qemu/block/qcow2-cluster.c
<<
>>
Prefs
   1/*
   2 * Block driver for the QCOW version 2 format
   3 *
   4 * Copyright (c) 2004-2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include <zlib.h>
  27
  28#include "qapi/error.h"
  29#include "qemu-common.h"
  30#include "block/block_int.h"
  31#include "block/qcow2.h"
  32#include "qemu/bswap.h"
  33#include "trace.h"
  34
  35int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
  36                        bool exact_size)
  37{
  38    BDRVQcow2State *s = bs->opaque;
  39    int new_l1_size2, ret, i;
  40    uint64_t *new_l1_table;
  41    int64_t old_l1_table_offset, old_l1_size;
  42    int64_t new_l1_table_offset, new_l1_size;
  43    uint8_t data[12];
  44
  45    if (min_size <= s->l1_size)
  46        return 0;
  47
  48    /* Do a sanity check on min_size before trying to calculate new_l1_size
  49     * (this prevents overflows during the while loop for the calculation of
  50     * new_l1_size) */
  51    if (min_size > INT_MAX / sizeof(uint64_t)) {
  52        return -EFBIG;
  53    }
  54
  55    if (exact_size) {
  56        new_l1_size = min_size;
  57    } else {
  58        /* Bump size up to reduce the number of times we have to grow */
  59        new_l1_size = s->l1_size;
  60        if (new_l1_size == 0) {
  61            new_l1_size = 1;
  62        }
  63        while (min_size > new_l1_size) {
  64            new_l1_size = (new_l1_size * 3 + 1) / 2;
  65        }
  66    }
  67
  68    QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
  69    if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
  70        return -EFBIG;
  71    }
  72
  73#ifdef DEBUG_ALLOC2
  74    fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
  75            s->l1_size, new_l1_size);
  76#endif
  77
  78    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
  79    new_l1_table = qemu_try_blockalign(bs->file->bs,
  80                                       align_offset(new_l1_size2, 512));
  81    if (new_l1_table == NULL) {
  82        return -ENOMEM;
  83    }
  84    memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
  85
  86    if (s->l1_size) {
  87        memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
  88    }
  89
  90    /* write new table (align to cluster) */
  91    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
  92    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
  93    if (new_l1_table_offset < 0) {
  94        qemu_vfree(new_l1_table);
  95        return new_l1_table_offset;
  96    }
  97
  98    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
  99    if (ret < 0) {
 100        goto fail;
 101    }
 102
 103    /* the L1 position has not yet been updated, so these clusters must
 104     * indeed be completely free */
 105    ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
 106                                        new_l1_size2);
 107    if (ret < 0) {
 108        goto fail;
 109    }
 110
 111    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
 112    for(i = 0; i < s->l1_size; i++)
 113        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
 114    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
 115                           new_l1_table, new_l1_size2);
 116    if (ret < 0)
 117        goto fail;
 118    for(i = 0; i < s->l1_size; i++)
 119        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
 120
 121    /* set new table */
 122    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
 123    stl_be_p(data, new_l1_size);
 124    stq_be_p(data + 4, new_l1_table_offset);
 125    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
 126                           data, sizeof(data));
 127    if (ret < 0) {
 128        goto fail;
 129    }
 130    qemu_vfree(s->l1_table);
 131    old_l1_table_offset = s->l1_table_offset;
 132    s->l1_table_offset = new_l1_table_offset;
 133    s->l1_table = new_l1_table;
 134    old_l1_size = s->l1_size;
 135    s->l1_size = new_l1_size;
 136    qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
 137                        QCOW2_DISCARD_OTHER);
 138    return 0;
 139 fail:
 140    qemu_vfree(new_l1_table);
 141    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
 142                        QCOW2_DISCARD_OTHER);
 143    return ret;
 144}
 145
 146/*
 147 * l2_load
 148 *
 149 * Loads a L2 table into memory. If the table is in the cache, the cache
 150 * is used; otherwise the L2 table is loaded from the image file.
 151 *
 152 * Returns a pointer to the L2 table on success, or NULL if the read from
 153 * the image file failed.
 154 */
 155
 156static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
 157    uint64_t **l2_table)
 158{
 159    BDRVQcow2State *s = bs->opaque;
 160
 161    return qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
 162                           (void **)l2_table);
 163}
 164
 165/*
 166 * Writes one sector of the L1 table to the disk (can't update single entries
 167 * and we really don't want bdrv_pread to perform a read-modify-write)
 168 */
 169#define L1_ENTRIES_PER_SECTOR (512 / 8)
 170int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
 171{
 172    BDRVQcow2State *s = bs->opaque;
 173    uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
 174    int l1_start_index;
 175    int i, ret;
 176
 177    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
 178    for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
 179         i++)
 180    {
 181        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
 182    }
 183
 184    ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
 185            s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
 186    if (ret < 0) {
 187        return ret;
 188    }
 189
 190    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
 191    ret = bdrv_pwrite_sync(bs->file,
 192                           s->l1_table_offset + 8 * l1_start_index,
 193                           buf, sizeof(buf));
 194    if (ret < 0) {
 195        return ret;
 196    }
 197
 198    return 0;
 199}
 200
 201/*
 202 * l2_allocate
 203 *
 204 * Allocate a new l2 entry in the file. If l1_index points to an already
 205 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
 206 * table) copy the contents of the old L2 table into the newly allocated one.
 207 * Otherwise the new table is initialized with zeros.
 208 *
 209 */
 210
 211static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
 212{
 213    BDRVQcow2State *s = bs->opaque;
 214    uint64_t old_l2_offset;
 215    uint64_t *l2_table = NULL;
 216    int64_t l2_offset;
 217    int ret;
 218
 219    old_l2_offset = s->l1_table[l1_index];
 220
 221    trace_qcow2_l2_allocate(bs, l1_index);
 222
 223    /* allocate a new l2 entry */
 224
 225    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
 226    if (l2_offset < 0) {
 227        ret = l2_offset;
 228        goto fail;
 229    }
 230
 231    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 232    if (ret < 0) {
 233        goto fail;
 234    }
 235
 236    /* allocate a new entry in the l2 cache */
 237
 238    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
 239    ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
 240    if (ret < 0) {
 241        goto fail;
 242    }
 243
 244    l2_table = *table;
 245
 246    if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
 247        /* if there was no old l2 table, clear the new table */
 248        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
 249    } else {
 250        uint64_t* old_table;
 251
 252        /* if there was an old l2 table, read it from the disk */
 253        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
 254        ret = qcow2_cache_get(bs, s->l2_table_cache,
 255            old_l2_offset & L1E_OFFSET_MASK,
 256            (void**) &old_table);
 257        if (ret < 0) {
 258            goto fail;
 259        }
 260
 261        memcpy(l2_table, old_table, s->cluster_size);
 262
 263        qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
 264    }
 265
 266    /* write the l2 table to the file */
 267    BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
 268
 269    trace_qcow2_l2_allocate_write_l2(bs, l1_index);
 270    qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
 271    ret = qcow2_cache_flush(bs, s->l2_table_cache);
 272    if (ret < 0) {
 273        goto fail;
 274    }
 275
 276    /* update the L1 entry */
 277    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
 278    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
 279    ret = qcow2_write_l1_entry(bs, l1_index);
 280    if (ret < 0) {
 281        goto fail;
 282    }
 283
 284    *table = l2_table;
 285    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
 286    return 0;
 287
 288fail:
 289    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
 290    if (l2_table != NULL) {
 291        qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
 292    }
 293    s->l1_table[l1_index] = old_l2_offset;
 294    if (l2_offset > 0) {
 295        qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
 296                            QCOW2_DISCARD_ALWAYS);
 297    }
 298    return ret;
 299}
 300
 301/*
 302 * Checks how many clusters in a given L2 table are contiguous in the image
 303 * file. As soon as one of the flags in the bitmask stop_flags changes compared
 304 * to the first cluster, the search is stopped and the cluster is not counted
 305 * as contiguous. (This allows it, for example, to stop at the first compressed
 306 * cluster which may require a different handling)
 307 */
 308static int count_contiguous_clusters(int nb_clusters, int cluster_size,
 309        uint64_t *l2_table, uint64_t stop_flags)
 310{
 311    int i;
 312    uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
 313    uint64_t first_entry = be64_to_cpu(l2_table[0]);
 314    uint64_t offset = first_entry & mask;
 315
 316    if (!offset)
 317        return 0;
 318
 319    assert(qcow2_get_cluster_type(first_entry) == QCOW2_CLUSTER_NORMAL);
 320
 321    for (i = 0; i < nb_clusters; i++) {
 322        uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
 323        if (offset + (uint64_t) i * cluster_size != l2_entry) {
 324            break;
 325        }
 326    }
 327
 328        return i;
 329}
 330
 331static int count_contiguous_clusters_by_type(int nb_clusters,
 332                                             uint64_t *l2_table,
 333                                             int wanted_type)
 334{
 335    int i;
 336
 337    for (i = 0; i < nb_clusters; i++) {
 338        int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
 339
 340        if (type != wanted_type) {
 341            break;
 342        }
 343    }
 344
 345    return i;
 346}
 347
 348/* The crypt function is compatible with the linux cryptoloop
 349   algorithm for < 4 GB images. NOTE: out_buf == in_buf is
 350   supported */
 351int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num,
 352                          uint8_t *out_buf, const uint8_t *in_buf,
 353                          int nb_sectors, bool enc,
 354                          Error **errp)
 355{
 356    union {
 357        uint64_t ll[2];
 358        uint8_t b[16];
 359    } ivec;
 360    int i;
 361    int ret;
 362
 363    for(i = 0; i < nb_sectors; i++) {
 364        ivec.ll[0] = cpu_to_le64(sector_num);
 365        ivec.ll[1] = 0;
 366        if (qcrypto_cipher_setiv(s->cipher,
 367                                 ivec.b, G_N_ELEMENTS(ivec.b),
 368                                 errp) < 0) {
 369            return -1;
 370        }
 371        if (enc) {
 372            ret = qcrypto_cipher_encrypt(s->cipher,
 373                                         in_buf,
 374                                         out_buf,
 375                                         512,
 376                                         errp);
 377        } else {
 378            ret = qcrypto_cipher_decrypt(s->cipher,
 379                                         in_buf,
 380                                         out_buf,
 381                                         512,
 382                                         errp);
 383        }
 384        if (ret < 0) {
 385            return -1;
 386        }
 387        sector_num++;
 388        in_buf += 512;
 389        out_buf += 512;
 390    }
 391    return 0;
 392}
 393
 394static int coroutine_fn do_perform_cow(BlockDriverState *bs,
 395                                       uint64_t src_cluster_offset,
 396                                       uint64_t cluster_offset,
 397                                       int offset_in_cluster,
 398                                       int bytes)
 399{
 400    BDRVQcow2State *s = bs->opaque;
 401    QEMUIOVector qiov;
 402    struct iovec iov;
 403    int ret;
 404
 405    iov.iov_len = bytes;
 406    iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
 407    if (iov.iov_base == NULL) {
 408        return -ENOMEM;
 409    }
 410
 411    qemu_iovec_init_external(&qiov, &iov, 1);
 412
 413    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
 414
 415    if (!bs->drv) {
 416        ret = -ENOMEDIUM;
 417        goto out;
 418    }
 419
 420    /* Call .bdrv_co_readv() directly instead of using the public block-layer
 421     * interface.  This avoids double I/O throttling and request tracking,
 422     * which can lead to deadlock when block layer copy-on-read is enabled.
 423     */
 424    ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
 425                                  bytes, &qiov, 0);
 426    if (ret < 0) {
 427        goto out;
 428    }
 429
 430    if (bs->encrypted) {
 431        Error *err = NULL;
 432        int64_t sector = (src_cluster_offset + offset_in_cluster)
 433                         >> BDRV_SECTOR_BITS;
 434        assert(s->cipher);
 435        assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
 436        assert((bytes & ~BDRV_SECTOR_MASK) == 0);
 437        if (qcow2_encrypt_sectors(s, sector, iov.iov_base, iov.iov_base,
 438                                  bytes >> BDRV_SECTOR_BITS, true, &err) < 0) {
 439            ret = -EIO;
 440            error_free(err);
 441            goto out;
 442        }
 443    }
 444
 445    ret = qcow2_pre_write_overlap_check(bs, 0,
 446            cluster_offset + offset_in_cluster, bytes);
 447    if (ret < 0) {
 448        goto out;
 449    }
 450
 451    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
 452    ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
 453                          bytes, &qiov, 0);
 454    if (ret < 0) {
 455        goto out;
 456    }
 457
 458    ret = 0;
 459out:
 460    qemu_vfree(iov.iov_base);
 461    return ret;
 462}
 463
 464
 465/*
 466 * get_cluster_offset
 467 *
 468 * For a given offset of the virtual disk, find the cluster type and offset in
 469 * the qcow2 file. The offset is stored in *cluster_offset.
 470 *
 471 * On entry, *bytes is the maximum number of contiguous bytes starting at
 472 * offset that we are interested in.
 473 *
 474 * On exit, *bytes is the number of bytes starting at offset that have the same
 475 * cluster type and (if applicable) are stored contiguously in the image file.
 476 * Compressed clusters are always returned one by one.
 477 *
 478 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
 479 * cases.
 480 */
 481int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
 482                             unsigned int *bytes, uint64_t *cluster_offset)
 483{
 484    BDRVQcow2State *s = bs->opaque;
 485    unsigned int l2_index;
 486    uint64_t l1_index, l2_offset, *l2_table;
 487    int l1_bits, c;
 488    unsigned int offset_in_cluster;
 489    uint64_t bytes_available, bytes_needed, nb_clusters;
 490    int ret;
 491
 492    offset_in_cluster = offset_into_cluster(s, offset);
 493    bytes_needed = (uint64_t) *bytes + offset_in_cluster;
 494
 495    l1_bits = s->l2_bits + s->cluster_bits;
 496
 497    /* compute how many bytes there are between the start of the cluster
 498     * containing offset and the end of the l1 entry */
 499    bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1))
 500                    + offset_in_cluster;
 501
 502    if (bytes_needed > bytes_available) {
 503        bytes_needed = bytes_available;
 504    }
 505
 506    *cluster_offset = 0;
 507
 508    /* seek to the l2 offset in the l1 table */
 509
 510    l1_index = offset >> l1_bits;
 511    if (l1_index >= s->l1_size) {
 512        ret = QCOW2_CLUSTER_UNALLOCATED;
 513        goto out;
 514    }
 515
 516    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 517    if (!l2_offset) {
 518        ret = QCOW2_CLUSTER_UNALLOCATED;
 519        goto out;
 520    }
 521
 522    if (offset_into_cluster(s, l2_offset)) {
 523        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 524                                " unaligned (L1 index: %#" PRIx64 ")",
 525                                l2_offset, l1_index);
 526        return -EIO;
 527    }
 528
 529    /* load the l2 table in memory */
 530
 531    ret = l2_load(bs, l2_offset, &l2_table);
 532    if (ret < 0) {
 533        return ret;
 534    }
 535
 536    /* find the cluster offset for the given disk offset */
 537
 538    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
 539    *cluster_offset = be64_to_cpu(l2_table[l2_index]);
 540
 541    nb_clusters = size_to_clusters(s, bytes_needed);
 542    /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
 543     * integers; the minimum cluster size is 512, so this assertion is always
 544     * true */
 545    assert(nb_clusters <= INT_MAX);
 546
 547    ret = qcow2_get_cluster_type(*cluster_offset);
 548    switch (ret) {
 549    case QCOW2_CLUSTER_COMPRESSED:
 550        /* Compressed clusters can only be processed one by one */
 551        c = 1;
 552        *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
 553        break;
 554    case QCOW2_CLUSTER_ZERO:
 555        if (s->qcow_version < 3) {
 556            qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
 557                                    " in pre-v3 image (L2 offset: %#" PRIx64
 558                                    ", L2 index: %#x)", l2_offset, l2_index);
 559            ret = -EIO;
 560            goto fail;
 561        }
 562        c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
 563                                              QCOW2_CLUSTER_ZERO);
 564        *cluster_offset = 0;
 565        break;
 566    case QCOW2_CLUSTER_UNALLOCATED:
 567        /* how many empty clusters ? */
 568        c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
 569                                              QCOW2_CLUSTER_UNALLOCATED);
 570        *cluster_offset = 0;
 571        break;
 572    case QCOW2_CLUSTER_NORMAL:
 573        /* how many allocated clusters ? */
 574        c = count_contiguous_clusters(nb_clusters, s->cluster_size,
 575                &l2_table[l2_index], QCOW_OFLAG_ZERO);
 576        *cluster_offset &= L2E_OFFSET_MASK;
 577        if (offset_into_cluster(s, *cluster_offset)) {
 578            qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
 579                                    PRIx64 " unaligned (L2 offset: %#" PRIx64
 580                                    ", L2 index: %#x)", *cluster_offset,
 581                                    l2_offset, l2_index);
 582            ret = -EIO;
 583            goto fail;
 584        }
 585        break;
 586    default:
 587        abort();
 588    }
 589
 590    qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
 591
 592    bytes_available = (int64_t)c * s->cluster_size;
 593
 594out:
 595    if (bytes_available > bytes_needed) {
 596        bytes_available = bytes_needed;
 597    }
 598
 599    /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
 600     * subtracting offset_in_cluster will therefore definitely yield something
 601     * not exceeding UINT_MAX */
 602    assert(bytes_available - offset_in_cluster <= UINT_MAX);
 603    *bytes = bytes_available - offset_in_cluster;
 604
 605    return ret;
 606
 607fail:
 608    qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
 609    return ret;
 610}
 611
 612/*
 613 * get_cluster_table
 614 *
 615 * for a given disk offset, load (and allocate if needed)
 616 * the l2 table.
 617 *
 618 * the l2 table offset in the qcow2 file and the cluster index
 619 * in the l2 table are given to the caller.
 620 *
 621 * Returns 0 on success, -errno in failure case
 622 */
 623static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
 624                             uint64_t **new_l2_table,
 625                             int *new_l2_index)
 626{
 627    BDRVQcow2State *s = bs->opaque;
 628    unsigned int l2_index;
 629    uint64_t l1_index, l2_offset;
 630    uint64_t *l2_table = NULL;
 631    int ret;
 632
 633    /* seek to the l2 offset in the l1 table */
 634
 635    l1_index = offset >> (s->l2_bits + s->cluster_bits);
 636    if (l1_index >= s->l1_size) {
 637        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
 638        if (ret < 0) {
 639            return ret;
 640        }
 641    }
 642
 643    assert(l1_index < s->l1_size);
 644    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 645    if (offset_into_cluster(s, l2_offset)) {
 646        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 647                                " unaligned (L1 index: %#" PRIx64 ")",
 648                                l2_offset, l1_index);
 649        return -EIO;
 650    }
 651
 652    /* seek the l2 table of the given l2 offset */
 653
 654    if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
 655        /* load the l2 table in memory */
 656        ret = l2_load(bs, l2_offset, &l2_table);
 657        if (ret < 0) {
 658            return ret;
 659        }
 660    } else {
 661        /* First allocate a new L2 table (and do COW if needed) */
 662        ret = l2_allocate(bs, l1_index, &l2_table);
 663        if (ret < 0) {
 664            return ret;
 665        }
 666
 667        /* Then decrease the refcount of the old table */
 668        if (l2_offset) {
 669            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
 670                                QCOW2_DISCARD_OTHER);
 671        }
 672    }
 673
 674    /* find the cluster offset for the given disk offset */
 675
 676    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
 677
 678    *new_l2_table = l2_table;
 679    *new_l2_index = l2_index;
 680
 681    return 0;
 682}
 683
 684/*
 685 * alloc_compressed_cluster_offset
 686 *
 687 * For a given offset of the disk image, return cluster offset in
 688 * qcow2 file.
 689 *
 690 * If the offset is not found, allocate a new compressed cluster.
 691 *
 692 * Return the cluster offset if successful,
 693 * Return 0, otherwise.
 694 *
 695 */
 696
 697uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
 698                                               uint64_t offset,
 699                                               int compressed_size)
 700{
 701    BDRVQcow2State *s = bs->opaque;
 702    int l2_index, ret;
 703    uint64_t *l2_table;
 704    int64_t cluster_offset;
 705    int nb_csectors;
 706
 707    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
 708    if (ret < 0) {
 709        return 0;
 710    }
 711
 712    /* Compression can't overwrite anything. Fail if the cluster was already
 713     * allocated. */
 714    cluster_offset = be64_to_cpu(l2_table[l2_index]);
 715    if (cluster_offset & L2E_OFFSET_MASK) {
 716        qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
 717        return 0;
 718    }
 719
 720    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
 721    if (cluster_offset < 0) {
 722        qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
 723        return 0;
 724    }
 725
 726    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
 727                  (cluster_offset >> 9);
 728
 729    cluster_offset |= QCOW_OFLAG_COMPRESSED |
 730                      ((uint64_t)nb_csectors << s->csize_shift);
 731
 732    /* update L2 table */
 733
 734    /* compressed clusters never have the copied flag */
 735
 736    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
 737    qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
 738    l2_table[l2_index] = cpu_to_be64(cluster_offset);
 739    qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
 740
 741    return cluster_offset;
 742}
 743
 744static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
 745{
 746    BDRVQcow2State *s = bs->opaque;
 747    int ret;
 748
 749    if (r->nb_bytes == 0) {
 750        return 0;
 751    }
 752
 753    qemu_co_mutex_unlock(&s->lock);
 754    ret = do_perform_cow(bs, m->offset, m->alloc_offset, r->offset, r->nb_bytes);
 755    qemu_co_mutex_lock(&s->lock);
 756
 757    if (ret < 0) {
 758        return ret;
 759    }
 760
 761    /*
 762     * Before we update the L2 table to actually point to the new cluster, we
 763     * need to be sure that the refcounts have been increased and COW was
 764     * handled.
 765     */
 766    qcow2_cache_depends_on_flush(s->l2_table_cache);
 767
 768    return 0;
 769}
 770
 771int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
 772{
 773    BDRVQcow2State *s = bs->opaque;
 774    int i, j = 0, l2_index, ret;
 775    uint64_t *old_cluster, *l2_table;
 776    uint64_t cluster_offset = m->alloc_offset;
 777
 778    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
 779    assert(m->nb_clusters > 0);
 780
 781    old_cluster = g_try_new(uint64_t, m->nb_clusters);
 782    if (old_cluster == NULL) {
 783        ret = -ENOMEM;
 784        goto err;
 785    }
 786
 787    /* copy content of unmodified sectors */
 788    ret = perform_cow(bs, m, &m->cow_start);
 789    if (ret < 0) {
 790        goto err;
 791    }
 792
 793    ret = perform_cow(bs, m, &m->cow_end);
 794    if (ret < 0) {
 795        goto err;
 796    }
 797
 798    /* Update L2 table. */
 799    if (s->use_lazy_refcounts) {
 800        qcow2_mark_dirty(bs);
 801    }
 802    if (qcow2_need_accurate_refcounts(s)) {
 803        qcow2_cache_set_dependency(bs, s->l2_table_cache,
 804                                   s->refcount_block_cache);
 805    }
 806
 807    ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
 808    if (ret < 0) {
 809        goto err;
 810    }
 811    qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
 812
 813    assert(l2_index + m->nb_clusters <= s->l2_size);
 814    for (i = 0; i < m->nb_clusters; i++) {
 815        /* if two concurrent writes happen to the same unallocated cluster
 816         * each write allocates separate cluster and writes data concurrently.
 817         * The first one to complete updates l2 table with pointer to its
 818         * cluster the second one has to do RMW (which is done above by
 819         * perform_cow()), update l2 table with its cluster pointer and free
 820         * old cluster. This is what this loop does */
 821        if (l2_table[l2_index + i] != 0) {
 822            old_cluster[j++] = l2_table[l2_index + i];
 823        }
 824
 825        l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
 826                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
 827     }
 828
 829
 830    qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
 831
 832    /*
 833     * If this was a COW, we need to decrease the refcount of the old cluster.
 834     *
 835     * Don't discard clusters that reach a refcount of 0 (e.g. compressed
 836     * clusters), the next write will reuse them anyway.
 837     */
 838    if (j != 0) {
 839        for (i = 0; i < j; i++) {
 840            qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
 841                                    QCOW2_DISCARD_NEVER);
 842        }
 843    }
 844
 845    ret = 0;
 846err:
 847    g_free(old_cluster);
 848    return ret;
 849 }
 850
 851/*
 852 * Returns the number of contiguous clusters that can be used for an allocating
 853 * write, but require COW to be performed (this includes yet unallocated space,
 854 * which must copy from the backing file)
 855 */
 856static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
 857    uint64_t *l2_table, int l2_index)
 858{
 859    int i;
 860
 861    for (i = 0; i < nb_clusters; i++) {
 862        uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
 863        int cluster_type = qcow2_get_cluster_type(l2_entry);
 864
 865        switch(cluster_type) {
 866        case QCOW2_CLUSTER_NORMAL:
 867            if (l2_entry & QCOW_OFLAG_COPIED) {
 868                goto out;
 869            }
 870            break;
 871        case QCOW2_CLUSTER_UNALLOCATED:
 872        case QCOW2_CLUSTER_COMPRESSED:
 873        case QCOW2_CLUSTER_ZERO:
 874            break;
 875        default:
 876            abort();
 877        }
 878    }
 879
 880out:
 881    assert(i <= nb_clusters);
 882    return i;
 883}
 884
 885/*
 886 * Check if there already is an AIO write request in flight which allocates
 887 * the same cluster. In this case we need to wait until the previous
 888 * request has completed and updated the L2 table accordingly.
 889 *
 890 * Returns:
 891 *   0       if there was no dependency. *cur_bytes indicates the number of
 892 *           bytes from guest_offset that can be read before the next
 893 *           dependency must be processed (or the request is complete)
 894 *
 895 *   -EAGAIN if we had to wait for another request, previously gathered
 896 *           information on cluster allocation may be invalid now. The caller
 897 *           must start over anyway, so consider *cur_bytes undefined.
 898 */
 899static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
 900    uint64_t *cur_bytes, QCowL2Meta **m)
 901{
 902    BDRVQcow2State *s = bs->opaque;
 903    QCowL2Meta *old_alloc;
 904    uint64_t bytes = *cur_bytes;
 905
 906    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
 907
 908        uint64_t start = guest_offset;
 909        uint64_t end = start + bytes;
 910        uint64_t old_start = l2meta_cow_start(old_alloc);
 911        uint64_t old_end = l2meta_cow_end(old_alloc);
 912
 913        if (end <= old_start || start >= old_end) {
 914            /* No intersection */
 915        } else {
 916            if (start < old_start) {
 917                /* Stop at the start of a running allocation */
 918                bytes = old_start - start;
 919            } else {
 920                bytes = 0;
 921            }
 922
 923            /* Stop if already an l2meta exists. After yielding, it wouldn't
 924             * be valid any more, so we'd have to clean up the old L2Metas
 925             * and deal with requests depending on them before starting to
 926             * gather new ones. Not worth the trouble. */
 927            if (bytes == 0 && *m) {
 928                *cur_bytes = 0;
 929                return 0;
 930            }
 931
 932            if (bytes == 0) {
 933                /* Wait for the dependency to complete. We need to recheck
 934                 * the free/allocated clusters when we continue. */
 935                qemu_co_mutex_unlock(&s->lock);
 936                qemu_co_queue_wait(&old_alloc->dependent_requests);
 937                qemu_co_mutex_lock(&s->lock);
 938                return -EAGAIN;
 939            }
 940        }
 941    }
 942
 943    /* Make sure that existing clusters and new allocations are only used up to
 944     * the next dependency if we shortened the request above */
 945    *cur_bytes = bytes;
 946
 947    return 0;
 948}
 949
 950/*
 951 * Checks how many already allocated clusters that don't require a copy on
 952 * write there are at the given guest_offset (up to *bytes). If
 953 * *host_offset is not zero, only physically contiguous clusters beginning at
 954 * this host offset are counted.
 955 *
 956 * Note that guest_offset may not be cluster aligned. In this case, the
 957 * returned *host_offset points to exact byte referenced by guest_offset and
 958 * therefore isn't cluster aligned as well.
 959 *
 960 * Returns:
 961 *   0:     if no allocated clusters are available at the given offset.
 962 *          *bytes is normally unchanged. It is set to 0 if the cluster
 963 *          is allocated and doesn't need COW, but doesn't have the right
 964 *          physical offset.
 965 *
 966 *   1:     if allocated clusters that don't require a COW are available at
 967 *          the requested offset. *bytes may have decreased and describes
 968 *          the length of the area that can be written to.
 969 *
 970 *  -errno: in error cases
 971 */
 972static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
 973    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
 974{
 975    BDRVQcow2State *s = bs->opaque;
 976    int l2_index;
 977    uint64_t cluster_offset;
 978    uint64_t *l2_table;
 979    uint64_t nb_clusters;
 980    unsigned int keep_clusters;
 981    int ret;
 982
 983    trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
 984                              *bytes);
 985
 986    assert(*host_offset == 0 ||    offset_into_cluster(s, guest_offset)
 987                                == offset_into_cluster(s, *host_offset));
 988
 989    /*
 990     * Calculate the number of clusters to look for. We stop at L2 table
 991     * boundaries to keep things simple.
 992     */
 993    nb_clusters =
 994        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
 995
 996    l2_index = offset_to_l2_index(s, guest_offset);
 997    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
 998    assert(nb_clusters <= INT_MAX);
 999
1000    /* Find L2 entry for the first involved cluster */
1001    ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1002    if (ret < 0) {
1003        return ret;
1004    }
1005
1006    cluster_offset = be64_to_cpu(l2_table[l2_index]);
1007
1008    /* Check how many clusters are already allocated and don't need COW */
1009    if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1010        && (cluster_offset & QCOW_OFLAG_COPIED))
1011    {
1012        /* If a specific host_offset is required, check it */
1013        bool offset_matches =
1014            (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1015
1016        if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1017            qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1018                                    "%#llx unaligned (guest offset: %#" PRIx64
1019                                    ")", cluster_offset & L2E_OFFSET_MASK,
1020                                    guest_offset);
1021            ret = -EIO;
1022            goto out;
1023        }
1024
1025        if (*host_offset != 0 && !offset_matches) {
1026            *bytes = 0;
1027            ret = 0;
1028            goto out;
1029        }
1030
1031        /* We keep all QCOW_OFLAG_COPIED clusters */
1032        keep_clusters =
1033            count_contiguous_clusters(nb_clusters, s->cluster_size,
1034                                      &l2_table[l2_index],
1035                                      QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1036        assert(keep_clusters <= nb_clusters);
1037
1038        *bytes = MIN(*bytes,
1039                 keep_clusters * s->cluster_size
1040                 - offset_into_cluster(s, guest_offset));
1041
1042        ret = 1;
1043    } else {
1044        ret = 0;
1045    }
1046
1047    /* Cleanup */
1048out:
1049    qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1050
1051    /* Only return a host offset if we actually made progress. Otherwise we
1052     * would make requirements for handle_alloc() that it can't fulfill */
1053    if (ret > 0) {
1054        *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1055                     + offset_into_cluster(s, guest_offset);
1056    }
1057
1058    return ret;
1059}
1060
1061/*
1062 * Allocates new clusters for the given guest_offset.
1063 *
1064 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1065 * contain the number of clusters that have been allocated and are contiguous
1066 * in the image file.
1067 *
1068 * If *host_offset is non-zero, it specifies the offset in the image file at
1069 * which the new clusters must start. *nb_clusters can be 0 on return in this
1070 * case if the cluster at host_offset is already in use. If *host_offset is
1071 * zero, the clusters can be allocated anywhere in the image file.
1072 *
1073 * *host_offset is updated to contain the offset into the image file at which
1074 * the first allocated cluster starts.
1075 *
1076 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1077 * function has been waiting for another request and the allocation must be
1078 * restarted, but the whole request should not be failed.
1079 */
1080static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1081                                   uint64_t *host_offset, uint64_t *nb_clusters)
1082{
1083    BDRVQcow2State *s = bs->opaque;
1084
1085    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1086                                         *host_offset, *nb_clusters);
1087
1088    /* Allocate new clusters */
1089    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1090    if (*host_offset == 0) {
1091        int64_t cluster_offset =
1092            qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1093        if (cluster_offset < 0) {
1094            return cluster_offset;
1095        }
1096        *host_offset = cluster_offset;
1097        return 0;
1098    } else {
1099        int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1100        if (ret < 0) {
1101            return ret;
1102        }
1103        *nb_clusters = ret;
1104        return 0;
1105    }
1106}
1107
1108/*
1109 * Allocates new clusters for an area that either is yet unallocated or needs a
1110 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1111 * the new allocation can match the specified host offset.
1112 *
1113 * Note that guest_offset may not be cluster aligned. In this case, the
1114 * returned *host_offset points to exact byte referenced by guest_offset and
1115 * therefore isn't cluster aligned as well.
1116 *
1117 * Returns:
1118 *   0:     if no clusters could be allocated. *bytes is set to 0,
1119 *          *host_offset is left unchanged.
1120 *
1121 *   1:     if new clusters were allocated. *bytes may be decreased if the
1122 *          new allocation doesn't cover all of the requested area.
1123 *          *host_offset is updated to contain the host offset of the first
1124 *          newly allocated cluster.
1125 *
1126 *  -errno: in error cases
1127 */
1128static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1129    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1130{
1131    BDRVQcow2State *s = bs->opaque;
1132    int l2_index;
1133    uint64_t *l2_table;
1134    uint64_t entry;
1135    uint64_t nb_clusters;
1136    int ret;
1137
1138    uint64_t alloc_cluster_offset;
1139
1140    trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1141                             *bytes);
1142    assert(*bytes > 0);
1143
1144    /*
1145     * Calculate the number of clusters to look for. We stop at L2 table
1146     * boundaries to keep things simple.
1147     */
1148    nb_clusters =
1149        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1150
1151    l2_index = offset_to_l2_index(s, guest_offset);
1152    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1153    assert(nb_clusters <= INT_MAX);
1154
1155    /* Find L2 entry for the first involved cluster */
1156    ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1157    if (ret < 0) {
1158        return ret;
1159    }
1160
1161    entry = be64_to_cpu(l2_table[l2_index]);
1162
1163    /* For the moment, overwrite compressed clusters one by one */
1164    if (entry & QCOW_OFLAG_COMPRESSED) {
1165        nb_clusters = 1;
1166    } else {
1167        nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1168    }
1169
1170    /* This function is only called when there were no non-COW clusters, so if
1171     * we can't find any unallocated or COW clusters either, something is
1172     * wrong with our code. */
1173    assert(nb_clusters > 0);
1174
1175    qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1176
1177    /* Allocate, if necessary at a given offset in the image file */
1178    alloc_cluster_offset = start_of_cluster(s, *host_offset);
1179    ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1180                                  &nb_clusters);
1181    if (ret < 0) {
1182        goto fail;
1183    }
1184
1185    /* Can't extend contiguous allocation */
1186    if (nb_clusters == 0) {
1187        *bytes = 0;
1188        return 0;
1189    }
1190
1191    /* !*host_offset would overwrite the image header and is reserved for "no
1192     * host offset preferred". If 0 was a valid host offset, it'd trigger the
1193     * following overlap check; do that now to avoid having an invalid value in
1194     * *host_offset. */
1195    if (!alloc_cluster_offset) {
1196        ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1197                                            nb_clusters * s->cluster_size);
1198        assert(ret < 0);
1199        goto fail;
1200    }
1201
1202    /*
1203     * Save info needed for meta data update.
1204     *
1205     * requested_bytes: Number of bytes from the start of the first
1206     * newly allocated cluster to the end of the (possibly shortened
1207     * before) write request.
1208     *
1209     * avail_bytes: Number of bytes from the start of the first
1210     * newly allocated to the end of the last newly allocated cluster.
1211     *
1212     * nb_bytes: The number of bytes from the start of the first
1213     * newly allocated cluster to the end of the area that the write
1214     * request actually writes to (excluding COW at the end)
1215     */
1216    uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1217    int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1218    int nb_bytes = MIN(requested_bytes, avail_bytes);
1219    QCowL2Meta *old_m = *m;
1220
1221    *m = g_malloc0(sizeof(**m));
1222
1223    **m = (QCowL2Meta) {
1224        .next           = old_m,
1225
1226        .alloc_offset   = alloc_cluster_offset,
1227        .offset         = start_of_cluster(s, guest_offset),
1228        .nb_clusters    = nb_clusters,
1229
1230        .cow_start = {
1231            .offset     = 0,
1232            .nb_bytes   = offset_into_cluster(s, guest_offset),
1233        },
1234        .cow_end = {
1235            .offset     = nb_bytes,
1236            .nb_bytes   = avail_bytes - nb_bytes,
1237        },
1238    };
1239    qemu_co_queue_init(&(*m)->dependent_requests);
1240    QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1241
1242    *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1243    *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1244    assert(*bytes != 0);
1245
1246    return 1;
1247
1248fail:
1249    if (*m && (*m)->nb_clusters > 0) {
1250        QLIST_REMOVE(*m, next_in_flight);
1251    }
1252    return ret;
1253}
1254
1255/*
1256 * alloc_cluster_offset
1257 *
1258 * For a given offset on the virtual disk, find the cluster offset in qcow2
1259 * file. If the offset is not found, allocate a new cluster.
1260 *
1261 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1262 * other fields in m are meaningless.
1263 *
1264 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1265 * contiguous clusters that have been allocated. In this case, the other
1266 * fields of m are valid and contain information about the first allocated
1267 * cluster.
1268 *
1269 * If the request conflicts with another write request in flight, the coroutine
1270 * is queued and will be reentered when the dependency has completed.
1271 *
1272 * Return 0 on success and -errno in error cases
1273 */
1274int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1275                               unsigned int *bytes, uint64_t *host_offset,
1276                               QCowL2Meta **m)
1277{
1278    BDRVQcow2State *s = bs->opaque;
1279    uint64_t start, remaining;
1280    uint64_t cluster_offset;
1281    uint64_t cur_bytes;
1282    int ret;
1283
1284    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1285
1286again:
1287    start = offset;
1288    remaining = *bytes;
1289    cluster_offset = 0;
1290    *host_offset = 0;
1291    cur_bytes = 0;
1292    *m = NULL;
1293
1294    while (true) {
1295
1296        if (!*host_offset) {
1297            *host_offset = start_of_cluster(s, cluster_offset);
1298        }
1299
1300        assert(remaining >= cur_bytes);
1301
1302        start           += cur_bytes;
1303        remaining       -= cur_bytes;
1304        cluster_offset  += cur_bytes;
1305
1306        if (remaining == 0) {
1307            break;
1308        }
1309
1310        cur_bytes = remaining;
1311
1312        /*
1313         * Now start gathering as many contiguous clusters as possible:
1314         *
1315         * 1. Check for overlaps with in-flight allocations
1316         *
1317         *      a) Overlap not in the first cluster -> shorten this request and
1318         *         let the caller handle the rest in its next loop iteration.
1319         *
1320         *      b) Real overlaps of two requests. Yield and restart the search
1321         *         for contiguous clusters (the situation could have changed
1322         *         while we were sleeping)
1323         *
1324         *      c) TODO: Request starts in the same cluster as the in-flight
1325         *         allocation ends. Shorten the COW of the in-fight allocation,
1326         *         set cluster_offset to write to the same cluster and set up
1327         *         the right synchronisation between the in-flight request and
1328         *         the new one.
1329         */
1330        ret = handle_dependencies(bs, start, &cur_bytes, m);
1331        if (ret == -EAGAIN) {
1332            /* Currently handle_dependencies() doesn't yield if we already had
1333             * an allocation. If it did, we would have to clean up the L2Meta
1334             * structs before starting over. */
1335            assert(*m == NULL);
1336            goto again;
1337        } else if (ret < 0) {
1338            return ret;
1339        } else if (cur_bytes == 0) {
1340            break;
1341        } else {
1342            /* handle_dependencies() may have decreased cur_bytes (shortened
1343             * the allocations below) so that the next dependency is processed
1344             * correctly during the next loop iteration. */
1345        }
1346
1347        /*
1348         * 2. Count contiguous COPIED clusters.
1349         */
1350        ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1351        if (ret < 0) {
1352            return ret;
1353        } else if (ret) {
1354            continue;
1355        } else if (cur_bytes == 0) {
1356            break;
1357        }
1358
1359        /*
1360         * 3. If the request still hasn't completed, allocate new clusters,
1361         *    considering any cluster_offset of steps 1c or 2.
1362         */
1363        ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1364        if (ret < 0) {
1365            return ret;
1366        } else if (ret) {
1367            continue;
1368        } else {
1369            assert(cur_bytes == 0);
1370            break;
1371        }
1372    }
1373
1374    *bytes -= remaining;
1375    assert(*bytes > 0);
1376    assert(*host_offset != 0);
1377
1378    return 0;
1379}
1380
1381static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1382                             const uint8_t *buf, int buf_size)
1383{
1384    z_stream strm1, *strm = &strm1;
1385    int ret, out_len;
1386
1387    memset(strm, 0, sizeof(*strm));
1388
1389    strm->next_in = (uint8_t *)buf;
1390    strm->avail_in = buf_size;
1391    strm->next_out = out_buf;
1392    strm->avail_out = out_buf_size;
1393
1394    ret = inflateInit2(strm, -12);
1395    if (ret != Z_OK)
1396        return -1;
1397    ret = inflate(strm, Z_FINISH);
1398    out_len = strm->next_out - out_buf;
1399    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1400        out_len != out_buf_size) {
1401        inflateEnd(strm);
1402        return -1;
1403    }
1404    inflateEnd(strm);
1405    return 0;
1406}
1407
1408int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1409{
1410    BDRVQcow2State *s = bs->opaque;
1411    int ret, csize, nb_csectors, sector_offset;
1412    uint64_t coffset;
1413
1414    coffset = cluster_offset & s->cluster_offset_mask;
1415    if (s->cluster_cache_offset != coffset) {
1416        nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1417        sector_offset = coffset & 511;
1418        csize = nb_csectors * 512 - sector_offset;
1419        BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1420        ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1421                        nb_csectors);
1422        if (ret < 0) {
1423            return ret;
1424        }
1425        if (decompress_buffer(s->cluster_cache, s->cluster_size,
1426                              s->cluster_data + sector_offset, csize) < 0) {
1427            return -EIO;
1428        }
1429        s->cluster_cache_offset = coffset;
1430    }
1431    return 0;
1432}
1433
1434/*
1435 * This discards as many clusters of nb_clusters as possible at once (i.e.
1436 * all clusters in the same L2 table) and returns the number of discarded
1437 * clusters.
1438 */
1439static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1440                             uint64_t nb_clusters, enum qcow2_discard_type type,
1441                             bool full_discard)
1442{
1443    BDRVQcow2State *s = bs->opaque;
1444    uint64_t *l2_table;
1445    int l2_index;
1446    int ret;
1447    int i;
1448
1449    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1450    if (ret < 0) {
1451        return ret;
1452    }
1453
1454    /* Limit nb_clusters to one L2 table */
1455    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1456    assert(nb_clusters <= INT_MAX);
1457
1458    for (i = 0; i < nb_clusters; i++) {
1459        uint64_t old_l2_entry;
1460
1461        old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1462
1463        /*
1464         * If full_discard is false, make sure that a discarded area reads back
1465         * as zeroes for v3 images (we cannot do it for v2 without actually
1466         * writing a zero-filled buffer). We can skip the operation if the
1467         * cluster is already marked as zero, or if it's unallocated and we
1468         * don't have a backing file.
1469         *
1470         * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1471         * holding s->lock, so that doesn't work today.
1472         *
1473         * If full_discard is true, the sector should not read back as zeroes,
1474         * but rather fall through to the backing file.
1475         */
1476        switch (qcow2_get_cluster_type(old_l2_entry)) {
1477            case QCOW2_CLUSTER_UNALLOCATED:
1478                if (full_discard || !bs->backing) {
1479                    continue;
1480                }
1481                break;
1482
1483            case QCOW2_CLUSTER_ZERO:
1484                if (!full_discard) {
1485                    continue;
1486                }
1487                break;
1488
1489            case QCOW2_CLUSTER_NORMAL:
1490            case QCOW2_CLUSTER_COMPRESSED:
1491                break;
1492
1493            default:
1494                abort();
1495        }
1496
1497        /* First remove L2 entries */
1498        qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1499        if (!full_discard && s->qcow_version >= 3) {
1500            l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1501        } else {
1502            l2_table[l2_index + i] = cpu_to_be64(0);
1503        }
1504
1505        /* Then decrease the refcount */
1506        qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1507    }
1508
1509    qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1510
1511    return nb_clusters;
1512}
1513
1514int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1515    int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1516{
1517    BDRVQcow2State *s = bs->opaque;
1518    uint64_t end_offset;
1519    uint64_t nb_clusters;
1520    int ret;
1521
1522    end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1523
1524    /* Round start up and end down */
1525    offset = align_offset(offset, s->cluster_size);
1526    end_offset = start_of_cluster(s, end_offset);
1527
1528    if (offset > end_offset) {
1529        return 0;
1530    }
1531
1532    nb_clusters = size_to_clusters(s, end_offset - offset);
1533
1534    s->cache_discards = true;
1535
1536    /* Each L2 table is handled by its own loop iteration */
1537    while (nb_clusters > 0) {
1538        ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1539        if (ret < 0) {
1540            goto fail;
1541        }
1542
1543        nb_clusters -= ret;
1544        offset += (ret * s->cluster_size);
1545    }
1546
1547    ret = 0;
1548fail:
1549    s->cache_discards = false;
1550    qcow2_process_discards(bs, ret);
1551
1552    return ret;
1553}
1554
1555/*
1556 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1557 * all clusters in the same L2 table) and returns the number of zeroed
1558 * clusters.
1559 */
1560static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1561                          uint64_t nb_clusters, int flags)
1562{
1563    BDRVQcow2State *s = bs->opaque;
1564    uint64_t *l2_table;
1565    int l2_index;
1566    int ret;
1567    int i;
1568
1569    ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1570    if (ret < 0) {
1571        return ret;
1572    }
1573
1574    /* Limit nb_clusters to one L2 table */
1575    nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1576    assert(nb_clusters <= INT_MAX);
1577
1578    for (i = 0; i < nb_clusters; i++) {
1579        uint64_t old_offset;
1580
1581        old_offset = be64_to_cpu(l2_table[l2_index + i]);
1582
1583        /* Update L2 entries */
1584        qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1585        if (old_offset & QCOW_OFLAG_COMPRESSED || flags & BDRV_REQ_MAY_UNMAP) {
1586            l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1587            qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1588        } else {
1589            l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1590        }
1591    }
1592
1593    qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1594
1595    return nb_clusters;
1596}
1597
1598int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors,
1599                        int flags)
1600{
1601    BDRVQcow2State *s = bs->opaque;
1602    uint64_t nb_clusters;
1603    int ret;
1604
1605    /* The zero flag is only supported by version 3 and newer */
1606    if (s->qcow_version < 3) {
1607        return -ENOTSUP;
1608    }
1609
1610    /* Each L2 table is handled by its own loop iteration */
1611    nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1612
1613    s->cache_discards = true;
1614
1615    while (nb_clusters > 0) {
1616        ret = zero_single_l2(bs, offset, nb_clusters, flags);
1617        if (ret < 0) {
1618            goto fail;
1619        }
1620
1621        nb_clusters -= ret;
1622        offset += (ret * s->cluster_size);
1623    }
1624
1625    ret = 0;
1626fail:
1627    s->cache_discards = false;
1628    qcow2_process_discards(bs, ret);
1629
1630    return ret;
1631}
1632
1633/*
1634 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1635 * non-backed non-pre-allocated zero clusters).
1636 *
1637 * l1_entries and *visited_l1_entries are used to keep track of progress for
1638 * status_cb(). l1_entries contains the total number of L1 entries and
1639 * *visited_l1_entries counts all visited L1 entries.
1640 */
1641static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1642                                      int l1_size, int64_t *visited_l1_entries,
1643                                      int64_t l1_entries,
1644                                      BlockDriverAmendStatusCB *status_cb,
1645                                      void *cb_opaque)
1646{
1647    BDRVQcow2State *s = bs->opaque;
1648    bool is_active_l1 = (l1_table == s->l1_table);
1649    uint64_t *l2_table = NULL;
1650    int ret;
1651    int i, j;
1652
1653    if (!is_active_l1) {
1654        /* inactive L2 tables require a buffer to be stored in when loading
1655         * them from disk */
1656        l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1657        if (l2_table == NULL) {
1658            return -ENOMEM;
1659        }
1660    }
1661
1662    for (i = 0; i < l1_size; i++) {
1663        uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1664        bool l2_dirty = false;
1665        uint64_t l2_refcount;
1666
1667        if (!l2_offset) {
1668            /* unallocated */
1669            (*visited_l1_entries)++;
1670            if (status_cb) {
1671                status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1672            }
1673            continue;
1674        }
1675
1676        if (offset_into_cluster(s, l2_offset)) {
1677            qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1678                                    PRIx64 " unaligned (L1 index: %#x)",
1679                                    l2_offset, i);
1680            ret = -EIO;
1681            goto fail;
1682        }
1683
1684        if (is_active_l1) {
1685            /* get active L2 tables from cache */
1686            ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1687                    (void **)&l2_table);
1688        } else {
1689            /* load inactive L2 tables from disk */
1690            ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1691                            (void *)l2_table, s->cluster_sectors);
1692        }
1693        if (ret < 0) {
1694            goto fail;
1695        }
1696
1697        ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1698                                 &l2_refcount);
1699        if (ret < 0) {
1700            goto fail;
1701        }
1702
1703        for (j = 0; j < s->l2_size; j++) {
1704            uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1705            int64_t offset = l2_entry & L2E_OFFSET_MASK;
1706            int cluster_type = qcow2_get_cluster_type(l2_entry);
1707            bool preallocated = offset != 0;
1708
1709            if (cluster_type != QCOW2_CLUSTER_ZERO) {
1710                continue;
1711            }
1712
1713            if (!preallocated) {
1714                if (!bs->backing) {
1715                    /* not backed; therefore we can simply deallocate the
1716                     * cluster */
1717                    l2_table[j] = 0;
1718                    l2_dirty = true;
1719                    continue;
1720                }
1721
1722                offset = qcow2_alloc_clusters(bs, s->cluster_size);
1723                if (offset < 0) {
1724                    ret = offset;
1725                    goto fail;
1726                }
1727
1728                if (l2_refcount > 1) {
1729                    /* For shared L2 tables, set the refcount accordingly (it is
1730                     * already 1 and needs to be l2_refcount) */
1731                    ret = qcow2_update_cluster_refcount(bs,
1732                            offset >> s->cluster_bits,
1733                            refcount_diff(1, l2_refcount), false,
1734                            QCOW2_DISCARD_OTHER);
1735                    if (ret < 0) {
1736                        qcow2_free_clusters(bs, offset, s->cluster_size,
1737                                            QCOW2_DISCARD_OTHER);
1738                        goto fail;
1739                    }
1740                }
1741            }
1742
1743            if (offset_into_cluster(s, offset)) {
1744                qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1745                                        "%#" PRIx64 " unaligned (L2 offset: %#"
1746                                        PRIx64 ", L2 index: %#x)", offset,
1747                                        l2_offset, j);
1748                if (!preallocated) {
1749                    qcow2_free_clusters(bs, offset, s->cluster_size,
1750                                        QCOW2_DISCARD_ALWAYS);
1751                }
1752                ret = -EIO;
1753                goto fail;
1754            }
1755
1756            ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1757            if (ret < 0) {
1758                if (!preallocated) {
1759                    qcow2_free_clusters(bs, offset, s->cluster_size,
1760                                        QCOW2_DISCARD_ALWAYS);
1761                }
1762                goto fail;
1763            }
1764
1765            ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1766            if (ret < 0) {
1767                if (!preallocated) {
1768                    qcow2_free_clusters(bs, offset, s->cluster_size,
1769                                        QCOW2_DISCARD_ALWAYS);
1770                }
1771                goto fail;
1772            }
1773
1774            if (l2_refcount == 1) {
1775                l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1776            } else {
1777                l2_table[j] = cpu_to_be64(offset);
1778            }
1779            l2_dirty = true;
1780        }
1781
1782        if (is_active_l1) {
1783            if (l2_dirty) {
1784                qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1785                qcow2_cache_depends_on_flush(s->l2_table_cache);
1786            }
1787            qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1788        } else {
1789            if (l2_dirty) {
1790                ret = qcow2_pre_write_overlap_check(bs,
1791                        QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1792                        s->cluster_size);
1793                if (ret < 0) {
1794                    goto fail;
1795                }
1796
1797                ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1798                                 (void *)l2_table, s->cluster_sectors);
1799                if (ret < 0) {
1800                    goto fail;
1801                }
1802            }
1803        }
1804
1805        (*visited_l1_entries)++;
1806        if (status_cb) {
1807            status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1808        }
1809    }
1810
1811    ret = 0;
1812
1813fail:
1814    if (l2_table) {
1815        if (!is_active_l1) {
1816            qemu_vfree(l2_table);
1817        } else {
1818            qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1819        }
1820    }
1821    return ret;
1822}
1823
1824/*
1825 * For backed images, expands all zero clusters on the image. For non-backed
1826 * images, deallocates all non-pre-allocated zero clusters (and claims the
1827 * allocation for pre-allocated ones). This is important for downgrading to a
1828 * qcow2 version which doesn't yet support metadata zero clusters.
1829 */
1830int qcow2_expand_zero_clusters(BlockDriverState *bs,
1831                               BlockDriverAmendStatusCB *status_cb,
1832                               void *cb_opaque)
1833{
1834    BDRVQcow2State *s = bs->opaque;
1835    uint64_t *l1_table = NULL;
1836    int64_t l1_entries = 0, visited_l1_entries = 0;
1837    int ret;
1838    int i, j;
1839
1840    if (status_cb) {
1841        l1_entries = s->l1_size;
1842        for (i = 0; i < s->nb_snapshots; i++) {
1843            l1_entries += s->snapshots[i].l1_size;
1844        }
1845    }
1846
1847    ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1848                                     &visited_l1_entries, l1_entries,
1849                                     status_cb, cb_opaque);
1850    if (ret < 0) {
1851        goto fail;
1852    }
1853
1854    /* Inactive L1 tables may point to active L2 tables - therefore it is
1855     * necessary to flush the L2 table cache before trying to access the L2
1856     * tables pointed to by inactive L1 entries (else we might try to expand
1857     * zero clusters that have already been expanded); furthermore, it is also
1858     * necessary to empty the L2 table cache, since it may contain tables which
1859     * are now going to be modified directly on disk, bypassing the cache.
1860     * qcow2_cache_empty() does both for us. */
1861    ret = qcow2_cache_empty(bs, s->l2_table_cache);
1862    if (ret < 0) {
1863        goto fail;
1864    }
1865
1866    for (i = 0; i < s->nb_snapshots; i++) {
1867        int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
1868                                      sizeof(uint64_t), BDRV_SECTOR_SIZE);
1869
1870        l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1871
1872        ret = bdrv_read(bs->file,
1873                        s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
1874                        (void *)l1_table, l1_sectors);
1875        if (ret < 0) {
1876            goto fail;
1877        }
1878
1879        for (j = 0; j < s->snapshots[i].l1_size; j++) {
1880            be64_to_cpus(&l1_table[j]);
1881        }
1882
1883        ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1884                                         &visited_l1_entries, l1_entries,
1885                                         status_cb, cb_opaque);
1886        if (ret < 0) {
1887            goto fail;
1888        }
1889    }
1890
1891    ret = 0;
1892
1893fail:
1894    g_free(l1_table);
1895    return ret;
1896}
1897