qemu/target-i386/smm_helper.c
<<
>>
Prefs
   1/*
   2 *  x86 SMM helpers
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "exec/helper-proto.h"
  23#include "exec/log.h"
  24
  25/* SMM support */
  26
  27#if defined(CONFIG_USER_ONLY)
  28
  29void do_smm_enter(X86CPU *cpu)
  30{
  31}
  32
  33void helper_rsm(CPUX86State *env)
  34{
  35}
  36
  37#else
  38
  39#ifdef TARGET_X86_64
  40#define SMM_REVISION_ID 0x00020064
  41#else
  42#define SMM_REVISION_ID 0x00020000
  43#endif
  44
  45void cpu_smm_update(X86CPU *cpu)
  46{
  47    CPUX86State *env = &cpu->env;
  48    bool smm_enabled = (env->hflags & HF_SMM_MASK);
  49
  50    if (cpu->smram) {
  51        memory_region_set_enabled(cpu->smram, smm_enabled);
  52    }
  53}
  54
  55void do_smm_enter(X86CPU *cpu)
  56{
  57    CPUX86State *env = &cpu->env;
  58    CPUState *cs = CPU(cpu);
  59    target_ulong sm_state;
  60    SegmentCache *dt;
  61    int i, offset;
  62
  63    qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
  64    log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
  65
  66    env->hflags |= HF_SMM_MASK;
  67    if (env->hflags2 & HF2_NMI_MASK) {
  68        env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
  69    } else {
  70        env->hflags2 |= HF2_NMI_MASK;
  71    }
  72    cpu_smm_update(cpu);
  73
  74    sm_state = env->smbase + 0x8000;
  75
  76#ifdef TARGET_X86_64
  77    for (i = 0; i < 6; i++) {
  78        dt = &env->segs[i];
  79        offset = 0x7e00 + i * 16;
  80        x86_stw_phys(cs, sm_state + offset, dt->selector);
  81        x86_stw_phys(cs, sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
  82        x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
  83        x86_stq_phys(cs, sm_state + offset + 8, dt->base);
  84    }
  85
  86    x86_stq_phys(cs, sm_state + 0x7e68, env->gdt.base);
  87    x86_stl_phys(cs, sm_state + 0x7e64, env->gdt.limit);
  88
  89    x86_stw_phys(cs, sm_state + 0x7e70, env->ldt.selector);
  90    x86_stq_phys(cs, sm_state + 0x7e78, env->ldt.base);
  91    x86_stl_phys(cs, sm_state + 0x7e74, env->ldt.limit);
  92    x86_stw_phys(cs, sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
  93
  94    x86_stq_phys(cs, sm_state + 0x7e88, env->idt.base);
  95    x86_stl_phys(cs, sm_state + 0x7e84, env->idt.limit);
  96
  97    x86_stw_phys(cs, sm_state + 0x7e90, env->tr.selector);
  98    x86_stq_phys(cs, sm_state + 0x7e98, env->tr.base);
  99    x86_stl_phys(cs, sm_state + 0x7e94, env->tr.limit);
 100    x86_stw_phys(cs, sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
 101
 102    /* ??? Vol 1, 16.5.6 Intel MPX and SMM says that IA32_BNDCFGS
 103       is saved at offset 7ED0.  Vol 3, 34.4.1.1, Table 32-2, has
 104       7EA0-7ED7 as "reserved".  What's this, and what's really
 105       supposed to happen?  */
 106    x86_stq_phys(cs, sm_state + 0x7ed0, env->efer);
 107
 108    x86_stq_phys(cs, sm_state + 0x7ff8, env->regs[R_EAX]);
 109    x86_stq_phys(cs, sm_state + 0x7ff0, env->regs[R_ECX]);
 110    x86_stq_phys(cs, sm_state + 0x7fe8, env->regs[R_EDX]);
 111    x86_stq_phys(cs, sm_state + 0x7fe0, env->regs[R_EBX]);
 112    x86_stq_phys(cs, sm_state + 0x7fd8, env->regs[R_ESP]);
 113    x86_stq_phys(cs, sm_state + 0x7fd0, env->regs[R_EBP]);
 114    x86_stq_phys(cs, sm_state + 0x7fc8, env->regs[R_ESI]);
 115    x86_stq_phys(cs, sm_state + 0x7fc0, env->regs[R_EDI]);
 116    for (i = 8; i < 16; i++) {
 117        x86_stq_phys(cs, sm_state + 0x7ff8 - i * 8, env->regs[i]);
 118    }
 119    x86_stq_phys(cs, sm_state + 0x7f78, env->eip);
 120    x86_stl_phys(cs, sm_state + 0x7f70, cpu_compute_eflags(env));
 121    x86_stl_phys(cs, sm_state + 0x7f68, env->dr[6]);
 122    x86_stl_phys(cs, sm_state + 0x7f60, env->dr[7]);
 123
 124    x86_stl_phys(cs, sm_state + 0x7f48, env->cr[4]);
 125    x86_stq_phys(cs, sm_state + 0x7f50, env->cr[3]);
 126    x86_stl_phys(cs, sm_state + 0x7f58, env->cr[0]);
 127
 128    x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
 129    x86_stl_phys(cs, sm_state + 0x7f00, env->smbase);
 130#else
 131    x86_stl_phys(cs, sm_state + 0x7ffc, env->cr[0]);
 132    x86_stl_phys(cs, sm_state + 0x7ff8, env->cr[3]);
 133    x86_stl_phys(cs, sm_state + 0x7ff4, cpu_compute_eflags(env));
 134    x86_stl_phys(cs, sm_state + 0x7ff0, env->eip);
 135    x86_stl_phys(cs, sm_state + 0x7fec, env->regs[R_EDI]);
 136    x86_stl_phys(cs, sm_state + 0x7fe8, env->regs[R_ESI]);
 137    x86_stl_phys(cs, sm_state + 0x7fe4, env->regs[R_EBP]);
 138    x86_stl_phys(cs, sm_state + 0x7fe0, env->regs[R_ESP]);
 139    x86_stl_phys(cs, sm_state + 0x7fdc, env->regs[R_EBX]);
 140    x86_stl_phys(cs, sm_state + 0x7fd8, env->regs[R_EDX]);
 141    x86_stl_phys(cs, sm_state + 0x7fd4, env->regs[R_ECX]);
 142    x86_stl_phys(cs, sm_state + 0x7fd0, env->regs[R_EAX]);
 143    x86_stl_phys(cs, sm_state + 0x7fcc, env->dr[6]);
 144    x86_stl_phys(cs, sm_state + 0x7fc8, env->dr[7]);
 145
 146    x86_stl_phys(cs, sm_state + 0x7fc4, env->tr.selector);
 147    x86_stl_phys(cs, sm_state + 0x7f64, env->tr.base);
 148    x86_stl_phys(cs, sm_state + 0x7f60, env->tr.limit);
 149    x86_stl_phys(cs, sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
 150
 151    x86_stl_phys(cs, sm_state + 0x7fc0, env->ldt.selector);
 152    x86_stl_phys(cs, sm_state + 0x7f80, env->ldt.base);
 153    x86_stl_phys(cs, sm_state + 0x7f7c, env->ldt.limit);
 154    x86_stl_phys(cs, sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
 155
 156    x86_stl_phys(cs, sm_state + 0x7f74, env->gdt.base);
 157    x86_stl_phys(cs, sm_state + 0x7f70, env->gdt.limit);
 158
 159    x86_stl_phys(cs, sm_state + 0x7f58, env->idt.base);
 160    x86_stl_phys(cs, sm_state + 0x7f54, env->idt.limit);
 161
 162    for (i = 0; i < 6; i++) {
 163        dt = &env->segs[i];
 164        if (i < 3) {
 165            offset = 0x7f84 + i * 12;
 166        } else {
 167            offset = 0x7f2c + (i - 3) * 12;
 168        }
 169        x86_stl_phys(cs, sm_state + 0x7fa8 + i * 4, dt->selector);
 170        x86_stl_phys(cs, sm_state + offset + 8, dt->base);
 171        x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
 172        x86_stl_phys(cs, sm_state + offset, (dt->flags >> 8) & 0xf0ff);
 173    }
 174    x86_stl_phys(cs, sm_state + 0x7f14, env->cr[4]);
 175
 176    x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
 177    x86_stl_phys(cs, sm_state + 0x7ef8, env->smbase);
 178#endif
 179    /* init SMM cpu state */
 180
 181#ifdef TARGET_X86_64
 182    cpu_load_efer(env, 0);
 183#endif
 184    cpu_load_eflags(env, 0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C |
 185                              DF_MASK));
 186    env->eip = 0x00008000;
 187    cpu_x86_update_cr0(env,
 188                       env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK |
 189                                      CR0_PG_MASK));
 190    cpu_x86_update_cr4(env, 0);
 191    env->dr[7] = 0x00000400;
 192
 193    cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
 194                           0xffffffff,
 195                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
 196                           DESC_G_MASK | DESC_A_MASK);
 197    cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff,
 198                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
 199                           DESC_G_MASK | DESC_A_MASK);
 200    cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff,
 201                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
 202                           DESC_G_MASK | DESC_A_MASK);
 203    cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff,
 204                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
 205                           DESC_G_MASK | DESC_A_MASK);
 206    cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff,
 207                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
 208                           DESC_G_MASK | DESC_A_MASK);
 209    cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff,
 210                           DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
 211                           DESC_G_MASK | DESC_A_MASK);
 212}
 213
 214void helper_rsm(CPUX86State *env)
 215{
 216    X86CPU *cpu = x86_env_get_cpu(env);
 217    CPUState *cs = CPU(cpu);
 218    target_ulong sm_state;
 219    int i, offset;
 220    uint32_t val;
 221
 222    sm_state = env->smbase + 0x8000;
 223#ifdef TARGET_X86_64
 224    cpu_load_efer(env, x86_ldq_phys(cs, sm_state + 0x7ed0));
 225
 226    env->gdt.base = x86_ldq_phys(cs, sm_state + 0x7e68);
 227    env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7e64);
 228
 229    env->ldt.selector = x86_lduw_phys(cs, sm_state + 0x7e70);
 230    env->ldt.base = x86_ldq_phys(cs, sm_state + 0x7e78);
 231    env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7e74);
 232    env->ldt.flags = (x86_lduw_phys(cs, sm_state + 0x7e72) & 0xf0ff) << 8;
 233
 234    env->idt.base = x86_ldq_phys(cs, sm_state + 0x7e88);
 235    env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7e84);
 236
 237    env->tr.selector = x86_lduw_phys(cs, sm_state + 0x7e90);
 238    env->tr.base = x86_ldq_phys(cs, sm_state + 0x7e98);
 239    env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7e94);
 240    env->tr.flags = (x86_lduw_phys(cs, sm_state + 0x7e92) & 0xf0ff) << 8;
 241
 242    env->regs[R_EAX] = x86_ldq_phys(cs, sm_state + 0x7ff8);
 243    env->regs[R_ECX] = x86_ldq_phys(cs, sm_state + 0x7ff0);
 244    env->regs[R_EDX] = x86_ldq_phys(cs, sm_state + 0x7fe8);
 245    env->regs[R_EBX] = x86_ldq_phys(cs, sm_state + 0x7fe0);
 246    env->regs[R_ESP] = x86_ldq_phys(cs, sm_state + 0x7fd8);
 247    env->regs[R_EBP] = x86_ldq_phys(cs, sm_state + 0x7fd0);
 248    env->regs[R_ESI] = x86_ldq_phys(cs, sm_state + 0x7fc8);
 249    env->regs[R_EDI] = x86_ldq_phys(cs, sm_state + 0x7fc0);
 250    for (i = 8; i < 16; i++) {
 251        env->regs[i] = x86_ldq_phys(cs, sm_state + 0x7ff8 - i * 8);
 252    }
 253    env->eip = x86_ldq_phys(cs, sm_state + 0x7f78);
 254    cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7f70),
 255                    ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
 256    env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7f68);
 257    env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7f60);
 258
 259    cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f48));
 260    cpu_x86_update_cr3(env, x86_ldq_phys(cs, sm_state + 0x7f50));
 261    cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7f58));
 262
 263    for (i = 0; i < 6; i++) {
 264        offset = 0x7e00 + i * 16;
 265        cpu_x86_load_seg_cache(env, i,
 266                               x86_lduw_phys(cs, sm_state + offset),
 267                               x86_ldq_phys(cs, sm_state + offset + 8),
 268                               x86_ldl_phys(cs, sm_state + offset + 4),
 269                               (x86_lduw_phys(cs, sm_state + offset + 2) &
 270                                0xf0ff) << 8);
 271    }
 272
 273    val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
 274    if (val & 0x20000) {
 275        env->smbase = x86_ldl_phys(cs, sm_state + 0x7f00);
 276    }
 277#else
 278    cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7ffc));
 279    cpu_x86_update_cr3(env, x86_ldl_phys(cs, sm_state + 0x7ff8));
 280    cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7ff4),
 281                    ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
 282    env->eip = x86_ldl_phys(cs, sm_state + 0x7ff0);
 283    env->regs[R_EDI] = x86_ldl_phys(cs, sm_state + 0x7fec);
 284    env->regs[R_ESI] = x86_ldl_phys(cs, sm_state + 0x7fe8);
 285    env->regs[R_EBP] = x86_ldl_phys(cs, sm_state + 0x7fe4);
 286    env->regs[R_ESP] = x86_ldl_phys(cs, sm_state + 0x7fe0);
 287    env->regs[R_EBX] = x86_ldl_phys(cs, sm_state + 0x7fdc);
 288    env->regs[R_EDX] = x86_ldl_phys(cs, sm_state + 0x7fd8);
 289    env->regs[R_ECX] = x86_ldl_phys(cs, sm_state + 0x7fd4);
 290    env->regs[R_EAX] = x86_ldl_phys(cs, sm_state + 0x7fd0);
 291    env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7fcc);
 292    env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7fc8);
 293
 294    env->tr.selector = x86_ldl_phys(cs, sm_state + 0x7fc4) & 0xffff;
 295    env->tr.base = x86_ldl_phys(cs, sm_state + 0x7f64);
 296    env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7f60);
 297    env->tr.flags = (x86_ldl_phys(cs, sm_state + 0x7f5c) & 0xf0ff) << 8;
 298
 299    env->ldt.selector = x86_ldl_phys(cs, sm_state + 0x7fc0) & 0xffff;
 300    env->ldt.base = x86_ldl_phys(cs, sm_state + 0x7f80);
 301    env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7f7c);
 302    env->ldt.flags = (x86_ldl_phys(cs, sm_state + 0x7f78) & 0xf0ff) << 8;
 303
 304    env->gdt.base = x86_ldl_phys(cs, sm_state + 0x7f74);
 305    env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7f70);
 306
 307    env->idt.base = x86_ldl_phys(cs, sm_state + 0x7f58);
 308    env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7f54);
 309
 310    for (i = 0; i < 6; i++) {
 311        if (i < 3) {
 312            offset = 0x7f84 + i * 12;
 313        } else {
 314            offset = 0x7f2c + (i - 3) * 12;
 315        }
 316        cpu_x86_load_seg_cache(env, i,
 317                               x86_ldl_phys(cs,
 318                                        sm_state + 0x7fa8 + i * 4) & 0xffff,
 319                               x86_ldl_phys(cs, sm_state + offset + 8),
 320                               x86_ldl_phys(cs, sm_state + offset + 4),
 321                               (x86_ldl_phys(cs,
 322                                         sm_state + offset) & 0xf0ff) << 8);
 323    }
 324    cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f14));
 325
 326    val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
 327    if (val & 0x20000) {
 328        env->smbase = x86_ldl_phys(cs, sm_state + 0x7ef8);
 329    }
 330#endif
 331    if ((env->hflags2 & HF2_SMM_INSIDE_NMI_MASK) == 0) {
 332        env->hflags2 &= ~HF2_NMI_MASK;
 333    }
 334    env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
 335    env->hflags &= ~HF_SMM_MASK;
 336    cpu_smm_update(cpu);
 337
 338    qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
 339    log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
 340}
 341
 342#endif /* !CONFIG_USER_ONLY */
 343