qemu/target-arm/arm-powerctl.c
<<
>>
Prefs
   1/*
   2 * QEMU support -- ARM Power Control specific functions.
   3 *
   4 * Copyright (c) 2016 Jean-Christophe Dubois
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include <cpu.h>
  13#include <cpu-qom.h>
  14#include "internals.h"
  15#include "arm-powerctl.h"
  16#include "qemu/log.h"
  17#include "exec/exec-all.h"
  18
  19#ifndef DEBUG_ARM_POWERCTL
  20#define DEBUG_ARM_POWERCTL 0
  21#endif
  22
  23#define DPRINTF(fmt, args...) \
  24    do { \
  25        if (DEBUG_ARM_POWERCTL) { \
  26            fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
  27        } \
  28    } while (0)
  29
  30CPUState *arm_get_cpu_by_id(uint64_t id)
  31{
  32    CPUState *cpu;
  33
  34    DPRINTF("cpu %" PRId64 "\n", id);
  35
  36    CPU_FOREACH(cpu) {
  37        ARMCPU *armcpu = ARM_CPU(cpu);
  38
  39        if (armcpu->mp_affinity == id) {
  40            return cpu;
  41        }
  42    }
  43
  44    qemu_log_mask(LOG_GUEST_ERROR,
  45                  "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
  46                  __func__, id);
  47
  48    return NULL;
  49}
  50
  51int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
  52                   uint32_t target_el, bool target_aa64)
  53{
  54    CPUState *target_cpu_state;
  55    ARMCPU *target_cpu;
  56
  57    DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
  58            "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
  59            context_id);
  60
  61    /* requested EL level need to be in the 1 to 3 range */
  62    assert((target_el > 0) && (target_el < 4));
  63
  64    if (target_aa64 && (entry & 3)) {
  65        /*
  66         * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
  67         * aligned.
  68         */
  69        return QEMU_ARM_POWERCTL_INVALID_PARAM;
  70    }
  71
  72    /* Retrieve the cpu we are powering up */
  73    target_cpu_state = arm_get_cpu_by_id(cpuid);
  74    if (!target_cpu_state) {
  75        /* The cpu was not found */
  76        return QEMU_ARM_POWERCTL_INVALID_PARAM;
  77    }
  78
  79    target_cpu = ARM_CPU(target_cpu_state);
  80    if (!target_cpu->powered_off) {
  81        qemu_log_mask(LOG_GUEST_ERROR,
  82                      "[ARM]%s: CPU %" PRId64 " is already on\n",
  83                      __func__, cpuid);
  84        return QEMU_ARM_POWERCTL_ALREADY_ON;
  85    }
  86
  87    /*
  88     * The newly brought CPU is requested to enter the exception level
  89     * "target_el" and be in the requested mode (AArch64 or AArch32).
  90     */
  91
  92    if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
  93        ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
  94        /*
  95         * The CPU does not support requested level
  96         */
  97        return QEMU_ARM_POWERCTL_INVALID_PARAM;
  98    }
  99
 100    if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
 101        /*
 102         * For now we don't support booting an AArch64 CPU in AArch32 mode
 103         * TODO: We should add this support later
 104         */
 105        qemu_log_mask(LOG_UNIMP,
 106                      "[ARM]%s: Starting AArch64 CPU %" PRId64
 107                      " in AArch32 mode is not supported yet\n",
 108                      __func__, cpuid);
 109        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 110    }
 111
 112    /* Initialize the cpu we are turning on */
 113    cpu_reset(target_cpu_state);
 114    target_cpu->powered_off = false;
 115    target_cpu_state->halted = 0;
 116
 117    if (target_aa64) {
 118        if ((target_el < 3) && arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) {
 119            /*
 120             * As target mode is AArch64, we need to set lower
 121             * exception level (the requested level 2) to AArch64
 122             */
 123            target_cpu->env.cp15.scr_el3 |= SCR_RW;
 124        }
 125
 126        if ((target_el < 2) && arm_feature(&target_cpu->env, ARM_FEATURE_EL2)) {
 127            /*
 128             * As target mode is AArch64, we need to set lower
 129             * exception level (the requested level 1) to AArch64
 130             */
 131            target_cpu->env.cp15.hcr_el2 |= HCR_RW;
 132        }
 133
 134        target_cpu->env.pstate = aarch64_pstate_mode(target_el, true);
 135    } else {
 136        /* We are requested to boot in AArch32 mode */
 137        static uint32_t mode_for_el[] = { 0,
 138                                          ARM_CPU_MODE_SVC,
 139                                          ARM_CPU_MODE_HYP,
 140                                          ARM_CPU_MODE_SVC };
 141
 142        cpsr_write(&target_cpu->env, mode_for_el[target_el], CPSR_M,
 143                   CPSRWriteRaw);
 144    }
 145
 146    if (target_el == 3) {
 147        /* Processor is in secure mode */
 148        target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
 149    } else {
 150        /* Processor is not in secure mode */
 151        target_cpu->env.cp15.scr_el3 |= SCR_NS;
 152    }
 153
 154    /* We check if the started CPU is now at the correct level */
 155    assert(target_el == arm_current_el(&target_cpu->env));
 156
 157    if (target_aa64) {
 158        target_cpu->env.xregs[0] = context_id;
 159        target_cpu->env.thumb = false;
 160    } else {
 161        target_cpu->env.regs[0] = context_id;
 162        target_cpu->env.thumb = entry & 1;
 163        entry &= 0xfffffffe;
 164    }
 165
 166    /* Start the new CPU at the requested address */
 167    cpu_set_pc(target_cpu_state, entry);
 168
 169    /* We are good to go */
 170    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 171}
 172
 173int arm_set_cpu_off(uint64_t cpuid)
 174{
 175    CPUState *target_cpu_state;
 176    ARMCPU *target_cpu;
 177
 178    DPRINTF("cpu %" PRId64 "\n", cpuid);
 179
 180    /* change to the cpu we are powering up */
 181    target_cpu_state = arm_get_cpu_by_id(cpuid);
 182    if (!target_cpu_state) {
 183        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 184    }
 185    target_cpu = ARM_CPU(target_cpu_state);
 186    if (target_cpu->powered_off) {
 187        qemu_log_mask(LOG_GUEST_ERROR,
 188                      "[ARM]%s: CPU %" PRId64 " is already off\n",
 189                      __func__, cpuid);
 190        return QEMU_ARM_POWERCTL_IS_OFF;
 191    }
 192
 193    target_cpu->powered_off = true;
 194    target_cpu_state->halted = 1;
 195    target_cpu_state->exception_index = EXCP_HLT;
 196    cpu_loop_exit(target_cpu_state);
 197    /* notreached */
 198
 199    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 200}
 201
 202int arm_reset_cpu(uint64_t cpuid)
 203{
 204    CPUState *target_cpu_state;
 205    ARMCPU *target_cpu;
 206
 207    DPRINTF("cpu %" PRId64 "\n", cpuid);
 208
 209    /* change to the cpu we are resetting */
 210    target_cpu_state = arm_get_cpu_by_id(cpuid);
 211    if (!target_cpu_state) {
 212        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 213    }
 214    target_cpu = ARM_CPU(target_cpu_state);
 215    if (target_cpu->powered_off) {
 216        qemu_log_mask(LOG_GUEST_ERROR,
 217                      "[ARM]%s: CPU %" PRId64 " is off\n",
 218                      __func__, cpuid);
 219        return QEMU_ARM_POWERCTL_IS_OFF;
 220    }
 221
 222    /* Reset the cpu */
 223    cpu_reset(target_cpu_state);
 224
 225    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 226}
 227