qemu/util/coroutine-sigaltstack.c
<<
>>
Prefs
   1/*
   2 * sigaltstack coroutine initialization code
   3 *
   4 * Copyright (C) 2006  Anthony Liguori <anthony@codemonkey.ws>
   5 * Copyright (C) 2011  Kevin Wolf <kwolf@redhat.com>
   6 * Copyright (C) 2012  Alex Barcelo <abarcelo@ac.upc.edu>
   7** This file is partly based on pth_mctx.c, from the GNU Portable Threads
   8**  Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
   9 *
  10 * This library is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU Lesser General Public
  12 * License as published by the Free Software Foundation; either
  13 * version 2.1 of the License, or (at your option) any later version.
  14 *
  15 * This library is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * Lesser General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU Lesser General Public
  21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24/* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
  25#ifdef _FORTIFY_SOURCE
  26#undef _FORTIFY_SOURCE
  27#endif
  28#include "qemu/osdep.h"
  29#include <pthread.h>
  30#include "qemu-common.h"
  31#include "qemu/coroutine_int.h"
  32
  33typedef struct {
  34    Coroutine base;
  35    void *stack;
  36    sigjmp_buf env;
  37} CoroutineUContext;
  38
  39/**
  40 * Per-thread coroutine bookkeeping
  41 */
  42typedef struct {
  43    /** Currently executing coroutine */
  44    Coroutine *current;
  45
  46    /** The default coroutine */
  47    CoroutineUContext leader;
  48
  49    /** Information for the signal handler (trampoline) */
  50    sigjmp_buf tr_reenter;
  51    volatile sig_atomic_t tr_called;
  52    void *tr_handler;
  53} CoroutineThreadState;
  54
  55static pthread_key_t thread_state_key;
  56
  57static CoroutineThreadState *coroutine_get_thread_state(void)
  58{
  59    CoroutineThreadState *s = pthread_getspecific(thread_state_key);
  60
  61    if (!s) {
  62        s = g_malloc0(sizeof(*s));
  63        s->current = &s->leader.base;
  64        pthread_setspecific(thread_state_key, s);
  65    }
  66    return s;
  67}
  68
  69static void qemu_coroutine_thread_cleanup(void *opaque)
  70{
  71    CoroutineThreadState *s = opaque;
  72
  73    g_free(s);
  74}
  75
  76static void __attribute__((constructor)) coroutine_init(void)
  77{
  78    int ret;
  79
  80    ret = pthread_key_create(&thread_state_key, qemu_coroutine_thread_cleanup);
  81    if (ret != 0) {
  82        fprintf(stderr, "unable to create leader key: %s\n", strerror(errno));
  83        abort();
  84    }
  85}
  86
  87/* "boot" function
  88 * This is what starts the coroutine, is called from the trampoline
  89 * (from the signal handler when it is not signal handling, read ahead
  90 * for more information).
  91 */
  92static void coroutine_bootstrap(CoroutineUContext *self, Coroutine *co)
  93{
  94    /* Initialize longjmp environment and switch back the caller */
  95    if (!sigsetjmp(self->env, 0)) {
  96        siglongjmp(*(sigjmp_buf *)co->entry_arg, 1);
  97    }
  98
  99    while (true) {
 100        co->entry(co->entry_arg);
 101        qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE);
 102    }
 103}
 104
 105/*
 106 * This is used as the signal handler. This is called with the brand new stack
 107 * (thanks to sigaltstack). We have to return, given that this is a signal
 108 * handler and the sigmask and some other things are changed.
 109 */
 110static void coroutine_trampoline(int signal)
 111{
 112    CoroutineUContext *self;
 113    Coroutine *co;
 114    CoroutineThreadState *coTS;
 115
 116    /* Get the thread specific information */
 117    coTS = coroutine_get_thread_state();
 118    self = coTS->tr_handler;
 119    coTS->tr_called = 1;
 120    co = &self->base;
 121
 122    /*
 123     * Here we have to do a bit of a ping pong between the caller, given that
 124     * this is a signal handler and we have to do a return "soon". Then the
 125     * caller can reestablish everything and do a siglongjmp here again.
 126     */
 127    if (!sigsetjmp(coTS->tr_reenter, 0)) {
 128        return;
 129    }
 130
 131    /*
 132     * Ok, the caller has siglongjmp'ed back to us, so now prepare
 133     * us for the real machine state switching. We have to jump
 134     * into another function here to get a new stack context for
 135     * the auto variables (which have to be auto-variables
 136     * because the start of the thread happens later). Else with
 137     * PIC (i.e. Position Independent Code which is used when PTH
 138     * is built as a shared library) most platforms would
 139     * horrible core dump as experience showed.
 140     */
 141    coroutine_bootstrap(self, co);
 142}
 143
 144Coroutine *qemu_coroutine_new(void)
 145{
 146    const size_t stack_size = 1 << 20;
 147    CoroutineUContext *co;
 148    CoroutineThreadState *coTS;
 149    struct sigaction sa;
 150    struct sigaction osa;
 151    stack_t ss;
 152    stack_t oss;
 153    sigset_t sigs;
 154    sigset_t osigs;
 155    sigjmp_buf old_env;
 156
 157    /* The way to manipulate stack is with the sigaltstack function. We
 158     * prepare a stack, with it delivering a signal to ourselves and then
 159     * put sigsetjmp/siglongjmp where needed.
 160     * This has been done keeping coroutine-ucontext as a model and with the
 161     * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
 162     * of the coroutines and see pth_mctx.c (from the pth project) for the
 163     * sigaltstack way of manipulating stacks.
 164     */
 165
 166    co = g_malloc0(sizeof(*co));
 167    co->stack = g_malloc(stack_size);
 168    co->base.entry_arg = &old_env; /* stash away our jmp_buf */
 169
 170    coTS = coroutine_get_thread_state();
 171    coTS->tr_handler = co;
 172
 173    /*
 174     * Preserve the SIGUSR2 signal state, block SIGUSR2,
 175     * and establish our signal handler. The signal will
 176     * later transfer control onto the signal stack.
 177     */
 178    sigemptyset(&sigs);
 179    sigaddset(&sigs, SIGUSR2);
 180    pthread_sigmask(SIG_BLOCK, &sigs, &osigs);
 181    sa.sa_handler = coroutine_trampoline;
 182    sigfillset(&sa.sa_mask);
 183    sa.sa_flags = SA_ONSTACK;
 184    if (sigaction(SIGUSR2, &sa, &osa) != 0) {
 185        abort();
 186    }
 187
 188    /*
 189     * Set the new stack.
 190     */
 191    ss.ss_sp = co->stack;
 192    ss.ss_size = stack_size;
 193    ss.ss_flags = 0;
 194    if (sigaltstack(&ss, &oss) < 0) {
 195        abort();
 196    }
 197
 198    /*
 199     * Now transfer control onto the signal stack and set it up.
 200     * It will return immediately via "return" after the sigsetjmp()
 201     * was performed. Be careful here with race conditions.  The
 202     * signal can be delivered the first time sigsuspend() is
 203     * called.
 204     */
 205    coTS->tr_called = 0;
 206    pthread_kill(pthread_self(), SIGUSR2);
 207    sigfillset(&sigs);
 208    sigdelset(&sigs, SIGUSR2);
 209    while (!coTS->tr_called) {
 210        sigsuspend(&sigs);
 211    }
 212
 213    /*
 214     * Inform the system that we are back off the signal stack by
 215     * removing the alternative signal stack. Be careful here: It
 216     * first has to be disabled, before it can be removed.
 217     */
 218    sigaltstack(NULL, &ss);
 219    ss.ss_flags = SS_DISABLE;
 220    if (sigaltstack(&ss, NULL) < 0) {
 221        abort();
 222    }
 223    sigaltstack(NULL, &ss);
 224    if (!(oss.ss_flags & SS_DISABLE)) {
 225        sigaltstack(&oss, NULL);
 226    }
 227
 228    /*
 229     * Restore the old SIGUSR2 signal handler and mask
 230     */
 231    sigaction(SIGUSR2, &osa, NULL);
 232    pthread_sigmask(SIG_SETMASK, &osigs, NULL);
 233
 234    /*
 235     * Now enter the trampoline again, but this time not as a signal
 236     * handler. Instead we jump into it directly. The functionally
 237     * redundant ping-pong pointer arithmetic is necessary to avoid
 238     * type-conversion warnings related to the `volatile' qualifier and
 239     * the fact that `jmp_buf' usually is an array type.
 240     */
 241    if (!sigsetjmp(old_env, 0)) {
 242        siglongjmp(coTS->tr_reenter, 1);
 243    }
 244
 245    /*
 246     * Ok, we returned again, so now we're finished
 247     */
 248
 249    return &co->base;
 250}
 251
 252void qemu_coroutine_delete(Coroutine *co_)
 253{
 254    CoroutineUContext *co = DO_UPCAST(CoroutineUContext, base, co_);
 255
 256    g_free(co->stack);
 257    g_free(co);
 258}
 259
 260CoroutineAction qemu_coroutine_switch(Coroutine *from_, Coroutine *to_,
 261                                      CoroutineAction action)
 262{
 263    CoroutineUContext *from = DO_UPCAST(CoroutineUContext, base, from_);
 264    CoroutineUContext *to = DO_UPCAST(CoroutineUContext, base, to_);
 265    CoroutineThreadState *s = coroutine_get_thread_state();
 266    int ret;
 267
 268    s->current = to_;
 269
 270    ret = sigsetjmp(from->env, 0);
 271    if (ret == 0) {
 272        siglongjmp(to->env, action);
 273    }
 274    return ret;
 275}
 276
 277Coroutine *qemu_coroutine_self(void)
 278{
 279    CoroutineThreadState *s = coroutine_get_thread_state();
 280
 281    return s->current;
 282}
 283
 284bool qemu_in_coroutine(void)
 285{
 286    CoroutineThreadState *s = pthread_getspecific(thread_state_key);
 287
 288    return s && s->current->caller;
 289}
 290
 291