qemu/hw/block/m25p80.c
<<
>>
Prefs
   1/*
   2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
   3 * set. Known devices table current as of Jun/2012 and taken from linux.
   4 * See drivers/mtd/devices/m25p80.c.
   5 *
   6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
   7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
   8 * Copyright (C) 2012 PetaLogix
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2 or
  13 * (at your option) a later version of the License.
  14 *
  15 * This program is distributed in the hope that it will be useful,
  16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18 * GNU General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License along
  21 * with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "hw/hw.h"
  26#include "sysemu/block-backend.h"
  27#include "sysemu/blockdev.h"
  28#include "hw/ssi/ssi.h"
  29#include "qemu/bitops.h"
  30#include "qemu/log.h"
  31
  32#ifndef M25P80_ERR_DEBUG
  33#define M25P80_ERR_DEBUG 0
  34#endif
  35
  36#define DB_PRINT_L(level, ...) do { \
  37    if (M25P80_ERR_DEBUG > (level)) { \
  38        qemu_log(": %s: ", __func__); \
  39        qemu_log(__VA_ARGS__); \
  40    } \
  41} while (0);
  42
  43/* Fields for FlashPartInfo->flags */
  44
  45/* erase capabilities */
  46#define ER_4K 1
  47#define ER_32K 2
  48/* set to allow the page program command to write 0s back to 1. Useful for
  49 * modelling EEPROM with SPI flash command set
  50 */
  51#define EEPROM 0x100
  52
  53/* 16 MiB max in 3 byte address mode */
  54#define MAX_3BYTES_SIZE 0x1000000
  55
  56#define WR_1 0x100
  57
  58#define BAR_7_4_BYTE_ADDR    (1<<7)
  59
  60typedef struct FlashPartInfo {
  61    const char *part_name;
  62    /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
  63    uint32_t jedec;
  64    /* extended jedec code */
  65    uint16_t ext_jedec;
  66    /* there is confusion between manufacturers as to what a sector is. In this
  67     * device model, a "sector" is the size that is erased by the ERASE_SECTOR
  68     * command (opcode 0xd8).
  69     */
  70    uint32_t sector_size;
  71    uint32_t n_sectors;
  72    uint32_t page_size;
  73    uint16_t flags;
  74
  75    uint8_t manf_id;
  76    uint8_t dev_id;
  77} FlashPartInfo;
  78
  79/* adapted from linux */
  80
  81#define INFO(_part_name, _jedec, _ext_jedec, _manf_id, _dev_id, _sector_size, _n_sectors, _flags)\
  82    .part_name = (_part_name),\
  83    .jedec = (_jedec),\
  84    .ext_jedec = (_ext_jedec),\
  85    .manf_id = (_manf_id), \
  86    .dev_id = (_dev_id), \
  87    .sector_size = (_sector_size),\
  88    .n_sectors = (_n_sectors),\
  89    .page_size = 256,\
  90    .flags = (_flags),\
  91
  92#define JEDEC_NUMONYX 0x20
  93#define JEDEC_WINBOND 0xEF
  94#define JEDEC_SPANSION 0x01
  95
  96/* Numonyx (Micron) Configuration register macros */
  97#define VCFG_DUMMY 0x1
  98#define VCFG_WRAP_SEQUENTIAL 0x2
  99#define NVCFG_XIP_MODE_DISABLED (7 << 9)
 100#define NVCFG_XIP_MODE_MASK (7 << 9)
 101#define VCFG_XIP_MODE_ENABLED (1 << 3)
 102#define CFG_DUMMY_CLK_LEN 4
 103#define NVCFG_DUMMY_CLK_POS 12
 104#define VCFG_DUMMY_CLK_POS 4
 105#define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
 106#define EVCFG_VPP_ACCELERATOR (1 << 3)
 107#define EVCFG_RESET_HOLD_ENABLED (1 << 4)
 108#define NVCFG_DUAL_IO_MASK (1 << 2)
 109#define EVCFG_DUAL_IO_ENABLED (1 << 6)
 110#define NVCFG_QUAD_IO_MASK (1 << 3)
 111#define EVCFG_QUAD_IO_ENABLED (1 << 7)
 112#define NVCFG_4BYTE_ADDR_MASK (1 << 0)
 113#define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
 114#define CFG_UPPER_128MB_SEG_ENABLED 0x3
 115
 116/* Numonyx (Micron) Flag Status Register macros */
 117#define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
 118#define FSR_FLASH_READY (1 << 7)
 119
 120static const FlashPartInfo known_devices[] = {
 121    /* Atmel -- some are (confusingly) marketed as "DataFlash" */
 122    { INFO("at25fs010",   0x1f6601,      0, 0x00, 0x00,  32 << 10,   4, ER_4K) },
 123    { INFO("at25fs040",   0x1f6604,      0, 0x00, 0x00,  64 << 10,   8, ER_4K) },
 124
 125    { INFO("at25df041a",  0x1f4401,      0, 0x00, 0x00,  64 << 10,   8, ER_4K) },
 126    { INFO("at25df321a",  0x1f4701,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 127    { INFO("at25df641",   0x1f4800,      0, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 128
 129    { INFO("at26f004",    0x1f0400,      0, 0x00, 0x00,  64 << 10,   8, ER_4K) },
 130    { INFO("at26df081a",  0x1f4501,      0, 0x00, 0x00,  64 << 10,  16, ER_4K) },
 131    { INFO("at26df161a",  0x1f4601,      0, 0x00, 0x00,  64 << 10,  32, ER_4K) },
 132    { INFO("at26df321",   0x1f4700,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 133
 134    { INFO("at45db081d",  0x1f2500,      0, 0x00, 0x00,  64 << 10,  16, ER_4K) },
 135
 136    /* EON -- en25xxx */
 137    { INFO("en25f32",     0x1c3116,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 138    { INFO("en25p32",     0x1c2016,      0, 0x00, 0x00,  64 << 10,  64, 0) },
 139    { INFO("en25q32b",    0x1c3016,      0, 0x00, 0x00,  64 << 10,  64, 0) },
 140    { INFO("en25p64",     0x1c2017,      0, 0x00, 0x00,  64 << 10, 128, 0) },
 141    { INFO("en25q64",     0x1c3017,      0, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 142
 143    /* GigaDevice */
 144    { INFO("gd25q32",     0xc84016,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 145    { INFO("gd25q64",     0xc84017,      0, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 146
 147    /* Intel/Numonyx -- xxxs33b */
 148    { INFO("160s33b",     0x898911,      0, 0x00, 0x00,  64 << 10,  32, 0) },
 149    { INFO("320s33b",     0x898912,      0, 0x00, 0x00,  64 << 10,  64, 0) },
 150    { INFO("640s33b",     0x898913,      0, 0x00, 0x00,  64 << 10, 128, 0) },
 151    { INFO("n25q064",     0x20ba17,      0, 0x00, 0x00,  64 << 10, 128, 0) },
 152
 153    /* Macronix */
 154    { INFO("mx25l2005a",  0xc22012,      0, 0x00, 0x00,  64 << 10,   4, ER_4K) },
 155    { INFO("mx25l4005a",  0xc22013,      0, 0x00, 0x00,  64 << 10,   8, ER_4K) },
 156    { INFO("mx25l8005",   0xc22014,      0, 0x00, 0x00,  64 << 10,  16, 0) },
 157    { INFO("mx25l1606e",  0xc22015,      0, 0x00, 0x00,  64 << 10,  32, ER_4K) },
 158    { INFO("mx25l3205d",  0xc22016,      0, 0x00, 0x00,  64 << 10,  64, 0) },
 159    { INFO("mx25l6405d",  0xc22017,      0, 0x00, 0x00,  64 << 10, 128, 0) },
 160    { INFO("mx25l12805d", 0xc22018,      0, 0x00, 0x00,  64 << 10, 256, 0) },
 161    { INFO("mx25l12855e", 0xc22618,      0, 0x00, 0x00,  64 << 10, 256, 0) },
 162    { INFO("mx25l25635e", 0xc22019,      0, 0x00, 0x00,  64 << 10, 512, 0) },
 163    { INFO("mx25l25655e", 0xc22619,      0, 0x00, 0x00,  64 << 10, 512, 0) },
 164    { INFO("mx66l1g55g",  0xc2261b,      0, 0x00, 0x00,  64 << 10, 2048, ER_4K) },
 165
 166    /* Micron */
 167    { INFO("n25q032a11",  0x20bb16,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 168    { INFO("n25q032a13",  0x20ba16,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 169    { INFO("n25q064a11",  0x20bb17,      0, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 170    { INFO("n25q064a13",  0x20ba17,      0, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 171    { INFO("n25q128a11",  0x20bb18,      0, 0x00, 0x00,  64 << 10, 256, ER_4K) },
 172    { INFO("n25q128a13",  0x20ba18,      0, 0x00, 0x00,  64 << 10, 256, ER_4K) },
 173    { INFO("n25q256a11",  0x20bb19,      0, 0x00, 0x00,  64 << 10, 512, ER_4K) },
 174    { INFO("n25q256a13",  0x20ba19,      0, 0x00, 0x00,  64 << 10, 512, ER_4K) },
 175    { INFO("n25q512a11",  0x20bb20,      0, 0x00, 0x00,  64 << 10, 1024, ER_4K) },
 176    { INFO("n25q512a13",  0x20ba20,      0, 0x00, 0x00,  64 << 10, 1024, ER_4K) },
 177    { INFO("m25qu02gcbb", 0x22bb20,      0, 0x00, 0x00,  64 << 10, 4096, ER_4K) },
 178
 179    /* Spansion -- single (large) sector size only, at least
 180     * for the chips listed here (without boot sectors).
 181     */
 182    { INFO("s25sl032p",   0x010215, 0x4d00, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 183    { INFO("s25sl064p",   0x010216, 0x4d00, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 184    { INFO("s25fl256s0",  0x010219, 0x4d00, 0x00, 0x00, 256 << 10, 128, 0) },
 185    { INFO("s25fl256s1",  0x010219, 0x4d01, 0x00, 0x00,  64 << 10, 512, 0) },
 186    { INFO("s25fl512s",   0x010220, 0x4d00, 0x00, 0x00, 256 << 10, 256, 0) },
 187    { INFO("s70fl01gs",   0x010221, 0x4d00, 0x00, 0x00, 256 << 10, 256, 0) },
 188    { INFO("s25sl12800",  0x012018, 0x0300, 0x00, 0x00, 256 << 10,  64, 0) },
 189    { INFO("s25sl12801",  0x012018, 0x0301, 0x00, 0x00,  64 << 10, 256, 0) },
 190    { INFO("s25fl129p0",  0x012018, 0x4d00, 0x00, 0x00, 256 << 10,  64, 0) },
 191    { INFO("s25fl129p1",  0x012018, 0x4d01, 0x00, 0x00,  64 << 10, 256, 0) },
 192    { INFO("s25sl004a",   0x010212,      0, 0x00, 0x00,  64 << 10,   8, 0) },
 193    { INFO("s25sl008a",   0x010213,      0, 0x00, 0x00,  64 << 10,  16, 0) },
 194    { INFO("s25sl016a",   0x010214,      0, 0x00, 0x00,  64 << 10,  32, 0) },
 195    { INFO("s25sl032a",   0x010215,      0, 0x00, 0x00,  64 << 10,  64, 0) },
 196    { INFO("s25sl064a",   0x010216,      0, 0x00, 0x00,  64 << 10, 128, 0) },
 197    { INFO("s25fl016k",   0xef4015,      0, 0x00, 0x00,  64 << 10,  32, ER_4K | ER_32K) },
 198    { INFO("s25fl064k",   0xef4017,      0, 0x00, 0x00,  64 << 10, 128, ER_4K | ER_32K) },
 199
 200    /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
 201    { INFO("sst25vf040b", 0xbf258d,      0, 0x00, 0x00,  64 << 10,   8, ER_4K) },
 202    { INFO("sst25vf080b", 0xbf258e,      0, 0x00, 0x00,  64 << 10,  16, ER_4K) },
 203    { INFO("sst25vf016b", 0xbf2541,      0, 0x00, 0x00,  64 << 10,  32, ER_4K) },
 204    { INFO("sst25vf032b", 0xbf254a,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 205    { INFO("sst25wf512",  0xbf2501,      0, 0x00, 0x00,  64 << 10,   1, ER_4K) },
 206    { INFO("sst25wf010",  0xbf2502,      0, 0x00, 0x00,  64 << 10,   2, ER_4K) },
 207    { INFO("sst25wf020",  0xbf2503,      0, 0x00, 0x00,  64 << 10,   4, ER_4K) },
 208    { INFO("sst25wf040",  0xbf2504,      0, 0x00, 0x00,  64 << 10,   8, ER_4K) },
 209    { INFO("sst25wf080",  0xbf2505,      0, 0xbf, 0x05,  64 << 10,  16, ER_4K) },
 210
 211    /* ST Microelectronics -- newer production may have feature updates */
 212    { INFO("m25p05",      0x202010,      0, 0x00, 0x00,  32 << 10,   2, 0) },
 213    { INFO("m25p10",      0x202011,      0, 0x00, 0x00,  32 << 10,   4, 0) },
 214    { INFO("m25p20",      0x202012,      0, 0x00, 0x00,  64 << 10,   4, 0) },
 215    { INFO("m25p40",      0x202013,      0, 0x00, 0x00,  64 << 10,   8, 0) },
 216    { INFO("m25p80",      0x202014,      0, 0x00, 0x00,  64 << 10,  16, 0) },
 217    { INFO("m25p16",      0x202015,      0, 0x00, 0x00,  64 << 10,  32, 0) },
 218    { INFO("m25p32",      0x202016,      0, 0x00, 0x00,  64 << 10,  64, 0) },
 219    { INFO("m25p64",      0x202017,      0, 0x00, 0x00,  64 << 10, 128, 0) },
 220    { INFO("m25p128",     0x202018,      0, 0x00, 0x00, 256 << 10,  64, 0) },
 221    { INFO("n25q032",     0x20ba16,      0, 0x00, 0x00,  64 << 10,  64, 0) },
 222
 223    { INFO("m45pe10",     0x204011,      0, 0x00, 0x00,  64 << 10,   2, 0) },
 224    { INFO("m45pe80",     0x204014,      0, 0x00, 0x00,  64 << 10,  16, 0) },
 225    { INFO("m45pe16",     0x204015,      0, 0x00, 0x00,  64 << 10,  32, 0) },
 226
 227    { INFO("m25pe20",     0x208012,      0, 0x00, 0x00,  64 << 10,   4, 0) },
 228    { INFO("m25pe80",     0x208014,      0, 0x00, 0x00,  64 << 10,  16, 0) },
 229    { INFO("m25pe16",     0x208015,      0, 0x00, 0x00,  64 << 10,  32, ER_4K) },
 230
 231    { INFO("m25px32",     0x207116,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 232    { INFO("m25px32-s0",  0x207316,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 233    { INFO("m25px32-s1",  0x206316,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 234    { INFO("m25px64",     0x207117,      0, 0x00, 0x00,  64 << 10, 128, 0) },
 235
 236    /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
 237    { INFO("w25x10",      0xef3011,      0, 0x00, 0x00,  64 << 10,   2, ER_4K) },
 238    { INFO("w25x20",      0xef3012,      0, 0x00, 0x00,  64 << 10,   4, ER_4K) },
 239    { INFO("w25x40",      0xef3013,      0, 0x00, 0x00,  64 << 10,   8, ER_4K) },
 240    { INFO("w25x80",      0xef3014,      0, 0x00, 0x00,  64 << 10,  16, ER_4K) },
 241    { INFO("w25x16",      0xef3015,      0, 0x00, 0x00,  64 << 10,  32, ER_4K) },
 242    { INFO("w25x32",      0xef3016,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 243    { INFO("w25q32",      0xef4016,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 244    { INFO("w25q32dw",    0xef6016,      0, 0x00, 0x00,  64 << 10,  64, ER_4K) },
 245    { INFO("w25x64",      0xef3017,      0, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 246    { INFO("w25q64",      0xef4017,      0, 0x00, 0x00,  64 << 10, 128, ER_4K) },
 247    { INFO("w25q80",      0xef5014,      0, 0x00, 0x00,  64 << 10,  16, ER_4K) },
 248    { INFO("w25q80bl",    0xef4014,      0, 0x00, 0x00,  64 << 10,  16, ER_4K) },
 249    { INFO("w25q256",     0xef4019,      0, 0x00, 0x00,  64 << 10, 512, ER_4K) },
 250
 251    /* Numonyx -- n25q128 */
 252    { INFO("n25q128",      0x20ba18,      0, 0x00, 0x00,  64 << 10, 256, 0) },
 253};
 254
 255typedef enum {
 256    NOP = 0,
 257    WRSR = 0x1,
 258    WRDI = 0x4,
 259    RDSR = 0x5,
 260    RDFSR = 0x70,
 261    WREN = 0x6,
 262    BRRD = 0x16,
 263    BRWR = 0x17,
 264    JEDEC_READ = 0x9f,
 265    BULK_ERASE = 0xc7,
 266    READ_FSR = 0x70,
 267
 268    READ = 0x03,
 269    READ4 = 0x13,
 270    FAST_READ = 0x0b,
 271    FAST_READ4 = 0x0c,
 272    DOR = 0x3b,
 273    DOR4 = 0x3c,
 274    QOR = 0x6b,
 275    QOR4 = 0x6c,
 276    DIOR = 0xbb,
 277    DIOR4 = 0xbc,
 278    QIOR = 0xeb,
 279    QIOR4 = 0xec,
 280
 281    PP = 0x02,
 282    PP4 = 0x12,
 283    DPP = 0xa2,
 284    QPP = 0x32,
 285    QPP4 = 0x34,
 286    RDID_90 = 0x90,
 287    RDID_AB = 0xab,
 288    AAI = 0xad,
 289
 290    ERASE_4K = 0x20,
 291    ERASE4_4K = 0x21,
 292    ERASE_32K = 0x52,
 293    ERASE_SECTOR = 0xd8,
 294    ERASE4_SECTOR = 0xdc,
 295
 296    EN_4BYTE_ADDR = 0xB7,
 297    EX_4BYTE_ADDR = 0xE9,
 298
 299    BULK_ERASE_C7 = 0xc7,
 300    BULK_ERASE_60 = 0x60,
 301
 302    EXTEND_ADDR_READ = 0xC8,
 303    EXTEND_ADDR_WRITE = 0xC5,
 304
 305    RESET_ENABLE = 0x66,
 306    RESET_MEMORY = 0x99,
 307
 308    RNVCR = 0xB5,
 309    WNVCR = 0xB1,
 310
 311    RVCR = 0x85,
 312    WVCR = 0x81,
 313
 314    REVCR = 0x65,
 315    WEVCR = 0x61,
 316} FlashCMD;
 317
 318typedef enum {
 319    STATE_IDLE,
 320    STATE_PAGE_PROGRAM,
 321    STATE_READ,
 322    STATE_COLLECTING_DATA,
 323    STATE_READING_DATA,
 324    DUMMY_CYCLE_WAIT,
 325} CMDState;
 326
 327typedef struct Flash {
 328    SSISlave parent_obj;
 329
 330    uint32_t r;
 331
 332    BlockBackend *blk;
 333
 334    uint8_t *storage;
 335    uint32_t size;
 336    int page_size;
 337
 338    uint8_t state;
 339    uint8_t data[16];
 340    uint32_t len;
 341    uint32_t pos;
 342    bool data_read_loop;
 343    uint8_t needed_bytes;
 344    uint8_t cmd_in_progress;
 345    uint64_t cur_addr;
 346    uint32_t nonvolatile_cfg;
 347    uint32_t volatile_cfg;
 348    uint32_t enh_volatile_cfg;
 349    bool write_enable;
 350    bool four_bytes_address_mode;
 351    bool reset_enable;
 352    uint8_t ear;
 353
 354    bool aai_in_progress;
 355    int64_t dirty_page;
 356
 357    uint8_t bar;
 358    uint8_t n_datalines;
 359    uint8_t n_dummy_cycles;
 360    uint8_t dummy_count;
 361    const FlashPartInfo *pi;
 362} Flash;
 363
 364typedef struct M25P80Class {
 365    SSISlaveClass parent_class;
 366    FlashPartInfo *pi;
 367} M25P80Class;
 368
 369#define TYPE_M25P80 "m25p80-generic"
 370#define M25P80(obj) \
 371     OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
 372#define M25P80_CLASS(klass) \
 373     OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
 374#define M25P80_GET_CLASS(obj) \
 375     OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
 376
 377static void blk_sync_complete(void *opaque, int ret)
 378{
 379    QEMUIOVector *iov = opaque;
 380
 381    qemu_iovec_destroy(iov);
 382    g_free(iov);
 383
 384    /* do nothing. Masters do not directly interact with the backing store,
 385     * only the working copy so no mutexing required.
 386     */
 387}
 388
 389static void flash_sync_page(Flash *s, int page)
 390{
 391    QEMUIOVector *iov;
 392
 393    if (!s->blk || blk_is_read_only(s->blk)) {
 394        return;
 395    }
 396
 397    iov = g_new(QEMUIOVector, 1);
 398    qemu_iovec_init(iov, 1);
 399    qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
 400                   s->pi->page_size);
 401    blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
 402                    blk_sync_complete, iov);
 403}
 404
 405static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
 406{
 407    QEMUIOVector *iov;
 408
 409    if (!s->blk || blk_is_read_only(s->blk)) {
 410        return;
 411    }
 412
 413    assert(!(len % BDRV_SECTOR_SIZE));
 414    iov = g_new(QEMUIOVector, 1);
 415    qemu_iovec_init(iov, 1);
 416    qemu_iovec_add(iov, s->storage + off, len);
 417    blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
 418}
 419
 420static void flash_erase(Flash *s, int offset, FlashCMD cmd)
 421{
 422    uint32_t len;
 423    uint8_t capa_to_assert = 0;
 424
 425    switch (cmd) {
 426    case ERASE_4K:
 427        len = 4 << 10;
 428        capa_to_assert = ER_4K;
 429        break;
 430    case ERASE_32K:
 431        len = 32 << 10;
 432        capa_to_assert = ER_32K;
 433        break;
 434    case ERASE_SECTOR:
 435    case ERASE4_SECTOR:
 436        len = s->pi->sector_size;
 437        break;
 438    case BULK_ERASE:
 439        len = s->size;
 440        break;
 441    default:
 442        abort();
 443    }
 444
 445    DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
 446    if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
 447        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
 448                      " device\n", len);
 449    }
 450
 451    if (!s->write_enable) {
 452        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
 453        return;
 454    }
 455    memset(s->storage + offset, 0xff, len);
 456    flash_sync_area(s, offset, len);
 457}
 458
 459static inline void flash_sync_dirty(Flash *s, int64_t newpage)
 460{
 461    if (s->dirty_page >= 0 && s->dirty_page != newpage) {
 462        flash_sync_page(s, s->dirty_page);
 463        s->dirty_page = newpage;
 464    }
 465}
 466
 467static inline
 468void flash_write8(Flash *s, uint64_t addr, uint8_t data)
 469{
 470    int64_t page = addr / s->pi->page_size;
 471    uint8_t prev = s->storage[s->cur_addr];
 472
 473    if (!s->write_enable) {
 474        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
 475    }
 476
 477    if ((prev ^ data) & data) {
 478        DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 "  %" PRIx8
 479                   " -> %" PRIx8 "\n", addr, prev, data);
 480    }
 481
 482    if (s->pi->flags & EEPROM) {
 483        s->storage[s->cur_addr] = data;
 484    } else {
 485        s->storage[s->cur_addr] &= data;
 486    }
 487
 488    flash_sync_dirty(s, page);
 489    s->dirty_page = page;
 490}
 491
 492static inline int get_addr_length(Flash *s)
 493{
 494   /* check if eeprom is in use */
 495    if (s->pi->flags == EEPROM) {
 496        return 2;
 497    }
 498
 499   switch (s->cmd_in_progress) {
 500   case PP4:
 501   case READ4:
 502   case QIOR4:
 503   case ERASE4_4K:
 504   case ERASE4_SECTOR:
 505   case FAST_READ4:
 506   case DOR4:
 507   case QOR4:
 508   case DIOR4:
 509       return 4;
 510   default:
 511       return s->four_bytes_address_mode ? 4 : 3;
 512   }
 513}
 514
 515static inline void flash_write(Flash *s, uint8_t data, int num_bits)
 516{
 517    int64_t page = (s->cur_addr >> 3) / s->pi->page_size;
 518    uint8_t prev = s->storage[s->cur_addr >> 3];
 519    uint32_t data_mask = ((1ul << num_bits) - 1) <<
 520                         (8 - (s->cur_addr & 0x7) - num_bits);
 521
 522    assert(!(data_mask & ~0xfful));
 523    data <<= 8 - (s->cur_addr & 0x7) - num_bits;
 524
 525    if (!s->write_enable) {
 526        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
 527    }
 528
 529    if (s->pi->flags & WR_1) {
 530        s->storage[s->cur_addr >> 3] = (prev & ~data_mask) | (data & data_mask);
 531    } else {
 532        if ((prev ^ data) & data & data_mask) {
 533            DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 "  %" PRIx8
 534                       " -> %" PRIx8 ", mask = %" PRIx32 "\n",
 535                       s->cur_addr >> 3, prev, data, data_mask);
 536        }
 537        s->storage[s->cur_addr >> 3] &= data | ~data_mask;
 538    }
 539
 540    flash_sync_dirty(s, page);
 541    s->dirty_page = page;
 542}
 543
 544static inline bool set_dummy_cycles(Flash *s, uint8_t num)
 545{
 546    if (s->dummy_count == 0) {
 547        /* Dummy Phase Yet to start */
 548        s->n_dummy_cycles = num * s->n_datalines;
 549        return true;
 550    } else {
 551        /* Dummy Phase done */
 552        s->dummy_count = 0;
 553        return false;
 554    }
 555}
 556
 557static void complete_collecting_data(Flash *s)
 558{
 559    int i;
 560    bool dummy_state = false;
 561
 562    s->cur_addr = 0;
 563
 564    for (i = 0; i < get_addr_length(s); ++i) {
 565        s->cur_addr <<= 8;
 566        s->cur_addr |= s->data[i];
 567    }
 568
 569    if (get_addr_length(s) == 3) {
 570        s->cur_addr += (s->ear & 0x3) * MAX_3BYTES_SIZE;
 571    }
 572
 573    s->state = STATE_IDLE;
 574
 575    switch (s->cmd_in_progress) {
 576    case DPP:
 577    case QPP:
 578    case AAI:
 579    case PP:
 580        s->state = STATE_PAGE_PROGRAM;
 581        break;
 582    case QPP4:
 583    case PP4:
 584        s->state = STATE_PAGE_PROGRAM;
 585        break;
 586    case FAST_READ:
 587    case DOR:
 588    case QOR:
 589    case DIOR:
 590    case QIOR:
 591        /* Fall through after executing dummy cycles/bytes */
 592        dummy_state = set_dummy_cycles(s, 1);
 593    case READ:
 594        if (dummy_state == true) {
 595            s->state = DUMMY_CYCLE_WAIT;
 596        } else {
 597            s->state = STATE_READ;
 598        }
 599        break;
 600    case FAST_READ4:
 601    case DOR4:
 602    case QOR4:
 603    case DIOR4:
 604    case QIOR4:
 605        /* Fall through after executing dummy cycles/bytes */
 606        dummy_state = set_dummy_cycles(s, 1);
 607    case READ4:
 608        if (dummy_state == false) {
 609            s->state = STATE_READ;
 610        } else {
 611            s->state = DUMMY_CYCLE_WAIT;
 612        }
 613        break;
 614    case ERASE_SECTOR:
 615    case ERASE_4K:
 616    case ERASE_32K:
 617        flash_erase(s, s->cur_addr, s->cmd_in_progress);
 618        break;
 619    case ERASE4_SECTOR:
 620        flash_erase(s, s->cur_addr, s->cmd_in_progress);
 621        break;
 622    case WRSR:
 623        if (s->write_enable) {
 624            s->write_enable = false;
 625        }
 626        break;
 627    case EXTEND_ADDR_WRITE:
 628        s->ear = s->data[0];
 629        break;
 630    case WNVCR:
 631        s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
 632        break;
 633    case WVCR:
 634        s->volatile_cfg = s->data[0];
 635        break;
 636    case WEVCR:
 637        s->enh_volatile_cfg = s->data[0];
 638        break;
 639    case BRWR:
 640        s->bar = s->data[0];
 641        break;
 642    default:
 643        break;
 644    }
 645
 646    s->cur_addr <<= 3;
 647}
 648
 649static void reset_memory(Flash *s)
 650{
 651    s->cmd_in_progress = NOP;
 652    s->cur_addr = 0;
 653    s->ear = 0;
 654    s->four_bytes_address_mode = false;
 655    s->len = 0;
 656    s->needed_bytes = 0;
 657    s->pos = 0;
 658    s->state = STATE_IDLE;
 659    s->write_enable = false;
 660    s->reset_enable = false;
 661
 662    if (((s->pi->jedec >> 16) & 0xFF) == JEDEC_NUMONYX) {
 663        s->volatile_cfg = 0;
 664        s->volatile_cfg |= VCFG_DUMMY;
 665        s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
 666        if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
 667                                != NVCFG_XIP_MODE_DISABLED) {
 668            s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
 669        }
 670        s->volatile_cfg |= deposit32(s->volatile_cfg,
 671                            VCFG_DUMMY_CLK_POS,
 672                            CFG_DUMMY_CLK_LEN,
 673                            extract32(s->nonvolatile_cfg,
 674                                        NVCFG_DUMMY_CLK_POS,
 675                                        CFG_DUMMY_CLK_LEN)
 676                            );
 677
 678        s->enh_volatile_cfg = 0;
 679        s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGHT_DEF;
 680        s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
 681        s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
 682        if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
 683            s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
 684        }
 685        if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
 686            s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
 687        }
 688        if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
 689            s->four_bytes_address_mode = true;
 690        }
 691        if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
 692            s->ear = CFG_UPPER_128MB_SEG_ENABLED;
 693        }
 694    }
 695
 696    DB_PRINT_L(0, "Reset done.\n");
 697}
 698
 699static void decode_new_cmd(Flash *s, uint32_t value)
 700{
 701    s->cmd_in_progress = value;
 702    DB_PRINT_L(0, "decoded new command:%x\n", value);
 703
 704    if (value != RESET_MEMORY) {
 705        s->reset_enable = false;
 706    }
 707
 708    s->needed_bytes = 0;
 709
 710    switch (value) {
 711
 712    case READ4:
 713    case ERASE4_SECTOR:
 714    case QPP4:
 715    case PP4:
 716        if (s->four_bytes_address_mode == false) {
 717            s->needed_bytes += 1;
 718        }
 719    case ERASE_4K:
 720    case ERASE_32K:
 721    case ERASE_SECTOR:
 722    case READ:
 723    case DPP:
 724    case QPP:
 725    case PP:
 726    case QOR:
 727    case FAST_READ:
 728    case DOR:
 729        if (s->four_bytes_address_mode) {
 730            s->needed_bytes += 1;
 731        }
 732        s->needed_bytes += 3;
 733        s->pos = 0;
 734        s->len = 0;
 735        s->state = STATE_COLLECTING_DATA;
 736        break;
 737
 738    case AAI:
 739        if (!s->aai_in_progress) {
 740            s->aai_in_progress = true;
 741            s->needed_bytes += 3;
 742            s->pos = 0;
 743            s->len = 0;
 744            s->state = STATE_COLLECTING_DATA;
 745        } else {
 746            s->state = STATE_PAGE_PROGRAM;
 747        }
 748        break;
 749    case FAST_READ4:
 750    case DOR4:
 751    case QOR4:
 752        s->needed_bytes += 4;
 753        s->pos = 0;
 754        s->len = 0;
 755        s->state = STATE_COLLECTING_DATA;
 756        break;
 757
 758    case DIOR4:
 759        s->needed_bytes += 1;
 760    case DIOR:
 761        switch ((s->pi->jedec >> 16) & 0xFF) {
 762        case JEDEC_WINBOND:
 763        case JEDEC_SPANSION:
 764            s->needed_bytes += 4;
 765            break;
 766        case JEDEC_NUMONYX:
 767        default:
 768            s->needed_bytes += 5;
 769        }
 770        s->pos = 0;
 771        s->len = 0;
 772        s->state = STATE_COLLECTING_DATA;
 773        break;
 774
 775    case QIOR4:
 776        s->needed_bytes += 1;
 777    case QIOR:
 778        switch ((s->pi->jedec >> 16) & 0xFF) {
 779        case JEDEC_WINBOND:
 780        case JEDEC_SPANSION:
 781            s->needed_bytes += 6;
 782            break;
 783        case JEDEC_NUMONYX:
 784        default:
 785            s->needed_bytes += 8;
 786        }
 787        s->pos = 0;
 788        s->len = 0;
 789        s->state = STATE_COLLECTING_DATA;
 790        break;
 791
 792    case WRSR:
 793        if (s->write_enable) {
 794            s->needed_bytes = 1;
 795            s->pos = 0;
 796            s->len = 0;
 797            s->state = STATE_COLLECTING_DATA;
 798        }
 799        break;
 800
 801    case BRWR:
 802        if (s->write_enable) {
 803            s->needed_bytes = 1;
 804            s->pos = 0;
 805            s->len = 0;
 806            s->state = STATE_COLLECTING_DATA;
 807        }
 808        break;
 809
 810    case WRDI:
 811        s->write_enable = false;
 812        s->aai_in_progress = false;
 813        break;
 814    case WREN:
 815        s->write_enable = true;
 816        break;
 817
 818    case RDSR:
 819        s->data[0] = (!!s->write_enable) << 1;
 820        s->pos = 0;
 821        s->len = 1;
 822        s->data_read_loop = true;
 823        s->state = STATE_READING_DATA;
 824        break;
 825
 826    case RDFSR:
 827        s->data[0] = 1 << 7;
 828        s->pos = 0;
 829        s->len = 1;
 830        s->data_read_loop = true;
 831        s->state = STATE_READING_DATA;
 832        break;
 833
 834
 835    case BRRD:
 836        s->data[0] = s->bar;
 837        s->pos = 0;
 838        s->len = 1;
 839        s->data_read_loop = false;
 840        s->state = STATE_READING_DATA;
 841        break;
 842
 843    case JEDEC_READ:
 844        DB_PRINT_L(0, "populated jedec code\n");
 845        s->data[0] = (s->pi->jedec >> 16) & 0xff;
 846        s->data[1] = (s->pi->jedec >> 8) & 0xff;
 847        s->data[2] = s->pi->jedec & 0xff;
 848        if (s->pi->ext_jedec) {
 849            s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
 850            s->data[4] = s->pi->ext_jedec & 0xff;
 851            s->len = 5;
 852        } else {
 853            s->len = 3;
 854        }
 855        s->pos = 0;
 856        s->data_read_loop = false;
 857        s->state = STATE_READING_DATA;
 858        break;
 859
 860    case RDID_90:
 861    case RDID_AB:
 862        DB_PRINT_L(0, "populated manf/dev ID\n");
 863        s->data[0] = s->pi->manf_id;
 864        s->data[1] = s->pi->dev_id;
 865        s->pos = 0;
 866        s->len = 2;
 867        s->data_read_loop = true;
 868        s->state = STATE_READING_DATA;
 869        break;
 870
 871    case BULK_ERASE_60:
 872    case BULK_ERASE_C7:
 873        if (s->write_enable) {
 874            DB_PRINT_L(0, "chip erase\n");
 875            flash_erase(s, 0, BULK_ERASE);
 876        } else {
 877            qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
 878                          "protect!\n");
 879        }
 880        break;
 881    case NOP:
 882        break;
 883    case EN_4BYTE_ADDR:
 884        s->four_bytes_address_mode = true;
 885        break;
 886    case EX_4BYTE_ADDR:
 887        s->four_bytes_address_mode = false;
 888        break;
 889    case EXTEND_ADDR_READ:
 890        s->data[0] = s->ear;
 891        s->pos = 0;
 892        s->len = 1;
 893        s->state = STATE_READING_DATA;
 894        break;
 895    case EXTEND_ADDR_WRITE:
 896        if (s->write_enable) {
 897            s->needed_bytes = 1;
 898            s->pos = 0;
 899            s->len = 0;
 900            s->state = STATE_COLLECTING_DATA;
 901        }
 902        break;
 903    case RNVCR:
 904        s->data[0] = s->nonvolatile_cfg & 0xFF;
 905        s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
 906        s->pos = 0;
 907        s->len = 2;
 908        s->state = STATE_READING_DATA;
 909        break;
 910    case WNVCR:
 911        if (s->write_enable) {
 912            s->needed_bytes = 2;
 913            s->pos = 0;
 914            s->len = 0;
 915            s->state = STATE_COLLECTING_DATA;
 916        }
 917        break;
 918    case RVCR:
 919        s->data[0] = s->volatile_cfg & 0xFF;
 920        s->pos = 0;
 921        s->len = 1;
 922        s->state = STATE_READING_DATA;
 923        break;
 924    case WVCR:
 925        if (s->write_enable) {
 926            s->needed_bytes = 1;
 927            s->pos = 0;
 928            s->len = 0;
 929            s->state = STATE_COLLECTING_DATA;
 930        }
 931    case REVCR:
 932        s->data[0] = s->enh_volatile_cfg & 0xFF;
 933        s->pos = 0;
 934        s->len = 1;
 935        s->state = STATE_READING_DATA;
 936        break;
 937    case WEVCR:
 938        if (s->write_enable) {
 939            s->needed_bytes = 1;
 940            s->pos = 0;
 941            s->len = 0;
 942            s->state = STATE_COLLECTING_DATA;
 943        }
 944        break;
 945    case RESET_ENABLE:
 946        s->reset_enable = true;
 947        break;
 948    case RESET_MEMORY:
 949        if (s->reset_enable) {
 950            reset_memory(s);
 951        }
 952        break;
 953    default:
 954        qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
 955        break;
 956    }
 957}
 958
 959static int m25p80_cs(SSISlave *ss, bool select)
 960{
 961    Flash *s = M25P80(ss);
 962
 963    if (select) {
 964        s->len = 0;
 965        s->pos = 0;
 966        s->state = STATE_IDLE;
 967        flash_sync_dirty(s, -1);
 968    }
 969
 970    DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
 971
 972    return 0;
 973}
 974
 975static void m25p80_num_datalines(SSISlave *ss, uint8_t lines)
 976{
 977    Flash *s = M25P80(ss);
 978    lines = lines == 0 ? 1 : lines;
 979    DB_PRINT_L(0, "Num of Data Lines change %d -> %d\n", s->n_datalines, lines);
 980    if (s->n_dummy_cycles) {
 981        s->n_dummy_cycles *= (lines / s->n_datalines);
 982    }
 983    s->n_datalines = lines;
 984}
 985
 986static uint32_t m25p80_transfer(SSISlave *ss, uint32_t tx, int num_bits)
 987{
 988    Flash *s = M25P80(ss);
 989    uint32_t r = 0;
 990
 991    if (!num_bits) {
 992        num_bits = 8;
 993    }
 994
 995    switch (s->state) {
 996
 997    case STATE_PAGE_PROGRAM:
 998        DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
 999                   s->cur_addr, (uint8_t)tx);
1000        flash_write(s, (uint8_t)tx, num_bits);
1001        s->cur_addr += num_bits;
1002        break;
1003
1004    case STATE_READ:
1005        assert((s->cur_addr & 0x7) + num_bits <= 8);
1006        r = s->storage[s->cur_addr >> 3] >>
1007            (8 - (s->cur_addr & 0x7) - num_bits);
1008        DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
1009                   (uint8_t)r);
1010        s->cur_addr = (s->cur_addr + num_bits) % (s->size * 8);
1011        break;
1012
1013    case STATE_COLLECTING_DATA:
1014        assert(num_bits == 8);
1015        s->data[s->len] = (uint8_t)tx;
1016        s->len++;
1017
1018        if (s->len == s->needed_bytes) {
1019            complete_collecting_data(s);
1020        }
1021        break;
1022
1023    case STATE_READING_DATA:
1024        assert(num_bits == 8);
1025        r = s->data[s->pos];
1026        s->pos++;
1027        if (s->pos == s->len) {
1028            s->pos = 0;
1029            if (!s->data_read_loop) {
1030                s->state = STATE_IDLE;
1031            }
1032        }
1033        break;
1034
1035    case DUMMY_CYCLE_WAIT:
1036        s->dummy_count++;
1037        DB_PRINT_L(0, "Dummy Byte/Cycle %d\n", s->dummy_count);
1038        s->n_dummy_cycles--;
1039        if (!s->n_dummy_cycles) {
1040            complete_collecting_data(s);
1041        }
1042        break;
1043    default:
1044    case STATE_IDLE:
1045        assert(num_bits == 8);
1046        decode_new_cmd(s, (uint8_t)tx);
1047        break;
1048    }
1049
1050    return r;
1051}
1052
1053static int m25p80_init(SSISlave *ss)
1054{
1055    DriveInfo *dinfo;
1056    Flash *s = M25P80(ss);
1057    M25P80Class *mc = M25P80_GET_CLASS(s);
1058
1059    /* Xilinx: Set the number of data lines to 1 by default */
1060    s->n_datalines = 1;
1061
1062    s->pi = mc->pi;
1063
1064    s->size = s->pi->sector_size * s->pi->n_sectors;
1065    s->dirty_page = -1;
1066
1067    /* FIXME use a qdev drive property instead of drive_get_next() */
1068    dinfo = drive_get_next(IF_MTD);
1069
1070    if (dinfo) {
1071        DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1072        s->blk = blk_by_legacy_dinfo(dinfo);
1073        blk_attach_dev_nofail(s->blk, s);
1074
1075        s->storage = blk_blockalign(s->blk, s->size);
1076
1077        /* FIXME: Move to late init */
1078        if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1079            fprintf(stderr, "Failed to initialize SPI flash!\n");
1080            return 1;
1081        }
1082    } else {
1083        DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1084        s->storage = blk_blockalign(NULL, s->size);
1085        memset(s->storage, 0xFF, s->size);
1086    }
1087
1088    return 0;
1089}
1090
1091static void m25p80_reset(DeviceState *d)
1092{
1093    Flash *s = M25P80(d);
1094
1095    reset_memory(s);
1096}
1097
1098static void m25p80_pre_save(void *opaque)
1099{
1100    flash_sync_dirty((Flash *)opaque, -1);
1101}
1102
1103static Property m25p80_properties[] = {
1104    DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1105    DEFINE_PROP_END_OF_LIST(),
1106};
1107
1108static const VMStateDescription vmstate_m25p80 = {
1109    .name = "xilinx_spi",
1110    .version_id = 2,
1111    .minimum_version_id = 1,
1112    .pre_save = m25p80_pre_save,
1113    .fields = (VMStateField[]) {
1114        VMSTATE_UINT8(state, Flash),
1115        VMSTATE_UINT8_ARRAY(data, Flash, 16),
1116        VMSTATE_UINT32(len, Flash),
1117        VMSTATE_UINT32(pos, Flash),
1118        VMSTATE_UINT8(needed_bytes, Flash),
1119        VMSTATE_UINT8(cmd_in_progress, Flash),
1120        VMSTATE_UINT64(cur_addr, Flash),
1121        VMSTATE_BOOL(write_enable, Flash),
1122        VMSTATE_BOOL_V(reset_enable, Flash, 2),
1123        VMSTATE_UINT8_V(ear, Flash, 2),
1124        VMSTATE_BOOL_V(four_bytes_address_mode, Flash, 2),
1125        VMSTATE_UINT32_V(nonvolatile_cfg, Flash, 2),
1126        VMSTATE_UINT32_V(volatile_cfg, Flash, 2),
1127        VMSTATE_UINT32_V(enh_volatile_cfg, Flash, 2),
1128        VMSTATE_END_OF_LIST()
1129    }
1130};
1131
1132static void m25p80_class_init(ObjectClass *klass, void *data)
1133{
1134    DeviceClass *dc = DEVICE_CLASS(klass);
1135    SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1136    M25P80Class *mc = M25P80_CLASS(klass);
1137
1138    k->init = m25p80_init;
1139    k->transfer_bits = m25p80_transfer;
1140    k->set_cs = m25p80_cs;
1141    k->set_data_lines = m25p80_num_datalines;
1142    k->cs_polarity = SSI_CS_LOW;
1143    dc->vmsd = &vmstate_m25p80;
1144    dc->props = m25p80_properties;
1145    dc->reset = m25p80_reset;
1146    mc->pi = data;
1147}
1148
1149static const TypeInfo m25p80_info = {
1150    .name           = TYPE_M25P80,
1151    .parent         = TYPE_SSI_SLAVE,
1152    .instance_size  = sizeof(Flash),
1153    .class_size     = sizeof(M25P80Class),
1154    .abstract       = true,
1155};
1156
1157static void m25p80_register_types(void)
1158{
1159    int i;
1160
1161    type_register_static(&m25p80_info);
1162    for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1163        TypeInfo ti = {
1164            .name       = known_devices[i].part_name,
1165            .parent     = TYPE_M25P80,
1166            .class_init = m25p80_class_init,
1167            .class_data = (void *)&known_devices[i],
1168        };
1169        type_register(&ti);
1170    }
1171}
1172
1173type_init(m25p80_register_types)
1174