1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24#include "qemu/osdep.h"
25#include "qemu-common.h"
26#include "cpu.h"
27#include "hw/hw.h"
28#include "hw/ppc/ppc.h"
29#include "hw/ppc/ppc_e500.h"
30#include "qemu/timer.h"
31#include "sysemu/sysemu.h"
32#include "sysemu/cpus.h"
33#include "hw/timer/m48t59.h"
34#include "qemu/log.h"
35#include "qemu/error-report.h"
36#include "qapi/error.h"
37#include "hw/loader.h"
38#include "sysemu/kvm.h"
39#include "kvm_ppc.h"
40#include "trace.h"
41
42
43
44
45#ifdef PPC_DEBUG_IRQ
46# define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
47#else
48# define LOG_IRQ(...) do { } while (0)
49#endif
50
51
52#ifdef PPC_DEBUG_TB
53# define LOG_TB(...) qemu_log(__VA_ARGS__)
54#else
55# define LOG_TB(...) do { } while (0)
56#endif
57
58static void cpu_ppc_tb_stop (CPUPPCState *env);
59static void cpu_ppc_tb_start (CPUPPCState *env);
60
61void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
62{
63 CPUState *cs = CPU(cpu);
64 CPUPPCState *env = &cpu->env;
65 unsigned int old_pending = env->pending_interrupts;
66
67 if (level) {
68 env->pending_interrupts |= 1 << n_IRQ;
69 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
70 } else {
71 env->pending_interrupts &= ~(1 << n_IRQ);
72 if (env->pending_interrupts == 0) {
73 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
74 }
75 }
76
77 if (old_pending != env->pending_interrupts) {
78#ifdef CONFIG_KVM
79 kvmppc_set_interrupt(cpu, n_IRQ, level);
80#endif
81 }
82
83 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
84 "req %08x\n", __func__, env, n_IRQ, level,
85 env->pending_interrupts, CPU(cpu)->interrupt_request);
86}
87
88
89static void ppc6xx_set_irq(void *opaque, int pin, int level)
90{
91 PowerPCCPU *cpu = opaque;
92 CPUPPCState *env = &cpu->env;
93 int cur_level;
94
95 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
96 env, pin, level);
97 cur_level = (env->irq_input_state >> pin) & 1;
98
99 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
100 CPUState *cs = CPU(cpu);
101
102 switch (pin) {
103 case PPC6xx_INPUT_TBEN:
104
105 LOG_IRQ("%s: %s the time base\n",
106 __func__, level ? "start" : "stop");
107 if (level) {
108 cpu_ppc_tb_start(env);
109 } else {
110 cpu_ppc_tb_stop(env);
111 }
112 case PPC6xx_INPUT_INT:
113
114 LOG_IRQ("%s: set the external IRQ state to %d\n",
115 __func__, level);
116 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
117 break;
118 case PPC6xx_INPUT_SMI:
119
120 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
121 __func__, level);
122 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
123 break;
124 case PPC6xx_INPUT_MCP:
125
126
127
128
129 if (cur_level == 1 && level == 0) {
130 LOG_IRQ("%s: raise machine check state\n",
131 __func__);
132 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
133 }
134 break;
135 case PPC6xx_INPUT_CKSTP_IN:
136
137
138
139 if (level) {
140 LOG_IRQ("%s: stop the CPU\n", __func__);
141 cs->halted = 1;
142 }
143 break;
144 case PPC6xx_INPUT_HRESET:
145
146 if (level) {
147 LOG_IRQ("%s: reset the CPU\n", __func__);
148 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
149 }
150 break;
151 case PPC6xx_INPUT_SRESET:
152 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
153 __func__, level);
154 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
155 break;
156 default:
157
158 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
159 return;
160 }
161 if (level)
162 env->irq_input_state |= 1 << pin;
163 else
164 env->irq_input_state &= ~(1 << pin);
165 }
166}
167
168void ppc6xx_irq_init(PowerPCCPU *cpu)
169{
170 CPUPPCState *env = &cpu->env;
171
172 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
173 PPC6xx_INPUT_NB);
174}
175
176#if defined(TARGET_PPC64)
177
178static void ppc970_set_irq(void *opaque, int pin, int level)
179{
180 PowerPCCPU *cpu = opaque;
181 CPUPPCState *env = &cpu->env;
182 int cur_level;
183
184 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
185 env, pin, level);
186 cur_level = (env->irq_input_state >> pin) & 1;
187
188 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
189 CPUState *cs = CPU(cpu);
190
191 switch (pin) {
192 case PPC970_INPUT_INT:
193
194 LOG_IRQ("%s: set the external IRQ state to %d\n",
195 __func__, level);
196 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
197 break;
198 case PPC970_INPUT_THINT:
199
200 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
201 level);
202 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
203 break;
204 case PPC970_INPUT_MCP:
205
206
207
208
209 if (cur_level == 1 && level == 0) {
210 LOG_IRQ("%s: raise machine check state\n",
211 __func__);
212 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
213 }
214 break;
215 case PPC970_INPUT_CKSTP:
216
217
218 if (level) {
219 LOG_IRQ("%s: stop the CPU\n", __func__);
220 cs->halted = 1;
221 } else {
222 LOG_IRQ("%s: restart the CPU\n", __func__);
223 cs->halted = 0;
224 qemu_cpu_kick(cs);
225 }
226 break;
227 case PPC970_INPUT_HRESET:
228
229 if (level) {
230 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
231 }
232 break;
233 case PPC970_INPUT_SRESET:
234 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
235 __func__, level);
236 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
237 break;
238 case PPC970_INPUT_TBEN:
239 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
240 level);
241
242 break;
243 default:
244
245 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
246 return;
247 }
248 if (level)
249 env->irq_input_state |= 1 << pin;
250 else
251 env->irq_input_state &= ~(1 << pin);
252 }
253}
254
255void ppc970_irq_init(PowerPCCPU *cpu)
256{
257 CPUPPCState *env = &cpu->env;
258
259 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
260 PPC970_INPUT_NB);
261}
262
263
264static void power7_set_irq(void *opaque, int pin, int level)
265{
266 PowerPCCPU *cpu = opaque;
267 CPUPPCState *env = &cpu->env;
268
269 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
270 env, pin, level);
271
272 switch (pin) {
273 case POWER7_INPUT_INT:
274
275 LOG_IRQ("%s: set the external IRQ state to %d\n",
276 __func__, level);
277 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
278 break;
279 default:
280
281 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
282 return;
283 }
284 if (level) {
285 env->irq_input_state |= 1 << pin;
286 } else {
287 env->irq_input_state &= ~(1 << pin);
288 }
289}
290
291void ppcPOWER7_irq_init(PowerPCCPU *cpu)
292{
293 CPUPPCState *env = &cpu->env;
294
295 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
296 POWER7_INPUT_NB);
297}
298#endif
299
300
301static void ppc40x_set_irq(void *opaque, int pin, int level)
302{
303 PowerPCCPU *cpu = opaque;
304 CPUPPCState *env = &cpu->env;
305 int cur_level;
306
307 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
308 env, pin, level);
309 cur_level = (env->irq_input_state >> pin) & 1;
310
311 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
312 CPUState *cs = CPU(cpu);
313
314 switch (pin) {
315 case PPC40x_INPUT_RESET_SYS:
316 if (level) {
317 LOG_IRQ("%s: reset the PowerPC system\n",
318 __func__);
319 ppc40x_system_reset(cpu);
320 }
321 break;
322 case PPC40x_INPUT_RESET_CHIP:
323 if (level) {
324 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
325 ppc40x_chip_reset(cpu);
326 }
327 break;
328 case PPC40x_INPUT_RESET_CORE:
329
330 if (level) {
331 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
332 ppc40x_core_reset(cpu);
333 }
334 break;
335 case PPC40x_INPUT_CINT:
336
337 LOG_IRQ("%s: set the critical IRQ state to %d\n",
338 __func__, level);
339 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
340 break;
341 case PPC40x_INPUT_INT:
342
343 LOG_IRQ("%s: set the external IRQ state to %d\n",
344 __func__, level);
345 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
346 break;
347 case PPC40x_INPUT_HALT:
348
349 if (level) {
350 LOG_IRQ("%s: stop the CPU\n", __func__);
351 cs->halted = 1;
352 } else {
353 LOG_IRQ("%s: restart the CPU\n", __func__);
354 cs->halted = 0;
355 qemu_cpu_kick(cs);
356 }
357 break;
358 case PPC40x_INPUT_DEBUG:
359
360 LOG_IRQ("%s: set the debug pin state to %d\n",
361 __func__, level);
362 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
363 break;
364 default:
365
366 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
367 return;
368 }
369 if (level)
370 env->irq_input_state |= 1 << pin;
371 else
372 env->irq_input_state &= ~(1 << pin);
373 }
374}
375
376void ppc40x_irq_init(PowerPCCPU *cpu)
377{
378 CPUPPCState *env = &cpu->env;
379
380 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
381 cpu, PPC40x_INPUT_NB);
382}
383
384
385static void ppce500_set_irq(void *opaque, int pin, int level)
386{
387 PowerPCCPU *cpu = opaque;
388 CPUPPCState *env = &cpu->env;
389 int cur_level;
390
391 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
392 env, pin, level);
393 cur_level = (env->irq_input_state >> pin) & 1;
394
395 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
396 switch (pin) {
397 case PPCE500_INPUT_MCK:
398 if (level) {
399 LOG_IRQ("%s: reset the PowerPC system\n",
400 __func__);
401 qemu_system_reset_request();
402 }
403 break;
404 case PPCE500_INPUT_RESET_CORE:
405 if (level) {
406 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
407 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
408 }
409 break;
410 case PPCE500_INPUT_CINT:
411
412 LOG_IRQ("%s: set the critical IRQ state to %d\n",
413 __func__, level);
414 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
415 break;
416 case PPCE500_INPUT_INT:
417
418 LOG_IRQ("%s: set the core IRQ state to %d\n",
419 __func__, level);
420 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
421 break;
422 case PPCE500_INPUT_DEBUG:
423
424 LOG_IRQ("%s: set the debug pin state to %d\n",
425 __func__, level);
426 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
427 break;
428 default:
429
430 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
431 return;
432 }
433 if (level)
434 env->irq_input_state |= 1 << pin;
435 else
436 env->irq_input_state &= ~(1 << pin);
437 }
438}
439
440void ppce500_irq_init(PowerPCCPU *cpu)
441{
442 CPUPPCState *env = &cpu->env;
443
444 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
445 cpu, PPCE500_INPUT_NB);
446}
447
448
449void ppce500_set_mpic_proxy(bool enabled)
450{
451 CPUState *cs;
452
453 CPU_FOREACH(cs) {
454 PowerPCCPU *cpu = POWERPC_CPU(cs);
455
456 cpu->env.mpic_proxy = enabled;
457 if (kvm_enabled()) {
458 kvmppc_set_mpic_proxy(cpu, enabled);
459 }
460 }
461}
462
463
464
465
466uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
467{
468
469 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
470}
471
472uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
473{
474 ppc_tb_t *tb_env = env->tb_env;
475 uint64_t tb;
476
477 if (kvm_enabled()) {
478 return env->spr[SPR_TBL];
479 }
480
481 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
482 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
483
484 return tb;
485}
486
487static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
488{
489 ppc_tb_t *tb_env = env->tb_env;
490 uint64_t tb;
491
492 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
493 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
494
495 return tb >> 32;
496}
497
498uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
499{
500 if (kvm_enabled()) {
501 return env->spr[SPR_TBU];
502 }
503
504 return _cpu_ppc_load_tbu(env);
505}
506
507static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
508 int64_t *tb_offsetp, uint64_t value)
509{
510 *tb_offsetp = value -
511 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
512
513 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
514 __func__, value, *tb_offsetp);
515}
516
517void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
518{
519 ppc_tb_t *tb_env = env->tb_env;
520 uint64_t tb;
521
522 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
523 tb &= 0xFFFFFFFF00000000ULL;
524 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
525 &tb_env->tb_offset, tb | (uint64_t)value);
526}
527
528static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
529{
530 ppc_tb_t *tb_env = env->tb_env;
531 uint64_t tb;
532
533 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
534 tb &= 0x00000000FFFFFFFFULL;
535 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
536 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
537}
538
539void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
540{
541 _cpu_ppc_store_tbu(env, value);
542}
543
544uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
545{
546 ppc_tb_t *tb_env = env->tb_env;
547 uint64_t tb;
548
549 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
550 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
551
552 return tb;
553}
554
555uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
556{
557 ppc_tb_t *tb_env = env->tb_env;
558 uint64_t tb;
559
560 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
561 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
562
563 return tb >> 32;
564}
565
566void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
567{
568 ppc_tb_t *tb_env = env->tb_env;
569 uint64_t tb;
570
571 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
572 tb &= 0xFFFFFFFF00000000ULL;
573 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
574 &tb_env->atb_offset, tb | (uint64_t)value);
575}
576
577void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
578{
579 ppc_tb_t *tb_env = env->tb_env;
580 uint64_t tb;
581
582 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
583 tb &= 0x00000000FFFFFFFFULL;
584 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
585 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
586}
587
588static void cpu_ppc_tb_stop (CPUPPCState *env)
589{
590 ppc_tb_t *tb_env = env->tb_env;
591 uint64_t tb, atb, vmclk;
592
593
594 if (tb_env->tb_freq != 0) {
595 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
596
597 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
598
599 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
600
601 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
602
603 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
604
605 tb_env->tb_freq = 0;
606
607 }
608}
609
610static void cpu_ppc_tb_start (CPUPPCState *env)
611{
612 ppc_tb_t *tb_env = env->tb_env;
613 uint64_t tb, atb, vmclk;
614
615
616 if (tb_env->tb_freq == 0) {
617 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
618
619 tb = tb_env->tb_offset;
620
621 atb = tb_env->atb_offset;
622
623 tb_env->tb_freq = tb_env->decr_freq;
624
625 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
626
627 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
628 }
629}
630
631bool ppc_decr_clear_on_delivery(CPUPPCState *env)
632{
633 ppc_tb_t *tb_env = env->tb_env;
634 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
635 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
636}
637
638static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
639{
640 ppc_tb_t *tb_env = env->tb_env;
641 uint32_t decr;
642 int64_t diff;
643
644 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
645 if (diff >= 0) {
646 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
647 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
648 decr = 0;
649 } else {
650 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
651 }
652 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
653
654 return decr;
655}
656
657uint32_t cpu_ppc_load_decr (CPUPPCState *env)
658{
659 ppc_tb_t *tb_env = env->tb_env;
660
661 if (kvm_enabled()) {
662 return env->spr[SPR_DECR];
663 }
664
665 return _cpu_ppc_load_decr(env, tb_env->decr_next);
666}
667
668uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
669{
670 ppc_tb_t *tb_env = env->tb_env;
671
672 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
673}
674
675uint64_t cpu_ppc_load_purr (CPUPPCState *env)
676{
677 ppc_tb_t *tb_env = env->tb_env;
678 uint64_t diff;
679
680 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
681
682 return tb_env->purr_load +
683 muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
684}
685
686
687
688
689static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
690{
691
692 LOG_TB("raise decrementer exception\n");
693 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
694}
695
696static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
697{
698 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
699}
700
701static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
702{
703 CPUPPCState *env = &cpu->env;
704
705
706 LOG_TB("raise hv decrementer exception\n");
707
708
709
710
711
712 if (!env->in_pm_state) {
713 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
714 }
715}
716
717static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
718{
719 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
720}
721
722static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
723 QEMUTimer *timer,
724 void (*raise_excp)(void *),
725 void (*lower_excp)(PowerPCCPU *),
726 uint32_t decr, uint32_t value)
727{
728 CPUPPCState *env = &cpu->env;
729 ppc_tb_t *tb_env = env->tb_env;
730 uint64_t now, next;
731
732 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
733 decr, value);
734
735 if (kvm_enabled()) {
736
737 return;
738 }
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753 if ((value < 3) ||
754 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
755 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
756 && !(decr & 0x80000000))) {
757 (*raise_excp)(cpu);
758 return;
759 }
760
761
762 if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
763 (*lower_excp)(cpu);
764 }
765
766
767 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
768 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
769 *nextp = next;
770
771
772 timer_mod(timer, next);
773}
774
775static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
776 uint32_t value)
777{
778 ppc_tb_t *tb_env = cpu->env.tb_env;
779
780 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
781 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
782 value);
783}
784
785void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
786{
787 PowerPCCPU *cpu = ppc_env_get_cpu(env);
788
789 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
790}
791
792static void cpu_ppc_decr_cb(void *opaque)
793{
794 PowerPCCPU *cpu = opaque;
795
796 cpu_ppc_decr_excp(cpu);
797}
798
799static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
800 uint32_t value)
801{
802 ppc_tb_t *tb_env = cpu->env.tb_env;
803
804 if (tb_env->hdecr_timer != NULL) {
805 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
806 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
807 hdecr, value);
808 }
809}
810
811void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
812{
813 PowerPCCPU *cpu = ppc_env_get_cpu(env);
814
815 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
816}
817
818static void cpu_ppc_hdecr_cb(void *opaque)
819{
820 PowerPCCPU *cpu = opaque;
821
822 cpu_ppc_hdecr_excp(cpu);
823}
824
825static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
826{
827 ppc_tb_t *tb_env = cpu->env.tb_env;
828
829 tb_env->purr_load = value;
830 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
831}
832
833static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
834{
835 CPUPPCState *env = opaque;
836 PowerPCCPU *cpu = ppc_env_get_cpu(env);
837 ppc_tb_t *tb_env = env->tb_env;
838
839 tb_env->tb_freq = freq;
840 tb_env->decr_freq = freq;
841
842
843
844
845 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
846 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
847 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
848}
849
850static void timebase_pre_save(void *opaque)
851{
852 PPCTimebase *tb = opaque;
853 uint64_t ticks = cpu_get_host_ticks();
854 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
855
856 if (!first_ppc_cpu->env.tb_env) {
857 error_report("No timebase object");
858 return;
859 }
860
861 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
862
863
864
865
866 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
867}
868
869static int timebase_post_load(void *opaque, int version_id)
870{
871 PPCTimebase *tb_remote = opaque;
872 CPUState *cpu;
873 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
874 int64_t tb_off_adj, tb_off, ns_diff;
875 int64_t migration_duration_ns, migration_duration_tb, guest_tb, host_ns;
876 unsigned long freq;
877
878 if (!first_ppc_cpu->env.tb_env) {
879 error_report("No timebase object");
880 return -1;
881 }
882
883 freq = first_ppc_cpu->env.tb_env->tb_freq;
884
885
886
887
888
889
890 host_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
891 ns_diff = MAX(0, host_ns - tb_remote->time_of_the_day_ns);
892 migration_duration_ns = MIN(NANOSECONDS_PER_SECOND, ns_diff);
893 migration_duration_tb = muldiv64(freq, migration_duration_ns,
894 NANOSECONDS_PER_SECOND);
895 guest_tb = tb_remote->guest_timebase + MIN(0, migration_duration_tb);
896
897 tb_off_adj = guest_tb - cpu_get_host_ticks();
898
899 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
900 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
901 (tb_off_adj - tb_off) / freq);
902
903
904 CPU_FOREACH(cpu) {
905 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
906 pcpu->env.tb_env->tb_offset = tb_off_adj;
907 }
908
909 return 0;
910}
911
912const VMStateDescription vmstate_ppc_timebase = {
913 .name = "timebase",
914 .version_id = 1,
915 .minimum_version_id = 1,
916 .minimum_version_id_old = 1,
917 .pre_save = timebase_pre_save,
918 .post_load = timebase_post_load,
919 .fields = (VMStateField []) {
920 VMSTATE_UINT64(guest_timebase, PPCTimebase),
921 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
922 VMSTATE_END_OF_LIST()
923 },
924};
925
926
927clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
928{
929 PowerPCCPU *cpu = ppc_env_get_cpu(env);
930 ppc_tb_t *tb_env;
931
932 tb_env = g_malloc0(sizeof(ppc_tb_t));
933 env->tb_env = tb_env;
934 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
935 if (env->insns_flags & PPC_SEGMENT_64B) {
936
937 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
938 }
939
940 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
941 if (env->has_hv_mode) {
942 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
943 cpu);
944 } else {
945 tb_env->hdecr_timer = NULL;
946 }
947 cpu_ppc_set_tb_clk(env, freq);
948
949 return &cpu_ppc_set_tb_clk;
950}
951
952
953#if 0
954static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
955{
956 return cpu_ppc_tb_init(env, 7812500);
957}
958#endif
959
960void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
961{
962 _cpu_ppc_store_tbu(env, value);
963}
964
965uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
966{
967 return _cpu_ppc_load_tbu(env);
968}
969
970void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
971{
972 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
973}
974
975uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
976{
977 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
978}
979
980
981
982
983
984typedef struct ppc40x_timer_t ppc40x_timer_t;
985struct ppc40x_timer_t {
986 uint64_t pit_reload;
987 uint64_t fit_next;
988 QEMUTimer *fit_timer;
989 uint64_t wdt_next;
990 QEMUTimer *wdt_timer;
991
992
993 unsigned int decr_excp;
994};
995
996
997static void cpu_4xx_fit_cb (void *opaque)
998{
999 PowerPCCPU *cpu;
1000 CPUPPCState *env;
1001 ppc_tb_t *tb_env;
1002 ppc40x_timer_t *ppc40x_timer;
1003 uint64_t now, next;
1004
1005 env = opaque;
1006 cpu = ppc_env_get_cpu(env);
1007 tb_env = env->tb_env;
1008 ppc40x_timer = tb_env->opaque;
1009 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1010 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1011 case 0:
1012 next = 1 << 9;
1013 break;
1014 case 1:
1015 next = 1 << 13;
1016 break;
1017 case 2:
1018 next = 1 << 17;
1019 break;
1020 case 3:
1021 next = 1 << 21;
1022 break;
1023 default:
1024
1025 return;
1026 }
1027 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1028 if (next == now)
1029 next++;
1030 timer_mod(ppc40x_timer->fit_timer, next);
1031 env->spr[SPR_40x_TSR] |= 1 << 26;
1032 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1033 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1034 }
1035 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1036 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1037 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1038}
1039
1040
1041static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1042{
1043 ppc40x_timer_t *ppc40x_timer;
1044 uint64_t now, next;
1045
1046 ppc40x_timer = tb_env->opaque;
1047 if (ppc40x_timer->pit_reload <= 1 ||
1048 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1049 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1050
1051 LOG_TB("%s: stop PIT\n", __func__);
1052 timer_del(tb_env->decr_timer);
1053 } else {
1054 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1055 __func__, ppc40x_timer->pit_reload);
1056 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1057 next = now + muldiv64(ppc40x_timer->pit_reload,
1058 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1059 if (is_excp)
1060 next += tb_env->decr_next - now;
1061 if (next == now)
1062 next++;
1063 timer_mod(tb_env->decr_timer, next);
1064 tb_env->decr_next = next;
1065 }
1066}
1067
1068static void cpu_4xx_pit_cb (void *opaque)
1069{
1070 PowerPCCPU *cpu;
1071 CPUPPCState *env;
1072 ppc_tb_t *tb_env;
1073 ppc40x_timer_t *ppc40x_timer;
1074
1075 env = opaque;
1076 cpu = ppc_env_get_cpu(env);
1077 tb_env = env->tb_env;
1078 ppc40x_timer = tb_env->opaque;
1079 env->spr[SPR_40x_TSR] |= 1 << 27;
1080 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1081 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1082 }
1083 start_stop_pit(env, tb_env, 1);
1084 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1085 "%016" PRIx64 "\n", __func__,
1086 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1087 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1088 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1089 ppc40x_timer->pit_reload);
1090}
1091
1092
1093static void cpu_4xx_wdt_cb (void *opaque)
1094{
1095 PowerPCCPU *cpu;
1096 CPUPPCState *env;
1097 ppc_tb_t *tb_env;
1098 ppc40x_timer_t *ppc40x_timer;
1099 uint64_t now, next;
1100
1101 env = opaque;
1102 cpu = ppc_env_get_cpu(env);
1103 tb_env = env->tb_env;
1104 ppc40x_timer = tb_env->opaque;
1105 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1106 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1107 case 0:
1108 next = 1 << 17;
1109 break;
1110 case 1:
1111 next = 1 << 21;
1112 break;
1113 case 2:
1114 next = 1 << 25;
1115 break;
1116 case 3:
1117 next = 1 << 29;
1118 break;
1119 default:
1120
1121 return;
1122 }
1123 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1124 if (next == now)
1125 next++;
1126 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1127 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1128 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1129 case 0x0:
1130 case 0x1:
1131 timer_mod(ppc40x_timer->wdt_timer, next);
1132 ppc40x_timer->wdt_next = next;
1133 env->spr[SPR_40x_TSR] |= 1U << 31;
1134 break;
1135 case 0x2:
1136 timer_mod(ppc40x_timer->wdt_timer, next);
1137 ppc40x_timer->wdt_next = next;
1138 env->spr[SPR_40x_TSR] |= 1 << 30;
1139 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1140 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1141 }
1142 break;
1143 case 0x3:
1144 env->spr[SPR_40x_TSR] &= ~0x30000000;
1145 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1146 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1147 case 0x0:
1148
1149 break;
1150 case 0x1:
1151 ppc40x_core_reset(cpu);
1152 break;
1153 case 0x2:
1154 ppc40x_chip_reset(cpu);
1155 break;
1156 case 0x3:
1157 ppc40x_system_reset(cpu);
1158 break;
1159 }
1160 }
1161}
1162
1163void store_40x_pit (CPUPPCState *env, target_ulong val)
1164{
1165 ppc_tb_t *tb_env;
1166 ppc40x_timer_t *ppc40x_timer;
1167
1168 tb_env = env->tb_env;
1169 ppc40x_timer = tb_env->opaque;
1170 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1171 ppc40x_timer->pit_reload = val;
1172 start_stop_pit(env, tb_env, 0);
1173}
1174
1175target_ulong load_40x_pit (CPUPPCState *env)
1176{
1177 return cpu_ppc_load_decr(env);
1178}
1179
1180static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1181{
1182 CPUPPCState *env = opaque;
1183 ppc_tb_t *tb_env = env->tb_env;
1184
1185 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1186 freq);
1187 tb_env->tb_freq = freq;
1188 tb_env->decr_freq = freq;
1189
1190}
1191
1192clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1193 unsigned int decr_excp)
1194{
1195 ppc_tb_t *tb_env;
1196 ppc40x_timer_t *ppc40x_timer;
1197
1198 tb_env = g_malloc0(sizeof(ppc_tb_t));
1199 env->tb_env = tb_env;
1200 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1201 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1202 tb_env->tb_freq = freq;
1203 tb_env->decr_freq = freq;
1204 tb_env->opaque = ppc40x_timer;
1205 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1206 if (ppc40x_timer != NULL) {
1207
1208 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1209 ppc40x_timer->fit_timer =
1210 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1211 ppc40x_timer->wdt_timer =
1212 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1213 ppc40x_timer->decr_excp = decr_excp;
1214 }
1215
1216 return &ppc_40x_set_tb_clk;
1217}
1218
1219
1220
1221typedef struct ppc_dcrn_t ppc_dcrn_t;
1222struct ppc_dcrn_t {
1223 dcr_read_cb dcr_read;
1224 dcr_write_cb dcr_write;
1225 void *opaque;
1226};
1227
1228
1229
1230
1231#define DCRN_NB 1024
1232struct ppc_dcr_t {
1233 ppc_dcrn_t dcrn[DCRN_NB];
1234 int (*read_error)(int dcrn);
1235 int (*write_error)(int dcrn);
1236};
1237
1238int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1239{
1240 ppc_dcrn_t *dcr;
1241
1242 if (dcrn < 0 || dcrn >= DCRN_NB)
1243 goto error;
1244 dcr = &dcr_env->dcrn[dcrn];
1245 if (dcr->dcr_read == NULL)
1246 goto error;
1247 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1248
1249 return 0;
1250
1251 error:
1252 if (dcr_env->read_error != NULL)
1253 return (*dcr_env->read_error)(dcrn);
1254
1255 return -1;
1256}
1257
1258int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1259{
1260 ppc_dcrn_t *dcr;
1261
1262 if (dcrn < 0 || dcrn >= DCRN_NB)
1263 goto error;
1264 dcr = &dcr_env->dcrn[dcrn];
1265 if (dcr->dcr_write == NULL)
1266 goto error;
1267 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1268
1269 return 0;
1270
1271 error:
1272 if (dcr_env->write_error != NULL)
1273 return (*dcr_env->write_error)(dcrn);
1274
1275 return -1;
1276}
1277
1278int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1279 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1280{
1281 ppc_dcr_t *dcr_env;
1282 ppc_dcrn_t *dcr;
1283
1284 dcr_env = env->dcr_env;
1285 if (dcr_env == NULL)
1286 return -1;
1287 if (dcrn < 0 || dcrn >= DCRN_NB)
1288 return -1;
1289 dcr = &dcr_env->dcrn[dcrn];
1290 if (dcr->opaque != NULL ||
1291 dcr->dcr_read != NULL ||
1292 dcr->dcr_write != NULL)
1293 return -1;
1294 dcr->opaque = opaque;
1295 dcr->dcr_read = dcr_read;
1296 dcr->dcr_write = dcr_write;
1297
1298 return 0;
1299}
1300
1301int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1302 int (*write_error)(int dcrn))
1303{
1304 ppc_dcr_t *dcr_env;
1305
1306 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1307 dcr_env->read_error = read_error;
1308 dcr_env->write_error = write_error;
1309 env->dcr_env = dcr_env;
1310
1311 return 0;
1312}
1313
1314
1315
1316void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1317{
1318 addr &= 0xF;
1319 switch (addr) {
1320 case 0:
1321 printf("%c", val);
1322 break;
1323 case 1:
1324 printf("\n");
1325 fflush(stdout);
1326 break;
1327 case 2:
1328 printf("Set loglevel to %04" PRIx32 "\n", val);
1329 qemu_set_log(val | 0x100);
1330 break;
1331 }
1332}
1333
1334
1335int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1336{
1337 return cpu->cpu_dt_id;
1338}
1339
1340PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1341{
1342 CPUState *cs;
1343
1344 CPU_FOREACH(cs) {
1345 PowerPCCPU *cpu = POWERPC_CPU(cs);
1346
1347 if (cpu->cpu_dt_id == cpu_dt_id) {
1348 return cpu;
1349 }
1350 }
1351
1352 return NULL;
1353}
1354
1355void ppc_cpu_parse_features(const char *cpu_model)
1356{
1357 CPUClass *cc;
1358 ObjectClass *oc;
1359 const char *typename;
1360 gchar **model_pieces;
1361
1362 model_pieces = g_strsplit(cpu_model, ",", 2);
1363 if (!model_pieces[0]) {
1364 error_report("Invalid/empty CPU model name");
1365 exit(1);
1366 }
1367
1368 oc = cpu_class_by_name(TYPE_POWERPC_CPU, model_pieces[0]);
1369 if (oc == NULL) {
1370 error_report("Unable to find CPU definition: %s", model_pieces[0]);
1371 exit(1);
1372 }
1373
1374 typename = object_class_get_name(oc);
1375 cc = CPU_CLASS(oc);
1376 cc->parse_features(typename, model_pieces[1], &error_fatal);
1377 g_strfreev(model_pieces);
1378}
1379