qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 *
  26 */
  27#include "qemu/osdep.h"
  28#include "qapi/error.h"
  29#include "sysemu/sysemu.h"
  30#include "sysemu/numa.h"
  31#include "hw/hw.h"
  32#include "qemu/log.h"
  33#include "hw/fw-path-provider.h"
  34#include "elf.h"
  35#include "net/net.h"
  36#include "sysemu/device_tree.h"
  37#include "sysemu/block-backend.h"
  38#include "sysemu/cpus.h"
  39#include "sysemu/kvm.h"
  40#include "kvm_ppc.h"
  41#include "migration/migration.h"
  42#include "mmu-hash64.h"
  43#include "qom/cpu.h"
  44
  45#include "hw/boards.h"
  46#include "hw/ppc/ppc.h"
  47#include "hw/loader.h"
  48
  49#include "hw/ppc/fdt.h"
  50#include "hw/ppc/spapr.h"
  51#include "hw/ppc/spapr_vio.h"
  52#include "hw/pci-host/spapr.h"
  53#include "hw/ppc/xics.h"
  54#include "hw/pci/msi.h"
  55
  56#include "hw/pci/pci.h"
  57#include "hw/scsi/scsi.h"
  58#include "hw/virtio/virtio-scsi.h"
  59
  60#include "exec/address-spaces.h"
  61#include "hw/usb.h"
  62#include "qemu/config-file.h"
  63#include "qemu/error-report.h"
  64#include "trace.h"
  65#include "hw/nmi.h"
  66
  67#include "hw/compat.h"
  68#include "qemu/cutils.h"
  69#include "hw/ppc/spapr_cpu_core.h"
  70#include "qmp-commands.h"
  71
  72#include <libfdt.h>
  73
  74/* SLOF memory layout:
  75 *
  76 * SLOF raw image loaded at 0, copies its romfs right below the flat
  77 * device-tree, then position SLOF itself 31M below that
  78 *
  79 * So we set FW_OVERHEAD to 40MB which should account for all of that
  80 * and more
  81 *
  82 * We load our kernel at 4M, leaving space for SLOF initial image
  83 */
  84#define FDT_MAX_SIZE            0x100000
  85#define RTAS_MAX_SIZE           0x10000
  86#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
  87#define FW_MAX_SIZE             0x400000
  88#define FW_FILE_NAME            "slof.bin"
  89#define FW_OVERHEAD             0x2800000
  90#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
  91
  92#define MIN_RMA_SLOF            128UL
  93
  94#define PHANDLE_XICP            0x00001111
  95
  96#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
  97
  98static XICSState *try_create_xics(const char *type, int nr_servers,
  99                                  int nr_irqs, Error **errp)
 100{
 101    Error *err = NULL;
 102    DeviceState *dev;
 103
 104    dev = qdev_create(NULL, type);
 105    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
 106    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
 107    object_property_set_bool(OBJECT(dev), true, "realized", &err);
 108    if (err) {
 109        error_propagate(errp, err);
 110        object_unparent(OBJECT(dev));
 111        return NULL;
 112    }
 113    return XICS_COMMON(dev);
 114}
 115
 116static XICSState *xics_system_init(MachineState *machine,
 117                                   int nr_servers, int nr_irqs, Error **errp)
 118{
 119    XICSState *xics = NULL;
 120
 121    if (kvm_enabled()) {
 122        Error *err = NULL;
 123
 124        if (machine_kernel_irqchip_allowed(machine)) {
 125            xics = try_create_xics(TYPE_XICS_SPAPR_KVM, nr_servers, nr_irqs,
 126                                   &err);
 127        }
 128        if (machine_kernel_irqchip_required(machine) && !xics) {
 129            error_reportf_err(err,
 130                              "kernel_irqchip requested but unavailable: ");
 131        } else {
 132            error_free(err);
 133        }
 134    }
 135
 136    if (!xics) {
 137        xics = try_create_xics(TYPE_XICS_SPAPR, nr_servers, nr_irqs, errp);
 138    }
 139
 140    return xics;
 141}
 142
 143static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 144                                  int smt_threads)
 145{
 146    int i, ret = 0;
 147    uint32_t servers_prop[smt_threads];
 148    uint32_t gservers_prop[smt_threads * 2];
 149    int index = ppc_get_vcpu_dt_id(cpu);
 150
 151    if (cpu->cpu_version) {
 152        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
 153        if (ret < 0) {
 154            return ret;
 155        }
 156    }
 157
 158    /* Build interrupt servers and gservers properties */
 159    for (i = 0; i < smt_threads; i++) {
 160        servers_prop[i] = cpu_to_be32(index + i);
 161        /* Hack, direct the group queues back to cpu 0 */
 162        gservers_prop[i*2] = cpu_to_be32(index + i);
 163        gservers_prop[i*2 + 1] = 0;
 164    }
 165    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 166                      servers_prop, sizeof(servers_prop));
 167    if (ret < 0) {
 168        return ret;
 169    }
 170    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 171                      gservers_prop, sizeof(gservers_prop));
 172
 173    return ret;
 174}
 175
 176static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
 177{
 178    int ret = 0;
 179    PowerPCCPU *cpu = POWERPC_CPU(cs);
 180    int index = ppc_get_vcpu_dt_id(cpu);
 181    uint32_t associativity[] = {cpu_to_be32(0x5),
 182                                cpu_to_be32(0x0),
 183                                cpu_to_be32(0x0),
 184                                cpu_to_be32(0x0),
 185                                cpu_to_be32(cs->numa_node),
 186                                cpu_to_be32(index)};
 187
 188    /* Advertise NUMA via ibm,associativity */
 189    if (nb_numa_nodes > 1) {
 190        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 191                          sizeof(associativity));
 192    }
 193
 194    return ret;
 195}
 196
 197static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
 198{
 199    int ret = 0, offset, cpus_offset;
 200    CPUState *cs;
 201    char cpu_model[32];
 202    int smt = kvmppc_smt_threads();
 203    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 204
 205    CPU_FOREACH(cs) {
 206        PowerPCCPU *cpu = POWERPC_CPU(cs);
 207        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 208        int index = ppc_get_vcpu_dt_id(cpu);
 209
 210        if ((index % smt) != 0) {
 211            continue;
 212        }
 213
 214        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
 215
 216        cpus_offset = fdt_path_offset(fdt, "/cpus");
 217        if (cpus_offset < 0) {
 218            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
 219                                          "cpus");
 220            if (cpus_offset < 0) {
 221                return cpus_offset;
 222            }
 223        }
 224        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
 225        if (offset < 0) {
 226            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
 227            if (offset < 0) {
 228                return offset;
 229            }
 230        }
 231
 232        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
 233                          pft_size_prop, sizeof(pft_size_prop));
 234        if (ret < 0) {
 235            return ret;
 236        }
 237
 238        ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
 239        if (ret < 0) {
 240            return ret;
 241        }
 242
 243        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
 244                                     ppc_get_compat_smt_threads(cpu));
 245        if (ret < 0) {
 246            return ret;
 247        }
 248    }
 249    return ret;
 250}
 251
 252static hwaddr spapr_node0_size(void)
 253{
 254    MachineState *machine = MACHINE(qdev_get_machine());
 255
 256    if (nb_numa_nodes) {
 257        int i;
 258        for (i = 0; i < nb_numa_nodes; ++i) {
 259            if (numa_info[i].node_mem) {
 260                return MIN(pow2floor(numa_info[i].node_mem),
 261                           machine->ram_size);
 262            }
 263        }
 264    }
 265    return machine->ram_size;
 266}
 267
 268static void add_str(GString *s, const gchar *s1)
 269{
 270    g_string_append_len(s, s1, strlen(s1) + 1);
 271}
 272
 273static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
 274                                       hwaddr size)
 275{
 276    uint32_t associativity[] = {
 277        cpu_to_be32(0x4), /* length */
 278        cpu_to_be32(0x0), cpu_to_be32(0x0),
 279        cpu_to_be32(0x0), cpu_to_be32(nodeid)
 280    };
 281    char mem_name[32];
 282    uint64_t mem_reg_property[2];
 283    int off;
 284
 285    mem_reg_property[0] = cpu_to_be64(start);
 286    mem_reg_property[1] = cpu_to_be64(size);
 287
 288    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
 289    off = fdt_add_subnode(fdt, 0, mem_name);
 290    _FDT(off);
 291    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 292    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 293                      sizeof(mem_reg_property))));
 294    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 295                      sizeof(associativity))));
 296    return off;
 297}
 298
 299static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
 300{
 301    MachineState *machine = MACHINE(spapr);
 302    hwaddr mem_start, node_size;
 303    int i, nb_nodes = nb_numa_nodes;
 304    NodeInfo *nodes = numa_info;
 305    NodeInfo ramnode;
 306
 307    /* No NUMA nodes, assume there is just one node with whole RAM */
 308    if (!nb_numa_nodes) {
 309        nb_nodes = 1;
 310        ramnode.node_mem = machine->ram_size;
 311        nodes = &ramnode;
 312    }
 313
 314    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 315        if (!nodes[i].node_mem) {
 316            continue;
 317        }
 318        if (mem_start >= machine->ram_size) {
 319            node_size = 0;
 320        } else {
 321            node_size = nodes[i].node_mem;
 322            if (node_size > machine->ram_size - mem_start) {
 323                node_size = machine->ram_size - mem_start;
 324            }
 325        }
 326        if (!mem_start) {
 327            /* ppc_spapr_init() checks for rma_size <= node0_size already */
 328            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
 329            mem_start += spapr->rma_size;
 330            node_size -= spapr->rma_size;
 331        }
 332        for ( ; node_size; ) {
 333            hwaddr sizetmp = pow2floor(node_size);
 334
 335            /* mem_start != 0 here */
 336            if (ctzl(mem_start) < ctzl(sizetmp)) {
 337                sizetmp = 1ULL << ctzl(mem_start);
 338            }
 339
 340            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
 341            node_size -= sizetmp;
 342            mem_start += sizetmp;
 343        }
 344    }
 345
 346    return 0;
 347}
 348
 349/* Populate the "ibm,pa-features" property */
 350static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
 351{
 352    uint8_t pa_features_206[] = { 6, 0,
 353        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 354    uint8_t pa_features_207[] = { 24, 0,
 355        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 356        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 357        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 358        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 359    uint8_t *pa_features;
 360    size_t pa_size;
 361
 362    switch (env->mmu_model) {
 363    case POWERPC_MMU_2_06:
 364    case POWERPC_MMU_2_06a:
 365        pa_features = pa_features_206;
 366        pa_size = sizeof(pa_features_206);
 367        break;
 368    case POWERPC_MMU_2_07:
 369    case POWERPC_MMU_2_07a:
 370        pa_features = pa_features_207;
 371        pa_size = sizeof(pa_features_207);
 372        break;
 373    default:
 374        return;
 375    }
 376
 377    if (env->ci_large_pages) {
 378        /*
 379         * Note: we keep CI large pages off by default because a 64K capable
 380         * guest provisioned with large pages might otherwise try to map a qemu
 381         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 382         * even if that qemu runs on a 4k host.
 383         * We dd this bit back here if we are confident this is not an issue
 384         */
 385        pa_features[3] |= 0x20;
 386    }
 387    if (kvmppc_has_cap_htm() && pa_size > 24) {
 388        pa_features[24] |= 0x80;    /* Transactional memory support */
 389    }
 390
 391    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 392}
 393
 394static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
 395                                  sPAPRMachineState *spapr)
 396{
 397    PowerPCCPU *cpu = POWERPC_CPU(cs);
 398    CPUPPCState *env = &cpu->env;
 399    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 400    int index = ppc_get_vcpu_dt_id(cpu);
 401    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 402                       0xffffffff, 0xffffffff};
 403    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 404        : SPAPR_TIMEBASE_FREQ;
 405    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 406    uint32_t page_sizes_prop[64];
 407    size_t page_sizes_prop_size;
 408    uint32_t vcpus_per_socket = smp_threads * smp_cores;
 409    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 410    sPAPRDRConnector *drc;
 411    sPAPRDRConnectorClass *drck;
 412    int drc_index;
 413
 414    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
 415    if (drc) {
 416        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 417        drc_index = drck->get_index(drc);
 418        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 419    }
 420
 421    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 422    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 423
 424    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 425    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 426                           env->dcache_line_size)));
 427    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 428                           env->dcache_line_size)));
 429    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 430                           env->icache_line_size)));
 431    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 432                           env->icache_line_size)));
 433
 434    if (pcc->l1_dcache_size) {
 435        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 436                               pcc->l1_dcache_size)));
 437    } else {
 438        error_report("Warning: Unknown L1 dcache size for cpu");
 439    }
 440    if (pcc->l1_icache_size) {
 441        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 442                               pcc->l1_icache_size)));
 443    } else {
 444        error_report("Warning: Unknown L1 icache size for cpu");
 445    }
 446
 447    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 448    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 449    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
 450    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
 451    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 452    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 453
 454    if (env->spr_cb[SPR_PURR].oea_read) {
 455        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
 456    }
 457
 458    if (env->mmu_model & POWERPC_MMU_1TSEG) {
 459        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 460                          segs, sizeof(segs))));
 461    }
 462
 463    /* Advertise VMX/VSX (vector extensions) if available
 464     *   0 / no property == no vector extensions
 465     *   1               == VMX / Altivec available
 466     *   2               == VSX available */
 467    if (env->insns_flags & PPC_ALTIVEC) {
 468        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
 469
 470        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
 471    }
 472
 473    /* Advertise DFP (Decimal Floating Point) if available
 474     *   0 / no property == no DFP
 475     *   1               == DFP available */
 476    if (env->insns_flags2 & PPC2_DFP) {
 477        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 478    }
 479
 480    page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
 481                                                  sizeof(page_sizes_prop));
 482    if (page_sizes_prop_size) {
 483        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 484                          page_sizes_prop, page_sizes_prop_size)));
 485    }
 486
 487    spapr_populate_pa_features(env, fdt, offset);
 488
 489    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 490                           cs->cpu_index / vcpus_per_socket)));
 491
 492    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 493                      pft_size_prop, sizeof(pft_size_prop))));
 494
 495    _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
 496
 497    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
 498                                ppc_get_compat_smt_threads(cpu)));
 499}
 500
 501static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
 502{
 503    CPUState *cs;
 504    int cpus_offset;
 505    char *nodename;
 506    int smt = kvmppc_smt_threads();
 507
 508    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 509    _FDT(cpus_offset);
 510    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 511    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 512
 513    /*
 514     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 515     * created by fdt_add_subnode() end up in the right order in FDT
 516     * for the guest kernel the enumerate the CPUs correctly.
 517     */
 518    CPU_FOREACH_REVERSE(cs) {
 519        PowerPCCPU *cpu = POWERPC_CPU(cs);
 520        int index = ppc_get_vcpu_dt_id(cpu);
 521        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 522        int offset;
 523
 524        if ((index % smt) != 0) {
 525            continue;
 526        }
 527
 528        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 529        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 530        g_free(nodename);
 531        _FDT(offset);
 532        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
 533    }
 534
 535}
 536
 537/*
 538 * Adds ibm,dynamic-reconfiguration-memory node.
 539 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 540 * of this device tree node.
 541 */
 542static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
 543{
 544    MachineState *machine = MACHINE(spapr);
 545    int ret, i, offset;
 546    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 547    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
 548    uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
 549    uint32_t nr_lmbs = (spapr->hotplug_memory.base +
 550                       memory_region_size(&spapr->hotplug_memory.mr)) /
 551                       lmb_size;
 552    uint32_t *int_buf, *cur_index, buf_len;
 553    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 554
 555    /*
 556     * Don't create the node if there is no hotpluggable memory
 557     */
 558    if (machine->ram_size == machine->maxram_size) {
 559        return 0;
 560    }
 561
 562    /*
 563     * Allocate enough buffer size to fit in ibm,dynamic-memory
 564     * or ibm,associativity-lookup-arrays
 565     */
 566    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
 567              * sizeof(uint32_t);
 568    cur_index = int_buf = g_malloc0(buf_len);
 569
 570    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 571
 572    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 573                    sizeof(prop_lmb_size));
 574    if (ret < 0) {
 575        goto out;
 576    }
 577
 578    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 579    if (ret < 0) {
 580        goto out;
 581    }
 582
 583    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 584    if (ret < 0) {
 585        goto out;
 586    }
 587
 588    /* ibm,dynamic-memory */
 589    int_buf[0] = cpu_to_be32(nr_lmbs);
 590    cur_index++;
 591    for (i = 0; i < nr_lmbs; i++) {
 592        uint64_t addr = i * lmb_size;
 593        uint32_t *dynamic_memory = cur_index;
 594
 595        if (i >= hotplug_lmb_start) {
 596            sPAPRDRConnector *drc;
 597            sPAPRDRConnectorClass *drck;
 598
 599            drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
 600            g_assert(drc);
 601            drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
 602
 603            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 604            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 605            dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
 606            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 607            dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
 608            if (memory_region_present(get_system_memory(), addr)) {
 609                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 610            } else {
 611                dynamic_memory[5] = cpu_to_be32(0);
 612            }
 613        } else {
 614            /*
 615             * LMB information for RMA, boot time RAM and gap b/n RAM and
 616             * hotplug memory region -- all these are marked as reserved
 617             * and as having no valid DRC.
 618             */
 619            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 620            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 621            dynamic_memory[2] = cpu_to_be32(0);
 622            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 623            dynamic_memory[4] = cpu_to_be32(-1);
 624            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 625                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 626        }
 627
 628        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 629    }
 630    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 631    if (ret < 0) {
 632        goto out;
 633    }
 634
 635    /* ibm,associativity-lookup-arrays */
 636    cur_index = int_buf;
 637    int_buf[0] = cpu_to_be32(nr_nodes);
 638    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
 639    cur_index += 2;
 640    for (i = 0; i < nr_nodes; i++) {
 641        uint32_t associativity[] = {
 642            cpu_to_be32(0x0),
 643            cpu_to_be32(0x0),
 644            cpu_to_be32(0x0),
 645            cpu_to_be32(i)
 646        };
 647        memcpy(cur_index, associativity, sizeof(associativity));
 648        cur_index += 4;
 649    }
 650    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 651            (cur_index - int_buf) * sizeof(uint32_t));
 652out:
 653    g_free(int_buf);
 654    return ret;
 655}
 656
 657static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
 658                                sPAPROptionVector *ov5_updates)
 659{
 660    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 661    int ret = 0, offset;
 662
 663    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 664    if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
 665        g_assert(smc->dr_lmb_enabled);
 666        ret = spapr_populate_drconf_memory(spapr, fdt);
 667        if (ret) {
 668            goto out;
 669        }
 670    }
 671
 672    offset = fdt_path_offset(fdt, "/chosen");
 673    if (offset < 0) {
 674        offset = fdt_add_subnode(fdt, 0, "chosen");
 675        if (offset < 0) {
 676            return offset;
 677        }
 678    }
 679    ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
 680                                 "ibm,architecture-vec-5");
 681
 682out:
 683    return ret;
 684}
 685
 686int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
 687                                 target_ulong addr, target_ulong size,
 688                                 bool cpu_update,
 689                                 sPAPROptionVector *ov5_updates)
 690{
 691    void *fdt, *fdt_skel;
 692    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
 693
 694    size -= sizeof(hdr);
 695
 696    /* Create sceleton */
 697    fdt_skel = g_malloc0(size);
 698    _FDT((fdt_create(fdt_skel, size)));
 699    _FDT((fdt_begin_node(fdt_skel, "")));
 700    _FDT((fdt_end_node(fdt_skel)));
 701    _FDT((fdt_finish(fdt_skel)));
 702    fdt = g_malloc0(size);
 703    _FDT((fdt_open_into(fdt_skel, fdt, size)));
 704    g_free(fdt_skel);
 705
 706    /* Fixup cpu nodes */
 707    if (cpu_update) {
 708        _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
 709    }
 710
 711    if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
 712        return -1;
 713    }
 714
 715    /* Pack resulting tree */
 716    _FDT((fdt_pack(fdt)));
 717
 718    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
 719        trace_spapr_cas_failed(size);
 720        return -1;
 721    }
 722
 723    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
 724    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
 725    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
 726    g_free(fdt);
 727
 728    return 0;
 729}
 730
 731static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
 732{
 733    int rtas;
 734    GString *hypertas = g_string_sized_new(256);
 735    GString *qemu_hypertas = g_string_sized_new(256);
 736    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
 737    uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
 738        memory_region_size(&spapr->hotplug_memory.mr);
 739    uint32_t lrdr_capacity[] = {
 740        cpu_to_be32(max_hotplug_addr >> 32),
 741        cpu_to_be32(max_hotplug_addr & 0xffffffff),
 742        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
 743        cpu_to_be32(max_cpus / smp_threads),
 744    };
 745
 746    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
 747
 748    /* hypertas */
 749    add_str(hypertas, "hcall-pft");
 750    add_str(hypertas, "hcall-term");
 751    add_str(hypertas, "hcall-dabr");
 752    add_str(hypertas, "hcall-interrupt");
 753    add_str(hypertas, "hcall-tce");
 754    add_str(hypertas, "hcall-vio");
 755    add_str(hypertas, "hcall-splpar");
 756    add_str(hypertas, "hcall-bulk");
 757    add_str(hypertas, "hcall-set-mode");
 758    add_str(hypertas, "hcall-sprg0");
 759    add_str(hypertas, "hcall-copy");
 760    add_str(hypertas, "hcall-debug");
 761    add_str(qemu_hypertas, "hcall-memop1");
 762
 763    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
 764        add_str(hypertas, "hcall-multi-tce");
 765    }
 766    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
 767                     hypertas->str, hypertas->len));
 768    g_string_free(hypertas, TRUE);
 769    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
 770                     qemu_hypertas->str, qemu_hypertas->len));
 771    g_string_free(qemu_hypertas, TRUE);
 772
 773    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
 774                     refpoints, sizeof(refpoints)));
 775
 776    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
 777                          RTAS_ERROR_LOG_MAX));
 778    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
 779                          RTAS_EVENT_SCAN_RATE));
 780
 781    if (msi_nonbroken) {
 782        _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
 783    }
 784
 785    /*
 786     * According to PAPR, rtas ibm,os-term does not guarantee a return
 787     * back to the guest cpu.
 788     *
 789     * While an additional ibm,extended-os-term property indicates
 790     * that rtas call return will always occur. Set this property.
 791     */
 792    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
 793
 794    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
 795                     lrdr_capacity, sizeof(lrdr_capacity)));
 796
 797    spapr_dt_rtas_tokens(fdt, rtas);
 798}
 799
 800static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
 801{
 802    MachineState *machine = MACHINE(spapr);
 803    int chosen;
 804    const char *boot_device = machine->boot_order;
 805    char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
 806    size_t cb = 0;
 807    char *bootlist = get_boot_devices_list(&cb, true);
 808
 809    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
 810
 811    _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
 812    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
 813                          spapr->initrd_base));
 814    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
 815                          spapr->initrd_base + spapr->initrd_size));
 816
 817    if (spapr->kernel_size) {
 818        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
 819                              cpu_to_be64(spapr->kernel_size) };
 820
 821        _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
 822                         &kprop, sizeof(kprop)));
 823        if (spapr->kernel_le) {
 824            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
 825        }
 826    }
 827    if (boot_menu) {
 828        _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
 829    }
 830    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
 831    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
 832    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
 833
 834    if (cb && bootlist) {
 835        int i;
 836
 837        for (i = 0; i < cb; i++) {
 838            if (bootlist[i] == '\n') {
 839                bootlist[i] = ' ';
 840            }
 841        }
 842        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
 843    }
 844
 845    if (boot_device && strlen(boot_device)) {
 846        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
 847    }
 848
 849    if (!spapr->has_graphics && stdout_path) {
 850        _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
 851    }
 852
 853    g_free(stdout_path);
 854    g_free(bootlist);
 855}
 856
 857static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
 858{
 859    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
 860     * KVM to work under pHyp with some guest co-operation */
 861    int hypervisor;
 862    uint8_t hypercall[16];
 863
 864    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
 865    /* indicate KVM hypercall interface */
 866    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
 867    if (kvmppc_has_cap_fixup_hcalls()) {
 868        /*
 869         * Older KVM versions with older guest kernels were broken
 870         * with the magic page, don't allow the guest to map it.
 871         */
 872        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
 873                                  sizeof(hypercall))) {
 874            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
 875                             hypercall, sizeof(hypercall)));
 876        }
 877    }
 878}
 879
 880static void *spapr_build_fdt(sPAPRMachineState *spapr,
 881                             hwaddr rtas_addr,
 882                             hwaddr rtas_size)
 883{
 884    MachineState *machine = MACHINE(qdev_get_machine());
 885    MachineClass *mc = MACHINE_GET_CLASS(machine);
 886    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
 887    int ret;
 888    void *fdt;
 889    sPAPRPHBState *phb;
 890    char *buf;
 891
 892    fdt = g_malloc0(FDT_MAX_SIZE);
 893    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
 894
 895    /* Root node */
 896    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
 897    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
 898    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
 899
 900    /*
 901     * Add info to guest to indentify which host is it being run on
 902     * and what is the uuid of the guest
 903     */
 904    if (kvmppc_get_host_model(&buf)) {
 905        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
 906        g_free(buf);
 907    }
 908    if (kvmppc_get_host_serial(&buf)) {
 909        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
 910        g_free(buf);
 911    }
 912
 913    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
 914
 915    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
 916    if (qemu_uuid_set) {
 917        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
 918    }
 919    g_free(buf);
 920
 921    if (qemu_get_vm_name()) {
 922        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
 923                                qemu_get_vm_name()));
 924    }
 925
 926    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
 927    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
 928
 929    /* /interrupt controller */
 930    spapr_dt_xics(spapr->xics, fdt, PHANDLE_XICP);
 931
 932    ret = spapr_populate_memory(spapr, fdt);
 933    if (ret < 0) {
 934        error_report("couldn't setup memory nodes in fdt");
 935        exit(1);
 936    }
 937
 938    /* /vdevice */
 939    spapr_dt_vdevice(spapr->vio_bus, fdt);
 940
 941    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
 942        ret = spapr_rng_populate_dt(fdt);
 943        if (ret < 0) {
 944            error_report("could not set up rng device in the fdt");
 945            exit(1);
 946        }
 947    }
 948
 949    QLIST_FOREACH(phb, &spapr->phbs, list) {
 950        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
 951        if (ret < 0) {
 952            error_report("couldn't setup PCI devices in fdt");
 953            exit(1);
 954        }
 955    }
 956
 957    /* cpus */
 958    spapr_populate_cpus_dt_node(fdt, spapr);
 959
 960    if (smc->dr_lmb_enabled) {
 961        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
 962    }
 963
 964    if (mc->query_hotpluggable_cpus) {
 965        int offset = fdt_path_offset(fdt, "/cpus");
 966        ret = spapr_drc_populate_dt(fdt, offset, NULL,
 967                                    SPAPR_DR_CONNECTOR_TYPE_CPU);
 968        if (ret < 0) {
 969            error_report("Couldn't set up CPU DR device tree properties");
 970            exit(1);
 971        }
 972    }
 973
 974    /* /event-sources */
 975    spapr_dt_events(spapr, fdt);
 976
 977    /* /rtas */
 978    spapr_dt_rtas(spapr, fdt);
 979
 980    /* /chosen */
 981    spapr_dt_chosen(spapr, fdt);
 982
 983    /* /hypervisor */
 984    if (kvm_enabled()) {
 985        spapr_dt_hypervisor(spapr, fdt);
 986    }
 987
 988    /* Build memory reserve map */
 989    if (spapr->kernel_size) {
 990        _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
 991    }
 992    if (spapr->initrd_size) {
 993        _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
 994    }
 995
 996    /* ibm,client-architecture-support updates */
 997    ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
 998    if (ret < 0) {
 999        error_report("couldn't setup CAS properties fdt");
1000        exit(1);
1001    }
1002
1003    return fdt;
1004}
1005
1006static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1007{
1008    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1009}
1010
1011static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1012{
1013    CPUPPCState *env = &cpu->env;
1014
1015    if (msr_pr) {
1016        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1017        env->gpr[3] = H_PRIVILEGE;
1018    } else {
1019        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1020    }
1021}
1022
1023#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1024#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1025#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1026#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1027#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1028
1029/*
1030 * Get the fd to access the kernel htab, re-opening it if necessary
1031 */
1032static int get_htab_fd(sPAPRMachineState *spapr)
1033{
1034    if (spapr->htab_fd >= 0) {
1035        return spapr->htab_fd;
1036    }
1037
1038    spapr->htab_fd = kvmppc_get_htab_fd(false);
1039    if (spapr->htab_fd < 0) {
1040        error_report("Unable to open fd for reading hash table from KVM: %s",
1041                     strerror(errno));
1042    }
1043
1044    return spapr->htab_fd;
1045}
1046
1047static void close_htab_fd(sPAPRMachineState *spapr)
1048{
1049    if (spapr->htab_fd >= 0) {
1050        close(spapr->htab_fd);
1051    }
1052    spapr->htab_fd = -1;
1053}
1054
1055static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1056{
1057    int shift;
1058
1059    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1060     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1061     * that's much more than is needed for Linux guests */
1062    shift = ctz64(pow2ceil(ramsize)) - 7;
1063    shift = MAX(shift, 18); /* Minimum architected size */
1064    shift = MIN(shift, 46); /* Maximum architected size */
1065    return shift;
1066}
1067
1068static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1069                                 Error **errp)
1070{
1071    long rc;
1072
1073    /* Clean up any HPT info from a previous boot */
1074    g_free(spapr->htab);
1075    spapr->htab = NULL;
1076    spapr->htab_shift = 0;
1077    close_htab_fd(spapr);
1078
1079    rc = kvmppc_reset_htab(shift);
1080    if (rc < 0) {
1081        /* kernel-side HPT needed, but couldn't allocate one */
1082        error_setg_errno(errp, errno,
1083                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1084                         shift);
1085        /* This is almost certainly fatal, but if the caller really
1086         * wants to carry on with shift == 0, it's welcome to try */
1087    } else if (rc > 0) {
1088        /* kernel-side HPT allocated */
1089        if (rc != shift) {
1090            error_setg(errp,
1091                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1092                       shift, rc);
1093        }
1094
1095        spapr->htab_shift = shift;
1096        spapr->htab = NULL;
1097    } else {
1098        /* kernel-side HPT not needed, allocate in userspace instead */
1099        size_t size = 1ULL << shift;
1100        int i;
1101
1102        spapr->htab = qemu_memalign(size, size);
1103        if (!spapr->htab) {
1104            error_setg_errno(errp, errno,
1105                             "Could not allocate HPT of order %d", shift);
1106            return;
1107        }
1108
1109        memset(spapr->htab, 0, size);
1110        spapr->htab_shift = shift;
1111
1112        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1113            DIRTY_HPTE(HPTE(spapr->htab, i));
1114        }
1115    }
1116}
1117
1118static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1119{
1120    bool matched = false;
1121
1122    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1123        matched = true;
1124    }
1125
1126    if (!matched) {
1127        error_report("Device %s is not supported by this machine yet.",
1128                     qdev_fw_name(DEVICE(sbdev)));
1129        exit(1);
1130    }
1131}
1132
1133static void ppc_spapr_reset(void)
1134{
1135    MachineState *machine = MACHINE(qdev_get_machine());
1136    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1137    PowerPCCPU *first_ppc_cpu;
1138    uint32_t rtas_limit;
1139    hwaddr rtas_addr, fdt_addr;
1140    void *fdt;
1141    int rc;
1142
1143    /* Check for unknown sysbus devices */
1144    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1145
1146    /* Allocate and/or reset the hash page table */
1147    spapr_reallocate_hpt(spapr,
1148                         spapr_hpt_shift_for_ramsize(machine->maxram_size),
1149                         &error_fatal);
1150
1151    /* Update the RMA size if necessary */
1152    if (spapr->vrma_adjust) {
1153        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1154                                          spapr->htab_shift);
1155    }
1156
1157    qemu_devices_reset();
1158
1159    /*
1160     * We place the device tree and RTAS just below either the top of the RMA,
1161     * or just below 2GB, whichever is lowere, so that it can be
1162     * processed with 32-bit real mode code if necessary
1163     */
1164    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1165    rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1166    fdt_addr = rtas_addr - FDT_MAX_SIZE;
1167
1168    /* if this reset wasn't generated by CAS, we should reset our
1169     * negotiated options and start from scratch */
1170    if (!spapr->cas_reboot) {
1171        spapr_ovec_cleanup(spapr->ov5_cas);
1172        spapr->ov5_cas = spapr_ovec_new();
1173    }
1174
1175    fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1176
1177    spapr_load_rtas(spapr, fdt, rtas_addr);
1178
1179    rc = fdt_pack(fdt);
1180
1181    /* Should only fail if we've built a corrupted tree */
1182    assert(rc == 0);
1183
1184    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1185        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1186                     fdt_totalsize(fdt), FDT_MAX_SIZE);
1187        exit(1);
1188    }
1189
1190    /* Load the fdt */
1191    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1192    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1193    g_free(fdt);
1194
1195    /* Set up the entry state */
1196    first_ppc_cpu = POWERPC_CPU(first_cpu);
1197    first_ppc_cpu->env.gpr[3] = fdt_addr;
1198    first_ppc_cpu->env.gpr[5] = 0;
1199    first_cpu->halted = 0;
1200    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1201
1202    spapr->cas_reboot = false;
1203}
1204
1205static void spapr_create_nvram(sPAPRMachineState *spapr)
1206{
1207    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1208    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1209
1210    if (dinfo) {
1211        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1212                            &error_fatal);
1213    }
1214
1215    qdev_init_nofail(dev);
1216
1217    spapr->nvram = (struct sPAPRNVRAM *)dev;
1218}
1219
1220static void spapr_rtc_create(sPAPRMachineState *spapr)
1221{
1222    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1223
1224    qdev_init_nofail(dev);
1225    spapr->rtc = dev;
1226
1227    object_property_add_alias(qdev_get_machine(), "rtc-time",
1228                              OBJECT(spapr->rtc), "date", NULL);
1229}
1230
1231/* Returns whether we want to use VGA or not */
1232static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1233{
1234    switch (vga_interface_type) {
1235    case VGA_NONE:
1236        return false;
1237    case VGA_DEVICE:
1238        return true;
1239    case VGA_STD:
1240    case VGA_VIRTIO:
1241        return pci_vga_init(pci_bus) != NULL;
1242    default:
1243        error_setg(errp,
1244                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1245        return false;
1246    }
1247}
1248
1249static int spapr_post_load(void *opaque, int version_id)
1250{
1251    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1252    int err = 0;
1253
1254    /* In earlier versions, there was no separate qdev for the PAPR
1255     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1256     * So when migrating from those versions, poke the incoming offset
1257     * value into the RTC device */
1258    if (version_id < 3) {
1259        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1260    }
1261
1262    return err;
1263}
1264
1265static bool version_before_3(void *opaque, int version_id)
1266{
1267    return version_id < 3;
1268}
1269
1270static bool spapr_ov5_cas_needed(void *opaque)
1271{
1272    sPAPRMachineState *spapr = opaque;
1273    sPAPROptionVector *ov5_mask = spapr_ovec_new();
1274    sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1275    sPAPROptionVector *ov5_removed = spapr_ovec_new();
1276    bool cas_needed;
1277
1278    /* Prior to the introduction of sPAPROptionVector, we had two option
1279     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1280     * Both of these options encode machine topology into the device-tree
1281     * in such a way that the now-booted OS should still be able to interact
1282     * appropriately with QEMU regardless of what options were actually
1283     * negotiatied on the source side.
1284     *
1285     * As such, we can avoid migrating the CAS-negotiated options if these
1286     * are the only options available on the current machine/platform.
1287     * Since these are the only options available for pseries-2.7 and
1288     * earlier, this allows us to maintain old->new/new->old migration
1289     * compatibility.
1290     *
1291     * For QEMU 2.8+, there are additional CAS-negotiatable options available
1292     * via default pseries-2.8 machines and explicit command-line parameters.
1293     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1294     * of the actual CAS-negotiated values to continue working properly. For
1295     * example, availability of memory unplug depends on knowing whether
1296     * OV5_HP_EVT was negotiated via CAS.
1297     *
1298     * Thus, for any cases where the set of available CAS-negotiatable
1299     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1300     * include the CAS-negotiated options in the migration stream.
1301     */
1302    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1303    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1304
1305    /* spapr_ovec_diff returns true if bits were removed. we avoid using
1306     * the mask itself since in the future it's possible "legacy" bits may be
1307     * removed via machine options, which could generate a false positive
1308     * that breaks migration.
1309     */
1310    spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1311    cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1312
1313    spapr_ovec_cleanup(ov5_mask);
1314    spapr_ovec_cleanup(ov5_legacy);
1315    spapr_ovec_cleanup(ov5_removed);
1316
1317    return cas_needed;
1318}
1319
1320static const VMStateDescription vmstate_spapr_ov5_cas = {
1321    .name = "spapr_option_vector_ov5_cas",
1322    .version_id = 1,
1323    .minimum_version_id = 1,
1324    .needed = spapr_ov5_cas_needed,
1325    .fields = (VMStateField[]) {
1326        VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1327                                 vmstate_spapr_ovec, sPAPROptionVector),
1328        VMSTATE_END_OF_LIST()
1329    },
1330};
1331
1332static const VMStateDescription vmstate_spapr = {
1333    .name = "spapr",
1334    .version_id = 3,
1335    .minimum_version_id = 1,
1336    .post_load = spapr_post_load,
1337    .fields = (VMStateField[]) {
1338        /* used to be @next_irq */
1339        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1340
1341        /* RTC offset */
1342        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1343
1344        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1345        VMSTATE_END_OF_LIST()
1346    },
1347    .subsections = (const VMStateDescription*[]) {
1348        &vmstate_spapr_ov5_cas,
1349        NULL
1350    }
1351};
1352
1353static int htab_save_setup(QEMUFile *f, void *opaque)
1354{
1355    sPAPRMachineState *spapr = opaque;
1356
1357    /* "Iteration" header */
1358    qemu_put_be32(f, spapr->htab_shift);
1359
1360    if (spapr->htab) {
1361        spapr->htab_save_index = 0;
1362        spapr->htab_first_pass = true;
1363    } else {
1364        assert(kvm_enabled());
1365    }
1366
1367
1368    return 0;
1369}
1370
1371static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1372                                 int64_t max_ns)
1373{
1374    bool has_timeout = max_ns != -1;
1375    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1376    int index = spapr->htab_save_index;
1377    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1378
1379    assert(spapr->htab_first_pass);
1380
1381    do {
1382        int chunkstart;
1383
1384        /* Consume invalid HPTEs */
1385        while ((index < htabslots)
1386               && !HPTE_VALID(HPTE(spapr->htab, index))) {
1387            index++;
1388            CLEAN_HPTE(HPTE(spapr->htab, index));
1389        }
1390
1391        /* Consume valid HPTEs */
1392        chunkstart = index;
1393        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1394               && HPTE_VALID(HPTE(spapr->htab, index))) {
1395            index++;
1396            CLEAN_HPTE(HPTE(spapr->htab, index));
1397        }
1398
1399        if (index > chunkstart) {
1400            int n_valid = index - chunkstart;
1401
1402            qemu_put_be32(f, chunkstart);
1403            qemu_put_be16(f, n_valid);
1404            qemu_put_be16(f, 0);
1405            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1406                            HASH_PTE_SIZE_64 * n_valid);
1407
1408            if (has_timeout &&
1409                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1410                break;
1411            }
1412        }
1413    } while ((index < htabslots) && !qemu_file_rate_limit(f));
1414
1415    if (index >= htabslots) {
1416        assert(index == htabslots);
1417        index = 0;
1418        spapr->htab_first_pass = false;
1419    }
1420    spapr->htab_save_index = index;
1421}
1422
1423static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1424                                int64_t max_ns)
1425{
1426    bool final = max_ns < 0;
1427    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1428    int examined = 0, sent = 0;
1429    int index = spapr->htab_save_index;
1430    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1431
1432    assert(!spapr->htab_first_pass);
1433
1434    do {
1435        int chunkstart, invalidstart;
1436
1437        /* Consume non-dirty HPTEs */
1438        while ((index < htabslots)
1439               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1440            index++;
1441            examined++;
1442        }
1443
1444        chunkstart = index;
1445        /* Consume valid dirty HPTEs */
1446        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1447               && HPTE_DIRTY(HPTE(spapr->htab, index))
1448               && HPTE_VALID(HPTE(spapr->htab, index))) {
1449            CLEAN_HPTE(HPTE(spapr->htab, index));
1450            index++;
1451            examined++;
1452        }
1453
1454        invalidstart = index;
1455        /* Consume invalid dirty HPTEs */
1456        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1457               && HPTE_DIRTY(HPTE(spapr->htab, index))
1458               && !HPTE_VALID(HPTE(spapr->htab, index))) {
1459            CLEAN_HPTE(HPTE(spapr->htab, index));
1460            index++;
1461            examined++;
1462        }
1463
1464        if (index > chunkstart) {
1465            int n_valid = invalidstart - chunkstart;
1466            int n_invalid = index - invalidstart;
1467
1468            qemu_put_be32(f, chunkstart);
1469            qemu_put_be16(f, n_valid);
1470            qemu_put_be16(f, n_invalid);
1471            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1472                            HASH_PTE_SIZE_64 * n_valid);
1473            sent += index - chunkstart;
1474
1475            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1476                break;
1477            }
1478        }
1479
1480        if (examined >= htabslots) {
1481            break;
1482        }
1483
1484        if (index >= htabslots) {
1485            assert(index == htabslots);
1486            index = 0;
1487        }
1488    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1489
1490    if (index >= htabslots) {
1491        assert(index == htabslots);
1492        index = 0;
1493    }
1494
1495    spapr->htab_save_index = index;
1496
1497    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1498}
1499
1500#define MAX_ITERATION_NS    5000000 /* 5 ms */
1501#define MAX_KVM_BUF_SIZE    2048
1502
1503static int htab_save_iterate(QEMUFile *f, void *opaque)
1504{
1505    sPAPRMachineState *spapr = opaque;
1506    int fd;
1507    int rc = 0;
1508
1509    /* Iteration header */
1510    qemu_put_be32(f, 0);
1511
1512    if (!spapr->htab) {
1513        assert(kvm_enabled());
1514
1515        fd = get_htab_fd(spapr);
1516        if (fd < 0) {
1517            return fd;
1518        }
1519
1520        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1521        if (rc < 0) {
1522            return rc;
1523        }
1524    } else  if (spapr->htab_first_pass) {
1525        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1526    } else {
1527        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1528    }
1529
1530    /* End marker */
1531    qemu_put_be32(f, 0);
1532    qemu_put_be16(f, 0);
1533    qemu_put_be16(f, 0);
1534
1535    return rc;
1536}
1537
1538static int htab_save_complete(QEMUFile *f, void *opaque)
1539{
1540    sPAPRMachineState *spapr = opaque;
1541    int fd;
1542
1543    /* Iteration header */
1544    qemu_put_be32(f, 0);
1545
1546    if (!spapr->htab) {
1547        int rc;
1548
1549        assert(kvm_enabled());
1550
1551        fd = get_htab_fd(spapr);
1552        if (fd < 0) {
1553            return fd;
1554        }
1555
1556        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1557        if (rc < 0) {
1558            return rc;
1559        }
1560    } else {
1561        if (spapr->htab_first_pass) {
1562            htab_save_first_pass(f, spapr, -1);
1563        }
1564        htab_save_later_pass(f, spapr, -1);
1565    }
1566
1567    /* End marker */
1568    qemu_put_be32(f, 0);
1569    qemu_put_be16(f, 0);
1570    qemu_put_be16(f, 0);
1571
1572    return 0;
1573}
1574
1575static int htab_load(QEMUFile *f, void *opaque, int version_id)
1576{
1577    sPAPRMachineState *spapr = opaque;
1578    uint32_t section_hdr;
1579    int fd = -1;
1580
1581    if (version_id < 1 || version_id > 1) {
1582        error_report("htab_load() bad version");
1583        return -EINVAL;
1584    }
1585
1586    section_hdr = qemu_get_be32(f);
1587
1588    if (section_hdr) {
1589        Error *local_err = NULL;
1590
1591        /* First section gives the htab size */
1592        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1593        if (local_err) {
1594            error_report_err(local_err);
1595            return -EINVAL;
1596        }
1597        return 0;
1598    }
1599
1600    if (!spapr->htab) {
1601        assert(kvm_enabled());
1602
1603        fd = kvmppc_get_htab_fd(true);
1604        if (fd < 0) {
1605            error_report("Unable to open fd to restore KVM hash table: %s",
1606                         strerror(errno));
1607        }
1608    }
1609
1610    while (true) {
1611        uint32_t index;
1612        uint16_t n_valid, n_invalid;
1613
1614        index = qemu_get_be32(f);
1615        n_valid = qemu_get_be16(f);
1616        n_invalid = qemu_get_be16(f);
1617
1618        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1619            /* End of Stream */
1620            break;
1621        }
1622
1623        if ((index + n_valid + n_invalid) >
1624            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1625            /* Bad index in stream */
1626            error_report(
1627                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1628                index, n_valid, n_invalid, spapr->htab_shift);
1629            return -EINVAL;
1630        }
1631
1632        if (spapr->htab) {
1633            if (n_valid) {
1634                qemu_get_buffer(f, HPTE(spapr->htab, index),
1635                                HASH_PTE_SIZE_64 * n_valid);
1636            }
1637            if (n_invalid) {
1638                memset(HPTE(spapr->htab, index + n_valid), 0,
1639                       HASH_PTE_SIZE_64 * n_invalid);
1640            }
1641        } else {
1642            int rc;
1643
1644            assert(fd >= 0);
1645
1646            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1647            if (rc < 0) {
1648                return rc;
1649            }
1650        }
1651    }
1652
1653    if (!spapr->htab) {
1654        assert(fd >= 0);
1655        close(fd);
1656    }
1657
1658    return 0;
1659}
1660
1661static void htab_cleanup(void *opaque)
1662{
1663    sPAPRMachineState *spapr = opaque;
1664
1665    close_htab_fd(spapr);
1666}
1667
1668static SaveVMHandlers savevm_htab_handlers = {
1669    .save_live_setup = htab_save_setup,
1670    .save_live_iterate = htab_save_iterate,
1671    .save_live_complete_precopy = htab_save_complete,
1672    .cleanup = htab_cleanup,
1673    .load_state = htab_load,
1674};
1675
1676static void spapr_boot_set(void *opaque, const char *boot_device,
1677                           Error **errp)
1678{
1679    MachineState *machine = MACHINE(qdev_get_machine());
1680    machine->boot_order = g_strdup(boot_device);
1681}
1682
1683/*
1684 * Reset routine for LMB DR devices.
1685 *
1686 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1687 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1688 * when it walks all its children devices. LMB devices reset occurs
1689 * as part of spapr_ppc_reset().
1690 */
1691static void spapr_drc_reset(void *opaque)
1692{
1693    sPAPRDRConnector *drc = opaque;
1694    DeviceState *d = DEVICE(drc);
1695
1696    if (d) {
1697        device_reset(d);
1698    }
1699}
1700
1701static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1702{
1703    MachineState *machine = MACHINE(spapr);
1704    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1705    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1706    int i;
1707
1708    for (i = 0; i < nr_lmbs; i++) {
1709        sPAPRDRConnector *drc;
1710        uint64_t addr;
1711
1712        addr = i * lmb_size + spapr->hotplug_memory.base;
1713        drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1714                                     addr/lmb_size);
1715        qemu_register_reset(spapr_drc_reset, drc);
1716    }
1717}
1718
1719/*
1720 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1721 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1722 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1723 */
1724static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1725{
1726    int i;
1727
1728    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1729        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1730                   " is not aligned to %llu MiB",
1731                   machine->ram_size,
1732                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1733        return;
1734    }
1735
1736    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1737        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1738                   " is not aligned to %llu MiB",
1739                   machine->ram_size,
1740                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1741        return;
1742    }
1743
1744    for (i = 0; i < nb_numa_nodes; i++) {
1745        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1746            error_setg(errp,
1747                       "Node %d memory size 0x%" PRIx64
1748                       " is not aligned to %llu MiB",
1749                       i, numa_info[i].node_mem,
1750                       SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1751            return;
1752        }
1753    }
1754}
1755
1756/* pSeries LPAR / sPAPR hardware init */
1757static void ppc_spapr_init(MachineState *machine)
1758{
1759    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1760    MachineClass *mc = MACHINE_GET_CLASS(machine);
1761    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1762    const char *kernel_filename = machine->kernel_filename;
1763    const char *initrd_filename = machine->initrd_filename;
1764    PCIHostState *phb;
1765    int i;
1766    MemoryRegion *sysmem = get_system_memory();
1767    MemoryRegion *ram = g_new(MemoryRegion, 1);
1768    MemoryRegion *rma_region;
1769    void *rma = NULL;
1770    hwaddr rma_alloc_size;
1771    hwaddr node0_size = spapr_node0_size();
1772    long load_limit, fw_size;
1773    char *filename;
1774    int smt = kvmppc_smt_threads();
1775    int spapr_cores = smp_cpus / smp_threads;
1776    int spapr_max_cores = max_cpus / smp_threads;
1777
1778    if (mc->query_hotpluggable_cpus) {
1779        if (smp_cpus % smp_threads) {
1780            error_report("smp_cpus (%u) must be multiple of threads (%u)",
1781                         smp_cpus, smp_threads);
1782            exit(1);
1783        }
1784        if (max_cpus % smp_threads) {
1785            error_report("max_cpus (%u) must be multiple of threads (%u)",
1786                         max_cpus, smp_threads);
1787            exit(1);
1788        }
1789    }
1790
1791    msi_nonbroken = true;
1792
1793    QLIST_INIT(&spapr->phbs);
1794
1795    cpu_ppc_hypercall = emulate_spapr_hypercall;
1796
1797    /* Allocate RMA if necessary */
1798    rma_alloc_size = kvmppc_alloc_rma(&rma);
1799
1800    if (rma_alloc_size == -1) {
1801        error_report("Unable to create RMA");
1802        exit(1);
1803    }
1804
1805    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1806        spapr->rma_size = rma_alloc_size;
1807    } else {
1808        spapr->rma_size = node0_size;
1809
1810        /* With KVM, we don't actually know whether KVM supports an
1811         * unbounded RMA (PR KVM) or is limited by the hash table size
1812         * (HV KVM using VRMA), so we always assume the latter
1813         *
1814         * In that case, we also limit the initial allocations for RTAS
1815         * etc... to 256M since we have no way to know what the VRMA size
1816         * is going to be as it depends on the size of the hash table
1817         * isn't determined yet.
1818         */
1819        if (kvm_enabled()) {
1820            spapr->vrma_adjust = 1;
1821            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1822        }
1823
1824        /* Actually we don't support unbounded RMA anymore since we
1825         * added proper emulation of HV mode. The max we can get is
1826         * 16G which also happens to be what we configure for PAPR
1827         * mode so make sure we don't do anything bigger than that
1828         */
1829        spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1830    }
1831
1832    if (spapr->rma_size > node0_size) {
1833        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1834                     spapr->rma_size);
1835        exit(1);
1836    }
1837
1838    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1839    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1840
1841    /* Set up Interrupt Controller before we create the VCPUs */
1842    spapr->xics = xics_system_init(machine,
1843                                   DIV_ROUND_UP(max_cpus * smt, smp_threads),
1844                                   XICS_IRQS_SPAPR, &error_fatal);
1845
1846    /* Set up containers for ibm,client-set-architecture negotiated options */
1847    spapr->ov5 = spapr_ovec_new();
1848    spapr->ov5_cas = spapr_ovec_new();
1849
1850    if (smc->dr_lmb_enabled) {
1851        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
1852        spapr_validate_node_memory(machine, &error_fatal);
1853    }
1854
1855    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
1856
1857    /* advertise support for dedicated HP event source to guests */
1858    if (spapr->use_hotplug_event_source) {
1859        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
1860    }
1861
1862    /* init CPUs */
1863    if (machine->cpu_model == NULL) {
1864        machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
1865    }
1866
1867    ppc_cpu_parse_features(machine->cpu_model);
1868
1869    if (mc->query_hotpluggable_cpus) {
1870        char *type = spapr_get_cpu_core_type(machine->cpu_model);
1871
1872        if (type == NULL) {
1873            error_report("Unable to find sPAPR CPU Core definition");
1874            exit(1);
1875        }
1876
1877        spapr->cores = g_new0(Object *, spapr_max_cores);
1878        for (i = 0; i < spapr_max_cores; i++) {
1879            int core_id = i * smp_threads;
1880            sPAPRDRConnector *drc =
1881                spapr_dr_connector_new(OBJECT(spapr),
1882                                       SPAPR_DR_CONNECTOR_TYPE_CPU,
1883                                       (core_id / smp_threads) * smt);
1884
1885            qemu_register_reset(spapr_drc_reset, drc);
1886
1887            if (i < spapr_cores) {
1888                Object *core  = object_new(type);
1889                object_property_set_int(core, smp_threads, "nr-threads",
1890                                        &error_fatal);
1891                object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1892                                        &error_fatal);
1893                object_property_set_bool(core, true, "realized", &error_fatal);
1894            }
1895        }
1896        g_free(type);
1897    } else {
1898        for (i = 0; i < smp_cpus; i++) {
1899            PowerPCCPU *cpu = cpu_ppc_init(machine->cpu_model);
1900            if (cpu == NULL) {
1901                error_report("Unable to find PowerPC CPU definition");
1902                exit(1);
1903            }
1904            spapr_cpu_init(spapr, cpu, &error_fatal);
1905       }
1906    }
1907
1908    if (kvm_enabled()) {
1909        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1910        kvmppc_enable_logical_ci_hcalls();
1911        kvmppc_enable_set_mode_hcall();
1912
1913        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
1914        kvmppc_enable_clear_ref_mod_hcalls();
1915    }
1916
1917    /* allocate RAM */
1918    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1919                                         machine->ram_size);
1920    memory_region_add_subregion(sysmem, 0, ram);
1921
1922    if (rma_alloc_size && rma) {
1923        rma_region = g_new(MemoryRegion, 1);
1924        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1925                                   rma_alloc_size, rma);
1926        vmstate_register_ram_global(rma_region);
1927        memory_region_add_subregion(sysmem, 0, rma_region);
1928    }
1929
1930    /* initialize hotplug memory address space */
1931    if (machine->ram_size < machine->maxram_size) {
1932        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1933        /*
1934         * Limit the number of hotpluggable memory slots to half the number
1935         * slots that KVM supports, leaving the other half for PCI and other
1936         * devices. However ensure that number of slots doesn't drop below 32.
1937         */
1938        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1939                           SPAPR_MAX_RAM_SLOTS;
1940
1941        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1942            max_memslots = SPAPR_MAX_RAM_SLOTS;
1943        }
1944        if (machine->ram_slots > max_memslots) {
1945            error_report("Specified number of memory slots %"
1946                         PRIu64" exceeds max supported %d",
1947                         machine->ram_slots, max_memslots);
1948            exit(1);
1949        }
1950
1951        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1952                                              SPAPR_HOTPLUG_MEM_ALIGN);
1953        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1954                           "hotplug-memory", hotplug_mem_size);
1955        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1956                                    &spapr->hotplug_memory.mr);
1957    }
1958
1959    if (smc->dr_lmb_enabled) {
1960        spapr_create_lmb_dr_connectors(spapr);
1961    }
1962
1963    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1964    if (!filename) {
1965        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1966        exit(1);
1967    }
1968    spapr->rtas_size = get_image_size(filename);
1969    if (spapr->rtas_size < 0) {
1970        error_report("Could not get size of LPAR rtas '%s'", filename);
1971        exit(1);
1972    }
1973    spapr->rtas_blob = g_malloc(spapr->rtas_size);
1974    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1975        error_report("Could not load LPAR rtas '%s'", filename);
1976        exit(1);
1977    }
1978    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1979        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1980                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1981        exit(1);
1982    }
1983    g_free(filename);
1984
1985    /* Set up RTAS event infrastructure */
1986    spapr_events_init(spapr);
1987
1988    /* Set up the RTC RTAS interfaces */
1989    spapr_rtc_create(spapr);
1990
1991    /* Set up VIO bus */
1992    spapr->vio_bus = spapr_vio_bus_init();
1993
1994    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1995        if (serial_hds[i]) {
1996            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1997        }
1998    }
1999
2000    /* We always have at least the nvram device on VIO */
2001    spapr_create_nvram(spapr);
2002
2003    /* Set up PCI */
2004    spapr_pci_rtas_init();
2005
2006    phb = spapr_create_phb(spapr, 0);
2007
2008    for (i = 0; i < nb_nics; i++) {
2009        NICInfo *nd = &nd_table[i];
2010
2011        if (!nd->model) {
2012            nd->model = g_strdup("ibmveth");
2013        }
2014
2015        if (strcmp(nd->model, "ibmveth") == 0) {
2016            spapr_vlan_create(spapr->vio_bus, nd);
2017        } else {
2018            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2019        }
2020    }
2021
2022    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2023        spapr_vscsi_create(spapr->vio_bus);
2024    }
2025
2026    /* Graphics */
2027    if (spapr_vga_init(phb->bus, &error_fatal)) {
2028        spapr->has_graphics = true;
2029        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2030    }
2031
2032    if (machine->usb) {
2033        if (smc->use_ohci_by_default) {
2034            pci_create_simple(phb->bus, -1, "pci-ohci");
2035        } else {
2036            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2037        }
2038
2039        if (spapr->has_graphics) {
2040            USBBus *usb_bus = usb_bus_find(-1);
2041
2042            usb_create_simple(usb_bus, "usb-kbd");
2043            usb_create_simple(usb_bus, "usb-mouse");
2044        }
2045    }
2046
2047    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2048        error_report(
2049            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2050            MIN_RMA_SLOF);
2051        exit(1);
2052    }
2053
2054    if (kernel_filename) {
2055        uint64_t lowaddr = 0;
2056
2057        spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2058                                      NULL, NULL, &lowaddr, NULL, 1,
2059                                      PPC_ELF_MACHINE, 0, 0);
2060        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2061            spapr->kernel_size = load_elf(kernel_filename,
2062                                          translate_kernel_address, NULL, NULL,
2063                                          &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2064                                          0, 0);
2065            spapr->kernel_le = spapr->kernel_size > 0;
2066        }
2067        if (spapr->kernel_size < 0) {
2068            error_report("error loading %s: %s", kernel_filename,
2069                         load_elf_strerror(spapr->kernel_size));
2070            exit(1);
2071        }
2072
2073        /* load initrd */
2074        if (initrd_filename) {
2075            /* Try to locate the initrd in the gap between the kernel
2076             * and the firmware. Add a bit of space just in case
2077             */
2078            spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2079                                  + 0x1ffff) & ~0xffff;
2080            spapr->initrd_size = load_image_targphys(initrd_filename,
2081                                                     spapr->initrd_base,
2082                                                     load_limit
2083                                                     - spapr->initrd_base);
2084            if (spapr->initrd_size < 0) {
2085                error_report("could not load initial ram disk '%s'",
2086                             initrd_filename);
2087                exit(1);
2088            }
2089        }
2090    }
2091
2092    if (bios_name == NULL) {
2093        bios_name = FW_FILE_NAME;
2094    }
2095    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2096    if (!filename) {
2097        error_report("Could not find LPAR firmware '%s'", bios_name);
2098        exit(1);
2099    }
2100    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2101    if (fw_size <= 0) {
2102        error_report("Could not load LPAR firmware '%s'", filename);
2103        exit(1);
2104    }
2105    g_free(filename);
2106
2107    /* FIXME: Should register things through the MachineState's qdev
2108     * interface, this is a legacy from the sPAPREnvironment structure
2109     * which predated MachineState but had a similar function */
2110    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2111    register_savevm_live(NULL, "spapr/htab", -1, 1,
2112                         &savevm_htab_handlers, spapr);
2113
2114    /* used by RTAS */
2115    QTAILQ_INIT(&spapr->ccs_list);
2116    qemu_register_reset(spapr_ccs_reset_hook, spapr);
2117
2118    qemu_register_boot_set(spapr_boot_set, spapr);
2119}
2120
2121static int spapr_kvm_type(const char *vm_type)
2122{
2123    if (!vm_type) {
2124        return 0;
2125    }
2126
2127    if (!strcmp(vm_type, "HV")) {
2128        return 1;
2129    }
2130
2131    if (!strcmp(vm_type, "PR")) {
2132        return 2;
2133    }
2134
2135    error_report("Unknown kvm-type specified '%s'", vm_type);
2136    exit(1);
2137}
2138
2139/*
2140 * Implementation of an interface to adjust firmware path
2141 * for the bootindex property handling.
2142 */
2143static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2144                                   DeviceState *dev)
2145{
2146#define CAST(type, obj, name) \
2147    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2148    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2149    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2150
2151    if (d) {
2152        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2153        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2154        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2155
2156        if (spapr) {
2157            /*
2158             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2159             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2160             * in the top 16 bits of the 64-bit LUN
2161             */
2162            unsigned id = 0x8000 | (d->id << 8) | d->lun;
2163            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2164                                   (uint64_t)id << 48);
2165        } else if (virtio) {
2166            /*
2167             * We use SRP luns of the form 01000000 | (target << 8) | lun
2168             * in the top 32 bits of the 64-bit LUN
2169             * Note: the quote above is from SLOF and it is wrong,
2170             * the actual binding is:
2171             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2172             */
2173            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2174            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2175                                   (uint64_t)id << 32);
2176        } else if (usb) {
2177            /*
2178             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2179             * in the top 32 bits of the 64-bit LUN
2180             */
2181            unsigned usb_port = atoi(usb->port->path);
2182            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2183            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2184                                   (uint64_t)id << 32);
2185        }
2186    }
2187
2188    if (phb) {
2189        /* Replace "pci" with "pci@800000020000000" */
2190        return g_strdup_printf("pci@%"PRIX64, phb->buid);
2191    }
2192
2193    return NULL;
2194}
2195
2196static char *spapr_get_kvm_type(Object *obj, Error **errp)
2197{
2198    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2199
2200    return g_strdup(spapr->kvm_type);
2201}
2202
2203static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2204{
2205    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2206
2207    g_free(spapr->kvm_type);
2208    spapr->kvm_type = g_strdup(value);
2209}
2210
2211static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2212{
2213    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2214
2215    return spapr->use_hotplug_event_source;
2216}
2217
2218static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2219                                            Error **errp)
2220{
2221    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2222
2223    spapr->use_hotplug_event_source = value;
2224}
2225
2226static void spapr_machine_initfn(Object *obj)
2227{
2228    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2229
2230    spapr->htab_fd = -1;
2231    spapr->use_hotplug_event_source = true;
2232    object_property_add_str(obj, "kvm-type",
2233                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2234    object_property_set_description(obj, "kvm-type",
2235                                    "Specifies the KVM virtualization mode (HV, PR)",
2236                                    NULL);
2237    object_property_add_bool(obj, "modern-hotplug-events",
2238                            spapr_get_modern_hotplug_events,
2239                            spapr_set_modern_hotplug_events,
2240                            NULL);
2241    object_property_set_description(obj, "modern-hotplug-events",
2242                                    "Use dedicated hotplug event mechanism in"
2243                                    " place of standard EPOW events when possible"
2244                                    " (required for memory hot-unplug support)",
2245                                    NULL);
2246}
2247
2248static void spapr_machine_finalizefn(Object *obj)
2249{
2250    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2251
2252    g_free(spapr->kvm_type);
2253}
2254
2255static void ppc_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2256{
2257    cpu_synchronize_state(cs);
2258    ppc_cpu_do_system_reset(cs);
2259}
2260
2261static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2262{
2263    CPUState *cs;
2264
2265    CPU_FOREACH(cs) {
2266        async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2267    }
2268}
2269
2270static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2271                           uint32_t node, bool dedicated_hp_event_source,
2272                           Error **errp)
2273{
2274    sPAPRDRConnector *drc;
2275    sPAPRDRConnectorClass *drck;
2276    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2277    int i, fdt_offset, fdt_size;
2278    void *fdt;
2279    uint64_t addr = addr_start;
2280
2281    for (i = 0; i < nr_lmbs; i++) {
2282        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2283                addr/SPAPR_MEMORY_BLOCK_SIZE);
2284        g_assert(drc);
2285
2286        fdt = create_device_tree(&fdt_size);
2287        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2288                                                SPAPR_MEMORY_BLOCK_SIZE);
2289
2290        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2291        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2292        addr += SPAPR_MEMORY_BLOCK_SIZE;
2293        if (!dev->hotplugged) {
2294            /* guests expect coldplugged LMBs to be pre-allocated */
2295            drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2296            drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2297        }
2298    }
2299    /* send hotplug notification to the
2300     * guest only in case of hotplugged memory
2301     */
2302    if (dev->hotplugged) {
2303        if (dedicated_hp_event_source) {
2304            drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2305                    addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2306            drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2307            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2308                                                   nr_lmbs,
2309                                                   drck->get_index(drc));
2310        } else {
2311            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2312                                           nr_lmbs);
2313        }
2314    }
2315}
2316
2317static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2318                              uint32_t node, Error **errp)
2319{
2320    Error *local_err = NULL;
2321    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2322    PCDIMMDevice *dimm = PC_DIMM(dev);
2323    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2324    MemoryRegion *mr = ddc->get_memory_region(dimm);
2325    uint64_t align = memory_region_get_alignment(mr);
2326    uint64_t size = memory_region_size(mr);
2327    uint64_t addr;
2328
2329    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2330        error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2331                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2332        goto out;
2333    }
2334
2335    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2336    if (local_err) {
2337        goto out;
2338    }
2339
2340    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2341    if (local_err) {
2342        pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2343        goto out;
2344    }
2345
2346    spapr_add_lmbs(dev, addr, size, node,
2347                   spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2348                   &error_abort);
2349
2350out:
2351    error_propagate(errp, local_err);
2352}
2353
2354typedef struct sPAPRDIMMState {
2355    uint32_t nr_lmbs;
2356} sPAPRDIMMState;
2357
2358static void spapr_lmb_release(DeviceState *dev, void *opaque)
2359{
2360    sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2361    HotplugHandler *hotplug_ctrl;
2362
2363    if (--ds->nr_lmbs) {
2364        return;
2365    }
2366
2367    g_free(ds);
2368
2369    /*
2370     * Now that all the LMBs have been removed by the guest, call the
2371     * pc-dimm unplug handler to cleanup up the pc-dimm device.
2372     */
2373    hotplug_ctrl = qdev_get_hotplug_handler(dev);
2374    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2375}
2376
2377static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2378                           Error **errp)
2379{
2380    sPAPRDRConnector *drc;
2381    sPAPRDRConnectorClass *drck;
2382    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2383    int i;
2384    sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2385    uint64_t addr = addr_start;
2386
2387    ds->nr_lmbs = nr_lmbs;
2388    for (i = 0; i < nr_lmbs; i++) {
2389        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2390                addr / SPAPR_MEMORY_BLOCK_SIZE);
2391        g_assert(drc);
2392
2393        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2394        drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2395        addr += SPAPR_MEMORY_BLOCK_SIZE;
2396    }
2397
2398    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2399                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2400    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2401    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2402                                              nr_lmbs,
2403                                              drck->get_index(drc));
2404}
2405
2406static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2407                                Error **errp)
2408{
2409    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2410    PCDIMMDevice *dimm = PC_DIMM(dev);
2411    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2412    MemoryRegion *mr = ddc->get_memory_region(dimm);
2413
2414    pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2415    object_unparent(OBJECT(dev));
2416}
2417
2418static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2419                                        DeviceState *dev, Error **errp)
2420{
2421    Error *local_err = NULL;
2422    PCDIMMDevice *dimm = PC_DIMM(dev);
2423    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2424    MemoryRegion *mr = ddc->get_memory_region(dimm);
2425    uint64_t size = memory_region_size(mr);
2426    uint64_t addr;
2427
2428    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2429    if (local_err) {
2430        goto out;
2431    }
2432
2433    spapr_del_lmbs(dev, addr, size, &error_abort);
2434out:
2435    error_propagate(errp, local_err);
2436}
2437
2438void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2439                                    sPAPRMachineState *spapr)
2440{
2441    PowerPCCPU *cpu = POWERPC_CPU(cs);
2442    DeviceClass *dc = DEVICE_GET_CLASS(cs);
2443    int id = ppc_get_vcpu_dt_id(cpu);
2444    void *fdt;
2445    int offset, fdt_size;
2446    char *nodename;
2447
2448    fdt = create_device_tree(&fdt_size);
2449    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2450    offset = fdt_add_subnode(fdt, 0, nodename);
2451
2452    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2453    g_free(nodename);
2454
2455    *fdt_offset = offset;
2456    return fdt;
2457}
2458
2459static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2460                                      DeviceState *dev, Error **errp)
2461{
2462    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2463
2464    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2465        int node;
2466
2467        if (!smc->dr_lmb_enabled) {
2468            error_setg(errp, "Memory hotplug not supported for this machine");
2469            return;
2470        }
2471        node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2472        if (*errp) {
2473            return;
2474        }
2475        if (node < 0 || node >= MAX_NODES) {
2476            error_setg(errp, "Invaild node %d", node);
2477            return;
2478        }
2479
2480        /*
2481         * Currently PowerPC kernel doesn't allow hot-adding memory to
2482         * memory-less node, but instead will silently add the memory
2483         * to the first node that has some memory. This causes two
2484         * unexpected behaviours for the user.
2485         *
2486         * - Memory gets hotplugged to a different node than what the user
2487         *   specified.
2488         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2489         *   to memory-less node, a reboot will set things accordingly
2490         *   and the previously hotplugged memory now ends in the right node.
2491         *   This appears as if some memory moved from one node to another.
2492         *
2493         * So until kernel starts supporting memory hotplug to memory-less
2494         * nodes, just prevent such attempts upfront in QEMU.
2495         */
2496        if (nb_numa_nodes && !numa_info[node].node_mem) {
2497            error_setg(errp, "Can't hotplug memory to memory-less node %d",
2498                       node);
2499            return;
2500        }
2501
2502        spapr_memory_plug(hotplug_dev, dev, node, errp);
2503    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2504        spapr_core_plug(hotplug_dev, dev, errp);
2505    }
2506}
2507
2508static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2509                                      DeviceState *dev, Error **errp)
2510{
2511    sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2512    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2513
2514    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2515        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2516            spapr_memory_unplug(hotplug_dev, dev, errp);
2517        } else {
2518            error_setg(errp, "Memory hot unplug not supported for this guest");
2519        }
2520    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2521        if (!mc->query_hotpluggable_cpus) {
2522            error_setg(errp, "CPU hot unplug not supported on this machine");
2523            return;
2524        }
2525        spapr_core_unplug(hotplug_dev, dev, errp);
2526    }
2527}
2528
2529static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2530                                                DeviceState *dev, Error **errp)
2531{
2532    sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2533    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2534
2535    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2536        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2537            spapr_memory_unplug_request(hotplug_dev, dev, errp);
2538        } else {
2539            /* NOTE: this means there is a window after guest reset, prior to
2540             * CAS negotiation, where unplug requests will fail due to the
2541             * capability not being detected yet. This is a bit different than
2542             * the case with PCI unplug, where the events will be queued and
2543             * eventually handled by the guest after boot
2544             */
2545            error_setg(errp, "Memory hot unplug not supported for this guest");
2546        }
2547    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2548        if (!mc->query_hotpluggable_cpus) {
2549            error_setg(errp, "CPU hot unplug not supported on this machine");
2550            return;
2551        }
2552        spapr_core_unplug(hotplug_dev, dev, errp);
2553    }
2554}
2555
2556static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2557                                          DeviceState *dev, Error **errp)
2558{
2559    if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2560        spapr_core_pre_plug(hotplug_dev, dev, errp);
2561    }
2562}
2563
2564static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2565                                                 DeviceState *dev)
2566{
2567    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2568        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2569        return HOTPLUG_HANDLER(machine);
2570    }
2571    return NULL;
2572}
2573
2574static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2575{
2576    /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2577     * socket means much for the paravirtualized PAPR platform) */
2578    return cpu_index / smp_threads / smp_cores;
2579}
2580
2581static HotpluggableCPUList *spapr_query_hotpluggable_cpus(MachineState *machine)
2582{
2583    int i;
2584    HotpluggableCPUList *head = NULL;
2585    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2586    int spapr_max_cores = max_cpus / smp_threads;
2587
2588    for (i = 0; i < spapr_max_cores; i++) {
2589        HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2590        HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2591        CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2592
2593        cpu_item->type = spapr_get_cpu_core_type(machine->cpu_model);
2594        cpu_item->vcpus_count = smp_threads;
2595        cpu_props->has_core_id = true;
2596        cpu_props->core_id = i * smp_threads;
2597        /* TODO: add 'has_node/node' here to describe
2598           to which node core belongs */
2599
2600        cpu_item->props = cpu_props;
2601        if (spapr->cores[i]) {
2602            cpu_item->has_qom_path = true;
2603            cpu_item->qom_path = object_get_canonical_path(spapr->cores[i]);
2604        }
2605        list_item->value = cpu_item;
2606        list_item->next = head;
2607        head = list_item;
2608    }
2609    return head;
2610}
2611
2612static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
2613                                uint64_t *buid, hwaddr *pio,
2614                                hwaddr *mmio32, hwaddr *mmio64,
2615                                unsigned n_dma, uint32_t *liobns, Error **errp)
2616{
2617    /*
2618     * New-style PHB window placement.
2619     *
2620     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2621     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2622     * windows.
2623     *
2624     * Some guest kernels can't work with MMIO windows above 1<<46
2625     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2626     *
2627     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2628     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
2629     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
2630     * 1TiB 64-bit MMIO windows for each PHB.
2631     */
2632    const uint64_t base_buid = 0x800000020000000ULL;
2633    const int max_phbs =
2634        (SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / SPAPR_PCI_MEM64_WIN_SIZE - 1;
2635    int i;
2636
2637    /* Sanity check natural alignments */
2638    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2639    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2640    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
2641    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
2642    /* Sanity check bounds */
2643    QEMU_BUILD_BUG_ON((max_phbs * SPAPR_PCI_IO_WIN_SIZE) > SPAPR_PCI_MEM32_WIN_SIZE);
2644    QEMU_BUILD_BUG_ON((max_phbs * SPAPR_PCI_MEM32_WIN_SIZE) > SPAPR_PCI_MEM64_WIN_SIZE);
2645
2646    if (index >= max_phbs) {
2647        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
2648                   max_phbs - 1);
2649        return;
2650    }
2651
2652    *buid = base_buid + index;
2653    for (i = 0; i < n_dma; ++i) {
2654        liobns[i] = SPAPR_PCI_LIOBN(index, i);
2655    }
2656
2657    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
2658    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
2659    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
2660}
2661
2662static void spapr_machine_class_init(ObjectClass *oc, void *data)
2663{
2664    MachineClass *mc = MACHINE_CLASS(oc);
2665    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2666    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2667    NMIClass *nc = NMI_CLASS(oc);
2668    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2669
2670    mc->desc = "pSeries Logical Partition (PAPR compliant)";
2671
2672    /*
2673     * We set up the default / latest behaviour here.  The class_init
2674     * functions for the specific versioned machine types can override
2675     * these details for backwards compatibility
2676     */
2677    mc->init = ppc_spapr_init;
2678    mc->reset = ppc_spapr_reset;
2679    mc->block_default_type = IF_SCSI;
2680    mc->max_cpus = 255;
2681    mc->no_parallel = 1;
2682    mc->default_boot_order = "";
2683    mc->default_ram_size = 512 * M_BYTE;
2684    mc->kvm_type = spapr_kvm_type;
2685    mc->has_dynamic_sysbus = true;
2686    mc->pci_allow_0_address = true;
2687    mc->get_hotplug_handler = spapr_get_hotplug_handler;
2688    hc->pre_plug = spapr_machine_device_pre_plug;
2689    hc->plug = spapr_machine_device_plug;
2690    hc->unplug = spapr_machine_device_unplug;
2691    mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
2692    hc->unplug_request = spapr_machine_device_unplug_request;
2693
2694    smc->dr_lmb_enabled = true;
2695    smc->tcg_default_cpu = "POWER8";
2696    mc->query_hotpluggable_cpus = spapr_query_hotpluggable_cpus;
2697    fwc->get_dev_path = spapr_get_fw_dev_path;
2698    nc->nmi_monitor_handler = spapr_nmi;
2699    smc->phb_placement = spapr_phb_placement;
2700}
2701
2702static const TypeInfo spapr_machine_info = {
2703    .name          = TYPE_SPAPR_MACHINE,
2704    .parent        = TYPE_MACHINE,
2705    .abstract      = true,
2706    .instance_size = sizeof(sPAPRMachineState),
2707    .instance_init = spapr_machine_initfn,
2708    .instance_finalize = spapr_machine_finalizefn,
2709    .class_size    = sizeof(sPAPRMachineClass),
2710    .class_init    = spapr_machine_class_init,
2711    .interfaces = (InterfaceInfo[]) {
2712        { TYPE_FW_PATH_PROVIDER },
2713        { TYPE_NMI },
2714        { TYPE_HOTPLUG_HANDLER },
2715        { }
2716    },
2717};
2718
2719#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
2720    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2721                                                    void *data)      \
2722    {                                                                \
2723        MachineClass *mc = MACHINE_CLASS(oc);                        \
2724        spapr_machine_##suffix##_class_options(mc);                  \
2725        if (latest) {                                                \
2726            mc->alias = "pseries";                                   \
2727            mc->is_default = 1;                                      \
2728        }                                                            \
2729    }                                                                \
2730    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
2731    {                                                                \
2732        MachineState *machine = MACHINE(obj);                        \
2733        spapr_machine_##suffix##_instance_options(machine);          \
2734    }                                                                \
2735    static const TypeInfo spapr_machine_##suffix##_info = {          \
2736        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
2737        .parent = TYPE_SPAPR_MACHINE,                                \
2738        .class_init = spapr_machine_##suffix##_class_init,           \
2739        .instance_init = spapr_machine_##suffix##_instance_init,     \
2740    };                                                               \
2741    static void spapr_machine_register_##suffix(void)                \
2742    {                                                                \
2743        type_register(&spapr_machine_##suffix##_info);               \
2744    }                                                                \
2745    type_init(spapr_machine_register_##suffix)
2746
2747/*
2748 * pseries-2.8
2749 */
2750static void spapr_machine_2_8_instance_options(MachineState *machine)
2751{
2752}
2753
2754static void spapr_machine_2_8_class_options(MachineClass *mc)
2755{
2756    /* Defaults for the latest behaviour inherited from the base class */
2757}
2758
2759DEFINE_SPAPR_MACHINE(2_8, "2.8", true);
2760
2761/*
2762 * pseries-2.7
2763 */
2764#define SPAPR_COMPAT_2_7                            \
2765    HW_COMPAT_2_7                                   \
2766    {                                               \
2767        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
2768        .property = "mem_win_size",                 \
2769        .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
2770    },                                              \
2771    {                                               \
2772        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
2773        .property = "mem64_win_size",               \
2774        .value    = "0",                            \
2775    },                                              \
2776    {                                               \
2777        .driver = TYPE_POWERPC_CPU,                 \
2778        .property = "pre-2.8-migration",            \
2779        .value    = "on",                           \
2780    },                                              \
2781    {                                               \
2782        .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
2783        .property = "pre-2.8-migration",            \
2784        .value    = "on",                           \
2785    },
2786
2787static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
2788                              uint64_t *buid, hwaddr *pio,
2789                              hwaddr *mmio32, hwaddr *mmio64,
2790                              unsigned n_dma, uint32_t *liobns, Error **errp)
2791{
2792    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
2793    const uint64_t base_buid = 0x800000020000000ULL;
2794    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
2795    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
2796    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
2797    const uint32_t max_index = 255;
2798    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
2799
2800    uint64_t ram_top = MACHINE(spapr)->ram_size;
2801    hwaddr phb0_base, phb_base;
2802    int i;
2803
2804    /* Do we have hotpluggable memory? */
2805    if (MACHINE(spapr)->maxram_size > ram_top) {
2806        /* Can't just use maxram_size, because there may be an
2807         * alignment gap between normal and hotpluggable memory
2808         * regions */
2809        ram_top = spapr->hotplug_memory.base +
2810            memory_region_size(&spapr->hotplug_memory.mr);
2811    }
2812
2813    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
2814
2815    if (index > max_index) {
2816        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
2817                   max_index);
2818        return;
2819    }
2820
2821    *buid = base_buid + index;
2822    for (i = 0; i < n_dma; ++i) {
2823        liobns[i] = SPAPR_PCI_LIOBN(index, i);
2824    }
2825
2826    phb_base = phb0_base + index * phb_spacing;
2827    *pio = phb_base + pio_offset;
2828    *mmio32 = phb_base + mmio_offset;
2829    /*
2830     * We don't set the 64-bit MMIO window, relying on the PHB's
2831     * fallback behaviour of automatically splitting a large "32-bit"
2832     * window into contiguous 32-bit and 64-bit windows
2833     */
2834}
2835
2836static void spapr_machine_2_7_instance_options(MachineState *machine)
2837{
2838    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2839
2840    spapr_machine_2_8_instance_options(machine);
2841    spapr->use_hotplug_event_source = false;
2842}
2843
2844static void spapr_machine_2_7_class_options(MachineClass *mc)
2845{
2846    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2847
2848    spapr_machine_2_8_class_options(mc);
2849    smc->tcg_default_cpu = "POWER7";
2850    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
2851    smc->phb_placement = phb_placement_2_7;
2852}
2853
2854DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
2855
2856/*
2857 * pseries-2.6
2858 */
2859#define SPAPR_COMPAT_2_6 \
2860    HW_COMPAT_2_6 \
2861    { \
2862        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2863        .property = "ddw",\
2864        .value    = stringify(off),\
2865    },
2866
2867static void spapr_machine_2_6_instance_options(MachineState *machine)
2868{
2869    spapr_machine_2_7_instance_options(machine);
2870}
2871
2872static void spapr_machine_2_6_class_options(MachineClass *mc)
2873{
2874    spapr_machine_2_7_class_options(mc);
2875    mc->query_hotpluggable_cpus = NULL;
2876    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2877}
2878
2879DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2880
2881/*
2882 * pseries-2.5
2883 */
2884#define SPAPR_COMPAT_2_5 \
2885    HW_COMPAT_2_5 \
2886    { \
2887        .driver   = "spapr-vlan", \
2888        .property = "use-rx-buffer-pools", \
2889        .value    = "off", \
2890    },
2891
2892static void spapr_machine_2_5_instance_options(MachineState *machine)
2893{
2894    spapr_machine_2_6_instance_options(machine);
2895}
2896
2897static void spapr_machine_2_5_class_options(MachineClass *mc)
2898{
2899    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2900
2901    spapr_machine_2_6_class_options(mc);
2902    smc->use_ohci_by_default = true;
2903    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2904}
2905
2906DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2907
2908/*
2909 * pseries-2.4
2910 */
2911#define SPAPR_COMPAT_2_4 \
2912        HW_COMPAT_2_4
2913
2914static void spapr_machine_2_4_instance_options(MachineState *machine)
2915{
2916    spapr_machine_2_5_instance_options(machine);
2917}
2918
2919static void spapr_machine_2_4_class_options(MachineClass *mc)
2920{
2921    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2922
2923    spapr_machine_2_5_class_options(mc);
2924    smc->dr_lmb_enabled = false;
2925    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2926}
2927
2928DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2929
2930/*
2931 * pseries-2.3
2932 */
2933#define SPAPR_COMPAT_2_3 \
2934        HW_COMPAT_2_3 \
2935        {\
2936            .driver   = "spapr-pci-host-bridge",\
2937            .property = "dynamic-reconfiguration",\
2938            .value    = "off",\
2939        },
2940
2941static void spapr_machine_2_3_instance_options(MachineState *machine)
2942{
2943    spapr_machine_2_4_instance_options(machine);
2944    savevm_skip_section_footers();
2945    global_state_set_optional();
2946    savevm_skip_configuration();
2947}
2948
2949static void spapr_machine_2_3_class_options(MachineClass *mc)
2950{
2951    spapr_machine_2_4_class_options(mc);
2952    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2953}
2954DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2955
2956/*
2957 * pseries-2.2
2958 */
2959
2960#define SPAPR_COMPAT_2_2 \
2961        HW_COMPAT_2_2 \
2962        {\
2963            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2964            .property = "mem_win_size",\
2965            .value    = "0x20000000",\
2966        },
2967
2968static void spapr_machine_2_2_instance_options(MachineState *machine)
2969{
2970    spapr_machine_2_3_instance_options(machine);
2971    machine->suppress_vmdesc = true;
2972}
2973
2974static void spapr_machine_2_2_class_options(MachineClass *mc)
2975{
2976    spapr_machine_2_3_class_options(mc);
2977    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2978}
2979DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2980
2981/*
2982 * pseries-2.1
2983 */
2984#define SPAPR_COMPAT_2_1 \
2985        HW_COMPAT_2_1
2986
2987static void spapr_machine_2_1_instance_options(MachineState *machine)
2988{
2989    spapr_machine_2_2_instance_options(machine);
2990}
2991
2992static void spapr_machine_2_1_class_options(MachineClass *mc)
2993{
2994    spapr_machine_2_2_class_options(mc);
2995    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
2996}
2997DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
2998
2999static void spapr_machine_register_types(void)
3000{
3001    type_register_static(&spapr_machine_info);
3002}
3003
3004type_init(spapr_machine_register_types)
3005