qemu/target-arm/kvm64.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks, 64 bit specific code
   3 *
   4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
   5 * Copyright Alex Bennée 2014, Linaro
   6 *
   7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   8 * See the COPYING file in the top-level directory.
   9 *
  10 */
  11
  12#include "qemu/osdep.h"
  13#include <sys/ioctl.h>
  14#include <sys/mman.h>
  15#include <sys/ptrace.h>
  16
  17#include <linux/elf.h>
  18#include <linux/kvm.h>
  19
  20#include "qemu-common.h"
  21#include "cpu.h"
  22#include "qemu/timer.h"
  23#include "qemu/error-report.h"
  24#include "qemu/host-utils.h"
  25#include "exec/gdbstub.h"
  26#include "sysemu/sysemu.h"
  27#include "sysemu/kvm.h"
  28#include "kvm_arm.h"
  29#include "internals.h"
  30#include "hw/arm/arm.h"
  31
  32static bool have_guest_debug;
  33
  34/*
  35 * Although the ARM implementation of hardware assisted debugging
  36 * allows for different breakpoints per-core, the current GDB
  37 * interface treats them as a global pool of registers (which seems to
  38 * be the case for x86, ppc and s390). As a result we store one copy
  39 * of registers which is used for all active cores.
  40 *
  41 * Write access is serialised by virtue of the GDB protocol which
  42 * updates things. Read access (i.e. when the values are copied to the
  43 * vCPU) is also gated by GDB's run control.
  44 *
  45 * This is not unreasonable as most of the time debugging kernels you
  46 * never know which core will eventually execute your function.
  47 */
  48
  49typedef struct {
  50    uint64_t bcr;
  51    uint64_t bvr;
  52} HWBreakpoint;
  53
  54/* The watchpoint registers can cover more area than the requested
  55 * watchpoint so we need to store the additional information
  56 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
  57 * when the watchpoint is hit.
  58 */
  59typedef struct {
  60    uint64_t wcr;
  61    uint64_t wvr;
  62    CPUWatchpoint details;
  63} HWWatchpoint;
  64
  65/* Maximum and current break/watch point counts */
  66int max_hw_bps, max_hw_wps;
  67GArray *hw_breakpoints, *hw_watchpoints;
  68
  69#define cur_hw_wps      (hw_watchpoints->len)
  70#define cur_hw_bps      (hw_breakpoints->len)
  71#define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
  72#define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
  73
  74/**
  75 * kvm_arm_init_debug() - check for guest debug capabilities
  76 * @cs: CPUState
  77 *
  78 * kvm_check_extension returns the number of debug registers we have
  79 * or 0 if we have none.
  80 *
  81 */
  82static void kvm_arm_init_debug(CPUState *cs)
  83{
  84    have_guest_debug = kvm_check_extension(cs->kvm_state,
  85                                           KVM_CAP_SET_GUEST_DEBUG);
  86
  87    max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
  88    hw_watchpoints = g_array_sized_new(true, true,
  89                                       sizeof(HWWatchpoint), max_hw_wps);
  90
  91    max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
  92    hw_breakpoints = g_array_sized_new(true, true,
  93                                       sizeof(HWBreakpoint), max_hw_bps);
  94    return;
  95}
  96
  97/**
  98 * insert_hw_breakpoint()
  99 * @addr: address of breakpoint
 100 *
 101 * See ARM ARM D2.9.1 for details but here we are only going to create
 102 * simple un-linked breakpoints (i.e. we don't chain breakpoints
 103 * together to match address and context or vmid). The hardware is
 104 * capable of fancier matching but that will require exposing that
 105 * fanciness to GDB's interface
 106 *
 107 * D7.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers
 108 *
 109 *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
 110 * +------+------+-------+-----+----+------+-----+------+-----+---+
 111 * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
 112 * +------+------+-------+-----+----+------+-----+------+-----+---+
 113 *
 114 * BT: Breakpoint type (0 = unlinked address match)
 115 * LBN: Linked BP number (0 = unused)
 116 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
 117 * BAS: Byte Address Select (RES1 for AArch64)
 118 * E: Enable bit
 119 */
 120static int insert_hw_breakpoint(target_ulong addr)
 121{
 122    HWBreakpoint brk = {
 123        .bcr = 0x1,                             /* BCR E=1, enable */
 124        .bvr = addr
 125    };
 126
 127    if (cur_hw_bps >= max_hw_bps) {
 128        return -ENOBUFS;
 129    }
 130
 131    brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
 132    brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */
 133
 134    g_array_append_val(hw_breakpoints, brk);
 135
 136    return 0;
 137}
 138
 139/**
 140 * delete_hw_breakpoint()
 141 * @pc: address of breakpoint
 142 *
 143 * Delete a breakpoint and shuffle any above down
 144 */
 145
 146static int delete_hw_breakpoint(target_ulong pc)
 147{
 148    int i;
 149    for (i = 0; i < hw_breakpoints->len; i++) {
 150        HWBreakpoint *brk = get_hw_bp(i);
 151        if (brk->bvr == pc) {
 152            g_array_remove_index(hw_breakpoints, i);
 153            return 0;
 154        }
 155    }
 156    return -ENOENT;
 157}
 158
 159/**
 160 * insert_hw_watchpoint()
 161 * @addr: address of watch point
 162 * @len: size of area
 163 * @type: type of watch point
 164 *
 165 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
 166 * stuff if we want to. The watch points can be linked with the break
 167 * points above to make them context aware. However for simplicity
 168 * currently we only deal with simple read/write watch points.
 169 *
 170 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
 171 *
 172 *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
 173 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 174 * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
 175 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 176 *
 177 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
 178 * WT: 0 - unlinked, 1 - linked (not currently used)
 179 * LBN: Linked BP number (not currently used)
 180 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
 181 * BAS: Byte Address Select
 182 * LSC: Load/Store control (01: load, 10: store, 11: both)
 183 * E: Enable
 184 *
 185 * The bottom 2 bits of the value register are masked. Therefore to
 186 * break on any sizes smaller than an unaligned word you need to set
 187 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
 188 * need to ensure you mask the address as required and set BAS=0xff
 189 */
 190
 191static int insert_hw_watchpoint(target_ulong addr,
 192                                target_ulong len, int type)
 193{
 194    HWWatchpoint wp = {
 195        .wcr = 1, /* E=1, enable */
 196        .wvr = addr & (~0x7ULL),
 197        .details = { .vaddr = addr, .len = len }
 198    };
 199
 200    if (cur_hw_wps >= max_hw_wps) {
 201        return -ENOBUFS;
 202    }
 203
 204    /*
 205     * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
 206     * valid whether EL3 is implemented or not
 207     */
 208    wp.wcr = deposit32(wp.wcr, 1, 2, 3);
 209
 210    switch (type) {
 211    case GDB_WATCHPOINT_READ:
 212        wp.wcr = deposit32(wp.wcr, 3, 2, 1);
 213        wp.details.flags = BP_MEM_READ;
 214        break;
 215    case GDB_WATCHPOINT_WRITE:
 216        wp.wcr = deposit32(wp.wcr, 3, 2, 2);
 217        wp.details.flags = BP_MEM_WRITE;
 218        break;
 219    case GDB_WATCHPOINT_ACCESS:
 220        wp.wcr = deposit32(wp.wcr, 3, 2, 3);
 221        wp.details.flags = BP_MEM_ACCESS;
 222        break;
 223    default:
 224        g_assert_not_reached();
 225        break;
 226    }
 227    if (len <= 8) {
 228        /* we align the address and set the bits in BAS */
 229        int off = addr & 0x7;
 230        int bas = (1 << len) - 1;
 231
 232        wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
 233    } else {
 234        /* For ranges above 8 bytes we need to be a power of 2 */
 235        if (is_power_of_2(len)) {
 236            int bits = ctz64(len);
 237
 238            wp.wvr &= ~((1 << bits) - 1);
 239            wp.wcr = deposit32(wp.wcr, 24, 4, bits);
 240            wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
 241        } else {
 242            return -ENOBUFS;
 243        }
 244    }
 245
 246    g_array_append_val(hw_watchpoints, wp);
 247    return 0;
 248}
 249
 250
 251static bool check_watchpoint_in_range(int i, target_ulong addr)
 252{
 253    HWWatchpoint *wp = get_hw_wp(i);
 254    uint64_t addr_top, addr_bottom = wp->wvr;
 255    int bas = extract32(wp->wcr, 5, 8);
 256    int mask = extract32(wp->wcr, 24, 4);
 257
 258    if (mask) {
 259        addr_top = addr_bottom + (1 << mask);
 260    } else {
 261        /* BAS must be contiguous but can offset against the base
 262         * address in DBGWVR */
 263        addr_bottom = addr_bottom + ctz32(bas);
 264        addr_top = addr_bottom + clo32(bas);
 265    }
 266
 267    if (addr >= addr_bottom && addr <= addr_top) {
 268        return true;
 269    }
 270
 271    return false;
 272}
 273
 274/**
 275 * delete_hw_watchpoint()
 276 * @addr: address of breakpoint
 277 *
 278 * Delete a breakpoint and shuffle any above down
 279 */
 280
 281static int delete_hw_watchpoint(target_ulong addr,
 282                                target_ulong len, int type)
 283{
 284    int i;
 285    for (i = 0; i < cur_hw_wps; i++) {
 286        if (check_watchpoint_in_range(i, addr)) {
 287            g_array_remove_index(hw_watchpoints, i);
 288            return 0;
 289        }
 290    }
 291    return -ENOENT;
 292}
 293
 294
 295int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 296                                  target_ulong len, int type)
 297{
 298    switch (type) {
 299    case GDB_BREAKPOINT_HW:
 300        return insert_hw_breakpoint(addr);
 301        break;
 302    case GDB_WATCHPOINT_READ:
 303    case GDB_WATCHPOINT_WRITE:
 304    case GDB_WATCHPOINT_ACCESS:
 305        return insert_hw_watchpoint(addr, len, type);
 306    default:
 307        return -ENOSYS;
 308    }
 309}
 310
 311int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 312                                  target_ulong len, int type)
 313{
 314    switch (type) {
 315    case GDB_BREAKPOINT_HW:
 316        return delete_hw_breakpoint(addr);
 317        break;
 318    case GDB_WATCHPOINT_READ:
 319    case GDB_WATCHPOINT_WRITE:
 320    case GDB_WATCHPOINT_ACCESS:
 321        return delete_hw_watchpoint(addr, len, type);
 322    default:
 323        return -ENOSYS;
 324    }
 325}
 326
 327
 328void kvm_arch_remove_all_hw_breakpoints(void)
 329{
 330    if (cur_hw_wps > 0) {
 331        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
 332    }
 333    if (cur_hw_bps > 0) {
 334        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
 335    }
 336}
 337
 338void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
 339{
 340    int i;
 341    memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
 342
 343    for (i = 0; i < max_hw_wps; i++) {
 344        HWWatchpoint *wp = get_hw_wp(i);
 345        ptr->dbg_wcr[i] = wp->wcr;
 346        ptr->dbg_wvr[i] = wp->wvr;
 347    }
 348    for (i = 0; i < max_hw_bps; i++) {
 349        HWBreakpoint *bp = get_hw_bp(i);
 350        ptr->dbg_bcr[i] = bp->bcr;
 351        ptr->dbg_bvr[i] = bp->bvr;
 352    }
 353}
 354
 355bool kvm_arm_hw_debug_active(CPUState *cs)
 356{
 357    return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
 358}
 359
 360static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
 361{
 362    int i;
 363
 364    for (i = 0; i < cur_hw_bps; i++) {
 365        HWBreakpoint *bp = get_hw_bp(i);
 366        if (bp->bvr == pc) {
 367            return true;
 368        }
 369    }
 370    return false;
 371}
 372
 373static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
 374{
 375    int i;
 376
 377    for (i = 0; i < cur_hw_wps; i++) {
 378        if (check_watchpoint_in_range(i, addr)) {
 379            return &get_hw_wp(i)->details;
 380        }
 381    }
 382    return NULL;
 383}
 384
 385
 386static inline void set_feature(uint64_t *features, int feature)
 387{
 388    *features |= 1ULL << feature;
 389}
 390
 391bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
 392{
 393    /* Identify the feature bits corresponding to the host CPU, and
 394     * fill out the ARMHostCPUClass fields accordingly. To do this
 395     * we have to create a scratch VM, create a single CPU inside it,
 396     * and then query that CPU for the relevant ID registers.
 397     * For AArch64 we currently don't care about ID registers at
 398     * all; we just want to know the CPU type.
 399     */
 400    int fdarray[3];
 401    uint64_t features = 0;
 402    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
 403     * we know these will only support creating one kind of guest CPU,
 404     * which is its preferred CPU type. Fortunately these old kernels
 405     * support only a very limited number of CPUs.
 406     */
 407    static const uint32_t cpus_to_try[] = {
 408        KVM_ARM_TARGET_AEM_V8,
 409        KVM_ARM_TARGET_FOUNDATION_V8,
 410        KVM_ARM_TARGET_CORTEX_A57,
 411        QEMU_KVM_ARM_TARGET_NONE
 412    };
 413    struct kvm_vcpu_init init;
 414
 415    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
 416        return false;
 417    }
 418
 419    ahcc->target = init.target;
 420    ahcc->dtb_compatible = "arm,arm-v8";
 421
 422    kvm_arm_destroy_scratch_host_vcpu(fdarray);
 423
 424   /* We can assume any KVM supporting CPU is at least a v8
 425     * with VFPv4+Neon; this in turn implies most of the other
 426     * feature bits.
 427     */
 428    set_feature(&features, ARM_FEATURE_V8);
 429    set_feature(&features, ARM_FEATURE_VFP4);
 430    set_feature(&features, ARM_FEATURE_NEON);
 431    set_feature(&features, ARM_FEATURE_AARCH64);
 432
 433    ahcc->features = features;
 434
 435    return true;
 436}
 437
 438#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
 439
 440int kvm_arch_init_vcpu(CPUState *cs)
 441{
 442    int ret;
 443    uint64_t mpidr;
 444    ARMCPU *cpu = ARM_CPU(cs);
 445
 446    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
 447        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
 448        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
 449        return -EINVAL;
 450    }
 451
 452    /* Determine init features for this CPU */
 453    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
 454    if (cpu->start_powered_off) {
 455        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
 456    }
 457    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
 458        cpu->psci_version = 2;
 459        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
 460    }
 461    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 462        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
 463    }
 464
 465    /* Do KVM_ARM_VCPU_INIT ioctl */
 466    ret = kvm_arm_vcpu_init(cs);
 467    if (ret) {
 468        return ret;
 469    }
 470
 471    /*
 472     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
 473     * Currently KVM has its own idea about MPIDR assignment, so we
 474     * override our defaults with what we get from KVM.
 475     */
 476    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
 477    if (ret) {
 478        return ret;
 479    }
 480    cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
 481
 482    kvm_arm_init_debug(cs);
 483
 484    return kvm_arm_init_cpreg_list(cpu);
 485}
 486
 487bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
 488{
 489    /* Return true if the regidx is a register we should synchronize
 490     * via the cpreg_tuples array (ie is not a core reg we sync by
 491     * hand in kvm_arch_get/put_registers())
 492     */
 493    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
 494    case KVM_REG_ARM_CORE:
 495        return false;
 496    default:
 497        return true;
 498    }
 499}
 500
 501typedef struct CPRegStateLevel {
 502    uint64_t regidx;
 503    int level;
 504} CPRegStateLevel;
 505
 506/* All system registers not listed in the following table are assumed to be
 507 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
 508 * often, you must add it to this table with a state of either
 509 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
 510 */
 511static const CPRegStateLevel non_runtime_cpregs[] = {
 512    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
 513};
 514
 515int kvm_arm_cpreg_level(uint64_t regidx)
 516{
 517    int i;
 518
 519    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
 520        const CPRegStateLevel *l = &non_runtime_cpregs[i];
 521        if (l->regidx == regidx) {
 522            return l->level;
 523        }
 524    }
 525
 526    return KVM_PUT_RUNTIME_STATE;
 527}
 528
 529#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
 530                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 531
 532#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
 533                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 534
 535#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
 536                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 537
 538int kvm_arch_put_registers(CPUState *cs, int level)
 539{
 540    struct kvm_one_reg reg;
 541    uint32_t fpr;
 542    uint64_t val;
 543    int i;
 544    int ret;
 545    unsigned int el;
 546
 547    ARMCPU *cpu = ARM_CPU(cs);
 548    CPUARMState *env = &cpu->env;
 549
 550    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
 551     * AArch64 registers before pushing them out to 64-bit KVM.
 552     */
 553    if (!is_a64(env)) {
 554        aarch64_sync_32_to_64(env);
 555    }
 556
 557    for (i = 0; i < 31; i++) {
 558        reg.id = AARCH64_CORE_REG(regs.regs[i]);
 559        reg.addr = (uintptr_t) &env->xregs[i];
 560        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 561        if (ret) {
 562            return ret;
 563        }
 564    }
 565
 566    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 567     * QEMU side we keep the current SP in xregs[31] as well.
 568     */
 569    aarch64_save_sp(env, 1);
 570
 571    reg.id = AARCH64_CORE_REG(regs.sp);
 572    reg.addr = (uintptr_t) &env->sp_el[0];
 573    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 574    if (ret) {
 575        return ret;
 576    }
 577
 578    reg.id = AARCH64_CORE_REG(sp_el1);
 579    reg.addr = (uintptr_t) &env->sp_el[1];
 580    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 581    if (ret) {
 582        return ret;
 583    }
 584
 585    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
 586    if (is_a64(env)) {
 587        val = pstate_read(env);
 588    } else {
 589        val = cpsr_read(env);
 590    }
 591    reg.id = AARCH64_CORE_REG(regs.pstate);
 592    reg.addr = (uintptr_t) &val;
 593    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 594    if (ret) {
 595        return ret;
 596    }
 597
 598    reg.id = AARCH64_CORE_REG(regs.pc);
 599    reg.addr = (uintptr_t) &env->pc;
 600    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 601    if (ret) {
 602        return ret;
 603    }
 604
 605    reg.id = AARCH64_CORE_REG(elr_el1);
 606    reg.addr = (uintptr_t) &env->elr_el[1];
 607    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 608    if (ret) {
 609        return ret;
 610    }
 611
 612    /* Saved Program State Registers
 613     *
 614     * Before we restore from the banked_spsr[] array we need to
 615     * ensure that any modifications to env->spsr are correctly
 616     * reflected in the banks.
 617     */
 618    el = arm_current_el(env);
 619    if (el > 0 && !is_a64(env)) {
 620        i = bank_number(env->uncached_cpsr & CPSR_M);
 621        env->banked_spsr[i] = env->spsr;
 622    }
 623
 624    /* KVM 0-4 map to QEMU banks 1-5 */
 625    for (i = 0; i < KVM_NR_SPSR; i++) {
 626        reg.id = AARCH64_CORE_REG(spsr[i]);
 627        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
 628        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 629        if (ret) {
 630            return ret;
 631        }
 632    }
 633
 634    /* Advanced SIMD and FP registers
 635     * We map Qn = regs[2n+1]:regs[2n]
 636     */
 637    for (i = 0; i < 32; i++) {
 638        int rd = i << 1;
 639        uint64_t fp_val[2];
 640#ifdef HOST_WORDS_BIGENDIAN
 641        fp_val[0] = env->vfp.regs[rd + 1];
 642        fp_val[1] = env->vfp.regs[rd];
 643#else
 644        fp_val[1] = env->vfp.regs[rd + 1];
 645        fp_val[0] = env->vfp.regs[rd];
 646#endif
 647        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
 648        reg.addr = (uintptr_t)(&fp_val);
 649        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 650        if (ret) {
 651            return ret;
 652        }
 653    }
 654
 655    reg.addr = (uintptr_t)(&fpr);
 656    fpr = vfp_get_fpsr(env);
 657    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
 658    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 659    if (ret) {
 660        return ret;
 661    }
 662
 663    fpr = vfp_get_fpcr(env);
 664    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
 665    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 666    if (ret) {
 667        return ret;
 668    }
 669
 670    if (!write_list_to_kvmstate(cpu, level)) {
 671        return EINVAL;
 672    }
 673
 674    kvm_arm_sync_mpstate_to_kvm(cpu);
 675
 676    return ret;
 677}
 678
 679int kvm_arch_get_registers(CPUState *cs)
 680{
 681    struct kvm_one_reg reg;
 682    uint64_t val;
 683    uint32_t fpr;
 684    unsigned int el;
 685    int i;
 686    int ret;
 687
 688    ARMCPU *cpu = ARM_CPU(cs);
 689    CPUARMState *env = &cpu->env;
 690
 691    for (i = 0; i < 31; i++) {
 692        reg.id = AARCH64_CORE_REG(regs.regs[i]);
 693        reg.addr = (uintptr_t) &env->xregs[i];
 694        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 695        if (ret) {
 696            return ret;
 697        }
 698    }
 699
 700    reg.id = AARCH64_CORE_REG(regs.sp);
 701    reg.addr = (uintptr_t) &env->sp_el[0];
 702    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 703    if (ret) {
 704        return ret;
 705    }
 706
 707    reg.id = AARCH64_CORE_REG(sp_el1);
 708    reg.addr = (uintptr_t) &env->sp_el[1];
 709    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 710    if (ret) {
 711        return ret;
 712    }
 713
 714    reg.id = AARCH64_CORE_REG(regs.pstate);
 715    reg.addr = (uintptr_t) &val;
 716    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 717    if (ret) {
 718        return ret;
 719    }
 720
 721    env->aarch64 = ((val & PSTATE_nRW) == 0);
 722    if (is_a64(env)) {
 723        pstate_write(env, val);
 724    } else {
 725        cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
 726    }
 727
 728    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 729     * QEMU side we keep the current SP in xregs[31] as well.
 730     */
 731    aarch64_restore_sp(env, 1);
 732
 733    reg.id = AARCH64_CORE_REG(regs.pc);
 734    reg.addr = (uintptr_t) &env->pc;
 735    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 736    if (ret) {
 737        return ret;
 738    }
 739
 740    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
 741     * incoming AArch64 regs received from 64-bit KVM.
 742     * We must perform this after all of the registers have been acquired from
 743     * the kernel.
 744     */
 745    if (!is_a64(env)) {
 746        aarch64_sync_64_to_32(env);
 747    }
 748
 749    reg.id = AARCH64_CORE_REG(elr_el1);
 750    reg.addr = (uintptr_t) &env->elr_el[1];
 751    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 752    if (ret) {
 753        return ret;
 754    }
 755
 756    /* Fetch the SPSR registers
 757     *
 758     * KVM SPSRs 0-4 map to QEMU banks 1-5
 759     */
 760    for (i = 0; i < KVM_NR_SPSR; i++) {
 761        reg.id = AARCH64_CORE_REG(spsr[i]);
 762        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
 763        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 764        if (ret) {
 765            return ret;
 766        }
 767    }
 768
 769    el = arm_current_el(env);
 770    if (el > 0 && !is_a64(env)) {
 771        i = bank_number(env->uncached_cpsr & CPSR_M);
 772        env->spsr = env->banked_spsr[i];
 773    }
 774
 775    /* Advanced SIMD and FP registers
 776     * We map Qn = regs[2n+1]:regs[2n]
 777     */
 778    for (i = 0; i < 32; i++) {
 779        uint64_t fp_val[2];
 780        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
 781        reg.addr = (uintptr_t)(&fp_val);
 782        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 783        if (ret) {
 784            return ret;
 785        } else {
 786            int rd = i << 1;
 787#ifdef HOST_WORDS_BIGENDIAN
 788            env->vfp.regs[rd + 1] = fp_val[0];
 789            env->vfp.regs[rd] = fp_val[1];
 790#else
 791            env->vfp.regs[rd + 1] = fp_val[1];
 792            env->vfp.regs[rd] = fp_val[0];
 793#endif
 794        }
 795    }
 796
 797    reg.addr = (uintptr_t)(&fpr);
 798    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
 799    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 800    if (ret) {
 801        return ret;
 802    }
 803    vfp_set_fpsr(env, fpr);
 804
 805    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
 806    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 807    if (ret) {
 808        return ret;
 809    }
 810    vfp_set_fpcr(env, fpr);
 811
 812    if (!write_kvmstate_to_list(cpu)) {
 813        return EINVAL;
 814    }
 815    /* Note that it's OK to have registers which aren't in CPUState,
 816     * so we can ignore a failure return here.
 817     */
 818    write_list_to_cpustate(cpu);
 819
 820    kvm_arm_sync_mpstate_to_qemu(cpu);
 821
 822    /* TODO: other registers */
 823    return ret;
 824}
 825
 826/* C6.6.29 BRK instruction */
 827static const uint32_t brk_insn = 0xd4200000;
 828
 829int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 830{
 831    if (have_guest_debug) {
 832        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
 833            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
 834            return -EINVAL;
 835        }
 836        return 0;
 837    } else {
 838        error_report("guest debug not supported on this kernel");
 839        return -EINVAL;
 840    }
 841}
 842
 843int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 844{
 845    static uint32_t brk;
 846
 847    if (have_guest_debug) {
 848        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
 849            brk != brk_insn ||
 850            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
 851            return -EINVAL;
 852        }
 853        return 0;
 854    } else {
 855        error_report("guest debug not supported on this kernel");
 856        return -EINVAL;
 857    }
 858}
 859
 860/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
 861 *
 862 * To minimise translating between kernel and user-space the kernel
 863 * ABI just provides user-space with the full exception syndrome
 864 * register value to be decoded in QEMU.
 865 */
 866
 867bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
 868{
 869    int hsr_ec = debug_exit->hsr >> ARM_EL_EC_SHIFT;
 870    ARMCPU *cpu = ARM_CPU(cs);
 871    CPUClass *cc = CPU_GET_CLASS(cs);
 872    CPUARMState *env = &cpu->env;
 873
 874    /* Ensure PC is synchronised */
 875    kvm_cpu_synchronize_state(cs);
 876
 877    switch (hsr_ec) {
 878    case EC_SOFTWARESTEP:
 879        if (cs->singlestep_enabled) {
 880            return true;
 881        } else {
 882            /*
 883             * The kernel should have suppressed the guest's ability to
 884             * single step at this point so something has gone wrong.
 885             */
 886            error_report("%s: guest single-step while debugging unsupported"
 887                         " (%"PRIx64", %"PRIx32")\n",
 888                         __func__, env->pc, debug_exit->hsr);
 889            return false;
 890        }
 891        break;
 892    case EC_AA64_BKPT:
 893        if (kvm_find_sw_breakpoint(cs, env->pc)) {
 894            return true;
 895        }
 896        break;
 897    case EC_BREAKPOINT:
 898        if (find_hw_breakpoint(cs, env->pc)) {
 899            return true;
 900        }
 901        break;
 902    case EC_WATCHPOINT:
 903    {
 904        CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
 905        if (wp) {
 906            cs->watchpoint_hit = wp;
 907            return true;
 908        }
 909        break;
 910    }
 911    default:
 912        error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")\n",
 913                     __func__, debug_exit->hsr, env->pc);
 914    }
 915
 916    /* If we are not handling the debug exception it must belong to
 917     * the guest. Let's re-use the existing TCG interrupt code to set
 918     * everything up properly.
 919     */
 920    cs->exception_index = EXCP_BKPT;
 921    env->exception.syndrome = debug_exit->hsr;
 922    env->exception.vaddress = debug_exit->far;
 923    cc->do_interrupt(cs);
 924
 925    return false;
 926}
 927