qemu/include/qemu/bswap.h
<<
>>
Prefs
   1#ifndef BSWAP_H
   2#define BSWAP_H
   3
   4#include "fpu/softfloat.h"
   5
   6#ifdef CONFIG_MACHINE_BSWAP_H
   7# include <sys/endian.h>
   8# include <machine/bswap.h>
   9#elif defined(__FreeBSD__)
  10# include <sys/endian.h>
  11#elif defined(CONFIG_BYTESWAP_H)
  12# include <byteswap.h>
  13
  14static inline uint16_t bswap16(uint16_t x)
  15{
  16    return bswap_16(x);
  17}
  18
  19static inline uint32_t bswap32(uint32_t x)
  20{
  21    return bswap_32(x);
  22}
  23
  24static inline uint64_t bswap64(uint64_t x)
  25{
  26    return bswap_64(x);
  27}
  28# else
  29static inline uint16_t bswap16(uint16_t x)
  30{
  31    return (((x & 0x00ff) << 8) |
  32            ((x & 0xff00) >> 8));
  33}
  34
  35static inline uint32_t bswap32(uint32_t x)
  36{
  37    return (((x & 0x000000ffU) << 24) |
  38            ((x & 0x0000ff00U) <<  8) |
  39            ((x & 0x00ff0000U) >>  8) |
  40            ((x & 0xff000000U) >> 24));
  41}
  42
  43static inline uint64_t bswap64(uint64_t x)
  44{
  45    return (((x & 0x00000000000000ffULL) << 56) |
  46            ((x & 0x000000000000ff00ULL) << 40) |
  47            ((x & 0x0000000000ff0000ULL) << 24) |
  48            ((x & 0x00000000ff000000ULL) <<  8) |
  49            ((x & 0x000000ff00000000ULL) >>  8) |
  50            ((x & 0x0000ff0000000000ULL) >> 24) |
  51            ((x & 0x00ff000000000000ULL) >> 40) |
  52            ((x & 0xff00000000000000ULL) >> 56));
  53}
  54#endif /* ! CONFIG_MACHINE_BSWAP_H */
  55
  56static inline void bswap16s(uint16_t *s)
  57{
  58    *s = bswap16(*s);
  59}
  60
  61static inline void bswap32s(uint32_t *s)
  62{
  63    *s = bswap32(*s);
  64}
  65
  66static inline void bswap64s(uint64_t *s)
  67{
  68    *s = bswap64(*s);
  69}
  70
  71#if defined(HOST_WORDS_BIGENDIAN)
  72#define be_bswap(v, size) (v)
  73#define le_bswap(v, size) glue(bswap, size)(v)
  74#define be_bswaps(v, size)
  75#define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
  76#else
  77#define le_bswap(v, size) (v)
  78#define be_bswap(v, size) glue(bswap, size)(v)
  79#define le_bswaps(v, size)
  80#define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
  81#endif
  82
  83#define CPU_CONVERT(endian, size, type)\
  84static inline type endian ## size ## _to_cpu(type v)\
  85{\
  86    return glue(endian, _bswap)(v, size);\
  87}\
  88\
  89static inline type cpu_to_ ## endian ## size(type v)\
  90{\
  91    return glue(endian, _bswap)(v, size);\
  92}\
  93\
  94static inline void endian ## size ## _to_cpus(type *p)\
  95{\
  96    glue(endian, _bswaps)(p, size);\
  97}\
  98\
  99static inline void cpu_to_ ## endian ## size ## s(type *p)\
 100{\
 101    glue(endian, _bswaps)(p, size);\
 102}\
 103\
 104static inline type endian ## size ## _to_cpup(const type *p)\
 105{\
 106    return glue(glue(endian, size), _to_cpu)(*p);\
 107}\
 108\
 109static inline void cpu_to_ ## endian ## size ## w(type *p, type v)\
 110{\
 111    *p = glue(glue(cpu_to_, endian), size)(v);\
 112}
 113
 114CPU_CONVERT(be, 16, uint16_t)
 115CPU_CONVERT(be, 32, uint32_t)
 116CPU_CONVERT(be, 64, uint64_t)
 117
 118CPU_CONVERT(le, 16, uint16_t)
 119CPU_CONVERT(le, 32, uint32_t)
 120CPU_CONVERT(le, 64, uint64_t)
 121
 122/* len must be one of 1, 2, 4 */
 123static inline uint32_t qemu_bswap_len(uint32_t value, int len)
 124{
 125    return bswap32(value) >> (32 - 8 * len);
 126}
 127
 128/*
 129 * Same as cpu_to_le{16,23}, except that gcc will figure the result is
 130 * a compile-time constant if you pass in a constant.  So this can be
 131 * used to initialize static variables.
 132 */
 133#if defined(HOST_WORDS_BIGENDIAN)
 134# define const_le32(_x)                          \
 135    ((((_x) & 0x000000ffU) << 24) |              \
 136     (((_x) & 0x0000ff00U) <<  8) |              \
 137     (((_x) & 0x00ff0000U) >>  8) |              \
 138     (((_x) & 0xff000000U) >> 24))
 139# define const_le16(_x)                          \
 140    ((((_x) & 0x00ff) << 8) |                    \
 141     (((_x) & 0xff00) >> 8))
 142#else
 143# define const_le32(_x) (_x)
 144# define const_le16(_x) (_x)
 145#endif
 146
 147/* Unions for reinterpreting between floats and integers.  */
 148
 149typedef union {
 150    float32 f;
 151    uint32_t l;
 152} CPU_FloatU;
 153
 154typedef union {
 155    float64 d;
 156#if defined(HOST_WORDS_BIGENDIAN)
 157    struct {
 158        uint32_t upper;
 159        uint32_t lower;
 160    } l;
 161#else
 162    struct {
 163        uint32_t lower;
 164        uint32_t upper;
 165    } l;
 166#endif
 167    uint64_t ll;
 168} CPU_DoubleU;
 169
 170typedef union {
 171     floatx80 d;
 172     struct {
 173         uint64_t lower;
 174         uint16_t upper;
 175     } l;
 176} CPU_LDoubleU;
 177
 178typedef union {
 179    float128 q;
 180#if defined(HOST_WORDS_BIGENDIAN)
 181    struct {
 182        uint32_t upmost;
 183        uint32_t upper;
 184        uint32_t lower;
 185        uint32_t lowest;
 186    } l;
 187    struct {
 188        uint64_t upper;
 189        uint64_t lower;
 190    } ll;
 191#else
 192    struct {
 193        uint32_t lowest;
 194        uint32_t lower;
 195        uint32_t upper;
 196        uint32_t upmost;
 197    } l;
 198    struct {
 199        uint64_t lower;
 200        uint64_t upper;
 201    } ll;
 202#endif
 203} CPU_QuadU;
 204
 205/* unaligned/endian-independent pointer access */
 206
 207/*
 208 * the generic syntax is:
 209 *
 210 * load: ld{type}{sign}{size}{endian}_p(ptr)
 211 *
 212 * store: st{type}{size}{endian}_p(ptr, val)
 213 *
 214 * Note there are small differences with the softmmu access API!
 215 *
 216 * type is:
 217 * (empty): integer access
 218 *   f    : float access
 219 *
 220 * sign is:
 221 * (empty): for 32 or 64 bit sizes (including floats and doubles)
 222 *   u    : unsigned
 223 *   s    : signed
 224 *
 225 * size is:
 226 *   b: 8 bits
 227 *   w: 16 bits
 228 *   l: 32 bits
 229 *   q: 64 bits
 230 *
 231 * endian is:
 232 *   he   : host endian
 233 *   be   : big endian
 234 *   le   : little endian
 235 *   te   : target endian
 236 * (except for byte accesses, which have no endian infix).
 237 *
 238 * The target endian accessors are obviously only available to source
 239 * files which are built per-target; they are defined in cpu-all.h.
 240 *
 241 * In all cases these functions take a host pointer.
 242 * For accessors that take a guest address rather than a
 243 * host address, see the cpu_{ld,st}_* accessors defined in
 244 * cpu_ldst.h.
 245 */
 246
 247static inline int ldub_p(const void *ptr)
 248{
 249    return *(uint8_t *)ptr;
 250}
 251
 252static inline int ldsb_p(const void *ptr)
 253{
 254    return *(int8_t *)ptr;
 255}
 256
 257static inline void stb_p(void *ptr, uint8_t v)
 258{
 259    *(uint8_t *)ptr = v;
 260}
 261
 262/* Any compiler worth its salt will turn these memcpy into native unaligned
 263   operations.  Thus we don't need to play games with packed attributes, or
 264   inline byte-by-byte stores.  */
 265
 266static inline int lduw_he_p(const void *ptr)
 267{
 268    uint16_t r;
 269    memcpy(&r, ptr, sizeof(r));
 270    return r;
 271}
 272
 273static inline int ldsw_he_p(const void *ptr)
 274{
 275    int16_t r;
 276    memcpy(&r, ptr, sizeof(r));
 277    return r;
 278}
 279
 280static inline void stw_he_p(void *ptr, uint16_t v)
 281{
 282    memcpy(ptr, &v, sizeof(v));
 283}
 284
 285static inline int ldl_he_p(const void *ptr)
 286{
 287    int32_t r;
 288    memcpy(&r, ptr, sizeof(r));
 289    return r;
 290}
 291
 292static inline void stl_he_p(void *ptr, uint32_t v)
 293{
 294    memcpy(ptr, &v, sizeof(v));
 295}
 296
 297static inline uint64_t ldq_he_p(const void *ptr)
 298{
 299    uint64_t r;
 300    memcpy(&r, ptr, sizeof(r));
 301    return r;
 302}
 303
 304static inline void stq_he_p(void *ptr, uint64_t v)
 305{
 306    memcpy(ptr, &v, sizeof(v));
 307}
 308
 309static inline int lduw_le_p(const void *ptr)
 310{
 311    return (uint16_t)le_bswap(lduw_he_p(ptr), 16);
 312}
 313
 314static inline int ldsw_le_p(const void *ptr)
 315{
 316    return (int16_t)le_bswap(lduw_he_p(ptr), 16);
 317}
 318
 319static inline int ldl_le_p(const void *ptr)
 320{
 321    return le_bswap(ldl_he_p(ptr), 32);
 322}
 323
 324static inline uint64_t ldq_le_p(const void *ptr)
 325{
 326    return le_bswap(ldq_he_p(ptr), 64);
 327}
 328
 329static inline void stw_le_p(void *ptr, uint16_t v)
 330{
 331    stw_he_p(ptr, le_bswap(v, 16));
 332}
 333
 334static inline void stl_le_p(void *ptr, uint32_t v)
 335{
 336    stl_he_p(ptr, le_bswap(v, 32));
 337}
 338
 339static inline void stq_le_p(void *ptr, uint64_t v)
 340{
 341    stq_he_p(ptr, le_bswap(v, 64));
 342}
 343
 344/* float access */
 345
 346static inline float32 ldfl_le_p(const void *ptr)
 347{
 348    CPU_FloatU u;
 349    u.l = ldl_le_p(ptr);
 350    return u.f;
 351}
 352
 353static inline void stfl_le_p(void *ptr, float32 v)
 354{
 355    CPU_FloatU u;
 356    u.f = v;
 357    stl_le_p(ptr, u.l);
 358}
 359
 360static inline float64 ldfq_le_p(const void *ptr)
 361{
 362    CPU_DoubleU u;
 363    u.ll = ldq_le_p(ptr);
 364    return u.d;
 365}
 366
 367static inline void stfq_le_p(void *ptr, float64 v)
 368{
 369    CPU_DoubleU u;
 370    u.d = v;
 371    stq_le_p(ptr, u.ll);
 372}
 373
 374static inline int lduw_be_p(const void *ptr)
 375{
 376    return (uint16_t)be_bswap(lduw_he_p(ptr), 16);
 377}
 378
 379static inline int ldsw_be_p(const void *ptr)
 380{
 381    return (int16_t)be_bswap(lduw_he_p(ptr), 16);
 382}
 383
 384static inline int ldl_be_p(const void *ptr)
 385{
 386    return be_bswap(ldl_he_p(ptr), 32);
 387}
 388
 389static inline uint64_t ldq_be_p(const void *ptr)
 390{
 391    return be_bswap(ldq_he_p(ptr), 64);
 392}
 393
 394static inline void stw_be_p(void *ptr, uint16_t v)
 395{
 396    stw_he_p(ptr, be_bswap(v, 16));
 397}
 398
 399static inline void stl_be_p(void *ptr, uint32_t v)
 400{
 401    stl_he_p(ptr, be_bswap(v, 32));
 402}
 403
 404static inline void stq_be_p(void *ptr, uint64_t v)
 405{
 406    stq_he_p(ptr, be_bswap(v, 64));
 407}
 408
 409/* float access */
 410
 411static inline float32 ldfl_be_p(const void *ptr)
 412{
 413    CPU_FloatU u;
 414    u.l = ldl_be_p(ptr);
 415    return u.f;
 416}
 417
 418static inline void stfl_be_p(void *ptr, float32 v)
 419{
 420    CPU_FloatU u;
 421    u.f = v;
 422    stl_be_p(ptr, u.l);
 423}
 424
 425static inline float64 ldfq_be_p(const void *ptr)
 426{
 427    CPU_DoubleU u;
 428    u.ll = ldq_be_p(ptr);
 429    return u.d;
 430}
 431
 432static inline void stfq_be_p(void *ptr, float64 v)
 433{
 434    CPU_DoubleU u;
 435    u.d = v;
 436    stq_be_p(ptr, u.ll);
 437}
 438
 439static inline unsigned long leul_to_cpu(unsigned long v)
 440{
 441#if HOST_LONG_BITS == 32
 442    return le_bswap(v, 32);
 443#elif HOST_LONG_BITS == 64
 444    return le_bswap(v, 64);
 445#else
 446# error Unknown sizeof long
 447#endif
 448}
 449
 450#undef le_bswap
 451#undef be_bswap
 452#undef le_bswaps
 453#undef be_bswaps
 454
 455#endif /* BSWAP_H */
 456