qemu/linux-user/vm86.c
<<
>>
Prefs
   1/*
   2 *  vm86 linux syscall support
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 *  This program is free software; you can redistribute it and/or modify
   7 *  it under the terms of the GNU General Public License as published by
   8 *  the Free Software Foundation; either version 2 of the License, or
   9 *  (at your option) any later version.
  10 *
  11 *  This program is distributed in the hope that it will be useful,
  12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 *  GNU General Public License for more details.
  15 *
  16 *  You should have received a copy of the GNU General Public License
  17 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20
  21#include "qemu.h"
  22
  23//#define DEBUG_VM86
  24
  25#ifdef DEBUG_VM86
  26#  define LOG_VM86(...) qemu_log(__VA_ARGS__);
  27#else
  28#  define LOG_VM86(...) do { } while (0)
  29#endif
  30
  31
  32#define set_flags(X,new,mask) \
  33((X) = ((X) & ~(mask)) | ((new) & (mask)))
  34
  35#define SAFE_MASK       (0xDD5)
  36#define RETURN_MASK     (0xDFF)
  37
  38static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
  39{
  40    return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
  41}
  42
  43static inline void vm_putw(CPUX86State *env, uint32_t segptr,
  44                           unsigned int reg16, unsigned int val)
  45{
  46    cpu_stw_data(env, segptr + (reg16 & 0xffff), val);
  47}
  48
  49static inline void vm_putl(CPUX86State *env, uint32_t segptr,
  50                           unsigned int reg16, unsigned int val)
  51{
  52    cpu_stl_data(env, segptr + (reg16 & 0xffff), val);
  53}
  54
  55static inline unsigned int vm_getb(CPUX86State *env,
  56                                   uint32_t segptr, unsigned int reg16)
  57{
  58    return cpu_ldub_data(env, segptr + (reg16 & 0xffff));
  59}
  60
  61static inline unsigned int vm_getw(CPUX86State *env,
  62                                   uint32_t segptr, unsigned int reg16)
  63{
  64    return cpu_lduw_data(env, segptr + (reg16 & 0xffff));
  65}
  66
  67static inline unsigned int vm_getl(CPUX86State *env,
  68                                   uint32_t segptr, unsigned int reg16)
  69{
  70    return cpu_ldl_data(env, segptr + (reg16 & 0xffff));
  71}
  72
  73void save_v86_state(CPUX86State *env)
  74{
  75    CPUState *cs = CPU(x86_env_get_cpu(env));
  76    TaskState *ts = cs->opaque;
  77    struct target_vm86plus_struct * target_v86;
  78
  79    if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
  80        /* FIXME - should return an error */
  81        return;
  82    /* put the VM86 registers in the userspace register structure */
  83    target_v86->regs.eax = tswap32(env->regs[R_EAX]);
  84    target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
  85    target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
  86    target_v86->regs.edx = tswap32(env->regs[R_EDX]);
  87    target_v86->regs.esi = tswap32(env->regs[R_ESI]);
  88    target_v86->regs.edi = tswap32(env->regs[R_EDI]);
  89    target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
  90    target_v86->regs.esp = tswap32(env->regs[R_ESP]);
  91    target_v86->regs.eip = tswap32(env->eip);
  92    target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
  93    target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
  94    target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
  95    target_v86->regs.es = tswap16(env->segs[R_ES].selector);
  96    target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
  97    target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
  98    set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
  99    target_v86->regs.eflags = tswap32(env->eflags);
 100    unlock_user_struct(target_v86, ts->target_v86, 1);
 101    LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
 102             env->eflags, env->segs[R_CS].selector, env->eip);
 103
 104    /* restore 32 bit registers */
 105    env->regs[R_EAX] = ts->vm86_saved_regs.eax;
 106    env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
 107    env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
 108    env->regs[R_EDX] = ts->vm86_saved_regs.edx;
 109    env->regs[R_ESI] = ts->vm86_saved_regs.esi;
 110    env->regs[R_EDI] = ts->vm86_saved_regs.edi;
 111    env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
 112    env->regs[R_ESP] = ts->vm86_saved_regs.esp;
 113    env->eflags = ts->vm86_saved_regs.eflags;
 114    env->eip = ts->vm86_saved_regs.eip;
 115
 116    cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
 117    cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
 118    cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
 119    cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
 120    cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
 121    cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
 122}
 123
 124/* return from vm86 mode to 32 bit. The vm86() syscall will return
 125   'retval' */
 126static inline void return_to_32bit(CPUX86State *env, int retval)
 127{
 128    LOG_VM86("return_to_32bit: ret=0x%x\n", retval);
 129    save_v86_state(env);
 130    env->regs[R_EAX] = retval;
 131}
 132
 133static inline int set_IF(CPUX86State *env)
 134{
 135    CPUState *cs = CPU(x86_env_get_cpu(env));
 136    TaskState *ts = cs->opaque;
 137
 138    ts->v86flags |= VIF_MASK;
 139    if (ts->v86flags & VIP_MASK) {
 140        return_to_32bit(env, TARGET_VM86_STI);
 141        return 1;
 142    }
 143    return 0;
 144}
 145
 146static inline void clear_IF(CPUX86State *env)
 147{
 148    CPUState *cs = CPU(x86_env_get_cpu(env));
 149    TaskState *ts = cs->opaque;
 150
 151    ts->v86flags &= ~VIF_MASK;
 152}
 153
 154static inline void clear_TF(CPUX86State *env)
 155{
 156    env->eflags &= ~TF_MASK;
 157}
 158
 159static inline void clear_AC(CPUX86State *env)
 160{
 161    env->eflags &= ~AC_MASK;
 162}
 163
 164static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
 165{
 166    CPUState *cs = CPU(x86_env_get_cpu(env));
 167    TaskState *ts = cs->opaque;
 168
 169    set_flags(ts->v86flags, eflags, ts->v86mask);
 170    set_flags(env->eflags, eflags, SAFE_MASK);
 171    if (eflags & IF_MASK)
 172        return set_IF(env);
 173    else
 174        clear_IF(env);
 175    return 0;
 176}
 177
 178static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
 179{
 180    CPUState *cs = CPU(x86_env_get_cpu(env));
 181    TaskState *ts = cs->opaque;
 182
 183    set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
 184    set_flags(env->eflags, flags, SAFE_MASK);
 185    if (flags & IF_MASK)
 186        return set_IF(env);
 187    else
 188        clear_IF(env);
 189    return 0;
 190}
 191
 192static inline unsigned int get_vflags(CPUX86State *env)
 193{
 194    CPUState *cs = CPU(x86_env_get_cpu(env));
 195    TaskState *ts = cs->opaque;
 196    unsigned int flags;
 197
 198    flags = env->eflags & RETURN_MASK;
 199    if (ts->v86flags & VIF_MASK)
 200        flags |= IF_MASK;
 201    flags |= IOPL_MASK;
 202    return flags | (ts->v86flags & ts->v86mask);
 203}
 204
 205#define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
 206
 207/* handle VM86 interrupt (NOTE: the CPU core currently does not
 208   support TSS interrupt revectoring, so this code is always executed) */
 209static void do_int(CPUX86State *env, int intno)
 210{
 211    CPUState *cs = CPU(x86_env_get_cpu(env));
 212    TaskState *ts = cs->opaque;
 213    uint32_t int_addr, segoffs, ssp;
 214    unsigned int sp;
 215
 216    if (env->segs[R_CS].selector == TARGET_BIOSSEG)
 217        goto cannot_handle;
 218    if (is_revectored(intno, &ts->vm86plus.int_revectored))
 219        goto cannot_handle;
 220    if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
 221                                       &ts->vm86plus.int21_revectored))
 222        goto cannot_handle;
 223    int_addr = (intno << 2);
 224    segoffs = cpu_ldl_data(env, int_addr);
 225    if ((segoffs >> 16) == TARGET_BIOSSEG)
 226        goto cannot_handle;
 227    LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
 228             intno, segoffs >> 16, segoffs & 0xffff);
 229    /* save old state */
 230    ssp = env->segs[R_SS].selector << 4;
 231    sp = env->regs[R_ESP] & 0xffff;
 232    vm_putw(env, ssp, sp - 2, get_vflags(env));
 233    vm_putw(env, ssp, sp - 4, env->segs[R_CS].selector);
 234    vm_putw(env, ssp, sp - 6, env->eip);
 235    ADD16(env->regs[R_ESP], -6);
 236    /* goto interrupt handler */
 237    env->eip = segoffs & 0xffff;
 238    cpu_x86_load_seg(env, R_CS, segoffs >> 16);
 239    clear_TF(env);
 240    clear_IF(env);
 241    clear_AC(env);
 242    return;
 243 cannot_handle:
 244    LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno);
 245    return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
 246}
 247
 248void handle_vm86_trap(CPUX86State *env, int trapno)
 249{
 250    if (trapno == 1 || trapno == 3) {
 251        return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
 252    } else {
 253        do_int(env, trapno);
 254    }
 255}
 256
 257#define CHECK_IF_IN_TRAP() \
 258      if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
 259          (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
 260                newflags |= TF_MASK
 261
 262#define VM86_FAULT_RETURN \
 263        if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
 264            (ts->v86flags & (IF_MASK | VIF_MASK))) \
 265            return_to_32bit(env, TARGET_VM86_PICRETURN); \
 266        return
 267
 268void handle_vm86_fault(CPUX86State *env)
 269{
 270    CPUState *cs = CPU(x86_env_get_cpu(env));
 271    TaskState *ts = cs->opaque;
 272    uint32_t csp, ssp;
 273    unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
 274    int data32, pref_done;
 275
 276    csp = env->segs[R_CS].selector << 4;
 277    ip = env->eip & 0xffff;
 278
 279    ssp = env->segs[R_SS].selector << 4;
 280    sp = env->regs[R_ESP] & 0xffff;
 281
 282    LOG_VM86("VM86 exception %04x:%08x\n",
 283             env->segs[R_CS].selector, env->eip);
 284
 285    data32 = 0;
 286    pref_done = 0;
 287    do {
 288        opcode = vm_getb(env, csp, ip);
 289        ADD16(ip, 1);
 290        switch (opcode) {
 291        case 0x66:      /* 32-bit data */     data32=1; break;
 292        case 0x67:      /* 32-bit address */  break;
 293        case 0x2e:      /* CS */              break;
 294        case 0x3e:      /* DS */              break;
 295        case 0x26:      /* ES */              break;
 296        case 0x36:      /* SS */              break;
 297        case 0x65:      /* GS */              break;
 298        case 0x64:      /* FS */              break;
 299        case 0xf2:      /* repnz */           break;
 300        case 0xf3:      /* rep */             break;
 301        default: pref_done = 1;
 302        }
 303    } while (!pref_done);
 304
 305    /* VM86 mode */
 306    switch(opcode) {
 307    case 0x9c: /* pushf */
 308        if (data32) {
 309            vm_putl(env, ssp, sp - 4, get_vflags(env));
 310            ADD16(env->regs[R_ESP], -4);
 311        } else {
 312            vm_putw(env, ssp, sp - 2, get_vflags(env));
 313            ADD16(env->regs[R_ESP], -2);
 314        }
 315        env->eip = ip;
 316        VM86_FAULT_RETURN;
 317
 318    case 0x9d: /* popf */
 319        if (data32) {
 320            newflags = vm_getl(env, ssp, sp);
 321            ADD16(env->regs[R_ESP], 4);
 322        } else {
 323            newflags = vm_getw(env, ssp, sp);
 324            ADD16(env->regs[R_ESP], 2);
 325        }
 326        env->eip = ip;
 327        CHECK_IF_IN_TRAP();
 328        if (data32) {
 329            if (set_vflags_long(newflags, env))
 330                return;
 331        } else {
 332            if (set_vflags_short(newflags, env))
 333                return;
 334        }
 335        VM86_FAULT_RETURN;
 336
 337    case 0xcd: /* int */
 338        intno = vm_getb(env, csp, ip);
 339        ADD16(ip, 1);
 340        env->eip = ip;
 341        if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
 342            if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >>
 343                  (intno &7)) & 1) {
 344                return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
 345                return;
 346            }
 347        }
 348        do_int(env, intno);
 349        break;
 350
 351    case 0xcf: /* iret */
 352        if (data32) {
 353            newip = vm_getl(env, ssp, sp) & 0xffff;
 354            newcs = vm_getl(env, ssp, sp + 4) & 0xffff;
 355            newflags = vm_getl(env, ssp, sp + 8);
 356            ADD16(env->regs[R_ESP], 12);
 357        } else {
 358            newip = vm_getw(env, ssp, sp);
 359            newcs = vm_getw(env, ssp, sp + 2);
 360            newflags = vm_getw(env, ssp, sp + 4);
 361            ADD16(env->regs[R_ESP], 6);
 362        }
 363        env->eip = newip;
 364        cpu_x86_load_seg(env, R_CS, newcs);
 365        CHECK_IF_IN_TRAP();
 366        if (data32) {
 367            if (set_vflags_long(newflags, env))
 368                return;
 369        } else {
 370            if (set_vflags_short(newflags, env))
 371                return;
 372        }
 373        VM86_FAULT_RETURN;
 374
 375    case 0xfa: /* cli */
 376        env->eip = ip;
 377        clear_IF(env);
 378        VM86_FAULT_RETURN;
 379
 380    case 0xfb: /* sti */
 381        env->eip = ip;
 382        if (set_IF(env))
 383            return;
 384        VM86_FAULT_RETURN;
 385
 386    default:
 387        /* real VM86 GPF exception */
 388        return_to_32bit(env, TARGET_VM86_UNKNOWN);
 389        break;
 390    }
 391}
 392
 393int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
 394{
 395    CPUState *cs = CPU(x86_env_get_cpu(env));
 396    TaskState *ts = cs->opaque;
 397    struct target_vm86plus_struct * target_v86;
 398    int ret;
 399
 400    switch (subfunction) {
 401    case TARGET_VM86_REQUEST_IRQ:
 402    case TARGET_VM86_FREE_IRQ:
 403    case TARGET_VM86_GET_IRQ_BITS:
 404    case TARGET_VM86_GET_AND_RESET_IRQ:
 405        gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
 406        ret = -TARGET_EINVAL;
 407        goto out;
 408    case TARGET_VM86_PLUS_INSTALL_CHECK:
 409        /* NOTE: on old vm86 stuff this will return the error
 410           from verify_area(), because the subfunction is
 411           interpreted as (invalid) address to vm86_struct.
 412           So the installation check works.
 413            */
 414        ret = 0;
 415        goto out;
 416    }
 417
 418    /* save current CPU regs */
 419    ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
 420    ts->vm86_saved_regs.ebx = env->regs[R_EBX];
 421    ts->vm86_saved_regs.ecx = env->regs[R_ECX];
 422    ts->vm86_saved_regs.edx = env->regs[R_EDX];
 423    ts->vm86_saved_regs.esi = env->regs[R_ESI];
 424    ts->vm86_saved_regs.edi = env->regs[R_EDI];
 425    ts->vm86_saved_regs.ebp = env->regs[R_EBP];
 426    ts->vm86_saved_regs.esp = env->regs[R_ESP];
 427    ts->vm86_saved_regs.eflags = env->eflags;
 428    ts->vm86_saved_regs.eip  = env->eip;
 429    ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
 430    ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
 431    ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
 432    ts->vm86_saved_regs.es = env->segs[R_ES].selector;
 433    ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
 434    ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
 435
 436    ts->target_v86 = vm86_addr;
 437    if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
 438        return -TARGET_EFAULT;
 439    /* build vm86 CPU state */
 440    ts->v86flags = tswap32(target_v86->regs.eflags);
 441    env->eflags = (env->eflags & ~SAFE_MASK) |
 442        (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
 443
 444    ts->vm86plus.cpu_type = tswapal(target_v86->cpu_type);
 445    switch (ts->vm86plus.cpu_type) {
 446    case TARGET_CPU_286:
 447        ts->v86mask = 0;
 448        break;
 449    case TARGET_CPU_386:
 450        ts->v86mask = NT_MASK | IOPL_MASK;
 451        break;
 452    case TARGET_CPU_486:
 453        ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
 454        break;
 455    default:
 456        ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
 457        break;
 458    }
 459
 460    env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
 461    env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
 462    env->regs[R_EDX] = tswap32(target_v86->regs.edx);
 463    env->regs[R_ESI] = tswap32(target_v86->regs.esi);
 464    env->regs[R_EDI] = tswap32(target_v86->regs.edi);
 465    env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
 466    env->regs[R_ESP] = tswap32(target_v86->regs.esp);
 467    env->eip = tswap32(target_v86->regs.eip);
 468    cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
 469    cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
 470    cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
 471    cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
 472    cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
 473    cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
 474    ret = tswap32(target_v86->regs.eax); /* eax will be restored at
 475                                            the end of the syscall */
 476    memcpy(&ts->vm86plus.int_revectored,
 477           &target_v86->int_revectored, 32);
 478    memcpy(&ts->vm86plus.int21_revectored,
 479           &target_v86->int21_revectored, 32);
 480    ts->vm86plus.vm86plus.flags = tswapal(target_v86->vm86plus.flags);
 481    memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
 482           target_v86->vm86plus.vm86dbg_intxxtab, 32);
 483    unlock_user_struct(target_v86, vm86_addr, 0);
 484
 485    LOG_VM86("do_vm86: cs:ip=%04x:%04x\n",
 486             env->segs[R_CS].selector, env->eip);
 487    /* now the virtual CPU is ready for vm86 execution ! */
 488 out:
 489    return ret;
 490}
 491