qemu/hw/s390x/sclp.c
<<
>>
Prefs
   1/*
   2 * SCLP Support
   3 *
   4 * Copyright IBM, Corp. 2012
   5 *
   6 * Authors:
   7 *  Christian Borntraeger <borntraeger@de.ibm.com>
   8 *  Heinz Graalfs <graalfs@linux.vnet.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or (at your
  11 * option) any later version.  See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qapi/error.h"
  17#include "cpu.h"
  18#include "sysemu/kvm.h"
  19#include "exec/memory.h"
  20#include "sysemu/sysemu.h"
  21#include "exec/address-spaces.h"
  22#include "hw/boards.h"
  23#include "hw/s390x/sclp.h"
  24#include "hw/s390x/event-facility.h"
  25#include "hw/s390x/s390-pci-bus.h"
  26
  27static inline SCLPDevice *get_sclp_device(void)
  28{
  29    static SCLPDevice *sclp;
  30
  31    if (!sclp) {
  32        sclp = SCLP(object_resolve_path_type("", TYPE_SCLP, NULL));
  33    }
  34    return sclp;
  35}
  36
  37static void prepare_cpu_entries(SCLPDevice *sclp, CPUEntry *entry, int count)
  38{
  39    uint8_t features[SCCB_CPU_FEATURE_LEN] = { 0 };
  40    int i;
  41
  42    s390_get_feat_block(S390_FEAT_TYPE_SCLP_CPU, features);
  43    for (i = 0; i < count; i++) {
  44        entry[i].address = i;
  45        entry[i].type = 0;
  46        memcpy(entry[i].features, features, sizeof(entry[i].features));
  47    }
  48}
  49
  50/* Provide information about the configuration, CPUs and storage */
  51static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb)
  52{
  53    ReadInfo *read_info = (ReadInfo *) sccb;
  54    MachineState *machine = MACHINE(qdev_get_machine());
  55    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
  56    CPUState *cpu;
  57    int cpu_count = 0;
  58    int rnsize, rnmax;
  59    int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state));
  60
  61    CPU_FOREACH(cpu) {
  62        cpu_count++;
  63    }
  64
  65    /* CPU information */
  66    read_info->entries_cpu = cpu_to_be16(cpu_count);
  67    read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
  68    read_info->highest_cpu = cpu_to_be16(max_cpus);
  69
  70    read_info->ibc_val = cpu_to_be32(s390_get_ibc_val());
  71
  72    /* Configuration Characteristic (Extension) */
  73    s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR,
  74                         read_info->conf_char);
  75    s390_get_feat_block(S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT,
  76                         read_info->conf_char_ext);
  77
  78    prepare_cpu_entries(sclp, read_info->entries, cpu_count);
  79
  80    read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
  81                                        SCLP_HAS_PCI_RECONFIG);
  82
  83    /* Memory Hotplug is only supported for the ccw machine type */
  84    if (mhd) {
  85        mhd->standby_subregion_size = MEM_SECTION_SIZE;
  86        /* Deduct the memory slot already used for core */
  87        if (slots > 0) {
  88            while ((mhd->standby_subregion_size * (slots - 1)
  89                    < mhd->standby_mem_size)) {
  90                mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
  91            }
  92        }
  93        /*
  94         * Initialize mapping of guest standby memory sections indicating which
  95         * are and are not online. Assume all standby memory begins offline.
  96         */
  97        if (mhd->standby_state_map == 0) {
  98            if (mhd->standby_mem_size % mhd->standby_subregion_size) {
  99                mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
 100                                             mhd->standby_subregion_size + 1) *
 101                                             (mhd->standby_subregion_size /
 102                                             MEM_SECTION_SIZE));
 103            } else {
 104                mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
 105                                                   MEM_SECTION_SIZE);
 106            }
 107        }
 108        mhd->padded_ram_size = ram_size + mhd->pad_size;
 109        mhd->rzm = 1 << mhd->increment_size;
 110
 111        read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
 112    }
 113    read_info->mha_pow = s390_get_mha_pow();
 114    read_info->hmfai = cpu_to_be32(s390_get_hmfai());
 115
 116    rnsize = 1 << (sclp->increment_size - 20);
 117    if (rnsize <= 128) {
 118        read_info->rnsize = rnsize;
 119    } else {
 120        read_info->rnsize = 0;
 121        read_info->rnsize2 = cpu_to_be32(rnsize);
 122    }
 123
 124    rnmax = machine->maxram_size >> sclp->increment_size;
 125    if (rnmax < 0x10000) {
 126        read_info->rnmax = cpu_to_be16(rnmax);
 127    } else {
 128        read_info->rnmax = cpu_to_be16(0);
 129        read_info->rnmax2 = cpu_to_be64(rnmax);
 130    }
 131
 132    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
 133}
 134
 135static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb)
 136{
 137    int i, assigned;
 138    int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
 139    ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
 140    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 141
 142    if (!mhd) {
 143        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 144        return;
 145    }
 146
 147    if ((ram_size >> mhd->increment_size) >= 0x10000) {
 148        sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
 149        return;
 150    }
 151
 152    /* Return information regarding core memory */
 153    storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
 154    assigned = ram_size >> mhd->increment_size;
 155    storage_info->assigned = cpu_to_be16(assigned);
 156
 157    for (i = 0; i < assigned; i++) {
 158        storage_info->entries[i] = cpu_to_be32(subincrement_id);
 159        subincrement_id += SCLP_INCREMENT_UNIT;
 160    }
 161    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
 162}
 163
 164static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb)
 165{
 166    ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
 167    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 168
 169    if (!mhd) {
 170        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 171        return;
 172    }
 173
 174    if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
 175        sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
 176        return;
 177    }
 178
 179    /* Return information regarding standby memory */
 180    storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
 181    storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
 182                                         mhd->increment_size);
 183    storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
 184                                        mhd->increment_size);
 185    sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
 186}
 187
 188static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb,
 189                                   uint16_t element)
 190{
 191    int i, assigned, subincrement_id;
 192    AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
 193    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 194
 195    if (!mhd) {
 196        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 197        return;
 198    }
 199
 200    if (element != 1) {
 201        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 202        return;
 203    }
 204
 205    assigned = mhd->standby_mem_size >> mhd->increment_size;
 206    attach_info->assigned = cpu_to_be16(assigned);
 207    subincrement_id = ((ram_size >> mhd->increment_size) << 16)
 208                      + SCLP_STARTING_SUBINCREMENT_ID;
 209    for (i = 0; i < assigned; i++) {
 210        attach_info->entries[i] = cpu_to_be32(subincrement_id);
 211        subincrement_id += SCLP_INCREMENT_UNIT;
 212    }
 213    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
 214}
 215
 216static void assign_storage(SCLPDevice *sclp, SCCB *sccb)
 217{
 218    MemoryRegion *mr = NULL;
 219    uint64_t this_subregion_size;
 220    AssignStorage *assign_info = (AssignStorage *) sccb;
 221    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 222    ram_addr_t assign_addr;
 223    MemoryRegion *sysmem = get_system_memory();
 224
 225    if (!mhd) {
 226        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 227        return;
 228    }
 229    assign_addr = (assign_info->rn - 1) * mhd->rzm;
 230
 231    if ((assign_addr % MEM_SECTION_SIZE == 0) &&
 232        (assign_addr >= mhd->padded_ram_size)) {
 233        /* Re-use existing memory region if found */
 234        mr = memory_region_find(sysmem, assign_addr, 1).mr;
 235        memory_region_unref(mr);
 236        if (!mr) {
 237
 238            MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
 239
 240            /* offset to align to standby_subregion_size for allocation */
 241            ram_addr_t offset = assign_addr -
 242                                (assign_addr - mhd->padded_ram_size)
 243                                % mhd->standby_subregion_size;
 244
 245            /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) +  NULL */
 246            char id[16];
 247            snprintf(id, 16, "standby.ram%d",
 248                     (int)((offset - mhd->padded_ram_size) /
 249                     mhd->standby_subregion_size) + 1);
 250
 251            /* Allocate a subregion of the calculated standby_subregion_size */
 252            if (offset + mhd->standby_subregion_size >
 253                mhd->padded_ram_size + mhd->standby_mem_size) {
 254                this_subregion_size = mhd->padded_ram_size +
 255                  mhd->standby_mem_size - offset;
 256            } else {
 257                this_subregion_size = mhd->standby_subregion_size;
 258            }
 259
 260            memory_region_init_ram(standby_ram, NULL, id, this_subregion_size,
 261                                   &error_fatal);
 262            /* This is a hack to make memory hotunplug work again. Once we have
 263             * subdevices, we have to unparent them when unassigning memory,
 264             * instead of doing it via the ref count of the MemoryRegion. */
 265            object_ref(OBJECT(standby_ram));
 266            object_unparent(OBJECT(standby_ram));
 267            vmstate_register_ram_global(standby_ram);
 268            memory_region_add_subregion(sysmem, offset, standby_ram);
 269        }
 270        /* The specified subregion is no longer in standby */
 271        mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
 272                               / MEM_SECTION_SIZE] = 1;
 273    }
 274    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
 275}
 276
 277static void unassign_storage(SCLPDevice *sclp, SCCB *sccb)
 278{
 279    MemoryRegion *mr = NULL;
 280    AssignStorage *assign_info = (AssignStorage *) sccb;
 281    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
 282    ram_addr_t unassign_addr;
 283    MemoryRegion *sysmem = get_system_memory();
 284
 285    if (!mhd) {
 286        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
 287        return;
 288    }
 289    unassign_addr = (assign_info->rn - 1) * mhd->rzm;
 290
 291    /* if the addr is a multiple of 256 MB */
 292    if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
 293        (unassign_addr >= mhd->padded_ram_size)) {
 294        mhd->standby_state_map[(unassign_addr -
 295                           mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
 296
 297        /* find the specified memory region and destroy it */
 298        mr = memory_region_find(sysmem, unassign_addr, 1).mr;
 299        memory_region_unref(mr);
 300        if (mr) {
 301            int i;
 302            int is_removable = 1;
 303            ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
 304                                     (unassign_addr - mhd->padded_ram_size)
 305                                     % mhd->standby_subregion_size);
 306            /* Mark all affected subregions as 'standby' once again */
 307            for (i = 0;
 308                 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
 309                 i++) {
 310
 311                if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
 312                    is_removable = 0;
 313                    break;
 314                }
 315            }
 316            if (is_removable) {
 317                memory_region_del_subregion(sysmem, mr);
 318                object_unref(OBJECT(mr));
 319            }
 320        }
 321    }
 322    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
 323}
 324
 325/* Provide information about the CPU */
 326static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb)
 327{
 328    ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
 329    CPUState *cpu;
 330    int cpu_count = 0;
 331
 332    CPU_FOREACH(cpu) {
 333        cpu_count++;
 334    }
 335
 336    cpu_info->nr_configured = cpu_to_be16(cpu_count);
 337    cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
 338    cpu_info->nr_standby = cpu_to_be16(0);
 339
 340    /* The standby offset is 16-byte for each CPU */
 341    cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
 342        + cpu_info->nr_configured*sizeof(CPUEntry));
 343
 344    prepare_cpu_entries(sclp, cpu_info->entries, cpu_count);
 345
 346    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
 347}
 348
 349static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code)
 350{
 351    SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
 352    SCLPEventFacility *ef = sclp->event_facility;
 353    SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
 354
 355    switch (code & SCLP_CMD_CODE_MASK) {
 356    case SCLP_CMDW_READ_SCP_INFO:
 357    case SCLP_CMDW_READ_SCP_INFO_FORCED:
 358        sclp_c->read_SCP_info(sclp, sccb);
 359        break;
 360    case SCLP_CMDW_READ_CPU_INFO:
 361        sclp_c->read_cpu_info(sclp, sccb);
 362        break;
 363    case SCLP_READ_STORAGE_ELEMENT_INFO:
 364        if (code & 0xff00) {
 365            sclp_c->read_storage_element1_info(sclp, sccb);
 366        } else {
 367            sclp_c->read_storage_element0_info(sclp, sccb);
 368        }
 369        break;
 370    case SCLP_ATTACH_STORAGE_ELEMENT:
 371        sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8);
 372        break;
 373    case SCLP_ASSIGN_STORAGE:
 374        sclp_c->assign_storage(sclp, sccb);
 375        break;
 376    case SCLP_UNASSIGN_STORAGE:
 377        sclp_c->unassign_storage(sclp, sccb);
 378        break;
 379    case SCLP_CMDW_CONFIGURE_PCI:
 380        s390_pci_sclp_configure(sccb);
 381        break;
 382    case SCLP_CMDW_DECONFIGURE_PCI:
 383        s390_pci_sclp_deconfigure(sccb);
 384        break;
 385    default:
 386        efc->command_handler(ef, sccb, code);
 387        break;
 388    }
 389}
 390
 391int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
 392{
 393    SCLPDevice *sclp = get_sclp_device();
 394    SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
 395    int r = 0;
 396    SCCB work_sccb;
 397
 398    hwaddr sccb_len = sizeof(SCCB);
 399
 400    /* first some basic checks on program checks */
 401    if (env->psw.mask & PSW_MASK_PSTATE) {
 402        r = -PGM_PRIVILEGED;
 403        goto out;
 404    }
 405    if (cpu_physical_memory_is_io(sccb)) {
 406        r = -PGM_ADDRESSING;
 407        goto out;
 408    }
 409    if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
 410        || (sccb & ~0x7ffffff8UL) != 0) {
 411        r = -PGM_SPECIFICATION;
 412        goto out;
 413    }
 414
 415    /*
 416     * we want to work on a private copy of the sccb, to prevent guests
 417     * from playing dirty tricks by modifying the memory content after
 418     * the host has checked the values
 419     */
 420    cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
 421
 422    /* Valid sccb sizes */
 423    if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
 424        be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
 425        r = -PGM_SPECIFICATION;
 426        goto out;
 427    }
 428
 429    sclp_c->execute(sclp, &work_sccb, code);
 430
 431    cpu_physical_memory_write(sccb, &work_sccb,
 432                              be16_to_cpu(work_sccb.h.length));
 433
 434    sclp_c->service_interrupt(sclp, sccb);
 435
 436out:
 437    return r;
 438}
 439
 440static void service_interrupt(SCLPDevice *sclp, uint32_t sccb)
 441{
 442    SCLPEventFacility *ef = sclp->event_facility;
 443    SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
 444
 445    uint32_t param = sccb & ~3;
 446
 447    /* Indicate whether an event is still pending */
 448    param |= efc->event_pending(ef) ? 1 : 0;
 449
 450    if (!param) {
 451        /* No need to send an interrupt, there's nothing to be notified about */
 452        return;
 453    }
 454    s390_sclp_extint(param);
 455}
 456
 457void sclp_service_interrupt(uint32_t sccb)
 458{
 459    SCLPDevice *sclp = get_sclp_device();
 460    SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
 461
 462    sclp_c->service_interrupt(sclp, sccb);
 463}
 464
 465/* qemu object creation and initialization functions */
 466
 467void s390_sclp_init(void)
 468{
 469    Object *new = object_new(TYPE_SCLP);
 470
 471    object_property_add_child(qdev_get_machine(), TYPE_SCLP, new,
 472                              NULL);
 473    object_unref(OBJECT(new));
 474    qdev_init_nofail(DEVICE(new));
 475}
 476
 477static void sclp_realize(DeviceState *dev, Error **errp)
 478{
 479    MachineState *machine = MACHINE(qdev_get_machine());
 480    SCLPDevice *sclp = SCLP(dev);
 481    Error *err = NULL;
 482    uint64_t hw_limit;
 483    int ret;
 484
 485    object_property_set_bool(OBJECT(sclp->event_facility), true, "realized",
 486                             &err);
 487    if (err) {
 488        goto out;
 489    }
 490    /*
 491     * qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS. As long
 492     * as we can't find a fitting bus via the qom tree, we have to add the
 493     * event facility to the sysbus, so e.g. a sclp console can be created.
 494     */
 495    qdev_set_parent_bus(DEVICE(sclp->event_facility), sysbus_get_default());
 496
 497    ret = s390_set_memory_limit(machine->maxram_size, &hw_limit);
 498    if (ret == -E2BIG) {
 499        error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB",
 500                   hw_limit >> 30);
 501    } else if (ret) {
 502        error_setg(&err, "qemu: setting the guest size failed");
 503    }
 504
 505out:
 506    error_propagate(errp, err);
 507}
 508
 509static void sclp_memory_init(SCLPDevice *sclp)
 510{
 511    MachineState *machine = MACHINE(qdev_get_machine());
 512    ram_addr_t initial_mem = machine->ram_size;
 513    ram_addr_t max_mem = machine->maxram_size;
 514    ram_addr_t standby_mem = max_mem - initial_mem;
 515    ram_addr_t pad_mem = 0;
 516    int increment_size = 20;
 517
 518    /* The storage increment size is a multiple of 1M and is a power of 2.
 519     * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
 520     * The variable 'increment_size' is an exponent of 2 that can be
 521     * used to calculate the size (in bytes) of an increment. */
 522    while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
 523        increment_size++;
 524    }
 525    if (machine->ram_slots) {
 526        while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
 527            increment_size++;
 528        }
 529    }
 530    sclp->increment_size = increment_size;
 531
 532    /* The core and standby memory areas need to be aligned with
 533     * the increment size.  In effect, this can cause the
 534     * user-specified memory size to be rounded down to align
 535     * with the nearest increment boundary. */
 536    initial_mem = initial_mem >> increment_size << increment_size;
 537    standby_mem = standby_mem >> increment_size << increment_size;
 538
 539    /* If the size of ram is not on a MEM_SECTION_SIZE boundary,
 540       calculate the pad size necessary to force this boundary. */
 541    if (machine->ram_slots && standby_mem) {
 542        sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev();
 543
 544        if (initial_mem % MEM_SECTION_SIZE) {
 545            pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE;
 546        }
 547        mhd->increment_size = increment_size;
 548        mhd->pad_size = pad_mem;
 549        mhd->standby_mem_size = standby_mem;
 550    }
 551    machine->ram_size = initial_mem;
 552    machine->maxram_size = initial_mem + pad_mem + standby_mem;
 553    /* let's propagate the changed ram size into the global variable. */
 554    ram_size = initial_mem;
 555}
 556
 557static void sclp_init(Object *obj)
 558{
 559    SCLPDevice *sclp = SCLP(obj);
 560    Object *new;
 561
 562    new = object_new(TYPE_SCLP_EVENT_FACILITY);
 563    object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL);
 564    object_unref(new);
 565    sclp->event_facility = EVENT_FACILITY(new);
 566
 567    sclp_memory_init(sclp);
 568}
 569
 570static void sclp_class_init(ObjectClass *oc, void *data)
 571{
 572    SCLPDeviceClass *sc = SCLP_CLASS(oc);
 573    DeviceClass *dc = DEVICE_CLASS(oc);
 574
 575    dc->desc = "SCLP (Service-Call Logical Processor)";
 576    dc->realize = sclp_realize;
 577    dc->hotpluggable = false;
 578    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
 579
 580    sc->read_SCP_info = read_SCP_info;
 581    sc->read_storage_element0_info = read_storage_element0_info;
 582    sc->read_storage_element1_info = read_storage_element1_info;
 583    sc->attach_storage_element = attach_storage_element;
 584    sc->assign_storage = assign_storage;
 585    sc->unassign_storage = unassign_storage;
 586    sc->read_cpu_info = sclp_read_cpu_info;
 587    sc->execute = sclp_execute;
 588    sc->service_interrupt = service_interrupt;
 589}
 590
 591static TypeInfo sclp_info = {
 592    .name = TYPE_SCLP,
 593    .parent = TYPE_DEVICE,
 594    .instance_init = sclp_init,
 595    .instance_size = sizeof(SCLPDevice),
 596    .class_init = sclp_class_init,
 597    .class_size = sizeof(SCLPDeviceClass),
 598};
 599
 600sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
 601{
 602    DeviceState *dev;
 603    dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
 604    object_property_add_child(qdev_get_machine(),
 605                              TYPE_SCLP_MEMORY_HOTPLUG_DEV,
 606                              OBJECT(dev), NULL);
 607    qdev_init_nofail(dev);
 608    return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
 609                                   TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
 610}
 611
 612sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
 613{
 614    return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
 615                                   TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
 616}
 617
 618static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass,
 619                                               void *data)
 620{
 621    DeviceClass *dc = DEVICE_CLASS(klass);
 622
 623    set_bit(DEVICE_CATEGORY_MISC, dc->categories);
 624}
 625
 626static TypeInfo sclp_memory_hotplug_dev_info = {
 627    .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
 628    .parent = TYPE_SYS_BUS_DEVICE,
 629    .instance_size = sizeof(sclpMemoryHotplugDev),
 630    .class_init = sclp_memory_hotplug_dev_class_init,
 631};
 632
 633static void register_types(void)
 634{
 635    type_register_static(&sclp_memory_hotplug_dev_info);
 636    type_register_static(&sclp_info);
 637}
 638type_init(register_types);
 639