qemu/target-alpha/vax_helper.c
<<
>>
Prefs
   1/*
   2 *  Helpers for vax floating point instructions.
   3 *
   4 *  Copyright (c) 2007 Jocelyn Mayer
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "exec/helper-proto.h"
  23#include "fpu/softfloat.h"
  24
  25#define FP_STATUS (env->fp_status)
  26
  27
  28/* F floating (VAX) */
  29static uint64_t float32_to_f(float32 fa)
  30{
  31    uint64_t r, exp, mant, sig;
  32    CPU_FloatU a;
  33
  34    a.f = fa;
  35    sig = ((uint64_t)a.l & 0x80000000) << 32;
  36    exp = (a.l >> 23) & 0xff;
  37    mant = ((uint64_t)a.l & 0x007fffff) << 29;
  38
  39    if (exp == 255) {
  40        /* NaN or infinity */
  41        r = 1; /* VAX dirty zero */
  42    } else if (exp == 0) {
  43        if (mant == 0) {
  44            /* Zero */
  45            r = 0;
  46        } else {
  47            /* Denormalized */
  48            r = sig | ((exp + 1) << 52) | mant;
  49        }
  50    } else {
  51        if (exp >= 253) {
  52            /* Overflow */
  53            r = 1; /* VAX dirty zero */
  54        } else {
  55            r = sig | ((exp + 2) << 52);
  56        }
  57    }
  58
  59    return r;
  60}
  61
  62static float32 f_to_float32(CPUAlphaState *env, uintptr_t retaddr, uint64_t a)
  63{
  64    uint32_t exp, mant_sig;
  65    CPU_FloatU r;
  66
  67    exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
  68    mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
  69
  70    if (unlikely(!exp && mant_sig)) {
  71        /* Reserved operands / Dirty zero */
  72        dynamic_excp(env, retaddr, EXCP_OPCDEC, 0);
  73    }
  74
  75    if (exp < 3) {
  76        /* Underflow */
  77        r.l = 0;
  78    } else {
  79        r.l = ((exp - 2) << 23) | mant_sig;
  80    }
  81
  82    return r.f;
  83}
  84
  85uint32_t helper_f_to_memory(uint64_t a)
  86{
  87    uint32_t r;
  88    r =  (a & 0x00001fffe0000000ull) >> 13;
  89    r |= (a & 0x07ffe00000000000ull) >> 45;
  90    r |= (a & 0xc000000000000000ull) >> 48;
  91    return r;
  92}
  93
  94uint64_t helper_memory_to_f(uint32_t a)
  95{
  96    uint64_t r;
  97    r =  ((uint64_t)(a & 0x0000c000)) << 48;
  98    r |= ((uint64_t)(a & 0x003fffff)) << 45;
  99    r |= ((uint64_t)(a & 0xffff0000)) << 13;
 100    if (!(a & 0x00004000)) {
 101        r |= 0x7ll << 59;
 102    }
 103    return r;
 104}
 105
 106/* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong.  We should
 107   either implement VAX arithmetic properly or just signal invalid opcode.  */
 108
 109uint64_t helper_addf(CPUAlphaState *env, uint64_t a, uint64_t b)
 110{
 111    float32 fa, fb, fr;
 112
 113    fa = f_to_float32(env, GETPC(), a);
 114    fb = f_to_float32(env, GETPC(), b);
 115    fr = float32_add(fa, fb, &FP_STATUS);
 116    return float32_to_f(fr);
 117}
 118
 119uint64_t helper_subf(CPUAlphaState *env, uint64_t a, uint64_t b)
 120{
 121    float32 fa, fb, fr;
 122
 123    fa = f_to_float32(env, GETPC(), a);
 124    fb = f_to_float32(env, GETPC(), b);
 125    fr = float32_sub(fa, fb, &FP_STATUS);
 126    return float32_to_f(fr);
 127}
 128
 129uint64_t helper_mulf(CPUAlphaState *env, uint64_t a, uint64_t b)
 130{
 131    float32 fa, fb, fr;
 132
 133    fa = f_to_float32(env, GETPC(), a);
 134    fb = f_to_float32(env, GETPC(), b);
 135    fr = float32_mul(fa, fb, &FP_STATUS);
 136    return float32_to_f(fr);
 137}
 138
 139uint64_t helper_divf(CPUAlphaState *env, uint64_t a, uint64_t b)
 140{
 141    float32 fa, fb, fr;
 142
 143    fa = f_to_float32(env, GETPC(), a);
 144    fb = f_to_float32(env, GETPC(), b);
 145    fr = float32_div(fa, fb, &FP_STATUS);
 146    return float32_to_f(fr);
 147}
 148
 149uint64_t helper_sqrtf(CPUAlphaState *env, uint64_t t)
 150{
 151    float32 ft, fr;
 152
 153    ft = f_to_float32(env, GETPC(), t);
 154    fr = float32_sqrt(ft, &FP_STATUS);
 155    return float32_to_f(fr);
 156}
 157
 158
 159/* G floating (VAX) */
 160static uint64_t float64_to_g(float64 fa)
 161{
 162    uint64_t r, exp, mant, sig;
 163    CPU_DoubleU a;
 164
 165    a.d = fa;
 166    sig = a.ll & 0x8000000000000000ull;
 167    exp = (a.ll >> 52) & 0x7ff;
 168    mant = a.ll & 0x000fffffffffffffull;
 169
 170    if (exp == 2047) {
 171        /* NaN or infinity */
 172        r = 1; /* VAX dirty zero */
 173    } else if (exp == 0) {
 174        if (mant == 0) {
 175            /* Zero */
 176            r = 0;
 177        } else {
 178            /* Denormalized */
 179            r = sig | ((exp + 1) << 52) | mant;
 180        }
 181    } else {
 182        if (exp >= 2045) {
 183            /* Overflow */
 184            r = 1; /* VAX dirty zero */
 185        } else {
 186            r = sig | ((exp + 2) << 52);
 187        }
 188    }
 189
 190    return r;
 191}
 192
 193static float64 g_to_float64(CPUAlphaState *env, uintptr_t retaddr, uint64_t a)
 194{
 195    uint64_t exp, mant_sig;
 196    CPU_DoubleU r;
 197
 198    exp = (a >> 52) & 0x7ff;
 199    mant_sig = a & 0x800fffffffffffffull;
 200
 201    if (!exp && mant_sig) {
 202        /* Reserved operands / Dirty zero */
 203        dynamic_excp(env, retaddr, EXCP_OPCDEC, 0);
 204    }
 205
 206    if (exp < 3) {
 207        /* Underflow */
 208        r.ll = 0;
 209    } else {
 210        r.ll = ((exp - 2) << 52) | mant_sig;
 211    }
 212
 213    return r.d;
 214}
 215
 216uint64_t helper_g_to_memory(uint64_t a)
 217{
 218    uint64_t r;
 219    r =  (a & 0x000000000000ffffull) << 48;
 220    r |= (a & 0x00000000ffff0000ull) << 16;
 221    r |= (a & 0x0000ffff00000000ull) >> 16;
 222    r |= (a & 0xffff000000000000ull) >> 48;
 223    return r;
 224}
 225
 226uint64_t helper_memory_to_g(uint64_t a)
 227{
 228    uint64_t r;
 229    r =  (a & 0x000000000000ffffull) << 48;
 230    r |= (a & 0x00000000ffff0000ull) << 16;
 231    r |= (a & 0x0000ffff00000000ull) >> 16;
 232    r |= (a & 0xffff000000000000ull) >> 48;
 233    return r;
 234}
 235
 236uint64_t helper_addg(CPUAlphaState *env, uint64_t a, uint64_t b)
 237{
 238    float64 fa, fb, fr;
 239
 240    fa = g_to_float64(env, GETPC(), a);
 241    fb = g_to_float64(env, GETPC(), b);
 242    fr = float64_add(fa, fb, &FP_STATUS);
 243    return float64_to_g(fr);
 244}
 245
 246uint64_t helper_subg(CPUAlphaState *env, uint64_t a, uint64_t b)
 247{
 248    float64 fa, fb, fr;
 249
 250    fa = g_to_float64(env, GETPC(), a);
 251    fb = g_to_float64(env, GETPC(), b);
 252    fr = float64_sub(fa, fb, &FP_STATUS);
 253    return float64_to_g(fr);
 254}
 255
 256uint64_t helper_mulg(CPUAlphaState *env, uint64_t a, uint64_t b)
 257{
 258    float64 fa, fb, fr;
 259
 260    fa = g_to_float64(env, GETPC(), a);
 261    fb = g_to_float64(env, GETPC(), b);
 262    fr = float64_mul(fa, fb, &FP_STATUS);
 263    return float64_to_g(fr);
 264}
 265
 266uint64_t helper_divg(CPUAlphaState *env, uint64_t a, uint64_t b)
 267{
 268    float64 fa, fb, fr;
 269
 270    fa = g_to_float64(env, GETPC(), a);
 271    fb = g_to_float64(env, GETPC(), b);
 272    fr = float64_div(fa, fb, &FP_STATUS);
 273    return float64_to_g(fr);
 274}
 275
 276uint64_t helper_sqrtg(CPUAlphaState *env, uint64_t a)
 277{
 278    float64 fa, fr;
 279
 280    fa = g_to_float64(env, GETPC(), a);
 281    fr = float64_sqrt(fa, &FP_STATUS);
 282    return float64_to_g(fr);
 283}
 284
 285uint64_t helper_cmpgeq(CPUAlphaState *env, uint64_t a, uint64_t b)
 286{
 287    float64 fa, fb;
 288
 289    fa = g_to_float64(env, GETPC(), a);
 290    fb = g_to_float64(env, GETPC(), b);
 291
 292    if (float64_eq_quiet(fa, fb, &FP_STATUS)) {
 293        return 0x4000000000000000ULL;
 294    } else {
 295        return 0;
 296    }
 297}
 298
 299uint64_t helper_cmpgle(CPUAlphaState *env, uint64_t a, uint64_t b)
 300{
 301    float64 fa, fb;
 302
 303    fa = g_to_float64(env, GETPC(), a);
 304    fb = g_to_float64(env, GETPC(), b);
 305
 306    if (float64_le(fa, fb, &FP_STATUS)) {
 307        return 0x4000000000000000ULL;
 308    } else {
 309        return 0;
 310    }
 311}
 312
 313uint64_t helper_cmpglt(CPUAlphaState *env, uint64_t a, uint64_t b)
 314{
 315    float64 fa, fb;
 316
 317    fa = g_to_float64(env, GETPC(), a);
 318    fb = g_to_float64(env, GETPC(), b);
 319
 320    if (float64_lt(fa, fb, &FP_STATUS)) {
 321        return 0x4000000000000000ULL;
 322    } else {
 323        return 0;
 324    }
 325}
 326
 327uint64_t helper_cvtqf(CPUAlphaState *env, uint64_t a)
 328{
 329    float32 fr = int64_to_float32(a, &FP_STATUS);
 330    return float32_to_f(fr);
 331}
 332
 333uint64_t helper_cvtgf(CPUAlphaState *env, uint64_t a)
 334{
 335    float64 fa;
 336    float32 fr;
 337
 338    fa = g_to_float64(env, GETPC(), a);
 339    fr = float64_to_float32(fa, &FP_STATUS);
 340    return float32_to_f(fr);
 341}
 342
 343uint64_t helper_cvtgq(CPUAlphaState *env, uint64_t a)
 344{
 345    float64 fa = g_to_float64(env, GETPC(), a);
 346    return float64_to_int64_round_to_zero(fa, &FP_STATUS);
 347}
 348
 349uint64_t helper_cvtqg(CPUAlphaState *env, uint64_t a)
 350{
 351    float64 fr;
 352    fr = int64_to_float64(a, &FP_STATUS);
 353    return float64_to_g(fr);
 354}
 355