1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25#include "qemu/osdep.h"
26#include "hw/sysbus.h"
27#include "net/net.h"
28#include "hw/cris/etraxfs.h"
29#include "qemu/error-report.h"
30
31#define D(x)
32
33
34#define ADVERTISE_10HALF 0x0020
35#define ADVERTISE_10FULL 0x0040
36#define ADVERTISE_100HALF 0x0080
37#define ADVERTISE_100FULL 0x0100
38
39
40
41
42
43
44struct qemu_phy
45{
46 uint32_t regs[32];
47
48 int link;
49
50 unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
51 void (*write)(struct qemu_phy *phy, unsigned int req, unsigned int data);
52};
53
54static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
55{
56 int regnum;
57 unsigned r = 0;
58
59 regnum = req & 0x1f;
60
61 switch (regnum) {
62 case 1:
63 if (!phy->link) {
64 break;
65 }
66
67
68 r |= (1 << 13) | (1 << 14);
69 r |= (1 << 11) | (1 << 12);
70 r |= (1 << 5);
71 r |= (1 << 3);
72 r |= (1 << 2);
73 break;
74 case 5:
75
76
77
78 r = 1 << 14;
79
80 r |= phy->regs[4] & (15 << 5);
81
82 r |= 1;
83 break;
84 case 18:
85 {
86
87 int duplex = 0;
88 int speed_100 = 0;
89
90 if (!phy->link) {
91 break;
92 }
93
94
95 speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
96 speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
97
98
99 duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
100 duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
101 r = (speed_100 << 10) | (duplex << 11);
102 }
103 break;
104
105 default:
106 r = phy->regs[regnum];
107 break;
108 }
109 D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
110 return r;
111}
112
113static void
114tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
115{
116 int regnum;
117
118 regnum = req & 0x1f;
119 D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
120 switch (regnum) {
121 default:
122 phy->regs[regnum] = data;
123 break;
124 }
125}
126
127static void
128tdk_init(struct qemu_phy *phy)
129{
130 phy->regs[0] = 0x3100;
131
132 phy->regs[2] = 0x0300;
133 phy->regs[3] = 0xe400;
134
135 phy->regs[4] = 0x01E1;
136 phy->link = 1;
137
138 phy->read = tdk_read;
139 phy->write = tdk_write;
140}
141
142struct qemu_mdio
143{
144
145 int mdc;
146 int mdio;
147
148
149 enum {
150 PREAMBLE,
151 SOF,
152 OPC,
153 ADDR,
154 REQ,
155 TURNAROUND,
156 DATA
157 } state;
158 unsigned int drive;
159
160 unsigned int cnt;
161 unsigned int addr;
162 unsigned int opc;
163 unsigned int req;
164 unsigned int data;
165
166 struct qemu_phy *devs[32];
167};
168
169static void
170mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
171{
172 bus->devs[addr & 0x1f] = phy;
173}
174
175#ifdef USE_THIS_DEAD_CODE
176static void
177mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
178{
179 bus->devs[addr & 0x1f] = NULL;
180}
181#endif
182
183static void mdio_read_req(struct qemu_mdio *bus)
184{
185 struct qemu_phy *phy;
186
187 phy = bus->devs[bus->addr];
188 if (phy && phy->read) {
189 bus->data = phy->read(phy, bus->req);
190 } else {
191 bus->data = 0xffff;
192 }
193}
194
195static void mdio_write_req(struct qemu_mdio *bus)
196{
197 struct qemu_phy *phy;
198
199 phy = bus->devs[bus->addr];
200 if (phy && phy->write) {
201 phy->write(phy, bus->req, bus->data);
202 }
203}
204
205static void mdio_cycle(struct qemu_mdio *bus)
206{
207 bus->cnt++;
208
209 D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
210 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
211#if 0
212 if (bus->mdc) {
213 printf("%d", bus->mdio);
214 }
215#endif
216 switch (bus->state) {
217 case PREAMBLE:
218 if (bus->mdc) {
219 if (bus->cnt >= (32 * 2) && !bus->mdio) {
220 bus->cnt = 0;
221 bus->state = SOF;
222 bus->data = 0;
223 }
224 }
225 break;
226 case SOF:
227 if (bus->mdc) {
228 if (bus->mdio != 1) {
229 printf("WARNING: no SOF\n");
230 }
231 if (bus->cnt == 1*2) {
232 bus->cnt = 0;
233 bus->opc = 0;
234 bus->state = OPC;
235 }
236 }
237 break;
238 case OPC:
239 if (bus->mdc) {
240 bus->opc <<= 1;
241 bus->opc |= bus->mdio & 1;
242 if (bus->cnt == 2*2) {
243 bus->cnt = 0;
244 bus->addr = 0;
245 bus->state = ADDR;
246 }
247 }
248 break;
249 case ADDR:
250 if (bus->mdc) {
251 bus->addr <<= 1;
252 bus->addr |= bus->mdio & 1;
253
254 if (bus->cnt == 5*2) {
255 bus->cnt = 0;
256 bus->req = 0;
257 bus->state = REQ;
258 }
259 }
260 break;
261 case REQ:
262 if (bus->mdc) {
263 bus->req <<= 1;
264 bus->req |= bus->mdio & 1;
265 if (bus->cnt == 5*2) {
266 bus->cnt = 0;
267 bus->state = TURNAROUND;
268 }
269 }
270 break;
271 case TURNAROUND:
272 if (bus->mdc && bus->cnt == 2*2) {
273 bus->mdio = 0;
274 bus->cnt = 0;
275
276 if (bus->opc == 2) {
277 bus->drive = 1;
278 mdio_read_req(bus);
279 bus->mdio = bus->data & 1;
280 }
281 bus->state = DATA;
282 }
283 break;
284 case DATA:
285 if (!bus->mdc) {
286 if (bus->drive) {
287 bus->mdio = !!(bus->data & (1 << 15));
288 bus->data <<= 1;
289 }
290 } else {
291 if (!bus->drive) {
292 bus->data <<= 1;
293 bus->data |= bus->mdio;
294 }
295 if (bus->cnt == 16 * 2) {
296 bus->cnt = 0;
297 bus->state = PREAMBLE;
298 if (!bus->drive) {
299 mdio_write_req(bus);
300 }
301 bus->drive = 0;
302 }
303 }
304 break;
305 default:
306 break;
307 }
308}
309
310
311
312#define RW_MA0_LO 0x00
313#define RW_MA0_HI 0x01
314#define RW_MA1_LO 0x02
315#define RW_MA1_HI 0x03
316#define RW_GA_LO 0x04
317#define RW_GA_HI 0x05
318#define RW_GEN_CTRL 0x06
319#define RW_REC_CTRL 0x07
320#define RW_TR_CTRL 0x08
321#define RW_CLR_ERR 0x09
322#define RW_MGM_CTRL 0x0a
323#define R_STAT 0x0b
324#define FS_ETH_MAX_REGS 0x17
325
326#define TYPE_ETRAX_FS_ETH "etraxfs-eth"
327#define ETRAX_FS_ETH(obj) \
328 OBJECT_CHECK(ETRAXFSEthState, (obj), TYPE_ETRAX_FS_ETH)
329
330typedef struct ETRAXFSEthState
331{
332 SysBusDevice parent_obj;
333
334 MemoryRegion mmio;
335 NICState *nic;
336 NICConf conf;
337
338
339 uint8_t macaddr[2][6];
340 uint32_t regs[FS_ETH_MAX_REGS];
341
342 union {
343 void *vdma_out;
344 struct etraxfs_dma_client *dma_out;
345 };
346 union {
347 void *vdma_in;
348 struct etraxfs_dma_client *dma_in;
349 };
350
351
352 struct qemu_mdio mdio_bus;
353 unsigned int phyaddr;
354 int duplex_mismatch;
355
356
357 struct qemu_phy phy;
358} ETRAXFSEthState;
359
360static void eth_validate_duplex(ETRAXFSEthState *eth)
361{
362 struct qemu_phy *phy;
363 unsigned int phy_duplex;
364 unsigned int mac_duplex;
365 int new_mm = 0;
366
367 phy = eth->mdio_bus.devs[eth->phyaddr];
368 phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
369 mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
370
371 if (mac_duplex != phy_duplex) {
372 new_mm = 1;
373 }
374
375 if (eth->regs[RW_GEN_CTRL] & 1) {
376 if (new_mm != eth->duplex_mismatch) {
377 if (new_mm) {
378 printf("HW: WARNING ETH duplex mismatch MAC=%d PHY=%d\n",
379 mac_duplex, phy_duplex);
380 } else {
381 printf("HW: ETH duplex ok.\n");
382 }
383 }
384 eth->duplex_mismatch = new_mm;
385 }
386}
387
388static uint64_t
389eth_read(void *opaque, hwaddr addr, unsigned int size)
390{
391 ETRAXFSEthState *eth = opaque;
392 uint32_t r = 0;
393
394 addr >>= 2;
395
396 switch (addr) {
397 case R_STAT:
398 r = eth->mdio_bus.mdio & 1;
399 break;
400 default:
401 r = eth->regs[addr];
402 D(printf("%s %x\n", __func__, addr * 4));
403 break;
404 }
405 return r;
406}
407
408static void eth_update_ma(ETRAXFSEthState *eth, int ma)
409{
410 int reg;
411 int i = 0;
412
413 ma &= 1;
414
415 reg = RW_MA0_LO;
416 if (ma) {
417 reg = RW_MA1_LO;
418 }
419
420 eth->macaddr[ma][i++] = eth->regs[reg];
421 eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
422 eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
423 eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
424 eth->macaddr[ma][i++] = eth->regs[reg + 1];
425 eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8;
426
427 D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
428 eth->macaddr[ma][0], eth->macaddr[ma][1],
429 eth->macaddr[ma][2], eth->macaddr[ma][3],
430 eth->macaddr[ma][4], eth->macaddr[ma][5]));
431}
432
433static void
434eth_write(void *opaque, hwaddr addr,
435 uint64_t val64, unsigned int size)
436{
437 ETRAXFSEthState *eth = opaque;
438 uint32_t value = val64;
439
440 addr >>= 2;
441 switch (addr) {
442 case RW_MA0_LO:
443 case RW_MA0_HI:
444 eth->regs[addr] = value;
445 eth_update_ma(eth, 0);
446 break;
447 case RW_MA1_LO:
448 case RW_MA1_HI:
449 eth->regs[addr] = value;
450 eth_update_ma(eth, 1);
451 break;
452
453 case RW_MGM_CTRL:
454
455 if (value & 2) {
456 eth->mdio_bus.mdio = value & 1;
457 }
458 if (eth->mdio_bus.mdc != (value & 4)) {
459 mdio_cycle(ð->mdio_bus);
460 eth_validate_duplex(eth);
461 }
462 eth->mdio_bus.mdc = !!(value & 4);
463 eth->regs[addr] = value;
464 break;
465
466 case RW_REC_CTRL:
467 eth->regs[addr] = value;
468 eth_validate_duplex(eth);
469 break;
470
471 default:
472 eth->regs[addr] = value;
473 D(printf("%s %x %x\n", __func__, addr, value));
474 break;
475 }
476}
477
478
479
480
481static int eth_match_groupaddr(ETRAXFSEthState *eth, const unsigned char *sa)
482{
483 unsigned int hsh;
484 int m_individual = eth->regs[RW_REC_CTRL] & 4;
485 int match;
486
487
488
489 if (!m_individual && !(sa[0] & 1)) {
490 return 0;
491 }
492
493
494 hsh = 0;
495 hsh ^= (*sa) & 0x3f;
496 hsh ^= ((*sa) >> 6) & 0x03;
497 ++sa;
498 hsh ^= ((*sa) << 2) & 0x03c;
499 hsh ^= ((*sa) >> 4) & 0xf;
500 ++sa;
501 hsh ^= ((*sa) << 4) & 0x30;
502 hsh ^= ((*sa) >> 2) & 0x3f;
503 ++sa;
504 hsh ^= (*sa) & 0x3f;
505 hsh ^= ((*sa) >> 6) & 0x03;
506 ++sa;
507 hsh ^= ((*sa) << 2) & 0x03c;
508 hsh ^= ((*sa) >> 4) & 0xf;
509 ++sa;
510 hsh ^= ((*sa) << 4) & 0x30;
511 hsh ^= ((*sa) >> 2) & 0x3f;
512
513 hsh &= 63;
514 if (hsh > 31) {
515 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
516 } else {
517 match = eth->regs[RW_GA_LO] & (1 << hsh);
518 }
519 D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
520 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
521 return match;
522}
523
524static ssize_t eth_receive(NetClientState *nc, const uint8_t *buf, size_t size)
525{
526 unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
527 ETRAXFSEthState *eth = qemu_get_nic_opaque(nc);
528 int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
529 int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
530 int r_bcast = eth->regs[RW_REC_CTRL] & 8;
531
532 if (size < 12) {
533 return -1;
534 }
535
536 D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
537 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
538 use_ma0, use_ma1, r_bcast));
539
540
541 if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
542 && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
543 && (!r_bcast || memcmp(buf, sa_bcast, 6))
544 && !eth_match_groupaddr(eth, buf)) {
545 return size;
546 }
547
548
549 etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
550
551 return size;
552}
553
554static int eth_tx_push(void *opaque, unsigned char *buf, int len, bool eop)
555{
556 ETRAXFSEthState *eth = opaque;
557
558 D(printf("%s buf=%p len=%d\n", __func__, buf, len));
559 qemu_send_packet(qemu_get_queue(eth->nic), buf, len);
560 return len;
561}
562
563static void eth_set_link(NetClientState *nc)
564{
565 ETRAXFSEthState *eth = qemu_get_nic_opaque(nc);
566 D(printf("%s %d\n", __func__, nc->link_down));
567 eth->phy.link = !nc->link_down;
568}
569
570static const MemoryRegionOps eth_ops = {
571 .read = eth_read,
572 .write = eth_write,
573 .endianness = DEVICE_LITTLE_ENDIAN,
574 .valid = {
575 .min_access_size = 4,
576 .max_access_size = 4
577 }
578};
579
580static NetClientInfo net_etraxfs_info = {
581 .type = NET_CLIENT_OPTIONS_KIND_NIC,
582 .size = sizeof(NICState),
583 .receive = eth_receive,
584 .link_status_changed = eth_set_link,
585};
586
587static int fs_eth_init(SysBusDevice *sbd)
588{
589 DeviceState *dev = DEVICE(sbd);
590 ETRAXFSEthState *s = ETRAX_FS_ETH(dev);
591
592 if (!s->dma_out || !s->dma_in) {
593 error_report("Unconnected ETRAX-FS Ethernet MAC");
594 return -1;
595 }
596
597 s->dma_out->client.push = eth_tx_push;
598 s->dma_out->client.opaque = s;
599 s->dma_in->client.opaque = s;
600 s->dma_in->client.pull = NULL;
601
602 memory_region_init_io(&s->mmio, OBJECT(dev), ð_ops, s,
603 "etraxfs-eth", 0x5c);
604 sysbus_init_mmio(sbd, &s->mmio);
605
606 qemu_macaddr_default_if_unset(&s->conf.macaddr);
607 s->nic = qemu_new_nic(&net_etraxfs_info, &s->conf,
608 object_get_typename(OBJECT(s)), dev->id, s);
609 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
610
611
612 tdk_init(&s->phy);
613 mdio_attach(&s->mdio_bus, &s->phy, s->phyaddr);
614 return 0;
615}
616
617static Property etraxfs_eth_properties[] = {
618 DEFINE_PROP_UINT32("phyaddr", ETRAXFSEthState, phyaddr, 1),
619 DEFINE_PROP_PTR("dma_out", ETRAXFSEthState, vdma_out),
620 DEFINE_PROP_PTR("dma_in", ETRAXFSEthState, vdma_in),
621 DEFINE_NIC_PROPERTIES(ETRAXFSEthState, conf),
622 DEFINE_PROP_END_OF_LIST(),
623};
624
625static void etraxfs_eth_class_init(ObjectClass *klass, void *data)
626{
627 DeviceClass *dc = DEVICE_CLASS(klass);
628 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
629
630 k->init = fs_eth_init;
631 dc->props = etraxfs_eth_properties;
632
633 dc->cannot_instantiate_with_device_add_yet = true;
634}
635
636static const TypeInfo etraxfs_eth_info = {
637 .name = TYPE_ETRAX_FS_ETH,
638 .parent = TYPE_SYS_BUS_DEVICE,
639 .instance_size = sizeof(ETRAXFSEthState),
640 .class_init = etraxfs_eth_class_init,
641};
642
643static void etraxfs_eth_register_types(void)
644{
645 type_register_static(&etraxfs_eth_info);
646}
647
648type_init(etraxfs_eth_register_types)
649