qemu/target-i386/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright (C) 2006-2008 Qumranet Technologies
   5 * Copyright IBM, Corp. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qapi/error.h"
  17#include <sys/ioctl.h>
  18#include <sys/mman.h>
  19#include <sys/utsname.h>
  20
  21#include <linux/kvm.h>
  22#include <linux/kvm_para.h>
  23
  24#include "qemu-common.h"
  25#include "sysemu/sysemu.h"
  26#include "sysemu/kvm_int.h"
  27#include "kvm_i386.h"
  28#include "cpu.h"
  29#include "hyperv.h"
  30
  31#include "exec/gdbstub.h"
  32#include "qemu/host-utils.h"
  33#include "qemu/config-file.h"
  34#include "qemu/error-report.h"
  35#include "hw/i386/pc.h"
  36#include "hw/i386/apic.h"
  37#include "hw/i386/apic_internal.h"
  38#include "hw/i386/apic-msidef.h"
  39
  40#include "exec/ioport.h"
  41#include "standard-headers/asm-x86/hyperv.h"
  42#include "hw/pci/pci.h"
  43#include "hw/pci/msi.h"
  44#include "migration/migration.h"
  45#include "exec/memattrs.h"
  46
  47//#define DEBUG_KVM
  48
  49#ifdef DEBUG_KVM
  50#define DPRINTF(fmt, ...) \
  51    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  52#else
  53#define DPRINTF(fmt, ...) \
  54    do { } while (0)
  55#endif
  56
  57#define MSR_KVM_WALL_CLOCK  0x11
  58#define MSR_KVM_SYSTEM_TIME 0x12
  59
  60#ifndef BUS_MCEERR_AR
  61#define BUS_MCEERR_AR 4
  62#endif
  63#ifndef BUS_MCEERR_AO
  64#define BUS_MCEERR_AO 5
  65#endif
  66
  67const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  68    KVM_CAP_INFO(SET_TSS_ADDR),
  69    KVM_CAP_INFO(EXT_CPUID),
  70    KVM_CAP_INFO(MP_STATE),
  71    KVM_CAP_LAST_INFO
  72};
  73
  74static bool has_msr_star;
  75static bool has_msr_hsave_pa;
  76static bool has_msr_tsc_aux;
  77static bool has_msr_tsc_adjust;
  78static bool has_msr_tsc_deadline;
  79static bool has_msr_feature_control;
  80static bool has_msr_async_pf_en;
  81static bool has_msr_pv_eoi_en;
  82static bool has_msr_misc_enable;
  83static bool has_msr_smbase;
  84static bool has_msr_bndcfgs;
  85static bool has_msr_kvm_steal_time;
  86static int lm_capable_kernel;
  87static bool has_msr_hv_hypercall;
  88static bool has_msr_hv_vapic;
  89static bool has_msr_hv_tsc;
  90static bool has_msr_hv_crash;
  91static bool has_msr_hv_reset;
  92static bool has_msr_hv_vpindex;
  93static bool has_msr_hv_runtime;
  94static bool has_msr_hv_synic;
  95static bool has_msr_hv_stimer;
  96static bool has_msr_mtrr;
  97static bool has_msr_xss;
  98
  99static bool has_msr_architectural_pmu;
 100static uint32_t num_architectural_pmu_counters;
 101
 102static int has_xsave;
 103static int has_xcrs;
 104static int has_pit_state2;
 105
 106int kvm_has_pit_state2(void)
 107{
 108    return has_pit_state2;
 109}
 110
 111bool kvm_has_smm(void)
 112{
 113    return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
 114}
 115
 116bool kvm_allows_irq0_override(void)
 117{
 118    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
 119}
 120
 121static int kvm_get_tsc(CPUState *cs)
 122{
 123    X86CPU *cpu = X86_CPU(cs);
 124    CPUX86State *env = &cpu->env;
 125    struct {
 126        struct kvm_msrs info;
 127        struct kvm_msr_entry entries[1];
 128    } msr_data;
 129    int ret;
 130
 131    if (env->tsc_valid) {
 132        return 0;
 133    }
 134
 135    msr_data.info.nmsrs = 1;
 136    msr_data.entries[0].index = MSR_IA32_TSC;
 137    env->tsc_valid = !runstate_is_running();
 138
 139    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
 140    if (ret < 0) {
 141        return ret;
 142    }
 143
 144    assert(ret == 1);
 145    env->tsc = msr_data.entries[0].data;
 146    return 0;
 147}
 148
 149static inline void do_kvm_synchronize_tsc(void *arg)
 150{
 151    CPUState *cpu = arg;
 152
 153    kvm_get_tsc(cpu);
 154}
 155
 156void kvm_synchronize_all_tsc(void)
 157{
 158    CPUState *cpu;
 159
 160    if (kvm_enabled()) {
 161        CPU_FOREACH(cpu) {
 162            run_on_cpu(cpu, do_kvm_synchronize_tsc, cpu);
 163        }
 164    }
 165}
 166
 167static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
 168{
 169    struct kvm_cpuid2 *cpuid;
 170    int r, size;
 171
 172    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 173    cpuid = g_malloc0(size);
 174    cpuid->nent = max;
 175    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
 176    if (r == 0 && cpuid->nent >= max) {
 177        r = -E2BIG;
 178    }
 179    if (r < 0) {
 180        if (r == -E2BIG) {
 181            g_free(cpuid);
 182            return NULL;
 183        } else {
 184            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
 185                    strerror(-r));
 186            exit(1);
 187        }
 188    }
 189    return cpuid;
 190}
 191
 192/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
 193 * for all entries.
 194 */
 195static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
 196{
 197    struct kvm_cpuid2 *cpuid;
 198    int max = 1;
 199    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
 200        max *= 2;
 201    }
 202    return cpuid;
 203}
 204
 205static const struct kvm_para_features {
 206    int cap;
 207    int feature;
 208} para_features[] = {
 209    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
 210    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
 211    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
 212    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
 213};
 214
 215static int get_para_features(KVMState *s)
 216{
 217    int i, features = 0;
 218
 219    for (i = 0; i < ARRAY_SIZE(para_features); i++) {
 220        if (kvm_check_extension(s, para_features[i].cap)) {
 221            features |= (1 << para_features[i].feature);
 222        }
 223    }
 224
 225    return features;
 226}
 227
 228
 229/* Returns the value for a specific register on the cpuid entry
 230 */
 231static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
 232{
 233    uint32_t ret = 0;
 234    switch (reg) {
 235    case R_EAX:
 236        ret = entry->eax;
 237        break;
 238    case R_EBX:
 239        ret = entry->ebx;
 240        break;
 241    case R_ECX:
 242        ret = entry->ecx;
 243        break;
 244    case R_EDX:
 245        ret = entry->edx;
 246        break;
 247    }
 248    return ret;
 249}
 250
 251/* Find matching entry for function/index on kvm_cpuid2 struct
 252 */
 253static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
 254                                                 uint32_t function,
 255                                                 uint32_t index)
 256{
 257    int i;
 258    for (i = 0; i < cpuid->nent; ++i) {
 259        if (cpuid->entries[i].function == function &&
 260            cpuid->entries[i].index == index) {
 261            return &cpuid->entries[i];
 262        }
 263    }
 264    /* not found: */
 265    return NULL;
 266}
 267
 268uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
 269                                      uint32_t index, int reg)
 270{
 271    struct kvm_cpuid2 *cpuid;
 272    uint32_t ret = 0;
 273    uint32_t cpuid_1_edx;
 274    bool found = false;
 275
 276    cpuid = get_supported_cpuid(s);
 277
 278    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
 279    if (entry) {
 280        found = true;
 281        ret = cpuid_entry_get_reg(entry, reg);
 282    }
 283
 284    /* Fixups for the data returned by KVM, below */
 285
 286    if (function == 1 && reg == R_EDX) {
 287        /* KVM before 2.6.30 misreports the following features */
 288        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
 289    } else if (function == 1 && reg == R_ECX) {
 290        /* We can set the hypervisor flag, even if KVM does not return it on
 291         * GET_SUPPORTED_CPUID
 292         */
 293        ret |= CPUID_EXT_HYPERVISOR;
 294        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
 295         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
 296         * and the irqchip is in the kernel.
 297         */
 298        if (kvm_irqchip_in_kernel() &&
 299                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
 300            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
 301        }
 302
 303        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
 304         * without the in-kernel irqchip
 305         */
 306        if (!kvm_irqchip_in_kernel()) {
 307            ret &= ~CPUID_EXT_X2APIC;
 308        }
 309    } else if (function == 6 && reg == R_EAX) {
 310        ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
 311    } else if (function == 0x80000001 && reg == R_EDX) {
 312        /* On Intel, kvm returns cpuid according to the Intel spec,
 313         * so add missing bits according to the AMD spec:
 314         */
 315        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
 316        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
 317    }
 318
 319    g_free(cpuid);
 320
 321    /* fallback for older kernels */
 322    if ((function == KVM_CPUID_FEATURES) && !found) {
 323        ret = get_para_features(s);
 324    }
 325
 326    return ret;
 327}
 328
 329typedef struct HWPoisonPage {
 330    ram_addr_t ram_addr;
 331    QLIST_ENTRY(HWPoisonPage) list;
 332} HWPoisonPage;
 333
 334static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
 335    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
 336
 337static void kvm_unpoison_all(void *param)
 338{
 339    HWPoisonPage *page, *next_page;
 340
 341    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
 342        QLIST_REMOVE(page, list);
 343        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
 344        g_free(page);
 345    }
 346}
 347
 348static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
 349{
 350    HWPoisonPage *page;
 351
 352    QLIST_FOREACH(page, &hwpoison_page_list, list) {
 353        if (page->ram_addr == ram_addr) {
 354            return;
 355        }
 356    }
 357    page = g_new(HWPoisonPage, 1);
 358    page->ram_addr = ram_addr;
 359    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
 360}
 361
 362static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
 363                                     int *max_banks)
 364{
 365    int r;
 366
 367    r = kvm_check_extension(s, KVM_CAP_MCE);
 368    if (r > 0) {
 369        *max_banks = r;
 370        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
 371    }
 372    return -ENOSYS;
 373}
 374
 375static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
 376{
 377    CPUX86State *env = &cpu->env;
 378    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
 379                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
 380    uint64_t mcg_status = MCG_STATUS_MCIP;
 381
 382    if (code == BUS_MCEERR_AR) {
 383        status |= MCI_STATUS_AR | 0x134;
 384        mcg_status |= MCG_STATUS_EIPV;
 385    } else {
 386        status |= 0xc0;
 387        mcg_status |= MCG_STATUS_RIPV;
 388    }
 389    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
 390                       (MCM_ADDR_PHYS << 6) | 0xc,
 391                       cpu_x86_support_mca_broadcast(env) ?
 392                       MCE_INJECT_BROADCAST : 0);
 393}
 394
 395static void hardware_memory_error(void)
 396{
 397    fprintf(stderr, "Hardware memory error!\n");
 398    exit(1);
 399}
 400
 401int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
 402{
 403    X86CPU *cpu = X86_CPU(c);
 404    CPUX86State *env = &cpu->env;
 405    ram_addr_t ram_addr;
 406    hwaddr paddr;
 407
 408    if ((env->mcg_cap & MCG_SER_P) && addr
 409        && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
 410        if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
 411            !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
 412            fprintf(stderr, "Hardware memory error for memory used by "
 413                    "QEMU itself instead of guest system!\n");
 414            /* Hope we are lucky for AO MCE */
 415            if (code == BUS_MCEERR_AO) {
 416                return 0;
 417            } else {
 418                hardware_memory_error();
 419            }
 420        }
 421        kvm_hwpoison_page_add(ram_addr);
 422        kvm_mce_inject(cpu, paddr, code);
 423    } else {
 424        if (code == BUS_MCEERR_AO) {
 425            return 0;
 426        } else if (code == BUS_MCEERR_AR) {
 427            hardware_memory_error();
 428        } else {
 429            return 1;
 430        }
 431    }
 432    return 0;
 433}
 434
 435int kvm_arch_on_sigbus(int code, void *addr)
 436{
 437    X86CPU *cpu = X86_CPU(first_cpu);
 438
 439    if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
 440        ram_addr_t ram_addr;
 441        hwaddr paddr;
 442
 443        /* Hope we are lucky for AO MCE */
 444        if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
 445            !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
 446                                                addr, &paddr)) {
 447            fprintf(stderr, "Hardware memory error for memory used by "
 448                    "QEMU itself instead of guest system!: %p\n", addr);
 449            return 0;
 450        }
 451        kvm_hwpoison_page_add(ram_addr);
 452        kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
 453    } else {
 454        if (code == BUS_MCEERR_AO) {
 455            return 0;
 456        } else if (code == BUS_MCEERR_AR) {
 457            hardware_memory_error();
 458        } else {
 459            return 1;
 460        }
 461    }
 462    return 0;
 463}
 464
 465static int kvm_inject_mce_oldstyle(X86CPU *cpu)
 466{
 467    CPUX86State *env = &cpu->env;
 468
 469    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
 470        unsigned int bank, bank_num = env->mcg_cap & 0xff;
 471        struct kvm_x86_mce mce;
 472
 473        env->exception_injected = -1;
 474
 475        /*
 476         * There must be at least one bank in use if an MCE is pending.
 477         * Find it and use its values for the event injection.
 478         */
 479        for (bank = 0; bank < bank_num; bank++) {
 480            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
 481                break;
 482            }
 483        }
 484        assert(bank < bank_num);
 485
 486        mce.bank = bank;
 487        mce.status = env->mce_banks[bank * 4 + 1];
 488        mce.mcg_status = env->mcg_status;
 489        mce.addr = env->mce_banks[bank * 4 + 2];
 490        mce.misc = env->mce_banks[bank * 4 + 3];
 491
 492        return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
 493    }
 494    return 0;
 495}
 496
 497static void cpu_update_state(void *opaque, int running, RunState state)
 498{
 499    CPUX86State *env = opaque;
 500
 501    if (running) {
 502        env->tsc_valid = false;
 503    }
 504}
 505
 506unsigned long kvm_arch_vcpu_id(CPUState *cs)
 507{
 508    X86CPU *cpu = X86_CPU(cs);
 509    return cpu->apic_id;
 510}
 511
 512#ifndef KVM_CPUID_SIGNATURE_NEXT
 513#define KVM_CPUID_SIGNATURE_NEXT                0x40000100
 514#endif
 515
 516static bool hyperv_hypercall_available(X86CPU *cpu)
 517{
 518    return cpu->hyperv_vapic ||
 519           (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
 520}
 521
 522static bool hyperv_enabled(X86CPU *cpu)
 523{
 524    CPUState *cs = CPU(cpu);
 525    return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
 526           (hyperv_hypercall_available(cpu) ||
 527            cpu->hyperv_time  ||
 528            cpu->hyperv_relaxed_timing ||
 529            cpu->hyperv_crash ||
 530            cpu->hyperv_reset ||
 531            cpu->hyperv_vpindex ||
 532            cpu->hyperv_runtime ||
 533            cpu->hyperv_synic ||
 534            cpu->hyperv_stimer);
 535}
 536
 537static int kvm_arch_set_tsc_khz(CPUState *cs)
 538{
 539    X86CPU *cpu = X86_CPU(cs);
 540    CPUX86State *env = &cpu->env;
 541    int r;
 542
 543    if (!env->tsc_khz) {
 544        return 0;
 545    }
 546
 547    r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
 548        kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
 549        -ENOTSUP;
 550    if (r < 0) {
 551        /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
 552         * TSC frequency doesn't match the one we want.
 553         */
 554        int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 555                       kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
 556                       -ENOTSUP;
 557        if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
 558            error_report("warning: TSC frequency mismatch between "
 559                         "VM and host, and TSC scaling unavailable");
 560            return r;
 561        }
 562    }
 563
 564    return 0;
 565}
 566
 567static Error *invtsc_mig_blocker;
 568
 569#define KVM_MAX_CPUID_ENTRIES  100
 570
 571int kvm_arch_init_vcpu(CPUState *cs)
 572{
 573    struct {
 574        struct kvm_cpuid2 cpuid;
 575        struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
 576    } QEMU_PACKED cpuid_data;
 577    X86CPU *cpu = X86_CPU(cs);
 578    CPUX86State *env = &cpu->env;
 579    uint32_t limit, i, j, cpuid_i;
 580    uint32_t unused;
 581    struct kvm_cpuid_entry2 *c;
 582    uint32_t signature[3];
 583    int kvm_base = KVM_CPUID_SIGNATURE;
 584    int r;
 585
 586    memset(&cpuid_data, 0, sizeof(cpuid_data));
 587
 588    cpuid_i = 0;
 589
 590    /* Paravirtualization CPUIDs */
 591    if (hyperv_enabled(cpu)) {
 592        c = &cpuid_data.entries[cpuid_i++];
 593        c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
 594        if (!cpu->hyperv_vendor_id) {
 595            memcpy(signature, "Microsoft Hv", 12);
 596        } else {
 597            size_t len = strlen(cpu->hyperv_vendor_id);
 598
 599            if (len > 12) {
 600                error_report("hv-vendor-id truncated to 12 characters");
 601                len = 12;
 602            }
 603            memset(signature, 0, 12);
 604            memcpy(signature, cpu->hyperv_vendor_id, len);
 605        }
 606        c->eax = HYPERV_CPUID_MIN;
 607        c->ebx = signature[0];
 608        c->ecx = signature[1];
 609        c->edx = signature[2];
 610
 611        c = &cpuid_data.entries[cpuid_i++];
 612        c->function = HYPERV_CPUID_INTERFACE;
 613        memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
 614        c->eax = signature[0];
 615        c->ebx = 0;
 616        c->ecx = 0;
 617        c->edx = 0;
 618
 619        c = &cpuid_data.entries[cpuid_i++];
 620        c->function = HYPERV_CPUID_VERSION;
 621        c->eax = 0x00001bbc;
 622        c->ebx = 0x00060001;
 623
 624        c = &cpuid_data.entries[cpuid_i++];
 625        c->function = HYPERV_CPUID_FEATURES;
 626        if (cpu->hyperv_relaxed_timing) {
 627            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
 628        }
 629        if (cpu->hyperv_vapic) {
 630            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
 631            c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
 632            has_msr_hv_vapic = true;
 633        }
 634        if (cpu->hyperv_time &&
 635            kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
 636            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
 637            c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE;
 638            c->eax |= 0x200;
 639            has_msr_hv_tsc = true;
 640        }
 641        if (cpu->hyperv_crash && has_msr_hv_crash) {
 642            c->edx |= HV_X64_GUEST_CRASH_MSR_AVAILABLE;
 643        }
 644        c->edx |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
 645        if (cpu->hyperv_reset && has_msr_hv_reset) {
 646            c->eax |= HV_X64_MSR_RESET_AVAILABLE;
 647        }
 648        if (cpu->hyperv_vpindex && has_msr_hv_vpindex) {
 649            c->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
 650        }
 651        if (cpu->hyperv_runtime && has_msr_hv_runtime) {
 652            c->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
 653        }
 654        if (cpu->hyperv_synic) {
 655            int sint;
 656
 657            if (!has_msr_hv_synic ||
 658                kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) {
 659                fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n");
 660                return -ENOSYS;
 661            }
 662
 663            c->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
 664            env->msr_hv_synic_version = HV_SYNIC_VERSION_1;
 665            for (sint = 0; sint < ARRAY_SIZE(env->msr_hv_synic_sint); sint++) {
 666                env->msr_hv_synic_sint[sint] = HV_SYNIC_SINT_MASKED;
 667            }
 668        }
 669        if (cpu->hyperv_stimer) {
 670            if (!has_msr_hv_stimer) {
 671                fprintf(stderr, "Hyper-V timers aren't supported by kernel\n");
 672                return -ENOSYS;
 673            }
 674            c->eax |= HV_X64_MSR_SYNTIMER_AVAILABLE;
 675        }
 676        c = &cpuid_data.entries[cpuid_i++];
 677        c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
 678        if (cpu->hyperv_relaxed_timing) {
 679            c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
 680        }
 681        if (has_msr_hv_vapic) {
 682            c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
 683        }
 684        c->ebx = cpu->hyperv_spinlock_attempts;
 685
 686        c = &cpuid_data.entries[cpuid_i++];
 687        c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
 688        c->eax = 0x40;
 689        c->ebx = 0x40;
 690
 691        kvm_base = KVM_CPUID_SIGNATURE_NEXT;
 692        has_msr_hv_hypercall = true;
 693    }
 694
 695    if (cpu->expose_kvm) {
 696        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
 697        c = &cpuid_data.entries[cpuid_i++];
 698        c->function = KVM_CPUID_SIGNATURE | kvm_base;
 699        c->eax = KVM_CPUID_FEATURES | kvm_base;
 700        c->ebx = signature[0];
 701        c->ecx = signature[1];
 702        c->edx = signature[2];
 703
 704        c = &cpuid_data.entries[cpuid_i++];
 705        c->function = KVM_CPUID_FEATURES | kvm_base;
 706        c->eax = env->features[FEAT_KVM];
 707
 708        has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
 709
 710        has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
 711
 712        has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
 713    }
 714
 715    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
 716
 717    for (i = 0; i <= limit; i++) {
 718        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 719            fprintf(stderr, "unsupported level value: 0x%x\n", limit);
 720            abort();
 721        }
 722        c = &cpuid_data.entries[cpuid_i++];
 723
 724        switch (i) {
 725        case 2: {
 726            /* Keep reading function 2 till all the input is received */
 727            int times;
 728
 729            c->function = i;
 730            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
 731                       KVM_CPUID_FLAG_STATE_READ_NEXT;
 732            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 733            times = c->eax & 0xff;
 734
 735            for (j = 1; j < times; ++j) {
 736                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 737                    fprintf(stderr, "cpuid_data is full, no space for "
 738                            "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
 739                    abort();
 740                }
 741                c = &cpuid_data.entries[cpuid_i++];
 742                c->function = i;
 743                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
 744                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 745            }
 746            break;
 747        }
 748        case 4:
 749        case 0xb:
 750        case 0xd:
 751            for (j = 0; ; j++) {
 752                if (i == 0xd && j == 64) {
 753                    break;
 754                }
 755                c->function = i;
 756                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 757                c->index = j;
 758                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
 759
 760                if (i == 4 && c->eax == 0) {
 761                    break;
 762                }
 763                if (i == 0xb && !(c->ecx & 0xff00)) {
 764                    break;
 765                }
 766                if (i == 0xd && c->eax == 0) {
 767                    continue;
 768                }
 769                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 770                    fprintf(stderr, "cpuid_data is full, no space for "
 771                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
 772                    abort();
 773                }
 774                c = &cpuid_data.entries[cpuid_i++];
 775            }
 776            break;
 777        default:
 778            c->function = i;
 779            c->flags = 0;
 780            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 781            break;
 782        }
 783    }
 784
 785    if (limit >= 0x0a) {
 786        uint32_t ver;
 787
 788        cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
 789        if ((ver & 0xff) > 0) {
 790            has_msr_architectural_pmu = true;
 791            num_architectural_pmu_counters = (ver & 0xff00) >> 8;
 792
 793            /* Shouldn't be more than 32, since that's the number of bits
 794             * available in EBX to tell us _which_ counters are available.
 795             * Play it safe.
 796             */
 797            if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
 798                num_architectural_pmu_counters = MAX_GP_COUNTERS;
 799            }
 800        }
 801    }
 802
 803    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
 804
 805    for (i = 0x80000000; i <= limit; i++) {
 806        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 807            fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
 808            abort();
 809        }
 810        c = &cpuid_data.entries[cpuid_i++];
 811
 812        c->function = i;
 813        c->flags = 0;
 814        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 815    }
 816
 817    /* Call Centaur's CPUID instructions they are supported. */
 818    if (env->cpuid_xlevel2 > 0) {
 819        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
 820
 821        for (i = 0xC0000000; i <= limit; i++) {
 822            if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
 823                fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
 824                abort();
 825            }
 826            c = &cpuid_data.entries[cpuid_i++];
 827
 828            c->function = i;
 829            c->flags = 0;
 830            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
 831        }
 832    }
 833
 834    cpuid_data.cpuid.nent = cpuid_i;
 835
 836    if (((env->cpuid_version >> 8)&0xF) >= 6
 837        && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
 838           (CPUID_MCE | CPUID_MCA)
 839        && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
 840        uint64_t mcg_cap, unsupported_caps;
 841        int banks;
 842        int ret;
 843
 844        ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
 845        if (ret < 0) {
 846            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
 847            return ret;
 848        }
 849
 850        if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
 851            error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
 852                         (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
 853            return -ENOTSUP;
 854        }
 855
 856        unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
 857        if (unsupported_caps) {
 858            error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64,
 859                         unsupported_caps);
 860        }
 861
 862        env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
 863        ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
 864        if (ret < 0) {
 865            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
 866            return ret;
 867        }
 868    }
 869
 870    qemu_add_vm_change_state_handler(cpu_update_state, env);
 871
 872    c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
 873    if (c) {
 874        has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
 875                                  !!(c->ecx & CPUID_EXT_SMX);
 876    }
 877
 878    c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0);
 879    if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) {
 880        /* for migration */
 881        error_setg(&invtsc_mig_blocker,
 882                   "State blocked by non-migratable CPU device"
 883                   " (invtsc flag)");
 884        migrate_add_blocker(invtsc_mig_blocker);
 885        /* for savevm */
 886        vmstate_x86_cpu.unmigratable = 1;
 887    }
 888
 889    cpuid_data.cpuid.padding = 0;
 890    r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
 891    if (r) {
 892        return r;
 893    }
 894
 895    r = kvm_arch_set_tsc_khz(cs);
 896    if (r < 0) {
 897        return r;
 898    }
 899
 900    /* vcpu's TSC frequency is either specified by user, or following
 901     * the value used by KVM if the former is not present. In the
 902     * latter case, we query it from KVM and record in env->tsc_khz,
 903     * so that vcpu's TSC frequency can be migrated later via this field.
 904     */
 905    if (!env->tsc_khz) {
 906        r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 907            kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
 908            -ENOTSUP;
 909        if (r > 0) {
 910            env->tsc_khz = r;
 911        }
 912    }
 913
 914    if (has_xsave) {
 915        env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
 916    }
 917
 918    if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
 919        has_msr_mtrr = true;
 920    }
 921    if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
 922        has_msr_tsc_aux = false;
 923    }
 924
 925    return 0;
 926}
 927
 928void kvm_arch_reset_vcpu(X86CPU *cpu)
 929{
 930    CPUX86State *env = &cpu->env;
 931
 932    env->exception_injected = -1;
 933    env->interrupt_injected = -1;
 934    env->xcr0 = 1;
 935    if (kvm_irqchip_in_kernel()) {
 936        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
 937                                          KVM_MP_STATE_UNINITIALIZED;
 938    } else {
 939        env->mp_state = KVM_MP_STATE_RUNNABLE;
 940    }
 941}
 942
 943void kvm_arch_do_init_vcpu(X86CPU *cpu)
 944{
 945    CPUX86State *env = &cpu->env;
 946
 947    /* APs get directly into wait-for-SIPI state.  */
 948    if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
 949        env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
 950    }
 951}
 952
 953static int kvm_get_supported_msrs(KVMState *s)
 954{
 955    static int kvm_supported_msrs;
 956    int ret = 0;
 957
 958    /* first time */
 959    if (kvm_supported_msrs == 0) {
 960        struct kvm_msr_list msr_list, *kvm_msr_list;
 961
 962        kvm_supported_msrs = -1;
 963
 964        /* Obtain MSR list from KVM.  These are the MSRs that we must
 965         * save/restore */
 966        msr_list.nmsrs = 0;
 967        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
 968        if (ret < 0 && ret != -E2BIG) {
 969            return ret;
 970        }
 971        /* Old kernel modules had a bug and could write beyond the provided
 972           memory. Allocate at least a safe amount of 1K. */
 973        kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
 974                                              msr_list.nmsrs *
 975                                              sizeof(msr_list.indices[0])));
 976
 977        kvm_msr_list->nmsrs = msr_list.nmsrs;
 978        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
 979        if (ret >= 0) {
 980            int i;
 981
 982            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
 983                if (kvm_msr_list->indices[i] == MSR_STAR) {
 984                    has_msr_star = true;
 985                    continue;
 986                }
 987                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
 988                    has_msr_hsave_pa = true;
 989                    continue;
 990                }
 991                if (kvm_msr_list->indices[i] == MSR_TSC_AUX) {
 992                    has_msr_tsc_aux = true;
 993                    continue;
 994                }
 995                if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
 996                    has_msr_tsc_adjust = true;
 997                    continue;
 998                }
 999                if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
1000                    has_msr_tsc_deadline = true;
1001                    continue;
1002                }
1003                if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) {
1004                    has_msr_smbase = true;
1005                    continue;
1006                }
1007                if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
1008                    has_msr_misc_enable = true;
1009                    continue;
1010                }
1011                if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
1012                    has_msr_bndcfgs = true;
1013                    continue;
1014                }
1015                if (kvm_msr_list->indices[i] == MSR_IA32_XSS) {
1016                    has_msr_xss = true;
1017                    continue;
1018                }
1019                if (kvm_msr_list->indices[i] == HV_X64_MSR_CRASH_CTL) {
1020                    has_msr_hv_crash = true;
1021                    continue;
1022                }
1023                if (kvm_msr_list->indices[i] == HV_X64_MSR_RESET) {
1024                    has_msr_hv_reset = true;
1025                    continue;
1026                }
1027                if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_INDEX) {
1028                    has_msr_hv_vpindex = true;
1029                    continue;
1030                }
1031                if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_RUNTIME) {
1032                    has_msr_hv_runtime = true;
1033                    continue;
1034                }
1035                if (kvm_msr_list->indices[i] == HV_X64_MSR_SCONTROL) {
1036                    has_msr_hv_synic = true;
1037                    continue;
1038                }
1039                if (kvm_msr_list->indices[i] == HV_X64_MSR_STIMER0_CONFIG) {
1040                    has_msr_hv_stimer = true;
1041                    continue;
1042                }
1043            }
1044        }
1045
1046        g_free(kvm_msr_list);
1047    }
1048
1049    return ret;
1050}
1051
1052static Notifier smram_machine_done;
1053static KVMMemoryListener smram_listener;
1054static AddressSpace smram_address_space;
1055static MemoryRegion smram_as_root;
1056static MemoryRegion smram_as_mem;
1057
1058static void register_smram_listener(Notifier *n, void *unused)
1059{
1060    MemoryRegion *smram =
1061        (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1062
1063    /* Outer container... */
1064    memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1065    memory_region_set_enabled(&smram_as_root, true);
1066
1067    /* ... with two regions inside: normal system memory with low
1068     * priority, and...
1069     */
1070    memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1071                             get_system_memory(), 0, ~0ull);
1072    memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1073    memory_region_set_enabled(&smram_as_mem, true);
1074
1075    if (smram) {
1076        /* ... SMRAM with higher priority */
1077        memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1078        memory_region_set_enabled(smram, true);
1079    }
1080
1081    address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1082    kvm_memory_listener_register(kvm_state, &smram_listener,
1083                                 &smram_address_space, 1);
1084}
1085
1086int kvm_arch_init(MachineState *ms, KVMState *s)
1087{
1088    uint64_t identity_base = 0xfffbc000;
1089    uint64_t shadow_mem;
1090    int ret;
1091    struct utsname utsname;
1092
1093#ifdef KVM_CAP_XSAVE
1094    has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1095#endif
1096
1097#ifdef KVM_CAP_XCRS
1098    has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1099#endif
1100
1101#ifdef KVM_CAP_PIT_STATE2
1102    has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1103#endif
1104
1105    ret = kvm_get_supported_msrs(s);
1106    if (ret < 0) {
1107        return ret;
1108    }
1109
1110    uname(&utsname);
1111    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1112
1113    /*
1114     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1115     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
1116     * Since these must be part of guest physical memory, we need to allocate
1117     * them, both by setting their start addresses in the kernel and by
1118     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1119     *
1120     * Older KVM versions may not support setting the identity map base. In
1121     * that case we need to stick with the default, i.e. a 256K maximum BIOS
1122     * size.
1123     */
1124    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1125        /* Allows up to 16M BIOSes. */
1126        identity_base = 0xfeffc000;
1127
1128        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1129        if (ret < 0) {
1130            return ret;
1131        }
1132    }
1133
1134    /* Set TSS base one page after EPT identity map. */
1135    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
1136    if (ret < 0) {
1137        return ret;
1138    }
1139
1140    /* Tell fw_cfg to notify the BIOS to reserve the range. */
1141    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
1142    if (ret < 0) {
1143        fprintf(stderr, "e820_add_entry() table is full\n");
1144        return ret;
1145    }
1146    qemu_register_reset(kvm_unpoison_all, NULL);
1147
1148    shadow_mem = machine_kvm_shadow_mem(ms);
1149    if (shadow_mem != -1) {
1150        shadow_mem /= 4096;
1151        ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1152        if (ret < 0) {
1153            return ret;
1154        }
1155    }
1156
1157    if (kvm_check_extension(s, KVM_CAP_X86_SMM)) {
1158        smram_machine_done.notify = register_smram_listener;
1159        qemu_add_machine_init_done_notifier(&smram_machine_done);
1160    }
1161    return 0;
1162}
1163
1164static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1165{
1166    lhs->selector = rhs->selector;
1167    lhs->base = rhs->base;
1168    lhs->limit = rhs->limit;
1169    lhs->type = 3;
1170    lhs->present = 1;
1171    lhs->dpl = 3;
1172    lhs->db = 0;
1173    lhs->s = 1;
1174    lhs->l = 0;
1175    lhs->g = 0;
1176    lhs->avl = 0;
1177    lhs->unusable = 0;
1178}
1179
1180static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1181{
1182    unsigned flags = rhs->flags;
1183    lhs->selector = rhs->selector;
1184    lhs->base = rhs->base;
1185    lhs->limit = rhs->limit;
1186    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1187    lhs->present = (flags & DESC_P_MASK) != 0;
1188    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
1189    lhs->db = (flags >> DESC_B_SHIFT) & 1;
1190    lhs->s = (flags & DESC_S_MASK) != 0;
1191    lhs->l = (flags >> DESC_L_SHIFT) & 1;
1192    lhs->g = (flags & DESC_G_MASK) != 0;
1193    lhs->avl = (flags & DESC_AVL_MASK) != 0;
1194    lhs->unusable = !lhs->present;
1195    lhs->padding = 0;
1196}
1197
1198static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1199{
1200    lhs->selector = rhs->selector;
1201    lhs->base = rhs->base;
1202    lhs->limit = rhs->limit;
1203    if (rhs->unusable) {
1204        lhs->flags = 0;
1205    } else {
1206        lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1207                     (rhs->present * DESC_P_MASK) |
1208                     (rhs->dpl << DESC_DPL_SHIFT) |
1209                     (rhs->db << DESC_B_SHIFT) |
1210                     (rhs->s * DESC_S_MASK) |
1211                     (rhs->l << DESC_L_SHIFT) |
1212                     (rhs->g * DESC_G_MASK) |
1213                     (rhs->avl * DESC_AVL_MASK);
1214    }
1215}
1216
1217static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1218{
1219    if (set) {
1220        *kvm_reg = *qemu_reg;
1221    } else {
1222        *qemu_reg = *kvm_reg;
1223    }
1224}
1225
1226static int kvm_getput_regs(X86CPU *cpu, int set)
1227{
1228    CPUX86State *env = &cpu->env;
1229    struct kvm_regs regs;
1230    int ret = 0;
1231
1232    if (!set) {
1233        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
1234        if (ret < 0) {
1235            return ret;
1236        }
1237    }
1238
1239    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
1240    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
1241    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
1242    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
1243    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
1244    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
1245    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
1246    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
1247#ifdef TARGET_X86_64
1248    kvm_getput_reg(&regs.r8, &env->regs[8], set);
1249    kvm_getput_reg(&regs.r9, &env->regs[9], set);
1250    kvm_getput_reg(&regs.r10, &env->regs[10], set);
1251    kvm_getput_reg(&regs.r11, &env->regs[11], set);
1252    kvm_getput_reg(&regs.r12, &env->regs[12], set);
1253    kvm_getput_reg(&regs.r13, &env->regs[13], set);
1254    kvm_getput_reg(&regs.r14, &env->regs[14], set);
1255    kvm_getput_reg(&regs.r15, &env->regs[15], set);
1256#endif
1257
1258    kvm_getput_reg(&regs.rflags, &env->eflags, set);
1259    kvm_getput_reg(&regs.rip, &env->eip, set);
1260
1261    if (set) {
1262        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
1263    }
1264
1265    return ret;
1266}
1267
1268static int kvm_put_fpu(X86CPU *cpu)
1269{
1270    CPUX86State *env = &cpu->env;
1271    struct kvm_fpu fpu;
1272    int i;
1273
1274    memset(&fpu, 0, sizeof fpu);
1275    fpu.fsw = env->fpus & ~(7 << 11);
1276    fpu.fsw |= (env->fpstt & 7) << 11;
1277    fpu.fcw = env->fpuc;
1278    fpu.last_opcode = env->fpop;
1279    fpu.last_ip = env->fpip;
1280    fpu.last_dp = env->fpdp;
1281    for (i = 0; i < 8; ++i) {
1282        fpu.ftwx |= (!env->fptags[i]) << i;
1283    }
1284    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
1285    for (i = 0; i < CPU_NB_REGS; i++) {
1286        stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
1287        stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
1288    }
1289    fpu.mxcsr = env->mxcsr;
1290
1291    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
1292}
1293
1294#define XSAVE_FCW_FSW     0
1295#define XSAVE_FTW_FOP     1
1296#define XSAVE_CWD_RIP     2
1297#define XSAVE_CWD_RDP     4
1298#define XSAVE_MXCSR       6
1299#define XSAVE_ST_SPACE    8
1300#define XSAVE_XMM_SPACE   40
1301#define XSAVE_XSTATE_BV   128
1302#define XSAVE_YMMH_SPACE  144
1303#define XSAVE_BNDREGS     240
1304#define XSAVE_BNDCSR      256
1305#define XSAVE_OPMASK      272
1306#define XSAVE_ZMM_Hi256   288
1307#define XSAVE_Hi16_ZMM    416
1308#define XSAVE_PKRU        672
1309
1310static int kvm_put_xsave(X86CPU *cpu)
1311{
1312    CPUX86State *env = &cpu->env;
1313    struct kvm_xsave* xsave = env->kvm_xsave_buf;
1314    uint16_t cwd, swd, twd;
1315    uint8_t *xmm, *ymmh, *zmmh;
1316    int i, r;
1317
1318    if (!has_xsave) {
1319        return kvm_put_fpu(cpu);
1320    }
1321
1322    memset(xsave, 0, sizeof(struct kvm_xsave));
1323    twd = 0;
1324    swd = env->fpus & ~(7 << 11);
1325    swd |= (env->fpstt & 7) << 11;
1326    cwd = env->fpuc;
1327    for (i = 0; i < 8; ++i) {
1328        twd |= (!env->fptags[i]) << i;
1329    }
1330    xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
1331    xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
1332    memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
1333    memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
1334    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
1335            sizeof env->fpregs);
1336    xsave->region[XSAVE_MXCSR] = env->mxcsr;
1337    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
1338    memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs,
1339            sizeof env->bnd_regs);
1340    memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs,
1341            sizeof(env->bndcs_regs));
1342    memcpy(&xsave->region[XSAVE_OPMASK], env->opmask_regs,
1343            sizeof env->opmask_regs);
1344
1345    xmm = (uint8_t *)&xsave->region[XSAVE_XMM_SPACE];
1346    ymmh = (uint8_t *)&xsave->region[XSAVE_YMMH_SPACE];
1347    zmmh = (uint8_t *)&xsave->region[XSAVE_ZMM_Hi256];
1348    for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) {
1349        stq_p(xmm,     env->xmm_regs[i].ZMM_Q(0));
1350        stq_p(xmm+8,   env->xmm_regs[i].ZMM_Q(1));
1351        stq_p(ymmh,    env->xmm_regs[i].ZMM_Q(2));
1352        stq_p(ymmh+8,  env->xmm_regs[i].ZMM_Q(3));
1353        stq_p(zmmh,    env->xmm_regs[i].ZMM_Q(4));
1354        stq_p(zmmh+8,  env->xmm_regs[i].ZMM_Q(5));
1355        stq_p(zmmh+16, env->xmm_regs[i].ZMM_Q(6));
1356        stq_p(zmmh+24, env->xmm_regs[i].ZMM_Q(7));
1357    }
1358
1359#ifdef TARGET_X86_64
1360    memcpy(&xsave->region[XSAVE_Hi16_ZMM], &env->xmm_regs[16],
1361            16 * sizeof env->xmm_regs[16]);
1362    memcpy(&xsave->region[XSAVE_PKRU], &env->pkru, sizeof env->pkru);
1363#endif
1364    r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1365    return r;
1366}
1367
1368static int kvm_put_xcrs(X86CPU *cpu)
1369{
1370    CPUX86State *env = &cpu->env;
1371    struct kvm_xcrs xcrs = {};
1372
1373    if (!has_xcrs) {
1374        return 0;
1375    }
1376
1377    xcrs.nr_xcrs = 1;
1378    xcrs.flags = 0;
1379    xcrs.xcrs[0].xcr = 0;
1380    xcrs.xcrs[0].value = env->xcr0;
1381    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1382}
1383
1384static int kvm_put_sregs(X86CPU *cpu)
1385{
1386    CPUX86State *env = &cpu->env;
1387    struct kvm_sregs sregs;
1388
1389    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1390    if (env->interrupt_injected >= 0) {
1391        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1392                (uint64_t)1 << (env->interrupt_injected % 64);
1393    }
1394
1395    if ((env->eflags & VM_MASK)) {
1396        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1397        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1398        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1399        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1400        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1401        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1402    } else {
1403        set_seg(&sregs.cs, &env->segs[R_CS]);
1404        set_seg(&sregs.ds, &env->segs[R_DS]);
1405        set_seg(&sregs.es, &env->segs[R_ES]);
1406        set_seg(&sregs.fs, &env->segs[R_FS]);
1407        set_seg(&sregs.gs, &env->segs[R_GS]);
1408        set_seg(&sregs.ss, &env->segs[R_SS]);
1409    }
1410
1411    set_seg(&sregs.tr, &env->tr);
1412    set_seg(&sregs.ldt, &env->ldt);
1413
1414    sregs.idt.limit = env->idt.limit;
1415    sregs.idt.base = env->idt.base;
1416    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1417    sregs.gdt.limit = env->gdt.limit;
1418    sregs.gdt.base = env->gdt.base;
1419    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1420
1421    sregs.cr0 = env->cr[0];
1422    sregs.cr2 = env->cr[2];
1423    sregs.cr3 = env->cr[3];
1424    sregs.cr4 = env->cr[4];
1425
1426    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1427    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
1428
1429    sregs.efer = env->efer;
1430
1431    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1432}
1433
1434static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1435                              uint32_t index, uint64_t value)
1436{
1437    entry->index = index;
1438    entry->reserved = 0;
1439    entry->data = value;
1440}
1441
1442static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1443{
1444    CPUX86State *env = &cpu->env;
1445    struct {
1446        struct kvm_msrs info;
1447        struct kvm_msr_entry entries[1];
1448    } msr_data;
1449    struct kvm_msr_entry *msrs = msr_data.entries;
1450    int ret;
1451
1452    if (!has_msr_tsc_deadline) {
1453        return 0;
1454    }
1455
1456    kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1457
1458    msr_data.info = (struct kvm_msrs) {
1459        .nmsrs = 1,
1460    };
1461
1462    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1463    if (ret < 0) {
1464        return ret;
1465    }
1466
1467    assert(ret == 1);
1468    return 0;
1469}
1470
1471/*
1472 * Provide a separate write service for the feature control MSR in order to
1473 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1474 * before writing any other state because forcibly leaving nested mode
1475 * invalidates the VCPU state.
1476 */
1477static int kvm_put_msr_feature_control(X86CPU *cpu)
1478{
1479    struct {
1480        struct kvm_msrs info;
1481        struct kvm_msr_entry entry;
1482    } msr_data;
1483    int ret;
1484
1485    if (!has_msr_feature_control) {
1486        return 0;
1487    }
1488
1489    kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
1490                      cpu->env.msr_ia32_feature_control);
1491
1492    msr_data.info = (struct kvm_msrs) {
1493        .nmsrs = 1,
1494    };
1495
1496    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1497    if (ret < 0) {
1498        return ret;
1499    }
1500
1501    assert(ret == 1);
1502    return 0;
1503}
1504
1505static int kvm_put_msrs(X86CPU *cpu, int level)
1506{
1507    CPUX86State *env = &cpu->env;
1508    struct {
1509        struct kvm_msrs info;
1510        struct kvm_msr_entry entries[150];
1511    } msr_data;
1512    struct kvm_msr_entry *msrs = msr_data.entries;
1513    int n = 0, i;
1514    int ret;
1515
1516    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1517    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1518    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1519    kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1520    if (has_msr_star) {
1521        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1522    }
1523    if (has_msr_hsave_pa) {
1524        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1525    }
1526    if (has_msr_tsc_aux) {
1527        kvm_msr_entry_set(&msrs[n++], MSR_TSC_AUX, env->tsc_aux);
1528    }
1529    if (has_msr_tsc_adjust) {
1530        kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1531    }
1532    if (has_msr_misc_enable) {
1533        kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1534                          env->msr_ia32_misc_enable);
1535    }
1536    if (has_msr_smbase) {
1537        kvm_msr_entry_set(&msrs[n++], MSR_IA32_SMBASE, env->smbase);
1538    }
1539    if (has_msr_bndcfgs) {
1540        kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1541    }
1542    if (has_msr_xss) {
1543        kvm_msr_entry_set(&msrs[n++], MSR_IA32_XSS, env->xss);
1544    }
1545#ifdef TARGET_X86_64
1546    if (lm_capable_kernel) {
1547        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1548        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1549        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1550        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1551    }
1552#endif
1553    /*
1554     * The following MSRs have side effects on the guest or are too heavy
1555     * for normal writeback. Limit them to reset or full state updates.
1556     */
1557    if (level >= KVM_PUT_RESET_STATE) {
1558        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1559        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1560                          env->system_time_msr);
1561        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1562        if (has_msr_async_pf_en) {
1563            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1564                              env->async_pf_en_msr);
1565        }
1566        if (has_msr_pv_eoi_en) {
1567            kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1568                              env->pv_eoi_en_msr);
1569        }
1570        if (has_msr_kvm_steal_time) {
1571            kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1572                              env->steal_time_msr);
1573        }
1574        if (has_msr_architectural_pmu) {
1575            /* Stop the counter.  */
1576            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1577            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1578
1579            /* Set the counter values.  */
1580            for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1581                kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1582                                  env->msr_fixed_counters[i]);
1583            }
1584            for (i = 0; i < num_architectural_pmu_counters; i++) {
1585                kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1586                                  env->msr_gp_counters[i]);
1587                kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1588                                  env->msr_gp_evtsel[i]);
1589            }
1590            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1591                              env->msr_global_status);
1592            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1593                              env->msr_global_ovf_ctrl);
1594
1595            /* Now start the PMU.  */
1596            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1597                              env->msr_fixed_ctr_ctrl);
1598            kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1599                              env->msr_global_ctrl);
1600        }
1601        if (has_msr_hv_hypercall) {
1602            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID,
1603                              env->msr_hv_guest_os_id);
1604            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL,
1605                              env->msr_hv_hypercall);
1606        }
1607        if (has_msr_hv_vapic) {
1608            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE,
1609                              env->msr_hv_vapic);
1610        }
1611        if (has_msr_hv_tsc) {
1612            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC,
1613                              env->msr_hv_tsc);
1614        }
1615        if (has_msr_hv_crash) {
1616            int j;
1617
1618            for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++)
1619                kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_CRASH_P0 + j,
1620                                  env->msr_hv_crash_params[j]);
1621
1622            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_CRASH_CTL,
1623                              HV_X64_MSR_CRASH_CTL_NOTIFY);
1624        }
1625        if (has_msr_hv_runtime) {
1626            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_VP_RUNTIME,
1627                              env->msr_hv_runtime);
1628        }
1629        if (cpu->hyperv_synic) {
1630            int j;
1631
1632            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SCONTROL,
1633                              env->msr_hv_synic_control);
1634            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SVERSION,
1635                              env->msr_hv_synic_version);
1636            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SIEFP,
1637                              env->msr_hv_synic_evt_page);
1638            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SIMP,
1639                              env->msr_hv_synic_msg_page);
1640
1641            for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
1642                kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SINT0 + j,
1643                                  env->msr_hv_synic_sint[j]);
1644            }
1645        }
1646        if (has_msr_hv_stimer) {
1647            int j;
1648
1649            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
1650                kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_STIMER0_CONFIG + j*2,
1651                                env->msr_hv_stimer_config[j]);
1652            }
1653
1654            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
1655                kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_STIMER0_COUNT + j*2,
1656                                env->msr_hv_stimer_count[j]);
1657            }
1658        }
1659        if (has_msr_mtrr) {
1660            kvm_msr_entry_set(&msrs[n++], MSR_MTRRdefType, env->mtrr_deftype);
1661            kvm_msr_entry_set(&msrs[n++],
1662                              MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
1663            kvm_msr_entry_set(&msrs[n++],
1664                              MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
1665            kvm_msr_entry_set(&msrs[n++],
1666                              MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
1667            kvm_msr_entry_set(&msrs[n++],
1668                              MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
1669            kvm_msr_entry_set(&msrs[n++],
1670                              MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
1671            kvm_msr_entry_set(&msrs[n++],
1672                              MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
1673            kvm_msr_entry_set(&msrs[n++],
1674                              MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
1675            kvm_msr_entry_set(&msrs[n++],
1676                              MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
1677            kvm_msr_entry_set(&msrs[n++],
1678                              MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
1679            kvm_msr_entry_set(&msrs[n++],
1680                              MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
1681            kvm_msr_entry_set(&msrs[n++],
1682                              MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
1683            for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
1684                kvm_msr_entry_set(&msrs[n++],
1685                                  MSR_MTRRphysBase(i), env->mtrr_var[i].base);
1686                kvm_msr_entry_set(&msrs[n++],
1687                                  MSR_MTRRphysMask(i), env->mtrr_var[i].mask);
1688            }
1689        }
1690
1691        /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1692         *       kvm_put_msr_feature_control. */
1693    }
1694    if (env->mcg_cap) {
1695        int i;
1696
1697        kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1698        kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1699        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1700            kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1701        }
1702    }
1703
1704    msr_data.info = (struct kvm_msrs) {
1705        .nmsrs = n,
1706    };
1707
1708    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1709    if (ret < 0) {
1710        return ret;
1711    }
1712
1713    assert(ret == n);
1714    return 0;
1715}
1716
1717
1718static int kvm_get_fpu(X86CPU *cpu)
1719{
1720    CPUX86State *env = &cpu->env;
1721    struct kvm_fpu fpu;
1722    int i, ret;
1723
1724    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1725    if (ret < 0) {
1726        return ret;
1727    }
1728
1729    env->fpstt = (fpu.fsw >> 11) & 7;
1730    env->fpus = fpu.fsw;
1731    env->fpuc = fpu.fcw;
1732    env->fpop = fpu.last_opcode;
1733    env->fpip = fpu.last_ip;
1734    env->fpdp = fpu.last_dp;
1735    for (i = 0; i < 8; ++i) {
1736        env->fptags[i] = !((fpu.ftwx >> i) & 1);
1737    }
1738    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1739    for (i = 0; i < CPU_NB_REGS; i++) {
1740        env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
1741        env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
1742    }
1743    env->mxcsr = fpu.mxcsr;
1744
1745    return 0;
1746}
1747
1748static int kvm_get_xsave(X86CPU *cpu)
1749{
1750    CPUX86State *env = &cpu->env;
1751    struct kvm_xsave* xsave = env->kvm_xsave_buf;
1752    int ret, i;
1753    const uint8_t *xmm, *ymmh, *zmmh;
1754    uint16_t cwd, swd, twd;
1755
1756    if (!has_xsave) {
1757        return kvm_get_fpu(cpu);
1758    }
1759
1760    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1761    if (ret < 0) {
1762        return ret;
1763    }
1764
1765    cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1766    swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1767    twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1768    env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1769    env->fpstt = (swd >> 11) & 7;
1770    env->fpus = swd;
1771    env->fpuc = cwd;
1772    for (i = 0; i < 8; ++i) {
1773        env->fptags[i] = !((twd >> i) & 1);
1774    }
1775    memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1776    memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1777    env->mxcsr = xsave->region[XSAVE_MXCSR];
1778    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1779            sizeof env->fpregs);
1780    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1781    memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS],
1782            sizeof env->bnd_regs);
1783    memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR],
1784            sizeof(env->bndcs_regs));
1785    memcpy(env->opmask_regs, &xsave->region[XSAVE_OPMASK],
1786            sizeof env->opmask_regs);
1787
1788    xmm = (const uint8_t *)&xsave->region[XSAVE_XMM_SPACE];
1789    ymmh = (const uint8_t *)&xsave->region[XSAVE_YMMH_SPACE];
1790    zmmh = (const uint8_t *)&xsave->region[XSAVE_ZMM_Hi256];
1791    for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) {
1792        env->xmm_regs[i].ZMM_Q(0) = ldq_p(xmm);
1793        env->xmm_regs[i].ZMM_Q(1) = ldq_p(xmm+8);
1794        env->xmm_regs[i].ZMM_Q(2) = ldq_p(ymmh);
1795        env->xmm_regs[i].ZMM_Q(3) = ldq_p(ymmh+8);
1796        env->xmm_regs[i].ZMM_Q(4) = ldq_p(zmmh);
1797        env->xmm_regs[i].ZMM_Q(5) = ldq_p(zmmh+8);
1798        env->xmm_regs[i].ZMM_Q(6) = ldq_p(zmmh+16);
1799        env->xmm_regs[i].ZMM_Q(7) = ldq_p(zmmh+24);
1800    }
1801
1802#ifdef TARGET_X86_64
1803    memcpy(&env->xmm_regs[16], &xsave->region[XSAVE_Hi16_ZMM],
1804           16 * sizeof env->xmm_regs[16]);
1805    memcpy(&env->pkru, &xsave->region[XSAVE_PKRU], sizeof env->pkru);
1806#endif
1807    return 0;
1808}
1809
1810static int kvm_get_xcrs(X86CPU *cpu)
1811{
1812    CPUX86State *env = &cpu->env;
1813    int i, ret;
1814    struct kvm_xcrs xcrs;
1815
1816    if (!has_xcrs) {
1817        return 0;
1818    }
1819
1820    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1821    if (ret < 0) {
1822        return ret;
1823    }
1824
1825    for (i = 0; i < xcrs.nr_xcrs; i++) {
1826        /* Only support xcr0 now */
1827        if (xcrs.xcrs[i].xcr == 0) {
1828            env->xcr0 = xcrs.xcrs[i].value;
1829            break;
1830        }
1831    }
1832    return 0;
1833}
1834
1835static int kvm_get_sregs(X86CPU *cpu)
1836{
1837    CPUX86State *env = &cpu->env;
1838    struct kvm_sregs sregs;
1839    uint32_t hflags;
1840    int bit, i, ret;
1841
1842    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1843    if (ret < 0) {
1844        return ret;
1845    }
1846
1847    /* There can only be one pending IRQ set in the bitmap at a time, so try
1848       to find it and save its number instead (-1 for none). */
1849    env->interrupt_injected = -1;
1850    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1851        if (sregs.interrupt_bitmap[i]) {
1852            bit = ctz64(sregs.interrupt_bitmap[i]);
1853            env->interrupt_injected = i * 64 + bit;
1854            break;
1855        }
1856    }
1857
1858    get_seg(&env->segs[R_CS], &sregs.cs);
1859    get_seg(&env->segs[R_DS], &sregs.ds);
1860    get_seg(&env->segs[R_ES], &sregs.es);
1861    get_seg(&env->segs[R_FS], &sregs.fs);
1862    get_seg(&env->segs[R_GS], &sregs.gs);
1863    get_seg(&env->segs[R_SS], &sregs.ss);
1864
1865    get_seg(&env->tr, &sregs.tr);
1866    get_seg(&env->ldt, &sregs.ldt);
1867
1868    env->idt.limit = sregs.idt.limit;
1869    env->idt.base = sregs.idt.base;
1870    env->gdt.limit = sregs.gdt.limit;
1871    env->gdt.base = sregs.gdt.base;
1872
1873    env->cr[0] = sregs.cr0;
1874    env->cr[2] = sregs.cr2;
1875    env->cr[3] = sregs.cr3;
1876    env->cr[4] = sregs.cr4;
1877
1878    env->efer = sregs.efer;
1879
1880    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1881
1882#define HFLAG_COPY_MASK \
1883    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1884       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1885       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1886       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1887
1888    hflags = env->hflags & HFLAG_COPY_MASK;
1889    hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1890    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1891    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1892                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1893    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1894
1895    if (env->cr[4] & CR4_OSFXSR_MASK) {
1896        hflags |= HF_OSFXSR_MASK;
1897    }
1898
1899    if (env->efer & MSR_EFER_LMA) {
1900        hflags |= HF_LMA_MASK;
1901    }
1902
1903    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1904        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1905    } else {
1906        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1907                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1908        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1909                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1910        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1911            !(hflags & HF_CS32_MASK)) {
1912            hflags |= HF_ADDSEG_MASK;
1913        } else {
1914            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1915                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1916        }
1917    }
1918    env->hflags = hflags;
1919
1920    return 0;
1921}
1922
1923static int kvm_get_msrs(X86CPU *cpu)
1924{
1925    CPUX86State *env = &cpu->env;
1926    struct {
1927        struct kvm_msrs info;
1928        struct kvm_msr_entry entries[150];
1929    } msr_data;
1930    struct kvm_msr_entry *msrs = msr_data.entries;
1931    int ret, i, n;
1932
1933    n = 0;
1934    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1935    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1936    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1937    msrs[n++].index = MSR_PAT;
1938    if (has_msr_star) {
1939        msrs[n++].index = MSR_STAR;
1940    }
1941    if (has_msr_hsave_pa) {
1942        msrs[n++].index = MSR_VM_HSAVE_PA;
1943    }
1944    if (has_msr_tsc_aux) {
1945        msrs[n++].index = MSR_TSC_AUX;
1946    }
1947    if (has_msr_tsc_adjust) {
1948        msrs[n++].index = MSR_TSC_ADJUST;
1949    }
1950    if (has_msr_tsc_deadline) {
1951        msrs[n++].index = MSR_IA32_TSCDEADLINE;
1952    }
1953    if (has_msr_misc_enable) {
1954        msrs[n++].index = MSR_IA32_MISC_ENABLE;
1955    }
1956    if (has_msr_smbase) {
1957        msrs[n++].index = MSR_IA32_SMBASE;
1958    }
1959    if (has_msr_feature_control) {
1960        msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1961    }
1962    if (has_msr_bndcfgs) {
1963        msrs[n++].index = MSR_IA32_BNDCFGS;
1964    }
1965    if (has_msr_xss) {
1966        msrs[n++].index = MSR_IA32_XSS;
1967    }
1968
1969
1970    if (!env->tsc_valid) {
1971        msrs[n++].index = MSR_IA32_TSC;
1972        env->tsc_valid = !runstate_is_running();
1973    }
1974
1975#ifdef TARGET_X86_64
1976    if (lm_capable_kernel) {
1977        msrs[n++].index = MSR_CSTAR;
1978        msrs[n++].index = MSR_KERNELGSBASE;
1979        msrs[n++].index = MSR_FMASK;
1980        msrs[n++].index = MSR_LSTAR;
1981    }
1982#endif
1983    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1984    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1985    if (has_msr_async_pf_en) {
1986        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1987    }
1988    if (has_msr_pv_eoi_en) {
1989        msrs[n++].index = MSR_KVM_PV_EOI_EN;
1990    }
1991    if (has_msr_kvm_steal_time) {
1992        msrs[n++].index = MSR_KVM_STEAL_TIME;
1993    }
1994    if (has_msr_architectural_pmu) {
1995        msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1996        msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1997        msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1998        msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1999        for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
2000            msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
2001        }
2002        for (i = 0; i < num_architectural_pmu_counters; i++) {
2003            msrs[n++].index = MSR_P6_PERFCTR0 + i;
2004            msrs[n++].index = MSR_P6_EVNTSEL0 + i;
2005        }
2006    }
2007
2008    if (env->mcg_cap) {
2009        msrs[n++].index = MSR_MCG_STATUS;
2010        msrs[n++].index = MSR_MCG_CTL;
2011        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2012            msrs[n++].index = MSR_MC0_CTL + i;
2013        }
2014    }
2015
2016    if (has_msr_hv_hypercall) {
2017        msrs[n++].index = HV_X64_MSR_HYPERCALL;
2018        msrs[n++].index = HV_X64_MSR_GUEST_OS_ID;
2019    }
2020    if (has_msr_hv_vapic) {
2021        msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE;
2022    }
2023    if (has_msr_hv_tsc) {
2024        msrs[n++].index = HV_X64_MSR_REFERENCE_TSC;
2025    }
2026    if (has_msr_hv_crash) {
2027        int j;
2028
2029        for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) {
2030            msrs[n++].index = HV_X64_MSR_CRASH_P0 + j;
2031        }
2032    }
2033    if (has_msr_hv_runtime) {
2034        msrs[n++].index = HV_X64_MSR_VP_RUNTIME;
2035    }
2036    if (cpu->hyperv_synic) {
2037        uint32_t msr;
2038
2039        msrs[n++].index = HV_X64_MSR_SCONTROL;
2040        msrs[n++].index = HV_X64_MSR_SVERSION;
2041        msrs[n++].index = HV_X64_MSR_SIEFP;
2042        msrs[n++].index = HV_X64_MSR_SIMP;
2043        for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
2044            msrs[n++].index = msr;
2045        }
2046    }
2047    if (has_msr_hv_stimer) {
2048        uint32_t msr;
2049
2050        for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2051             msr++) {
2052            msrs[n++].index = msr;
2053        }
2054    }
2055    if (has_msr_mtrr) {
2056        msrs[n++].index = MSR_MTRRdefType;
2057        msrs[n++].index = MSR_MTRRfix64K_00000;
2058        msrs[n++].index = MSR_MTRRfix16K_80000;
2059        msrs[n++].index = MSR_MTRRfix16K_A0000;
2060        msrs[n++].index = MSR_MTRRfix4K_C0000;
2061        msrs[n++].index = MSR_MTRRfix4K_C8000;
2062        msrs[n++].index = MSR_MTRRfix4K_D0000;
2063        msrs[n++].index = MSR_MTRRfix4K_D8000;
2064        msrs[n++].index = MSR_MTRRfix4K_E0000;
2065        msrs[n++].index = MSR_MTRRfix4K_E8000;
2066        msrs[n++].index = MSR_MTRRfix4K_F0000;
2067        msrs[n++].index = MSR_MTRRfix4K_F8000;
2068        for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2069            msrs[n++].index = MSR_MTRRphysBase(i);
2070            msrs[n++].index = MSR_MTRRphysMask(i);
2071        }
2072    }
2073
2074    msr_data.info = (struct kvm_msrs) {
2075        .nmsrs = n,
2076    };
2077
2078    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
2079    if (ret < 0) {
2080        return ret;
2081    }
2082
2083    assert(ret == n);
2084    for (i = 0; i < ret; i++) {
2085        uint32_t index = msrs[i].index;
2086        switch (index) {
2087        case MSR_IA32_SYSENTER_CS:
2088            env->sysenter_cs = msrs[i].data;
2089            break;
2090        case MSR_IA32_SYSENTER_ESP:
2091            env->sysenter_esp = msrs[i].data;
2092            break;
2093        case MSR_IA32_SYSENTER_EIP:
2094            env->sysenter_eip = msrs[i].data;
2095            break;
2096        case MSR_PAT:
2097            env->pat = msrs[i].data;
2098            break;
2099        case MSR_STAR:
2100            env->star = msrs[i].data;
2101            break;
2102#ifdef TARGET_X86_64
2103        case MSR_CSTAR:
2104            env->cstar = msrs[i].data;
2105            break;
2106        case MSR_KERNELGSBASE:
2107            env->kernelgsbase = msrs[i].data;
2108            break;
2109        case MSR_FMASK:
2110            env->fmask = msrs[i].data;
2111            break;
2112        case MSR_LSTAR:
2113            env->lstar = msrs[i].data;
2114            break;
2115#endif
2116        case MSR_IA32_TSC:
2117            env->tsc = msrs[i].data;
2118            break;
2119        case MSR_TSC_AUX:
2120            env->tsc_aux = msrs[i].data;
2121            break;
2122        case MSR_TSC_ADJUST:
2123            env->tsc_adjust = msrs[i].data;
2124            break;
2125        case MSR_IA32_TSCDEADLINE:
2126            env->tsc_deadline = msrs[i].data;
2127            break;
2128        case MSR_VM_HSAVE_PA:
2129            env->vm_hsave = msrs[i].data;
2130            break;
2131        case MSR_KVM_SYSTEM_TIME:
2132            env->system_time_msr = msrs[i].data;
2133            break;
2134        case MSR_KVM_WALL_CLOCK:
2135            env->wall_clock_msr = msrs[i].data;
2136            break;
2137        case MSR_MCG_STATUS:
2138            env->mcg_status = msrs[i].data;
2139            break;
2140        case MSR_MCG_CTL:
2141            env->mcg_ctl = msrs[i].data;
2142            break;
2143        case MSR_IA32_MISC_ENABLE:
2144            env->msr_ia32_misc_enable = msrs[i].data;
2145            break;
2146        case MSR_IA32_SMBASE:
2147            env->smbase = msrs[i].data;
2148            break;
2149        case MSR_IA32_FEATURE_CONTROL:
2150            env->msr_ia32_feature_control = msrs[i].data;
2151            break;
2152        case MSR_IA32_BNDCFGS:
2153            env->msr_bndcfgs = msrs[i].data;
2154            break;
2155        case MSR_IA32_XSS:
2156            env->xss = msrs[i].data;
2157            break;
2158        default:
2159            if (msrs[i].index >= MSR_MC0_CTL &&
2160                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
2161                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
2162            }
2163            break;
2164        case MSR_KVM_ASYNC_PF_EN:
2165            env->async_pf_en_msr = msrs[i].data;
2166            break;
2167        case MSR_KVM_PV_EOI_EN:
2168            env->pv_eoi_en_msr = msrs[i].data;
2169            break;
2170        case MSR_KVM_STEAL_TIME:
2171            env->steal_time_msr = msrs[i].data;
2172            break;
2173        case MSR_CORE_PERF_FIXED_CTR_CTRL:
2174            env->msr_fixed_ctr_ctrl = msrs[i].data;
2175            break;
2176        case MSR_CORE_PERF_GLOBAL_CTRL:
2177            env->msr_global_ctrl = msrs[i].data;
2178            break;
2179        case MSR_CORE_PERF_GLOBAL_STATUS:
2180            env->msr_global_status = msrs[i].data;
2181            break;
2182        case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2183            env->msr_global_ovf_ctrl = msrs[i].data;
2184            break;
2185        case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2186            env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2187            break;
2188        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2189            env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2190            break;
2191        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2192            env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2193            break;
2194        case HV_X64_MSR_HYPERCALL:
2195            env->msr_hv_hypercall = msrs[i].data;
2196            break;
2197        case HV_X64_MSR_GUEST_OS_ID:
2198            env->msr_hv_guest_os_id = msrs[i].data;
2199            break;
2200        case HV_X64_MSR_APIC_ASSIST_PAGE:
2201            env->msr_hv_vapic = msrs[i].data;
2202            break;
2203        case HV_X64_MSR_REFERENCE_TSC:
2204            env->msr_hv_tsc = msrs[i].data;
2205            break;
2206        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2207            env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2208            break;
2209        case HV_X64_MSR_VP_RUNTIME:
2210            env->msr_hv_runtime = msrs[i].data;
2211            break;
2212        case HV_X64_MSR_SCONTROL:
2213            env->msr_hv_synic_control = msrs[i].data;
2214            break;
2215        case HV_X64_MSR_SVERSION:
2216            env->msr_hv_synic_version = msrs[i].data;
2217            break;
2218        case HV_X64_MSR_SIEFP:
2219            env->msr_hv_synic_evt_page = msrs[i].data;
2220            break;
2221        case HV_X64_MSR_SIMP:
2222            env->msr_hv_synic_msg_page = msrs[i].data;
2223            break;
2224        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
2225            env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
2226            break;
2227        case HV_X64_MSR_STIMER0_CONFIG:
2228        case HV_X64_MSR_STIMER1_CONFIG:
2229        case HV_X64_MSR_STIMER2_CONFIG:
2230        case HV_X64_MSR_STIMER3_CONFIG:
2231            env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
2232                                msrs[i].data;
2233            break;
2234        case HV_X64_MSR_STIMER0_COUNT:
2235        case HV_X64_MSR_STIMER1_COUNT:
2236        case HV_X64_MSR_STIMER2_COUNT:
2237        case HV_X64_MSR_STIMER3_COUNT:
2238            env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
2239                                msrs[i].data;
2240            break;
2241        case MSR_MTRRdefType:
2242            env->mtrr_deftype = msrs[i].data;
2243            break;
2244        case MSR_MTRRfix64K_00000:
2245            env->mtrr_fixed[0] = msrs[i].data;
2246            break;
2247        case MSR_MTRRfix16K_80000:
2248            env->mtrr_fixed[1] = msrs[i].data;
2249            break;
2250        case MSR_MTRRfix16K_A0000:
2251            env->mtrr_fixed[2] = msrs[i].data;
2252            break;
2253        case MSR_MTRRfix4K_C0000:
2254            env->mtrr_fixed[3] = msrs[i].data;
2255            break;
2256        case MSR_MTRRfix4K_C8000:
2257            env->mtrr_fixed[4] = msrs[i].data;
2258            break;
2259        case MSR_MTRRfix4K_D0000:
2260            env->mtrr_fixed[5] = msrs[i].data;
2261            break;
2262        case MSR_MTRRfix4K_D8000:
2263            env->mtrr_fixed[6] = msrs[i].data;
2264            break;
2265        case MSR_MTRRfix4K_E0000:
2266            env->mtrr_fixed[7] = msrs[i].data;
2267            break;
2268        case MSR_MTRRfix4K_E8000:
2269            env->mtrr_fixed[8] = msrs[i].data;
2270            break;
2271        case MSR_MTRRfix4K_F0000:
2272            env->mtrr_fixed[9] = msrs[i].data;
2273            break;
2274        case MSR_MTRRfix4K_F8000:
2275            env->mtrr_fixed[10] = msrs[i].data;
2276            break;
2277        case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2278            if (index & 1) {
2279                env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data;
2280            } else {
2281                env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2282            }
2283            break;
2284        }
2285    }
2286
2287    return 0;
2288}
2289
2290static int kvm_put_mp_state(X86CPU *cpu)
2291{
2292    struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
2293
2294    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2295}
2296
2297static int kvm_get_mp_state(X86CPU *cpu)
2298{
2299    CPUState *cs = CPU(cpu);
2300    CPUX86State *env = &cpu->env;
2301    struct kvm_mp_state mp_state;
2302    int ret;
2303
2304    ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
2305    if (ret < 0) {
2306        return ret;
2307    }
2308    env->mp_state = mp_state.mp_state;
2309    if (kvm_irqchip_in_kernel()) {
2310        cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
2311    }
2312    return 0;
2313}
2314
2315static int kvm_get_apic(X86CPU *cpu)
2316{
2317    DeviceState *apic = cpu->apic_state;
2318    struct kvm_lapic_state kapic;
2319    int ret;
2320
2321    if (apic && kvm_irqchip_in_kernel()) {
2322        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
2323        if (ret < 0) {
2324            return ret;
2325        }
2326
2327        kvm_get_apic_state(apic, &kapic);
2328    }
2329    return 0;
2330}
2331
2332static int kvm_put_apic(X86CPU *cpu)
2333{
2334    DeviceState *apic = cpu->apic_state;
2335    struct kvm_lapic_state kapic;
2336
2337    if (apic && kvm_irqchip_in_kernel()) {
2338        kvm_put_apic_state(apic, &kapic);
2339
2340        return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
2341    }
2342    return 0;
2343}
2344
2345static int kvm_put_vcpu_events(X86CPU *cpu, int level)
2346{
2347    CPUState *cs = CPU(cpu);
2348    CPUX86State *env = &cpu->env;
2349    struct kvm_vcpu_events events = {};
2350
2351    if (!kvm_has_vcpu_events()) {
2352        return 0;
2353    }
2354
2355    events.exception.injected = (env->exception_injected >= 0);
2356    events.exception.nr = env->exception_injected;
2357    events.exception.has_error_code = env->has_error_code;
2358    events.exception.error_code = env->error_code;
2359    events.exception.pad = 0;
2360
2361    events.interrupt.injected = (env->interrupt_injected >= 0);
2362    events.interrupt.nr = env->interrupt_injected;
2363    events.interrupt.soft = env->soft_interrupt;
2364
2365    events.nmi.injected = env->nmi_injected;
2366    events.nmi.pending = env->nmi_pending;
2367    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
2368    events.nmi.pad = 0;
2369
2370    events.sipi_vector = env->sipi_vector;
2371
2372    if (has_msr_smbase) {
2373        events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2374        events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2375        if (kvm_irqchip_in_kernel()) {
2376            /* As soon as these are moved to the kernel, remove them
2377             * from cs->interrupt_request.
2378             */
2379            events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2380            events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2381            cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2382        } else {
2383            /* Keep these in cs->interrupt_request.  */
2384            events.smi.pending = 0;
2385            events.smi.latched_init = 0;
2386        }
2387        events.flags |= KVM_VCPUEVENT_VALID_SMM;
2388    }
2389
2390    events.flags = 0;
2391    if (level >= KVM_PUT_RESET_STATE) {
2392        events.flags |=
2393            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2394    }
2395
2396    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
2397}
2398
2399static int kvm_get_vcpu_events(X86CPU *cpu)
2400{
2401    CPUX86State *env = &cpu->env;
2402    struct kvm_vcpu_events events;
2403    int ret;
2404
2405    if (!kvm_has_vcpu_events()) {
2406        return 0;
2407    }
2408
2409    memset(&events, 0, sizeof(events));
2410    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
2411    if (ret < 0) {
2412       return ret;
2413    }
2414    env->exception_injected =
2415       events.exception.injected ? events.exception.nr : -1;
2416    env->has_error_code = events.exception.has_error_code;
2417    env->error_code = events.exception.error_code;
2418
2419    env->interrupt_injected =
2420        events.interrupt.injected ? events.interrupt.nr : -1;
2421    env->soft_interrupt = events.interrupt.soft;
2422
2423    env->nmi_injected = events.nmi.injected;
2424    env->nmi_pending = events.nmi.pending;
2425    if (events.nmi.masked) {
2426        env->hflags2 |= HF2_NMI_MASK;
2427    } else {
2428        env->hflags2 &= ~HF2_NMI_MASK;
2429    }
2430
2431    if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2432        if (events.smi.smm) {
2433            env->hflags |= HF_SMM_MASK;
2434        } else {
2435            env->hflags &= ~HF_SMM_MASK;
2436        }
2437        if (events.smi.pending) {
2438            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2439        } else {
2440            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2441        }
2442        if (events.smi.smm_inside_nmi) {
2443            env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2444        } else {
2445            env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2446        }
2447        if (events.smi.latched_init) {
2448            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2449        } else {
2450            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2451        }
2452    }
2453
2454    env->sipi_vector = events.sipi_vector;
2455
2456    return 0;
2457}
2458
2459static int kvm_guest_debug_workarounds(X86CPU *cpu)
2460{
2461    CPUState *cs = CPU(cpu);
2462    CPUX86State *env = &cpu->env;
2463    int ret = 0;
2464    unsigned long reinject_trap = 0;
2465
2466    if (!kvm_has_vcpu_events()) {
2467        if (env->exception_injected == 1) {
2468            reinject_trap = KVM_GUESTDBG_INJECT_DB;
2469        } else if (env->exception_injected == 3) {
2470            reinject_trap = KVM_GUESTDBG_INJECT_BP;
2471        }
2472        env->exception_injected = -1;
2473    }
2474
2475    /*
2476     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2477     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2478     * by updating the debug state once again if single-stepping is on.
2479     * Another reason to call kvm_update_guest_debug here is a pending debug
2480     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2481     * reinject them via SET_GUEST_DEBUG.
2482     */
2483    if (reinject_trap ||
2484        (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
2485        ret = kvm_update_guest_debug(cs, reinject_trap);
2486    }
2487    return ret;
2488}
2489
2490static int kvm_put_debugregs(X86CPU *cpu)
2491{
2492    CPUX86State *env = &cpu->env;
2493    struct kvm_debugregs dbgregs;
2494    int i;
2495
2496    if (!kvm_has_debugregs()) {
2497        return 0;
2498    }
2499
2500    for (i = 0; i < 4; i++) {
2501        dbgregs.db[i] = env->dr[i];
2502    }
2503    dbgregs.dr6 = env->dr[6];
2504    dbgregs.dr7 = env->dr[7];
2505    dbgregs.flags = 0;
2506
2507    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
2508}
2509
2510static int kvm_get_debugregs(X86CPU *cpu)
2511{
2512    CPUX86State *env = &cpu->env;
2513    struct kvm_debugregs dbgregs;
2514    int i, ret;
2515
2516    if (!kvm_has_debugregs()) {
2517        return 0;
2518    }
2519
2520    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
2521    if (ret < 0) {
2522        return ret;
2523    }
2524    for (i = 0; i < 4; i++) {
2525        env->dr[i] = dbgregs.db[i];
2526    }
2527    env->dr[4] = env->dr[6] = dbgregs.dr6;
2528    env->dr[5] = env->dr[7] = dbgregs.dr7;
2529
2530    return 0;
2531}
2532
2533int kvm_arch_put_registers(CPUState *cpu, int level)
2534{
2535    X86CPU *x86_cpu = X86_CPU(cpu);
2536    int ret;
2537
2538    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
2539
2540    if (level >= KVM_PUT_RESET_STATE) {
2541        ret = kvm_put_msr_feature_control(x86_cpu);
2542        if (ret < 0) {
2543            return ret;
2544        }
2545    }
2546
2547    if (level == KVM_PUT_FULL_STATE) {
2548        /* We don't check for kvm_arch_set_tsc_khz() errors here,
2549         * because TSC frequency mismatch shouldn't abort migration,
2550         * unless the user explicitly asked for a more strict TSC
2551         * setting (e.g. using an explicit "tsc-freq" option).
2552         */
2553        kvm_arch_set_tsc_khz(cpu);
2554    }
2555
2556    ret = kvm_getput_regs(x86_cpu, 1);
2557    if (ret < 0) {
2558        return ret;
2559    }
2560    ret = kvm_put_xsave(x86_cpu);
2561    if (ret < 0) {
2562        return ret;
2563    }
2564    ret = kvm_put_xcrs(x86_cpu);
2565    if (ret < 0) {
2566        return ret;
2567    }
2568    ret = kvm_put_sregs(x86_cpu);
2569    if (ret < 0) {
2570        return ret;
2571    }
2572    /* must be before kvm_put_msrs */
2573    ret = kvm_inject_mce_oldstyle(x86_cpu);
2574    if (ret < 0) {
2575        return ret;
2576    }
2577    ret = kvm_put_msrs(x86_cpu, level);
2578    if (ret < 0) {
2579        return ret;
2580    }
2581    if (level >= KVM_PUT_RESET_STATE) {
2582        ret = kvm_put_mp_state(x86_cpu);
2583        if (ret < 0) {
2584            return ret;
2585        }
2586        ret = kvm_put_apic(x86_cpu);
2587        if (ret < 0) {
2588            return ret;
2589        }
2590    }
2591
2592    ret = kvm_put_tscdeadline_msr(x86_cpu);
2593    if (ret < 0) {
2594        return ret;
2595    }
2596
2597    ret = kvm_put_vcpu_events(x86_cpu, level);
2598    if (ret < 0) {
2599        return ret;
2600    }
2601    ret = kvm_put_debugregs(x86_cpu);
2602    if (ret < 0) {
2603        return ret;
2604    }
2605    /* must be last */
2606    ret = kvm_guest_debug_workarounds(x86_cpu);
2607    if (ret < 0) {
2608        return ret;
2609    }
2610    return 0;
2611}
2612
2613int kvm_arch_get_registers(CPUState *cs)
2614{
2615    X86CPU *cpu = X86_CPU(cs);
2616    int ret;
2617
2618    assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
2619
2620    ret = kvm_getput_regs(cpu, 0);
2621    if (ret < 0) {
2622        goto out;
2623    }
2624    ret = kvm_get_xsave(cpu);
2625    if (ret < 0) {
2626        goto out;
2627    }
2628    ret = kvm_get_xcrs(cpu);
2629    if (ret < 0) {
2630        goto out;
2631    }
2632    ret = kvm_get_sregs(cpu);
2633    if (ret < 0) {
2634        goto out;
2635    }
2636    ret = kvm_get_msrs(cpu);
2637    if (ret < 0) {
2638        goto out;
2639    }
2640    ret = kvm_get_mp_state(cpu);
2641    if (ret < 0) {
2642        goto out;
2643    }
2644    ret = kvm_get_apic(cpu);
2645    if (ret < 0) {
2646        goto out;
2647    }
2648    ret = kvm_get_vcpu_events(cpu);
2649    if (ret < 0) {
2650        goto out;
2651    }
2652    ret = kvm_get_debugregs(cpu);
2653    if (ret < 0) {
2654        goto out;
2655    }
2656    ret = 0;
2657 out:
2658    cpu_sync_bndcs_hflags(&cpu->env);
2659    return ret;
2660}
2661
2662void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
2663{
2664    X86CPU *x86_cpu = X86_CPU(cpu);
2665    CPUX86State *env = &x86_cpu->env;
2666    int ret;
2667
2668    /* Inject NMI */
2669    if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
2670        if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
2671            qemu_mutex_lock_iothread();
2672            cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
2673            qemu_mutex_unlock_iothread();
2674            DPRINTF("injected NMI\n");
2675            ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
2676            if (ret < 0) {
2677                fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
2678                        strerror(-ret));
2679            }
2680        }
2681        if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
2682            qemu_mutex_lock_iothread();
2683            cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
2684            qemu_mutex_unlock_iothread();
2685            DPRINTF("injected SMI\n");
2686            ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
2687            if (ret < 0) {
2688                fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
2689                        strerror(-ret));
2690            }
2691        }
2692    }
2693
2694    if (!kvm_pic_in_kernel()) {
2695        qemu_mutex_lock_iothread();
2696    }
2697
2698    /* Force the VCPU out of its inner loop to process any INIT requests
2699     * or (for userspace APIC, but it is cheap to combine the checks here)
2700     * pending TPR access reports.
2701     */
2702    if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
2703        if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
2704            !(env->hflags & HF_SMM_MASK)) {
2705            cpu->exit_request = 1;
2706        }
2707        if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
2708            cpu->exit_request = 1;
2709        }
2710    }
2711
2712    if (!kvm_pic_in_kernel()) {
2713        /* Try to inject an interrupt if the guest can accept it */
2714        if (run->ready_for_interrupt_injection &&
2715            (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
2716            (env->eflags & IF_MASK)) {
2717            int irq;
2718
2719            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
2720            irq = cpu_get_pic_interrupt(env);
2721            if (irq >= 0) {
2722                struct kvm_interrupt intr;
2723
2724                intr.irq = irq;
2725                DPRINTF("injected interrupt %d\n", irq);
2726                ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
2727                if (ret < 0) {
2728                    fprintf(stderr,
2729                            "KVM: injection failed, interrupt lost (%s)\n",
2730                            strerror(-ret));
2731                }
2732            }
2733        }
2734
2735        /* If we have an interrupt but the guest is not ready to receive an
2736         * interrupt, request an interrupt window exit.  This will
2737         * cause a return to userspace as soon as the guest is ready to
2738         * receive interrupts. */
2739        if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
2740            run->request_interrupt_window = 1;
2741        } else {
2742            run->request_interrupt_window = 0;
2743        }
2744
2745        DPRINTF("setting tpr\n");
2746        run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
2747
2748        qemu_mutex_unlock_iothread();
2749    }
2750}
2751
2752MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
2753{
2754    X86CPU *x86_cpu = X86_CPU(cpu);
2755    CPUX86State *env = &x86_cpu->env;
2756
2757    if (run->flags & KVM_RUN_X86_SMM) {
2758        env->hflags |= HF_SMM_MASK;
2759    } else {
2760        env->hflags &= HF_SMM_MASK;
2761    }
2762    if (run->if_flag) {
2763        env->eflags |= IF_MASK;
2764    } else {
2765        env->eflags &= ~IF_MASK;
2766    }
2767
2768    /* We need to protect the apic state against concurrent accesses from
2769     * different threads in case the userspace irqchip is used. */
2770    if (!kvm_irqchip_in_kernel()) {
2771        qemu_mutex_lock_iothread();
2772    }
2773    cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2774    cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
2775    if (!kvm_irqchip_in_kernel()) {
2776        qemu_mutex_unlock_iothread();
2777    }
2778    return cpu_get_mem_attrs(env);
2779}
2780
2781int kvm_arch_process_async_events(CPUState *cs)
2782{
2783    X86CPU *cpu = X86_CPU(cs);
2784    CPUX86State *env = &cpu->env;
2785
2786    if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
2787        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2788        assert(env->mcg_cap);
2789
2790        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
2791
2792        kvm_cpu_synchronize_state(cs);
2793
2794        if (env->exception_injected == EXCP08_DBLE) {
2795            /* this means triple fault */
2796            qemu_system_reset_request();
2797            cs->exit_request = 1;
2798            return 0;
2799        }
2800        env->exception_injected = EXCP12_MCHK;
2801        env->has_error_code = 0;
2802
2803        cs->halted = 0;
2804        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2805            env->mp_state = KVM_MP_STATE_RUNNABLE;
2806        }
2807    }
2808
2809    if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
2810        !(env->hflags & HF_SMM_MASK)) {
2811        kvm_cpu_synchronize_state(cs);
2812        do_cpu_init(cpu);
2813    }
2814
2815    if (kvm_irqchip_in_kernel()) {
2816        return 0;
2817    }
2818
2819    if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2820        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
2821        apic_poll_irq(cpu->apic_state);
2822    }
2823    if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2824         (env->eflags & IF_MASK)) ||
2825        (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2826        cs->halted = 0;
2827    }
2828    if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
2829        kvm_cpu_synchronize_state(cs);
2830        do_cpu_sipi(cpu);
2831    }
2832    if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2833        cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
2834        kvm_cpu_synchronize_state(cs);
2835        apic_handle_tpr_access_report(cpu->apic_state, env->eip,
2836                                      env->tpr_access_type);
2837    }
2838
2839    return cs->halted;
2840}
2841
2842static int kvm_handle_halt(X86CPU *cpu)
2843{
2844    CPUState *cs = CPU(cpu);
2845    CPUX86State *env = &cpu->env;
2846
2847    if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2848          (env->eflags & IF_MASK)) &&
2849        !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2850        cs->halted = 1;
2851        return EXCP_HLT;
2852    }
2853
2854    return 0;
2855}
2856
2857static int kvm_handle_tpr_access(X86CPU *cpu)
2858{
2859    CPUState *cs = CPU(cpu);
2860    struct kvm_run *run = cs->kvm_run;
2861
2862    apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
2863                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
2864                                                           : TPR_ACCESS_READ);
2865    return 1;
2866}
2867
2868int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2869{
2870    static const uint8_t int3 = 0xcc;
2871
2872    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2873        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
2874        return -EINVAL;
2875    }
2876    return 0;
2877}
2878
2879int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2880{
2881    uint8_t int3;
2882
2883    if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2884        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
2885        return -EINVAL;
2886    }
2887    return 0;
2888}
2889
2890static struct {
2891    target_ulong addr;
2892    int len;
2893    int type;
2894} hw_breakpoint[4];
2895
2896static int nb_hw_breakpoint;
2897
2898static int find_hw_breakpoint(target_ulong addr, int len, int type)
2899{
2900    int n;
2901
2902    for (n = 0; n < nb_hw_breakpoint; n++) {
2903        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
2904            (hw_breakpoint[n].len == len || len == -1)) {
2905            return n;
2906        }
2907    }
2908    return -1;
2909}
2910
2911int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2912                                  target_ulong len, int type)
2913{
2914    switch (type) {
2915    case GDB_BREAKPOINT_HW:
2916        len = 1;
2917        break;
2918    case GDB_WATCHPOINT_WRITE:
2919    case GDB_WATCHPOINT_ACCESS:
2920        switch (len) {
2921        case 1:
2922            break;
2923        case 2:
2924        case 4:
2925        case 8:
2926            if (addr & (len - 1)) {
2927                return -EINVAL;
2928            }
2929            break;
2930        default:
2931            return -EINVAL;
2932        }
2933        break;
2934    default:
2935        return -ENOSYS;
2936    }
2937
2938    if (nb_hw_breakpoint == 4) {
2939        return -ENOBUFS;
2940    }
2941    if (find_hw_breakpoint(addr, len, type) >= 0) {
2942        return -EEXIST;
2943    }
2944    hw_breakpoint[nb_hw_breakpoint].addr = addr;
2945    hw_breakpoint[nb_hw_breakpoint].len = len;
2946    hw_breakpoint[nb_hw_breakpoint].type = type;
2947    nb_hw_breakpoint++;
2948
2949    return 0;
2950}
2951
2952int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2953                                  target_ulong len, int type)
2954{
2955    int n;
2956
2957    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2958    if (n < 0) {
2959        return -ENOENT;
2960    }
2961    nb_hw_breakpoint--;
2962    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2963
2964    return 0;
2965}
2966
2967void kvm_arch_remove_all_hw_breakpoints(void)
2968{
2969    nb_hw_breakpoint = 0;
2970}
2971
2972static CPUWatchpoint hw_watchpoint;
2973
2974static int kvm_handle_debug(X86CPU *cpu,
2975                            struct kvm_debug_exit_arch *arch_info)
2976{
2977    CPUState *cs = CPU(cpu);
2978    CPUX86State *env = &cpu->env;
2979    int ret = 0;
2980    int n;
2981
2982    if (arch_info->exception == 1) {
2983        if (arch_info->dr6 & (1 << 14)) {
2984            if (cs->singlestep_enabled) {
2985                ret = EXCP_DEBUG;
2986            }
2987        } else {
2988            for (n = 0; n < 4; n++) {
2989                if (arch_info->dr6 & (1 << n)) {
2990                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2991                    case 0x0:
2992                        ret = EXCP_DEBUG;
2993                        break;
2994                    case 0x1:
2995                        ret = EXCP_DEBUG;
2996                        cs->watchpoint_hit = &hw_watchpoint;
2997                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2998                        hw_watchpoint.flags = BP_MEM_WRITE;
2999                        break;
3000                    case 0x3:
3001                        ret = EXCP_DEBUG;
3002                        cs->watchpoint_hit = &hw_watchpoint;
3003                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3004                        hw_watchpoint.flags = BP_MEM_ACCESS;
3005                        break;
3006                    }
3007                }
3008            }
3009        }
3010    } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
3011        ret = EXCP_DEBUG;
3012    }
3013    if (ret == 0) {
3014        cpu_synchronize_state(cs);
3015        assert(env->exception_injected == -1);
3016
3017        /* pass to guest */
3018        env->exception_injected = arch_info->exception;
3019        env->has_error_code = 0;
3020    }
3021
3022    return ret;
3023}
3024
3025void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
3026{
3027    const uint8_t type_code[] = {
3028        [GDB_BREAKPOINT_HW] = 0x0,
3029        [GDB_WATCHPOINT_WRITE] = 0x1,
3030        [GDB_WATCHPOINT_ACCESS] = 0x3
3031    };
3032    const uint8_t len_code[] = {
3033        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3034    };
3035    int n;
3036
3037    if (kvm_sw_breakpoints_active(cpu)) {
3038        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
3039    }
3040    if (nb_hw_breakpoint > 0) {
3041        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
3042        dbg->arch.debugreg[7] = 0x0600;
3043        for (n = 0; n < nb_hw_breakpoint; n++) {
3044            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
3045            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
3046                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
3047                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
3048        }
3049    }
3050}
3051
3052static bool host_supports_vmx(void)
3053{
3054    uint32_t ecx, unused;
3055
3056    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
3057    return ecx & CPUID_EXT_VMX;
3058}
3059
3060#define VMX_INVALID_GUEST_STATE 0x80000021
3061
3062int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
3063{
3064    X86CPU *cpu = X86_CPU(cs);
3065    uint64_t code;
3066    int ret;
3067
3068    switch (run->exit_reason) {
3069    case KVM_EXIT_HLT:
3070        DPRINTF("handle_hlt\n");
3071        qemu_mutex_lock_iothread();
3072        ret = kvm_handle_halt(cpu);
3073        qemu_mutex_unlock_iothread();
3074        break;
3075    case KVM_EXIT_SET_TPR:
3076        ret = 0;
3077        break;
3078    case KVM_EXIT_TPR_ACCESS:
3079        qemu_mutex_lock_iothread();
3080        ret = kvm_handle_tpr_access(cpu);
3081        qemu_mutex_unlock_iothread();
3082        break;
3083    case KVM_EXIT_FAIL_ENTRY:
3084        code = run->fail_entry.hardware_entry_failure_reason;
3085        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
3086                code);
3087        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
3088            fprintf(stderr,
3089                    "\nIf you're running a guest on an Intel machine without "
3090                        "unrestricted mode\n"
3091                    "support, the failure can be most likely due to the guest "
3092                        "entering an invalid\n"
3093                    "state for Intel VT. For example, the guest maybe running "
3094                        "in big real mode\n"
3095                    "which is not supported on less recent Intel processors."
3096                        "\n\n");
3097        }
3098        ret = -1;
3099        break;
3100    case KVM_EXIT_EXCEPTION:
3101        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
3102                run->ex.exception, run->ex.error_code);
3103        ret = -1;
3104        break;
3105    case KVM_EXIT_DEBUG:
3106        DPRINTF("kvm_exit_debug\n");
3107        qemu_mutex_lock_iothread();
3108        ret = kvm_handle_debug(cpu, &run->debug.arch);
3109        qemu_mutex_unlock_iothread();
3110        break;
3111    case KVM_EXIT_HYPERV:
3112        ret = kvm_hv_handle_exit(cpu, &run->hyperv);
3113        break;
3114    case KVM_EXIT_IOAPIC_EOI:
3115        ioapic_eoi_broadcast(run->eoi.vector);
3116        ret = 0;
3117        break;
3118    default:
3119        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
3120        ret = -1;
3121        break;
3122    }
3123
3124    return ret;
3125}
3126
3127bool kvm_arch_stop_on_emulation_error(CPUState *cs)
3128{
3129    X86CPU *cpu = X86_CPU(cs);
3130    CPUX86State *env = &cpu->env;
3131
3132    kvm_cpu_synchronize_state(cs);
3133    return !(env->cr[0] & CR0_PE_MASK) ||
3134           ((env->segs[R_CS].selector  & 3) != 3);
3135}
3136
3137void kvm_arch_init_irq_routing(KVMState *s)
3138{
3139    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
3140        /* If kernel can't do irq routing, interrupt source
3141         * override 0->2 cannot be set up as required by HPET.
3142         * So we have to disable it.
3143         */
3144        no_hpet = 1;
3145    }
3146    /* We know at this point that we're using the in-kernel
3147     * irqchip, so we can use irqfds, and on x86 we know
3148     * we can use msi via irqfd and GSI routing.
3149     */
3150    kvm_msi_via_irqfd_allowed = true;
3151    kvm_gsi_routing_allowed = true;
3152
3153    if (kvm_irqchip_is_split()) {
3154        int i;
3155
3156        /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3157           MSI routes for signaling interrupts to the local apics. */
3158        for (i = 0; i < IOAPIC_NUM_PINS; i++) {
3159            struct MSIMessage msg = { 0x0, 0x0 };
3160            if (kvm_irqchip_add_msi_route(s, msg, NULL) < 0) {
3161                error_report("Could not enable split IRQ mode.");
3162                exit(1);
3163            }
3164        }
3165    }
3166}
3167
3168int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
3169{
3170    int ret;
3171    if (machine_kernel_irqchip_split(ms)) {
3172        ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
3173        if (ret) {
3174            error_report("Could not enable split irqchip mode: %s\n",
3175                         strerror(-ret));
3176            exit(1);
3177        } else {
3178            DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3179            kvm_split_irqchip = true;
3180            return 1;
3181        }
3182    } else {
3183        return 0;
3184    }
3185}
3186
3187/* Classic KVM device assignment interface. Will remain x86 only. */
3188int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
3189                          uint32_t flags, uint32_t *dev_id)
3190{
3191    struct kvm_assigned_pci_dev dev_data = {
3192        .segnr = dev_addr->domain,
3193        .busnr = dev_addr->bus,
3194        .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
3195        .flags = flags,
3196    };
3197    int ret;
3198
3199    dev_data.assigned_dev_id =
3200        (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
3201
3202    ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
3203    if (ret < 0) {
3204        return ret;
3205    }
3206
3207    *dev_id = dev_data.assigned_dev_id;
3208
3209    return 0;
3210}
3211
3212int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
3213{
3214    struct kvm_assigned_pci_dev dev_data = {
3215        .assigned_dev_id = dev_id,
3216    };
3217
3218    return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
3219}
3220
3221static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
3222                                   uint32_t irq_type, uint32_t guest_irq)
3223{
3224    struct kvm_assigned_irq assigned_irq = {
3225        .assigned_dev_id = dev_id,
3226        .guest_irq = guest_irq,
3227        .flags = irq_type,
3228    };
3229
3230    if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
3231        return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
3232    } else {
3233        return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
3234    }
3235}
3236
3237int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
3238                           uint32_t guest_irq)
3239{
3240    uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
3241        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
3242
3243    return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
3244}
3245
3246int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
3247{
3248    struct kvm_assigned_pci_dev dev_data = {
3249        .assigned_dev_id = dev_id,
3250        .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3251    };
3252
3253    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3254}
3255
3256static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3257                                     uint32_t type)
3258{
3259    struct kvm_assigned_irq assigned_irq = {
3260        .assigned_dev_id = dev_id,
3261        .flags = type,
3262    };
3263
3264    return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3265}
3266
3267int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3268{
3269    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3270        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3271}
3272
3273int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3274{
3275    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3276                                              KVM_DEV_IRQ_GUEST_MSI, virq);
3277}
3278
3279int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3280{
3281    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3282                                                KVM_DEV_IRQ_HOST_MSI);
3283}
3284
3285bool kvm_device_msix_supported(KVMState *s)
3286{
3287    /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3288     * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3289    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3290}
3291
3292int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3293                                 uint32_t nr_vectors)
3294{
3295    struct kvm_assigned_msix_nr msix_nr = {
3296        .assigned_dev_id = dev_id,
3297        .entry_nr = nr_vectors,
3298    };
3299
3300    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3301}
3302
3303int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3304                               int virq)
3305{
3306    struct kvm_assigned_msix_entry msix_entry = {
3307        .assigned_dev_id = dev_id,
3308        .gsi = virq,
3309        .entry = vector,
3310    };
3311
3312    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3313}
3314
3315int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3316{
3317    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3318                                              KVM_DEV_IRQ_GUEST_MSIX, 0);
3319}
3320
3321int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3322{
3323    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3324                                                KVM_DEV_IRQ_HOST_MSIX);
3325}
3326
3327int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
3328                             uint64_t address, uint32_t data, PCIDevice *dev)
3329{
3330    return 0;
3331}
3332
3333int kvm_arch_msi_data_to_gsi(uint32_t data)
3334{
3335    abort();
3336}
3337