  96    switch (addr) {
  97    case 0x8: /*LEDs (off = 0, on = 1)*/
  98        s->leds = val;
  99        break;
 100
 101    case 0x10: /*board reset*/
 102        if (val == 0xdead) {
 103            qemu_system_reset_request();
 104        }
 105        break;
 106    }
 107}
 108
 109static const MemoryRegionOps lx60_fpga_ops = {
 110    .read = lx60_fpga_read,
 111    .write = lx60_fpga_write,
 112    .endianness = DEVICE_NATIVE_ENDIAN,
 113};
 114
 115static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
 116        hwaddr base)
 117{
 118    Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
 119
 120    memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
 121            "lx60.fpga", 0x10000);
 122    memory_region_add_subregion(address_space, base, &s->iomem);
 123    lx60_fpga_reset(s);
 124    qemu_register_reset(lx60_fpga_reset, s);
 125    return s;
 126}
 127
 128static void lx60_net_init(MemoryRegion *address_space,
 129        hwaddr base,
 130        hwaddr descriptors,
 131        hwaddr buffers,
 132        qemu_irq irq, NICInfo *nd)
 133{
 134    DeviceState *dev;
 135    SysBusDevice *s;
 136    MemoryRegion *ram;
 137
 138    dev = qdev_create(NULL, "open_eth");
 139    qdev_set_nic_properties(dev, nd);
 140    qdev_init_nofail(dev);
 141
 142    s = SYS_BUS_DEVICE(dev);
 143    sysbus_connect_irq(s, 0, irq);
 144    memory_region_add_subregion(address_space, base,
 145            sysbus_mmio_get_region(s, 0));
 146    memory_region_add_subregion(address_space, descriptors,
 147            sysbus_mmio_get_region(s, 1));
 148
 149    ram = g_malloc(sizeof(*ram));
 150    memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384,
 151                           &error_fatal);
 152    vmstate_register_ram_global(ram);
 153    memory_region_add_subregion(address_space, buffers, ram);
 154}
 155
 156static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
 157                                   const LxBoardDesc *board,
 158                                   DriveInfo *dinfo, int be)
 159{
 160    SysBusDevice *s;
 161    DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
 162
 163    qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
 164                        &error_abort);
 165    qdev_prop_set_uint32(dev, "num-blocks",
 166                         board->flash_size / board->flash_sector_size);
 167    qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size);
 168    qdev_prop_set_uint8(dev, "width", 4);
 169    qdev_prop_set_bit(dev, "big-endian", be);
 170    qdev_prop_set_string(dev, "name", "lx60.io.flash");
 171    qdev_init_nofail(dev);
 172    s = SYS_BUS_DEVICE(dev);
 173    memory_region_add_subregion(address_space, board->flash_base,
 174                                sysbus_mmio_get_region(s, 0));
 175    return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
 176}
 177
 178static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
 179{
 180    XtensaCPU *cpu = opaque;
 181
 182    return cpu_get_phys_page_debug(CPU(cpu), addr);
 183}
 184
 185static void lx60_reset(void *opaque)
 186{
 187    XtensaCPU *cpu = opaque;
 188
 189    cpu_reset(CPU(cpu));
 190}
 191
 192static uint64_t lx60_io_read(void *opaque, hwaddr addr,
 193        unsigned size)
 194{
 195    return 0;
 196}
 197
 198static void lx60_io_write(void *opaque, hwaddr addr,
 199        uint64_t val, unsigned size)
 200{
 201}
 202
 203static const MemoryRegionOps lx60_io_ops = {
 204    .read = lx60_io_read,
 205    .write = lx60_io_write,
 206    .endianness = DEVICE_NATIVE_ENDIAN,
 207};
 208
 209static void lx_init(const LxBoardDesc *board, MachineState *machine)
 210{
 211#ifdef TARGET_WORDS_BIGENDIAN
 212    int be = 1;
 213#else
 214    int be = 0;
 215#endif
 216    MemoryRegion *system_memory = get_system_memory();
 217    XtensaCPU *cpu = NULL;
 218    CPUXtensaState *env = NULL;
 219    MemoryRegion *ram, *rom, *system_io;
 220    DriveInfo *dinfo;
 221    pflash_t *flash = NULL;
 222    QemuOpts *machine_opts = qemu_get_machine_opts();
 223    const char *cpu_model = machine->cpu_model;
 224    const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
 225    const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
 226    const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
 227    const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
 228    int n;
 229
 230    if (!cpu_model) {
 231        cpu_model = XTENSA_DEFAULT_CPU_MODEL;
 232    }
 233
 234    for (n = 0; n < smp_cpus; n++) {
 235        cpu = cpu_xtensa_init(cpu_model);
 236        if (cpu == NULL) {
 237            error_report("unable to find CPU definition '%s'",
 238                         cpu_model);
 239            exit(EXIT_FAILURE);
 240        }
 241        env = &cpu->env;
 242
 243        env->sregs[PRID] = n;
 244        qemu_register_reset(lx60_reset, cpu);
 245        /* Need MMU initialized prior to ELF loading,
 246         * so that ELF gets loaded into virtual addresses
 247         */
 248        cpu_reset(CPU(cpu));
 249    }
 250
 251    ram = g_malloc(sizeof(*ram));
 252    memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
 253                           &error_fatal);
 254    vmstate_register_ram_global(ram);
 255    memory_region_add_subregion(system_memory, 0, ram);
 256
 257    system_io = g_malloc(sizeof(*system_io));
 258    memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
 259                          224 * 1024 * 1024);
 260    memory_region_add_subregion(system_memory, 0xf0000000, system_io);
 261    lx60_fpga_init(system_io, 0x0d020000);
 262    if (nd_table[0].used) {
 263        lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
 264                xtensa_get_extint(env, 1), nd_table);
 265    }
 266
 267    if (!serial_hds[0]) {
 268        serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
 269    }
 270
 271    serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
 272            115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
 273
 274    dinfo = drive_get(IF_PFLASH, 0, 0);
 275    if (dinfo) {
 276        flash = xtfpga_flash_init(system_io, board, dinfo, be);
 277    }
 278
 279    /* Use presence of kernel file name as 'boot from SRAM' switch. */
 280    if (kernel_filename) {
 281        uint32_t entry_point = env->pc;
 282        size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
 283        uint32_t tagptr = 0xfe000000 + board->sram_size;
 284        uint32_t cur_tagptr;
 285        BpMemInfo memory_location = {
 286            .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
 287            .start = tswap32(0),
 288            .end = tswap32(machine->ram_size),
 289        };
 290        uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
 291            machine->ram_size : 0x08000000;
 292        uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
 293
 294        rom = g_malloc(sizeof(*rom));
 295        memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
 296                               &error_fatal);
 297        vmstate_register_ram_global(rom);
 298        memory_region_add_subregion(system_memory, 0xfe000000, rom);
 299
 300        if (kernel_cmdline) {
 301            bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
 302        }
 303        if (dtb_filename) {
 304            bp_size += get_tag_size(sizeof(uint32_t));
 305        }
 306        if (initrd_filename) {
 307            bp_size += get_tag_size(sizeof(BpMemInfo));
 308        }
 309
 310        /* Put kernel bootparameters to the end of that SRAM */
 311        tagptr = (tagptr - bp_size) & ~0xff;
 312        cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
 313        cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
 314                             sizeof(memory_location), &memory_location);
 315
 316        if (kernel_cmdline) {
 317            cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
 318                                 strlen(kernel_cmdline) + 1, kernel_cmdline);
 319        }
 320        if (dtb_filename) {
 321            int fdt_size;
 322            void *fdt = load_device_tree(dtb_filename, &fdt_size);
 323            uint32_t dtb_addr = tswap32(cur_lowmem);
 324
 325            if (!fdt) {
 326                error_report("could not load DTB '%s'", dtb_filename);
 327                exit(EXIT_FAILURE);
 328            }
 329
 330            cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
 331            cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
 332                                 sizeof(dtb_addr), &dtb_addr);
 333            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
 334        }
 335        if (initrd_filename) {
 336            BpMemInfo initrd_location = { 0 };
 337            int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
 338                                           lowmem_end - cur_lowmem);
 339
 340            if (initrd_size < 0) {
 341                initrd_size = load_image_targphys(initrd_filename,
 342                                                  cur_lowmem,
 343                                                  lowmem_end - cur_lowmem);
 344            }
 345            if (initrd_size < 0) {
 346                error_report("could not load initrd '%s'", initrd_filename);
 347                exit(EXIT_FAILURE);
 348            }
 349            initrd_location.start = tswap32(cur_lowmem);
 350            initrd_location.end = tswap32(cur_lowmem + initrd_size);
 351            cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
 352                                 sizeof(initrd_location), &initrd_location);
 353            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
 354        }
 355        cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
 356        env->regs[2] = tagptr;
 357
 358        uint64_t elf_entry;
 359        uint64_t elf_lowaddr;
 360        int success = load_elf(kernel_filename, translate_phys_addr, cpu,
 361                &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
 362        if (success > 0) {
 363            entry_point = elf_entry;
 364        } else {
 365            hwaddr ep;
 366            int is_linux;
 367            success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
 368                                  translate_phys_addr, cpu);
 369            if (success > 0 && is_linux) {
 370                entry_point = ep;
 371            } else {
 372                error_report("could not load kernel '%s'",
 373                             kernel_filename);
 374                exit(EXIT_FAILURE);
 375            }
 376        }
 377        if (entry_point != env->pc) {
 378            static const uint8_t jx_a0[] = {
 379#ifdef TARGET_WORDS_BIGENDIAN
 380                0x0a, 0, 0,
 381#else
 382                0xa0, 0, 0,
 383#endif
 384            };
 385            env->regs[0] = entry_point;
 386            cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
 387        }
 388    } else {
 389        if (flash) {
 390            MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
 391            MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
 392
 393            memory_region_init_alias(flash_io, NULL, "lx60.flash",
 394                    flash_mr, board->flash_boot_base,
 395                    board->flash_size - board->flash_boot_base < 0x02000000 ?
 396                    board->flash_size - board->flash_boot_base : 0x02000000);
 397            memory_region_add_subregion(system_memory, 0xfe000000,
 398                    flash_io);
 399        }
 400    }
 401}
 402
 403static void xtensa_lx60_init(MachineState *machine)
 404{
 405    static const LxBoardDesc lx60_board = {
 406        .flash_base = 0x08000000,
 407        .flash_size = 0x00400000,
 408        .flash_sector_size = 0x10000,
 409        .sram_size = 0x20000,
 410    };
 411    lx_init(&lx60_board, machine);
 412}
 413
 414static void xtensa_lx200_init(MachineState *machine)
 415{
 416    static const LxBoardDesc lx200_board = {
 417        .flash_base = 0x08000000,
 418        .flash_size = 0x01000000,
 419        .flash_sector_size = 0x20000,
 420        .sram_size = 0x2000000,
 421    };
 422    lx_init(&lx200_board, machine);
 423}
 424
 425static void xtensa_ml605_init(MachineState *machine)
 426{
 427    static const LxBoardDesc ml605_board = {
 428        .flash_base = 0x08000000,
 429        .flash_size = 0x01000000,
 430        .flash_sector_size = 0x20000,
 431        .sram_size = 0x2000000,
 432    };
 433    lx_init(&ml605_board, machine);
 434}
 435
 436static void xtensa_kc705_init(MachineState *machine)
 437{
 438    static const LxBoardDesc kc705_board = {
 439        .flash_base = 0x00000000,
 440        .flash_size = 0x08000000,
 441        .flash_boot_base = 0x06000000,
 442        .flash_sector_size = 0x20000,
 443        .sram_size = 0x2000000,
 444    };
 445    lx_init(&kc705_board, machine);
 446}
 447
 448static void xtensa_lx60_class_init(ObjectClass *oc, void *data)
 449{
 450    MachineClass *mc = MACHINE_CLASS(oc);
 451
 452    mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 453    mc->init = xtensa_lx60_init;
 454    mc->max_cpus = 4;
 455}
 456
 457static const TypeInfo xtensa_lx60_type = {
 458    .name = MACHINE_TYPE_NAME("lx60"),
 459    .parent = TYPE_MACHINE,
 460    .class_init = xtensa_lx60_class_init,
 461};
 462
 463static void xtensa_lx200_class_init(ObjectClass *oc, void *data)
 464{
 465    MachineClass *mc = MACHINE_CLASS(oc);
 466
 467    mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 468    mc->init = xtensa_lx200_init;
 469    mc->max_cpus = 4;
 470}
 471
 472static const TypeInfo xtensa_lx200_type = {
 473    .name = MACHINE_TYPE_NAME("lx200"),
 474    .parent = TYPE_MACHINE,
 475    .class_init = xtensa_lx200_class_init,
 476};
 477
 478static void xtensa_ml605_class_init(ObjectClass *oc, void *data)
 479{
 480    MachineClass *mc = MACHINE_CLASS(oc);
 481
 482    mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 483    mc->init = xtensa_ml605_init;
 484    mc->max_cpus = 4;
 485}
 486
 487static const TypeInfo xtensa_ml605_type = {
 488    .name = MACHINE_TYPE_NAME("ml605"),
 489    .parent = TYPE_MACHINE,
 490    .class_init = xtensa_ml605_class_init,
 491};
 492
 493static void xtensa_kc705_class_init(ObjectClass *oc, void *data)
 494{
 495    MachineClass *mc = MACHINE_CLASS(oc);
 496
 497    mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
 498    mc->init = xtensa_kc705_init;
 499    mc->max_cpus = 4;
 500}
 501
 502static const TypeInfo xtensa_kc705_type = {
 503    .name = MACHINE_TYPE_NAME("kc705"),
 504    .parent = TYPE_MACHINE,
 505    .class_init = xtensa_kc705_class_init,
 506};
 507
 508static void xtensa_lx_machines_init(void)
 509{
 510    type_register_static(&xtensa_lx60_type);
 511    type_register_static(&xtensa_lx200_type);
 512    type_register_static(&xtensa_ml605_type);
 513    type_register_static(&xtensa_kc705_type);
 514}
 515
 516type_init(xtensa_lx_machines_init)
 517