qemu/hw/ppc/spapr_hcall.c
<<
>>
Prefs
   1#include "qemu/osdep.h"
   2#include "qapi/error.h"
   3#include "sysemu/sysemu.h"
   4#include "qemu/log.h"
   5#include "cpu.h"
   6#include "exec/exec-all.h"
   7#include "helper_regs.h"
   8#include "hw/ppc/spapr.h"
   9#include "mmu-hash64.h"
  10#include "cpu-models.h"
  11#include "trace.h"
  12#include "sysemu/kvm.h"
  13#include "kvm_ppc.h"
  14#include "hw/ppc/spapr_ovec.h"
  15
  16struct SPRSyncState {
  17    int spr;
  18    target_ulong value;
  19    target_ulong mask;
  20};
  21
  22static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
  23{
  24    struct SPRSyncState *s = arg.host_ptr;
  25    PowerPCCPU *cpu = POWERPC_CPU(cs);
  26    CPUPPCState *env = &cpu->env;
  27
  28    cpu_synchronize_state(cs);
  29    env->spr[s->spr] &= ~s->mask;
  30    env->spr[s->spr] |= s->value;
  31}
  32
  33static void set_spr(CPUState *cs, int spr, target_ulong value,
  34                    target_ulong mask)
  35{
  36    struct SPRSyncState s = {
  37        .spr = spr,
  38        .value = value,
  39        .mask = mask
  40    };
  41    run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
  42}
  43
  44static bool has_spr(PowerPCCPU *cpu, int spr)
  45{
  46    /* We can test whether the SPR is defined by checking for a valid name */
  47    return cpu->env.spr_cb[spr].name != NULL;
  48}
  49
  50static inline bool valid_pte_index(CPUPPCState *env, target_ulong pte_index)
  51{
  52    /*
  53     * hash value/pteg group index is normalized by htab_mask
  54     */
  55    if (((pte_index & ~7ULL) / HPTES_PER_GROUP) & ~env->htab_mask) {
  56        return false;
  57    }
  58    return true;
  59}
  60
  61static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
  62{
  63    MachineState *machine = MACHINE(spapr);
  64    MemoryHotplugState *hpms = &spapr->hotplug_memory;
  65
  66    if (addr < machine->ram_size) {
  67        return true;
  68    }
  69    if ((addr >= hpms->base)
  70        && ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
  71        return true;
  72    }
  73
  74    return false;
  75}
  76
  77static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
  78                            target_ulong opcode, target_ulong *args)
  79{
  80    CPUPPCState *env = &cpu->env;
  81    target_ulong flags = args[0];
  82    target_ulong pte_index = args[1];
  83    target_ulong pteh = args[2];
  84    target_ulong ptel = args[3];
  85    unsigned apshift;
  86    target_ulong raddr;
  87    target_ulong index;
  88    uint64_t token;
  89
  90    apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
  91    if (!apshift) {
  92        /* Bad page size encoding */
  93        return H_PARAMETER;
  94    }
  95
  96    raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
  97
  98    if (is_ram_address(spapr, raddr)) {
  99        /* Regular RAM - should have WIMG=0010 */
 100        if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
 101            return H_PARAMETER;
 102        }
 103    } else {
 104        target_ulong wimg_flags;
 105        /* Looks like an IO address */
 106        /* FIXME: What WIMG combinations could be sensible for IO?
 107         * For now we allow WIMG=010x, but are there others? */
 108        /* FIXME: Should we check against registered IO addresses? */
 109        wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
 110
 111        if (wimg_flags != HPTE64_R_I &&
 112            wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
 113            return H_PARAMETER;
 114        }
 115    }
 116
 117    pteh &= ~0x60ULL;
 118
 119    if (!valid_pte_index(env, pte_index)) {
 120        return H_PARAMETER;
 121    }
 122
 123    index = 0;
 124    if (likely((flags & H_EXACT) == 0)) {
 125        pte_index &= ~7ULL;
 126        token = ppc_hash64_start_access(cpu, pte_index);
 127        for (; index < 8; index++) {
 128            if (!(ppc_hash64_load_hpte0(cpu, token, index) & HPTE64_V_VALID)) {
 129                break;
 130            }
 131        }
 132        ppc_hash64_stop_access(cpu, token);
 133        if (index == 8) {
 134            return H_PTEG_FULL;
 135        }
 136    } else {
 137        token = ppc_hash64_start_access(cpu, pte_index);
 138        if (ppc_hash64_load_hpte0(cpu, token, 0) & HPTE64_V_VALID) {
 139            ppc_hash64_stop_access(cpu, token);
 140            return H_PTEG_FULL;
 141        }
 142        ppc_hash64_stop_access(cpu, token);
 143    }
 144
 145    ppc_hash64_store_hpte(cpu, pte_index + index,
 146                          pteh | HPTE64_V_HPTE_DIRTY, ptel);
 147
 148    args[0] = pte_index + index;
 149    return H_SUCCESS;
 150}
 151
 152typedef enum {
 153    REMOVE_SUCCESS = 0,
 154    REMOVE_NOT_FOUND = 1,
 155    REMOVE_PARM = 2,
 156    REMOVE_HW = 3,
 157} RemoveResult;
 158
 159static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
 160                                target_ulong avpn,
 161                                target_ulong flags,
 162                                target_ulong *vp, target_ulong *rp)
 163{
 164    CPUPPCState *env = &cpu->env;
 165    uint64_t token;
 166    target_ulong v, r;
 167
 168    if (!valid_pte_index(env, ptex)) {
 169        return REMOVE_PARM;
 170    }
 171
 172    token = ppc_hash64_start_access(cpu, ptex);
 173    v = ppc_hash64_load_hpte0(cpu, token, 0);
 174    r = ppc_hash64_load_hpte1(cpu, token, 0);
 175    ppc_hash64_stop_access(cpu, token);
 176
 177    if ((v & HPTE64_V_VALID) == 0 ||
 178        ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
 179        ((flags & H_ANDCOND) && (v & avpn) != 0)) {
 180        return REMOVE_NOT_FOUND;
 181    }
 182    *vp = v;
 183    *rp = r;
 184    ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
 185    ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
 186    return REMOVE_SUCCESS;
 187}
 188
 189static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 190                             target_ulong opcode, target_ulong *args)
 191{
 192    CPUPPCState *env = &cpu->env;
 193    target_ulong flags = args[0];
 194    target_ulong pte_index = args[1];
 195    target_ulong avpn = args[2];
 196    RemoveResult ret;
 197
 198    ret = remove_hpte(cpu, pte_index, avpn, flags,
 199                      &args[0], &args[1]);
 200
 201    switch (ret) {
 202    case REMOVE_SUCCESS:
 203        check_tlb_flush(env, true);
 204        return H_SUCCESS;
 205
 206    case REMOVE_NOT_FOUND:
 207        return H_NOT_FOUND;
 208
 209    case REMOVE_PARM:
 210        return H_PARAMETER;
 211
 212    case REMOVE_HW:
 213        return H_HARDWARE;
 214    }
 215
 216    g_assert_not_reached();
 217}
 218
 219#define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
 220#define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
 221#define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
 222#define   H_BULK_REMOVE_END            0xc000000000000000ULL
 223#define H_BULK_REMOVE_CODE             0x3000000000000000ULL
 224#define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
 225#define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
 226#define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
 227#define   H_BULK_REMOVE_HW             0x3000000000000000ULL
 228#define H_BULK_REMOVE_RC               0x0c00000000000000ULL
 229#define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
 230#define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
 231#define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
 232#define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
 233#define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
 234
 235#define H_BULK_REMOVE_MAX_BATCH        4
 236
 237static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 238                                  target_ulong opcode, target_ulong *args)
 239{
 240    CPUPPCState *env = &cpu->env;
 241    int i;
 242    target_ulong rc = H_SUCCESS;
 243
 244    for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
 245        target_ulong *tsh = &args[i*2];
 246        target_ulong tsl = args[i*2 + 1];
 247        target_ulong v, r, ret;
 248
 249        if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
 250            break;
 251        } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
 252            return H_PARAMETER;
 253        }
 254
 255        *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
 256        *tsh |= H_BULK_REMOVE_RESPONSE;
 257
 258        if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
 259            *tsh |= H_BULK_REMOVE_PARM;
 260            return H_PARAMETER;
 261        }
 262
 263        ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
 264                          (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
 265                          &v, &r);
 266
 267        *tsh |= ret << 60;
 268
 269        switch (ret) {
 270        case REMOVE_SUCCESS:
 271            *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
 272            break;
 273
 274        case REMOVE_PARM:
 275            rc = H_PARAMETER;
 276            goto exit;
 277
 278        case REMOVE_HW:
 279            rc = H_HARDWARE;
 280            goto exit;
 281        }
 282    }
 283 exit:
 284    check_tlb_flush(env, true);
 285
 286    return rc;
 287}
 288
 289static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 290                              target_ulong opcode, target_ulong *args)
 291{
 292    CPUPPCState *env = &cpu->env;
 293    target_ulong flags = args[0];
 294    target_ulong pte_index = args[1];
 295    target_ulong avpn = args[2];
 296    uint64_t token;
 297    target_ulong v, r;
 298
 299    if (!valid_pte_index(env, pte_index)) {
 300        return H_PARAMETER;
 301    }
 302
 303    token = ppc_hash64_start_access(cpu, pte_index);
 304    v = ppc_hash64_load_hpte0(cpu, token, 0);
 305    r = ppc_hash64_load_hpte1(cpu, token, 0);
 306    ppc_hash64_stop_access(cpu, token);
 307
 308    if ((v & HPTE64_V_VALID) == 0 ||
 309        ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
 310        return H_NOT_FOUND;
 311    }
 312
 313    r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
 314           HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
 315    r |= (flags << 55) & HPTE64_R_PP0;
 316    r |= (flags << 48) & HPTE64_R_KEY_HI;
 317    r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
 318    ppc_hash64_store_hpte(cpu, pte_index,
 319                          (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
 320    ppc_hash64_tlb_flush_hpte(cpu, pte_index, v, r);
 321    /* Flush the tlb */
 322    check_tlb_flush(env, true);
 323    /* Don't need a memory barrier, due to qemu's global lock */
 324    ppc_hash64_store_hpte(cpu, pte_index, v | HPTE64_V_HPTE_DIRTY, r);
 325    return H_SUCCESS;
 326}
 327
 328static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 329                           target_ulong opcode, target_ulong *args)
 330{
 331    CPUPPCState *env = &cpu->env;
 332    target_ulong flags = args[0];
 333    target_ulong pte_index = args[1];
 334    uint8_t *hpte;
 335    int i, ridx, n_entries = 1;
 336
 337    if (!valid_pte_index(env, pte_index)) {
 338        return H_PARAMETER;
 339    }
 340
 341    if (flags & H_READ_4) {
 342        /* Clear the two low order bits */
 343        pte_index &= ~(3ULL);
 344        n_entries = 4;
 345    }
 346
 347    hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64);
 348
 349    for (i = 0, ridx = 0; i < n_entries; i++) {
 350        args[ridx++] = ldq_p(hpte);
 351        args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
 352        hpte += HASH_PTE_SIZE_64;
 353    }
 354
 355    return H_SUCCESS;
 356}
 357
 358static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 359                                target_ulong opcode, target_ulong *args)
 360{
 361    cpu_synchronize_state(CPU(cpu));
 362    cpu->env.spr[SPR_SPRG0] = args[0];
 363
 364    return H_SUCCESS;
 365}
 366
 367static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 368                               target_ulong opcode, target_ulong *args)
 369{
 370    if (!has_spr(cpu, SPR_DABR)) {
 371        return H_HARDWARE;              /* DABR register not available */
 372    }
 373    cpu_synchronize_state(CPU(cpu));
 374
 375    if (has_spr(cpu, SPR_DABRX)) {
 376        cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
 377    } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
 378        return H_RESERVED_DABR;
 379    }
 380
 381    cpu->env.spr[SPR_DABR] = args[0];
 382    return H_SUCCESS;
 383}
 384
 385static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 386                                target_ulong opcode, target_ulong *args)
 387{
 388    target_ulong dabrx = args[1];
 389
 390    if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
 391        return H_HARDWARE;
 392    }
 393
 394    if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
 395        || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
 396        return H_PARAMETER;
 397    }
 398
 399    cpu_synchronize_state(CPU(cpu));
 400    cpu->env.spr[SPR_DABRX] = dabrx;
 401    cpu->env.spr[SPR_DABR] = args[0];
 402
 403    return H_SUCCESS;
 404}
 405
 406static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 407                                target_ulong opcode, target_ulong *args)
 408{
 409    target_ulong flags = args[0];
 410    hwaddr dst = args[1];
 411    hwaddr src = args[2];
 412    hwaddr len = TARGET_PAGE_SIZE;
 413    uint8_t *pdst, *psrc;
 414    target_long ret = H_SUCCESS;
 415
 416    if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
 417                  | H_COPY_PAGE | H_ZERO_PAGE)) {
 418        qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
 419                      flags);
 420        return H_PARAMETER;
 421    }
 422
 423    /* Map-in destination */
 424    if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
 425        return H_PARAMETER;
 426    }
 427    pdst = cpu_physical_memory_map(dst, &len, 1);
 428    if (!pdst || len != TARGET_PAGE_SIZE) {
 429        return H_PARAMETER;
 430    }
 431
 432    if (flags & H_COPY_PAGE) {
 433        /* Map-in source, copy to destination, and unmap source again */
 434        if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
 435            ret = H_PARAMETER;
 436            goto unmap_out;
 437        }
 438        psrc = cpu_physical_memory_map(src, &len, 0);
 439        if (!psrc || len != TARGET_PAGE_SIZE) {
 440            ret = H_PARAMETER;
 441            goto unmap_out;
 442        }
 443        memcpy(pdst, psrc, len);
 444        cpu_physical_memory_unmap(psrc, len, 0, len);
 445    } else if (flags & H_ZERO_PAGE) {
 446        memset(pdst, 0, len);          /* Just clear the destination page */
 447    }
 448
 449    if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
 450        kvmppc_dcbst_range(cpu, pdst, len);
 451    }
 452    if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
 453        if (kvm_enabled()) {
 454            kvmppc_icbi_range(cpu, pdst, len);
 455        } else {
 456            tb_flush(CPU(cpu));
 457        }
 458    }
 459
 460unmap_out:
 461    cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
 462    return ret;
 463}
 464
 465#define FLAGS_REGISTER_VPA         0x0000200000000000ULL
 466#define FLAGS_REGISTER_DTL         0x0000400000000000ULL
 467#define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
 468#define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
 469#define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
 470#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
 471
 472#define VPA_MIN_SIZE           640
 473#define VPA_SIZE_OFFSET        0x4
 474#define VPA_SHARED_PROC_OFFSET 0x9
 475#define VPA_SHARED_PROC_VAL    0x2
 476
 477static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
 478{
 479    CPUState *cs = CPU(ppc_env_get_cpu(env));
 480    uint16_t size;
 481    uint8_t tmp;
 482
 483    if (vpa == 0) {
 484        hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
 485        return H_HARDWARE;
 486    }
 487
 488    if (vpa % env->dcache_line_size) {
 489        return H_PARAMETER;
 490    }
 491    /* FIXME: bounds check the address */
 492
 493    size = lduw_be_phys(cs->as, vpa + 0x4);
 494
 495    if (size < VPA_MIN_SIZE) {
 496        return H_PARAMETER;
 497    }
 498
 499    /* VPA is not allowed to cross a page boundary */
 500    if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
 501        return H_PARAMETER;
 502    }
 503
 504    env->vpa_addr = vpa;
 505
 506    tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
 507    tmp |= VPA_SHARED_PROC_VAL;
 508    stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
 509
 510    return H_SUCCESS;
 511}
 512
 513static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
 514{
 515    if (env->slb_shadow_addr) {
 516        return H_RESOURCE;
 517    }
 518
 519    if (env->dtl_addr) {
 520        return H_RESOURCE;
 521    }
 522
 523    env->vpa_addr = 0;
 524    return H_SUCCESS;
 525}
 526
 527static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
 528{
 529    CPUState *cs = CPU(ppc_env_get_cpu(env));
 530    uint32_t size;
 531
 532    if (addr == 0) {
 533        hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
 534        return H_HARDWARE;
 535    }
 536
 537    size = ldl_be_phys(cs->as, addr + 0x4);
 538    if (size < 0x8) {
 539        return H_PARAMETER;
 540    }
 541
 542    if ((addr / 4096) != ((addr + size - 1) / 4096)) {
 543        return H_PARAMETER;
 544    }
 545
 546    if (!env->vpa_addr) {
 547        return H_RESOURCE;
 548    }
 549
 550    env->slb_shadow_addr = addr;
 551    env->slb_shadow_size = size;
 552
 553    return H_SUCCESS;
 554}
 555
 556static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
 557{
 558    env->slb_shadow_addr = 0;
 559    env->slb_shadow_size = 0;
 560    return H_SUCCESS;
 561}
 562
 563static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
 564{
 565    CPUState *cs = CPU(ppc_env_get_cpu(env));
 566    uint32_t size;
 567
 568    if (addr == 0) {
 569        hcall_dprintf("Can't cope with DTL at logical 0\n");
 570        return H_HARDWARE;
 571    }
 572
 573    size = ldl_be_phys(cs->as, addr + 0x4);
 574
 575    if (size < 48) {
 576        return H_PARAMETER;
 577    }
 578
 579    if (!env->vpa_addr) {
 580        return H_RESOURCE;
 581    }
 582
 583    env->dtl_addr = addr;
 584    env->dtl_size = size;
 585
 586    return H_SUCCESS;
 587}
 588
 589static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
 590{
 591    env->dtl_addr = 0;
 592    env->dtl_size = 0;
 593
 594    return H_SUCCESS;
 595}
 596
 597static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 598                                   target_ulong opcode, target_ulong *args)
 599{
 600    target_ulong flags = args[0];
 601    target_ulong procno = args[1];
 602    target_ulong vpa = args[2];
 603    target_ulong ret = H_PARAMETER;
 604    CPUPPCState *tenv;
 605    PowerPCCPU *tcpu;
 606
 607    tcpu = ppc_get_vcpu_by_dt_id(procno);
 608    if (!tcpu) {
 609        return H_PARAMETER;
 610    }
 611    tenv = &tcpu->env;
 612
 613    switch (flags) {
 614    case FLAGS_REGISTER_VPA:
 615        ret = register_vpa(tenv, vpa);
 616        break;
 617
 618    case FLAGS_DEREGISTER_VPA:
 619        ret = deregister_vpa(tenv, vpa);
 620        break;
 621
 622    case FLAGS_REGISTER_SLBSHADOW:
 623        ret = register_slb_shadow(tenv, vpa);
 624        break;
 625
 626    case FLAGS_DEREGISTER_SLBSHADOW:
 627        ret = deregister_slb_shadow(tenv, vpa);
 628        break;
 629
 630    case FLAGS_REGISTER_DTL:
 631        ret = register_dtl(tenv, vpa);
 632        break;
 633
 634    case FLAGS_DEREGISTER_DTL:
 635        ret = deregister_dtl(tenv, vpa);
 636        break;
 637    }
 638
 639    return ret;
 640}
 641
 642static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 643                           target_ulong opcode, target_ulong *args)
 644{
 645    CPUPPCState *env = &cpu->env;
 646    CPUState *cs = CPU(cpu);
 647
 648    env->msr |= (1ULL << MSR_EE);
 649    hreg_compute_hflags(env);
 650    if (!cpu_has_work(cs)) {
 651        cs->halted = 1;
 652        cs->exception_index = EXCP_HLT;
 653        cs->exit_request = 1;
 654    }
 655    return H_SUCCESS;
 656}
 657
 658static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 659                           target_ulong opcode, target_ulong *args)
 660{
 661    target_ulong rtas_r3 = args[0];
 662    uint32_t token = rtas_ld(rtas_r3, 0);
 663    uint32_t nargs = rtas_ld(rtas_r3, 1);
 664    uint32_t nret = rtas_ld(rtas_r3, 2);
 665
 666    return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
 667                           nret, rtas_r3 + 12 + 4*nargs);
 668}
 669
 670static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 671                                   target_ulong opcode, target_ulong *args)
 672{
 673    CPUState *cs = CPU(cpu);
 674    target_ulong size = args[0];
 675    target_ulong addr = args[1];
 676
 677    switch (size) {
 678    case 1:
 679        args[0] = ldub_phys(cs->as, addr);
 680        return H_SUCCESS;
 681    case 2:
 682        args[0] = lduw_phys(cs->as, addr);
 683        return H_SUCCESS;
 684    case 4:
 685        args[0] = ldl_phys(cs->as, addr);
 686        return H_SUCCESS;
 687    case 8:
 688        args[0] = ldq_phys(cs->as, addr);
 689        return H_SUCCESS;
 690    }
 691    return H_PARAMETER;
 692}
 693
 694static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 695                                    target_ulong opcode, target_ulong *args)
 696{
 697    CPUState *cs = CPU(cpu);
 698
 699    target_ulong size = args[0];
 700    target_ulong addr = args[1];
 701    target_ulong val  = args[2];
 702
 703    switch (size) {
 704    case 1:
 705        stb_phys(cs->as, addr, val);
 706        return H_SUCCESS;
 707    case 2:
 708        stw_phys(cs->as, addr, val);
 709        return H_SUCCESS;
 710    case 4:
 711        stl_phys(cs->as, addr, val);
 712        return H_SUCCESS;
 713    case 8:
 714        stq_phys(cs->as, addr, val);
 715        return H_SUCCESS;
 716    }
 717    return H_PARAMETER;
 718}
 719
 720static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 721                                    target_ulong opcode, target_ulong *args)
 722{
 723    CPUState *cs = CPU(cpu);
 724
 725    target_ulong dst   = args[0]; /* Destination address */
 726    target_ulong src   = args[1]; /* Source address */
 727    target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
 728    target_ulong count = args[3]; /* Element count */
 729    target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
 730    uint64_t tmp;
 731    unsigned int mask = (1 << esize) - 1;
 732    int step = 1 << esize;
 733
 734    if (count > 0x80000000) {
 735        return H_PARAMETER;
 736    }
 737
 738    if ((dst & mask) || (src & mask) || (op > 1)) {
 739        return H_PARAMETER;
 740    }
 741
 742    if (dst >= src && dst < (src + (count << esize))) {
 743            dst = dst + ((count - 1) << esize);
 744            src = src + ((count - 1) << esize);
 745            step = -step;
 746    }
 747
 748    while (count--) {
 749        switch (esize) {
 750        case 0:
 751            tmp = ldub_phys(cs->as, src);
 752            break;
 753        case 1:
 754            tmp = lduw_phys(cs->as, src);
 755            break;
 756        case 2:
 757            tmp = ldl_phys(cs->as, src);
 758            break;
 759        case 3:
 760            tmp = ldq_phys(cs->as, src);
 761            break;
 762        default:
 763            return H_PARAMETER;
 764        }
 765        if (op == 1) {
 766            tmp = ~tmp;
 767        }
 768        switch (esize) {
 769        case 0:
 770            stb_phys(cs->as, dst, tmp);
 771            break;
 772        case 1:
 773            stw_phys(cs->as, dst, tmp);
 774            break;
 775        case 2:
 776            stl_phys(cs->as, dst, tmp);
 777            break;
 778        case 3:
 779            stq_phys(cs->as, dst, tmp);
 780            break;
 781        }
 782        dst = dst + step;
 783        src = src + step;
 784    }
 785
 786    return H_SUCCESS;
 787}
 788
 789static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 790                                   target_ulong opcode, target_ulong *args)
 791{
 792    /* Nothing to do on emulation, KVM will trap this in the kernel */
 793    return H_SUCCESS;
 794}
 795
 796static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 797                                   target_ulong opcode, target_ulong *args)
 798{
 799    /* Nothing to do on emulation, KVM will trap this in the kernel */
 800    return H_SUCCESS;
 801}
 802
 803static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
 804                                           target_ulong mflags,
 805                                           target_ulong value1,
 806                                           target_ulong value2)
 807{
 808    CPUState *cs;
 809
 810    if (value1) {
 811        return H_P3;
 812    }
 813    if (value2) {
 814        return H_P4;
 815    }
 816
 817    switch (mflags) {
 818    case H_SET_MODE_ENDIAN_BIG:
 819        CPU_FOREACH(cs) {
 820            set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
 821        }
 822        spapr_pci_switch_vga(true);
 823        return H_SUCCESS;
 824
 825    case H_SET_MODE_ENDIAN_LITTLE:
 826        CPU_FOREACH(cs) {
 827            set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
 828        }
 829        spapr_pci_switch_vga(false);
 830        return H_SUCCESS;
 831    }
 832
 833    return H_UNSUPPORTED_FLAG;
 834}
 835
 836static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
 837                                                        target_ulong mflags,
 838                                                        target_ulong value1,
 839                                                        target_ulong value2)
 840{
 841    CPUState *cs;
 842    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
 843
 844    if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
 845        return H_P2;
 846    }
 847    if (value1) {
 848        return H_P3;
 849    }
 850    if (value2) {
 851        return H_P4;
 852    }
 853
 854    if (mflags == AIL_RESERVED) {
 855        return H_UNSUPPORTED_FLAG;
 856    }
 857
 858    CPU_FOREACH(cs) {
 859        set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
 860    }
 861
 862    return H_SUCCESS;
 863}
 864
 865static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 866                               target_ulong opcode, target_ulong *args)
 867{
 868    target_ulong resource = args[1];
 869    target_ulong ret = H_P2;
 870
 871    switch (resource) {
 872    case H_SET_MODE_RESOURCE_LE:
 873        ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
 874        break;
 875    case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
 876        ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
 877                                                  args[2], args[3]);
 878        break;
 879    }
 880
 881    return ret;
 882}
 883
 884typedef struct {
 885    uint32_t cpu_version;
 886    Error *err;
 887} SetCompatState;
 888
 889static void do_set_compat(CPUState *cs, run_on_cpu_data arg)
 890{
 891    PowerPCCPU *cpu = POWERPC_CPU(cs);
 892    SetCompatState *s = arg.host_ptr;
 893
 894    cpu_synchronize_state(cs);
 895    ppc_set_compat(cpu, s->cpu_version, &s->err);
 896}
 897
 898#define get_compat_level(cpuver) ( \
 899    ((cpuver) == CPU_POWERPC_LOGICAL_2_05) ? 2050 : \
 900    ((cpuver) == CPU_POWERPC_LOGICAL_2_06) ? 2060 : \
 901    ((cpuver) == CPU_POWERPC_LOGICAL_2_06_PLUS) ? 2061 : \
 902    ((cpuver) == CPU_POWERPC_LOGICAL_2_07) ? 2070 : 0)
 903
 904static void cas_handle_compat_cpu(PowerPCCPUClass *pcc, uint32_t pvr,
 905                                  unsigned max_lvl, unsigned *compat_lvl,
 906                                  unsigned *cpu_version)
 907{
 908    unsigned lvl = get_compat_level(pvr);
 909    bool is205, is206, is207;
 910
 911    if (!lvl) {
 912        return;
 913    }
 914
 915    /* If it is a logical PVR, try to determine the highest level */
 916    is205 = (pcc->pcr_supported & PCR_COMPAT_2_05) &&
 917            (lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_05));
 918    is206 = (pcc->pcr_supported & PCR_COMPAT_2_06) &&
 919            ((lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_06)) ||
 920             (lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_06_PLUS)));
 921    is207 = (pcc->pcr_supported & PCR_COMPAT_2_07) &&
 922            (lvl == get_compat_level(CPU_POWERPC_LOGICAL_2_07));
 923
 924    if (is205 || is206 || is207) {
 925        if (!max_lvl) {
 926            /* User did not set the level, choose the highest */
 927            if (*compat_lvl <= lvl) {
 928                *compat_lvl = lvl;
 929                *cpu_version = pvr;
 930            }
 931        } else if (max_lvl >= lvl) {
 932            /* User chose the level, don't set higher than this */
 933            *compat_lvl = lvl;
 934            *cpu_version = pvr;
 935        }
 936    }
 937}
 938
 939static target_ulong h_client_architecture_support(PowerPCCPU *cpu_,
 940                                                  sPAPRMachineState *spapr,
 941                                                  target_ulong opcode,
 942                                                  target_ulong *args)
 943{
 944    target_ulong list = ppc64_phys_to_real(args[0]);
 945    target_ulong ov_table;
 946    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu_);
 947    CPUState *cs;
 948    bool cpu_match = false, cpu_update = true;
 949    unsigned old_cpu_version = cpu_->cpu_version;
 950    unsigned compat_lvl = 0, cpu_version = 0;
 951    unsigned max_lvl = get_compat_level(cpu_->max_compat);
 952    int counter;
 953    sPAPROptionVector *ov5_guest, *ov5_cas_old, *ov5_updates;
 954
 955    /* Parse PVR list */
 956    for (counter = 0; counter < 512; ++counter) {
 957        uint32_t pvr, pvr_mask;
 958
 959        pvr_mask = ldl_be_phys(&address_space_memory, list);
 960        list += 4;
 961        pvr = ldl_be_phys(&address_space_memory, list);
 962        list += 4;
 963
 964        trace_spapr_cas_pvr_try(pvr);
 965        if (!max_lvl &&
 966            ((cpu_->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask))) {
 967            cpu_match = true;
 968            cpu_version = 0;
 969        } else if (pvr == cpu_->cpu_version) {
 970            cpu_match = true;
 971            cpu_version = cpu_->cpu_version;
 972        } else if (!cpu_match) {
 973            cas_handle_compat_cpu(pcc, pvr, max_lvl, &compat_lvl, &cpu_version);
 974        }
 975        /* Terminator record */
 976        if (~pvr_mask & pvr) {
 977            break;
 978        }
 979    }
 980
 981    /* Parsing finished */
 982    trace_spapr_cas_pvr(cpu_->cpu_version, cpu_match,
 983                        cpu_version, pcc->pcr_mask);
 984
 985    /* Update CPUs */
 986    if (old_cpu_version != cpu_version) {
 987        CPU_FOREACH(cs) {
 988            SetCompatState s = {
 989                .cpu_version = cpu_version,
 990                .err = NULL,
 991            };
 992
 993            run_on_cpu(cs, do_set_compat, RUN_ON_CPU_HOST_PTR(&s));
 994
 995            if (s.err) {
 996                error_report_err(s.err);
 997                return H_HARDWARE;
 998            }
 999        }
1000    }
1001
1002    if (!cpu_version) {
1003        cpu_update = false;
1004    }
1005
1006    /* For the future use: here @ov_table points to the first option vector */
1007    ov_table = list;
1008
1009    ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1010
1011    /* NOTE: there are actually a number of ov5 bits where input from the
1012     * guest is always zero, and the platform/QEMU enables them independently
1013     * of guest input. To model these properly we'd want some sort of mask,
1014     * but since they only currently apply to memory migration as defined
1015     * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1016     * to worry about this for now.
1017     */
1018    ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1019    /* full range of negotiated ov5 capabilities */
1020    spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1021    spapr_ovec_cleanup(ov5_guest);
1022    /* capabilities that have been added since CAS-generated guest reset.
1023     * if capabilities have since been removed, generate another reset
1024     */
1025    ov5_updates = spapr_ovec_new();
1026    spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1027                                        ov5_cas_old, spapr->ov5_cas);
1028
1029    if (!spapr->cas_reboot) {
1030        spapr->cas_reboot =
1031            (spapr_h_cas_compose_response(spapr, args[1], args[2], cpu_update,
1032                                          ov5_updates) != 0);
1033    }
1034    spapr_ovec_cleanup(ov5_updates);
1035
1036    if (spapr->cas_reboot) {
1037        qemu_system_reset_request();
1038    }
1039
1040    return H_SUCCESS;
1041}
1042
1043static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1044static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1045
1046void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1047{
1048    spapr_hcall_fn *slot;
1049
1050    if (opcode <= MAX_HCALL_OPCODE) {
1051        assert((opcode & 0x3) == 0);
1052
1053        slot = &papr_hypercall_table[opcode / 4];
1054    } else {
1055        assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1056
1057        slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1058    }
1059
1060    assert(!(*slot));
1061    *slot = fn;
1062}
1063
1064target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1065                             target_ulong *args)
1066{
1067    sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1068
1069    if ((opcode <= MAX_HCALL_OPCODE)
1070        && ((opcode & 0x3) == 0)) {
1071        spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1072
1073        if (fn) {
1074            return fn(cpu, spapr, opcode, args);
1075        }
1076    } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1077               (opcode <= KVMPPC_HCALL_MAX)) {
1078        spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1079
1080        if (fn) {
1081            return fn(cpu, spapr, opcode, args);
1082        }
1083    }
1084
1085    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1086                  opcode);
1087    return H_FUNCTION;
1088}
1089
1090static void hypercall_register_types(void)
1091{
1092    /* hcall-pft */
1093    spapr_register_hypercall(H_ENTER, h_enter);
1094    spapr_register_hypercall(H_REMOVE, h_remove);
1095    spapr_register_hypercall(H_PROTECT, h_protect);
1096    spapr_register_hypercall(H_READ, h_read);
1097
1098    /* hcall-bulk */
1099    spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1100
1101    /* hcall-splpar */
1102    spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1103    spapr_register_hypercall(H_CEDE, h_cede);
1104
1105    /* processor register resource access h-calls */
1106    spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1107    spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1108    spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1109    spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1110    spapr_register_hypercall(H_SET_MODE, h_set_mode);
1111
1112    /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1113     * here between the "CI" and the "CACHE" variants, they will use whatever
1114     * mapping attributes qemu is using. When using KVM, the kernel will
1115     * enforce the attributes more strongly
1116     */
1117    spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1118    spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1119    spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1120    spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1121    spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1122    spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1123    spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1124
1125    /* qemu/KVM-PPC specific hcalls */
1126    spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1127
1128    /* ibm,client-architecture-support support */
1129    spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1130}
1131
1132type_init(hypercall_register_types)
1133